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Background: Uterine corpus endometrial carcinoma (UCEC) is a prevalent
malignancy increasingly observed in patients with diabetes mellitus. A
comprehensive understanding of the intricate molecular interplay between
diabetes and UCEC is crucial to develop effective prognostic and therapeutic
strategies. This study aims to elucidate the relationship between diabetes and
UCEC by identifying diabetes-related differentially expressed genes (DM-DEGs)
and to establish a prognostic model to enhance clinical outcomes.

Methods: Transcriptomic data sourced from The Cancer Genome Atlas (TCGA)
was analyzed alongside diabetes-associated genes from GeneCards. Differential
expression analysis revealed 931 differentially expressed genes (DEGs) in the
training cohort and 1,206 DEGs in the validation cohort. By intersecting these
DEGs with diabetes-related genes, we pinpointed 186 DM-DEGs, which were
further subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses.

Results: The univariate Cox analysis identified 17 DM-DEGs that demonstrated
significant prognostic relevance. Through protein-protein interaction
assessments, a LASSO regression model discerning five pivotal genes (TRPCZ,
SELENOP, CDKNZ2A, GSN, PGR) for prognostic modeling was constructed. This
model successfully stratified patients into high- and low-risk cohorts, with
Kaplan-Meier survival analysis and Receiver Operating Characteristic (ROC)
curve assessment confirming notable survival differentiations. A personalized
nomogram, integrating clinical parameters and risk scores, exhibited robust
predictive capability, yielding a C-index of 0.781. Gene set enrichment analysis
(GSEA) suggested significant involvement in pathways related to glucose and
lipid metabolism.

Conclusion: In conclusion, our study establishes and validates a robust
prognostic signature based on diabetes-related genes (DM-DEGs) for UCEC.
This signature not only effectively stratifies patient risk but also delineates specific
molecular pathways, such as those involving SELENOP, CDKNZ2A, and PGR,
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through which the diabetic milieu may drive tumor aggressiveness. These
findings provide a mechanistic rationale for the diabetes-UCEC link and pave
the way for developing personalized treatment strategies. Future work should
focus on translating this signature into clinical practice and elucidating the
precise biological roles of these DM-DEGs.

UCEC, diabetes, DM-DEGs, biomarkers, prognostic mode

1 Introduction

Endometrial cancer (EC), also known as uterine corpus
endometrial carcinoma (UCEC), represents a significant health
concern, being one of the most prevalent gynecological
malignancies worldwide (1). The economic burden associated
with EC is substantial, encompassing direct medical costs, lost
productivity, and the emotional toll on patients and their families
(2). Current treatments mainly consist of surgery, radiation therapy,
and systemic therapies (3). Although early-stage UCEC is often
curable by surgery, the overall 5-year survival rate remains below
60%, primarily due to high recurrence rates and poor response to
chemotherapy in advanced or high-risk cases (4). Despite
advancements in understanding the molecular basis of EC, there
is still a significant gap in identifying reliable prognostic biomarkers
that can categorize patients by risk profiles and inform personalized
treatment approaches. This study aims to address this gap by
investigating diabetes-related differentially expressed genes (DM-
DEGs) in UCEC, thereby providing insights into their potential
roles in disease prognosis and therapeutic response.

This study focuses on the identification and analysis of DM-
DEGs in UCEC. Previous research has established a link between
diabetes and several types of cancer, including endometrial cancer,
suggesting that metabolic dysregulation may play a role in tumor
development (5, 6). Diabetes has long been recognized as a risk
factor for UCEC (7), and subsequent studies have further confirmed
its significance. For instance, Wise reported that women with
diabetes have a 42% higher risk of developing UCEC compared to
those without diabetes (8). Moreover, Harding et al. found that
mortality rates are significantly increased in UCEC patients with
type 1 diabetes (9). Therefore, diabetes is not only a risk factor for
UCEC development but also intricately linked to its prognosis.
However, the specific molecular mechanisms underlying the
association between diabetes and UCEC remain poorly
understood. This research uses comprehensive transcriptomic
data from The Cancer Genome Atlas (TCGA) to clarify the role
of diabetes-related genes in UCEC. This will provide insights into
potential biomarkers for prognosis and targets for therapy. The
identification of 186 DM-DEGs and their subsequent functional
enrichment analyses highlight the potential of these genes in
influencing cancer biology, particularly in the context of
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metabolic disorders. This study not only contributes to the
existing body of knowledge but also underscores the importance
of integrating metabolic factors into cancer research, paving the way
for personalized treatment strategies in UCEC patients.

This study used a bioinformatics method to examine the gene
expression differences related to diabetes in UCEC patients. The
methodology included obtaining transcriptomic data, clinical
information, and somatic mutation data from TCGA. A total of
540 patients were included after excluding those with incomplete
clinical or follow-up information. The analysis was refined using the
Limma package in R, which led to identifying DM-DEGs. This
approach enabled us to integrate large-scale genomic data with
clinical outcomes, and thereby identify potential prognostic
biomarkers. The main objective of this research was to create a
prognostic model based on diabetes-related genes and evaluate its
predictive accuracy. Additionally, the study aimed to explore the
biological mechanisms through functional enrichment analyses,
enhancing understanding of the relationship between diabetes
and endometrial cancer prognosis.

2 Materials and methods
2.1 Data acquisition

On August 20th, we acquired transcriptomic data along
with relevant clinical and somatic mutation information for
patients diagnosed with UCEC from TCGA (10) (https://
cancergenome.nih.gov/). The dataset comprised records from 35
healthy individuals and 554 UCEC patients (11). Following the
exclusion of individuals lacking complete clinical or follow-up
information, we finalized a cohort of 540 patients for subsequent
analysis. Detailed Inclusion and Exclusion Criteria are presented in
Table 1. Furthermore, utilizing the GeneCards database (https://
www.genecards.org/), we employed a filtering criterion
encompassing protein-coding genes and diabetes-related
annotations, yielding a total of 12,374 genes. To enhance the
precision of our selection, we retained only the 3,111 genes with
correlation coefficients exceeding the average value (Supplementary
Table S1), which will be subjected to subsequent differential gene
expression analysis. The gene expression data were normalized
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TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Patients were pathologically diagnosed Patients with a history of other

with endometrial carcinoma (UCEC). malignancies.

Complete clinical follow-up data,
omplete clinica fotow-up data Incomplete or missing key clinical data

includi 11 ival (OS
including overall survival (OS) (e.g., survival time, pathological type).

time and status, were available.

Gene expression profiles were Poor-quality gene expression data

complete and suitable for subsequent (e.g., insufficient sample size,

analysis. excessive outliers).

Data were obtained from public
databases (e.g., TCGA, GEO) or
ethically approved clinical cohorts.

Follow-up duration was too short
(e.g., less than 30 days) for meaningful
survival analysis.

using the Robust Multi-array Average (RMA) method, as
implemented in the limma R package (12).

2.2 Selection of diabetes-related genes

The training and testing cohorts were developed using the
TCGA dataset, where we performed a random split of the data in
a 70/30 ratio. To ensure the robustness and generalizability of our
model training, we employed a standard data splitting technique
with random grouping implemented in the R programming
language. During the grouping process, we utilized a stratified
sampling method and fixed the random number seed (seed=21)
to ensure the reproducibility of the results. The dataset for this
investigation was randomly partitioned into two distinct groups: a
training cohort comprising 70% (377 endometrial cancer patients
and 24 controls) and a testing cohort consisting of 30% (163
endometrial cancer patients and 11 controls), with the number of
samples from each group delineated in Table 2. A preliminary
differential expression analysis was conducted utilizing Limma
(version 3.48.3) within the R programming environment. We
applied stringent screening criteria of [log2Fold change| > 1.5 and
P <0.001 to pinpoint DEGs in both the training and testing cohorts.
The identified DEGs were visualized through volcano plots and
heatmaps, generated using the ggplot2 R package (https://
ggplot2.tidyverse.org) and the pheatmap R package (https://
CRAN.R-project.org/package=pheatmap), respectively. The
intersection of DEGs from both cohorts with diabetes-associated
genes led to the identification of DM-DEGs (Diabetes Mellitus),
which was illustrated through a Venn diagram.

TABLE 2 Number of samples from each group.

Sample Train group Validation group Total
type (TCGA) (TCGA)
UCEC 377 163 540
Normal 24 11 35
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2.3 Functional enrichment analysis of DM-
DEGs

To explore the potential biological implications of diabetes-
related genes in endometrial cancer compared to a normal control
group, we conducted gene ontology (GO) (13) enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) (14)
pathway analysis on the identified genes within the overlapping
set. This analysis was performed using the R package clusterProfiler.
Pathways were considered statistically significant at a false
discovery rate (FDR) of <0.05 and a P value of <0.05.

2.4 Gene prognostic model construction

In this study, we utilized the R package ‘survival’ to integrate
survival duration, survival outcome, and gene expression data,
employing the Cox proportional hazards model to evaluate the
prognostic significance of individual genes. Genes exhibiting
statistically significant variations in univariate Cox analysis were
subsequently analyzed through LASSO-Cox regression (15) using
the glmnet R package, which also encompassed survival duration,
survival outcome, and gene expression data. To ascertain the most
effective prognostic model, we implemented a 10-fold cross-
validation procedure that determined the optimal lambda value to
be 0.0397805821179575. Consequently, we developed a prognostic
model that incorporated five genes, represented by the following
equation: RiskScore = 0.0369622344921353 * CDKN2A -
0.0152533112991654 * GSN - 0.162293585605867 * PGR +
0.190782928845233 * SELENOP + 0.0536308514116534 * TRPCI.

For risk stratification, we used the maxstat R package (version
0.7-25) to determine the optimal cut-off value for the RiskScore,
ensuring that the smallest group contained no less than 25% and the
largest no more than 75% of the samples. The optimal cut-off value
was identified as 0.189733273285035. Based on this threshold,
patients were divided into high and low risk groups. We then
used the survfit function from the survival R package to analyze
prognostic differences between the two groups and conducted a log-
rank test to assess their significance. The analysis demonstrated a
statistically significant difference in prognosis, with a p-value of
1.1e-10. To evaluate the predictive performance of the model, we
performed Receiver Operating Characteristic (ROC) analysis
utilizing the pROC R package (version 1.17.0.1). The roc function
was implemented to conduct ROC analysis at intervals of 365, 1095,
and 1825 days, while the CI function was employed to estimate the
Area Under the Curve (AUC) along with its confidence intervals.
This methodology was similarly applied to validate the prognostic
model using an independent validation cohort.

2.5 Validation of key gene protein
expression in endometrial tissue

To further validate the expression patterns of the five key genes
(CDKN2A, GSN, PGR, SELENOP, and TRPC1) identified in our
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prognostic model at the protein level, we utilized
immunohistochemistry (IHC) staining data from the Human
Protein Atlas (HPA) (https://www.proteinatlas.org/). The HPA
database provides high-resolution IHC images for a wide range of
human proteins in both normal and cancerous tissues. We
specifically retrieved and analyzed the IHC staining results for
these five proteins in normal endometrial tissue and UCEC samples.

2.6 Nomogram construction

In this study, we utilized the R package rms to construct a
nomogram that integrates survival time, survival status, and four
key characteristics of patients through Cox regression analysis. This
technique assesses the prognostic relevance of these variables within
a cohort of 377 individuals. The upper section of the nomogram
operates as a scoring mechanism, while the lower section serves as a
predictive tool. By calculating both the total score and the individual
contributions of each characteristic, we successfully predicted the
survival rates and recurrence probabilities for EC patients at 1, 2, 3,
5, and 10 years. The model’s predictive capabilities were further
validated through calibration curves, ROC curves, Kaplan-Meier
survival curves, and the C-index, affirming its efficacy in forecasting
survival outcomes.

2.7 GSEA enrichment analysis of hub genes

We carried out Gene Set Enrichment Analysis (GSEA) to
investigate the role of hub genes in influencing UCEC. The GSEA
software (version 3.0) was obtained from the GSEA website (16)
(http://software.broadinstitute.org/gsea/index.jsp). Based on the
expression levels of hub genes, samples were categorized into
high-expression groups (250%) and low-expression groups
(<50%). We downloaded the c2.cp.kegg.v7.4.symbols.gmt subset
from the Molecular Signatures Database (17) (http://www.gsea-
msigdb.org/gsea/downloads.jsp) to assess pertinent pathways and
molecular mechanisms. We established the minimum gene set size
at 5 and the maximum at 5000, performing 1000 permutations
based on gene expression profiles and phenotypic classifications.
A P value of < 0.05 and an FDR of < 0.25 were deemed
statistically significant.

2.8 Correlation analysis of tumor
microenvironment and immune infiltration

We examined alterations in the tumor microenvironment
(TME) of patients diagnosed with UCEC utilizing the R package
“estimate” to score the TCGA-UCEC dataset based on the Stromal
Score, Immune Score, and ESTIMATE Score. Subsequently, we
applied the CIBERSORT methodology (18) from the IOBR package
to compute scores for 22 distinct types of immune infiltrating cells
in each sample. We compared immune cell infiltration between
high-risk and low-risk patient groups, with results visualized
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through stacked plots and box plots. Moreover, we analyzed
correlations among the 22 immune cell types utilizing Pearson’s
correlation test, representing these correlations with a
correlation matrix.

2.9 Mutation correlation analysis

We conducted an exhaustive analysis of the disparities in
somatic mutations between high-risk and low-risk groups. The
TCGA database offers exome sequencing data for nearly 30 cancer
types. We employed the R package maftools for our analysis,
visualizing the outcomes with the oncoplot function.

2.10 Validation of the expression of
biomarkers

To validate the differential expression of five diabetes-related
genes (TRPC1, SELENOP, CDKN2A, GSN, and PGR) in uterine
corpus endometrial carcinoma (UCEC) and to investigate the
influence of diabetes comorbidity, we performed quantitative real-
time polymerase chain reaction (qQRT-PCR). A total of 24
endometrial tissue samples were collected from the Affiliated
Chenggong Hospital of Xiamen University and divided into three
groups: UCEC A (UCEC+DM, n=8), UCEC B (UCEC, n=8), and
Control group (n=8). Detailed clinical characteristics of the
participants are summarized in Supplementary Table S7. The
study protocol received approval from the Medical Ethics
Committee of the Affiliated Chenggong Hospital of Xiamen
University (Ethics No. 73JYY2025199192).

Total RNA was extracted from each sample using TRIZol
reagent (Thermo Fisher, Shanghai, China) and reverse-
transcribed into ¢cDNA using the SureScript-First-strand-cDNA-
synthesis-kit (Servicebio, Wuhan, China). qRT-PCR was conducted
using SYBR Green qPCR Master Mix, with each reaction performed
in triplicate. The housekeeping gene GAPDH served as an internal
control for normalization. The primer sequences for all target genes
and GAPDH are listed in Supplementary Table S6.

Relative gene expression was quantified using the 2744
method, with the Control group designated as the calibrator to
express results as fold changes. First, to assess basal expression
differences in UCEC, the combined UCEC A and UCEC B groups
(n=16) were compared against the Control group. Second, to
determine the specific impact of diabetes, a direct comparison
was made between UCEC A and UCEC B. A p-value of less than
0.05 was considered statistically significant.

2.11 Statistical analysis

All statistical evaluations and data visualizations, including volcano
plots, forest plots, box plots, violin plots, scatter plots, heatmaps,
Kaplan-Meier curves, and ROC curves, were executed using
R software version 4.2.1 (available at https://www.r-project.org/).
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To identify genes associated with prognosis, we performed
univariate Cox regression analysis. The Wilcoxon rank-sum test
was utilized to evaluate differences in immune infiltration scores and
checkpoint-related gene expression between the two risk groups. A t-
test was employed to examine differential gene expression between
UCEC and normal tissue samples. Furthermore, Pearson correlation
analyses were conducted to investigate the interrelationships among
the 22 distinct immune cell types. For the time-dependent ROC
analysis, the “timeROC” package was used to assess the predictive
accuracy of the risk score at 1, 3, and 5 years, and the CI function
from the same package was applied to compute the 95% confidence
intervals for the AUC values via bootstrap resampling. Statistical
significance of the gene expression differences was assessed using the
Mann-Whitney U test. All statistical tests were two-tailed, with
significance levels denoted as follows: P < 0.05 was indicated by *, P <
0.01 by **, P < 0.001 by ***, and P < 0.0001 by ****. Non-significant
differences were denoted as ns.

3 Results

The flow chart of this study is shown in Figure 1.

3.1 Identification of DEGs associated with
diabetes mellitus in endometrial cancer

In the training cohort, a total of 931 DEGs were detected when
comparing 377 UCEC samples to 24 control samples, with 374
genes exhibiting upregulation and 557 genes showing
downregulation (Figures 2A, C). In the validation cohort, 1206
DEGs were identified between 164 UCEC samples and 11 control
samples, comprising 397 upregulated genes and 809 downregulated
genes (Figures 2B, D). Subsequently, by cross-referencing with 3111
diabetes-associated genes, a total of 186 DM-DEGs (Supplementary
Table S2) were obtained (Figure 2E).

3.2 GO and KEGG enrichment analysis of
DM-DEGs

The 186 identified DM-DEGs were enriched across 1925 GO
biological functions (Supplementary Table S3), which included
cellular responses to stress (such as responses to oxygen-
containing compounds and hormonal responses), regulatory
mechanisms in cellular processes (including regulation of cell
proliferation and multicellular organismal process), as well as
adaptation and maintenance of homeostasis in response to
environmental stressors (e.g., hypoxia and low oxygen levels)
(Figure 3A). Additionally, these genes were found to be
implicated in 26 KEGG pathways (listed in Supplementary Table
S4), encompassing Type II diabetes mellitus, central carbon
metabolism in cancer, glycolysis/gluconeogenesis, cancer
pathways, and the PI3K-Akt signaling pathway (Figure 3B).
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3.3 Identification and correlation analysis
of prognostic-related DEGs

Among the 186 DM-DEGs, univariate Cox regression analysis
confirmed that 17 DM-DEGs were significantly correlated with the
prognosis of EC patients (P < 0.05) (Figure 4A). A correlation
analysis of these 17 DEGs revealed notable interrelations among
most of these genes (Figure 4B). These 17 genes were submitted to
the STRING database and analyzed using Cytoscape 3.8.0 software
for constructing a protein-protein interaction (PPI) network, which
consisted of 17 nodes and 20 edges (Figure 4C).

3.4 Development and validation of a
prognostic model for endometrial cancer
based on diabetes-related genes

In this investigation, Lasso regression analysis was utilized to
ascertain five genes associated with prognosis: TRPC1, SELENOP,
CDKN2A, GSN, and PGR. Among these, CDKN2A, SELENOP, and
TRPC1 were identified as indicators of poor prognosis, while GSN and
PGR were linked to favorable outcomes (Figures 5A, B). Based on the
prognostic model, the optimal cut-off value was determined for the
risk assessment. In the training cohort, the high-risk classification
included 119 individuals, while the low-risk classification
encompassed 258 individuals. In the validation cohort, the high-risk
group consisted of 92 individuals, and the low-risk group included 71
individuals. Following this classification, we conducted a comparative
analysis of the ROC curves and the survival outcomes of patients
diagnosed with UCEC across both cohorts. The Kaplan-Meier survival
analysis indicated that individuals within the low-risk category
exhibited significantly superior overall survival (OS) compared to
their high-risk counterparts, a trend that was evident in both the
training cohort (P < 0.001) and the validation cohort (P < 0.01). This
finding suggests that the risk score serves as a reliable prognostic
indicator for EC patients (Figures 5C, E). Furthermore, the ROC curve
analysis evaluated the predictive capacity of the risk model in both
datasets, affirming the robustness and accuracy of the prognostic
model predicated on diabetes-associated genes (Figures 5D, F).

3.5 Association of diabetes-related genes
with risk stratification and survival
outcomes in EC patients

In our model, we identified five differentially expressed
diabetes-related genes, with GSN and PGR exhibiting heightened
expression levels in the low-risk group, whereas CDKN2A,
SELENOP, and TRPC1 demonstrated increased expression in the
high-risk group. The findings from both the training and validation
cohorts were largely consistent (Figures 6A, B). We undertook a
comparative analysis of the risk score distributions, survival
statuses, and heatmaps between the training and validation sets
for EC patients (Figures 6C, D), which revealed no notable
differences between the two cohorts. The risk curves and scatter
plots for both sets indicated a positive correlation between mortality

frontiersin.org


https://doi.org/10.3389/fonc.2025.1591040
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

10.3389/fonc.2025.1591040

intersaction ‘b
([ GoandKEGG | [ 1
an
b € 186 DM-DEGs
. J " J
§ 1. [ unico \l, ion analysis | Correl
n1Cox regression 13 rrelation
| et | selected 17 DM-DEGs matrix
Internal Lasoo Cox model construction
validation I E ‘ (5 Key genes) SR CECE
4 . l ) )
Nomogram and Risk Score Prognostic value
assessment Low/High RiskScore Group verification
( - - . l . \
Expression difference ROC & KM GSEA ennc:hment l{nmune micro-
of Key genes analysis enrichment analysis )
FIGURE 1
Study design flowchart.

and risk scores. The heatmaps for the three classifications
confirmed the elevated expression of GSN and PGR in the low-
risk group, while demonstrating increased levels of CDKN2A,
SELENOP, and TRPCI in the high-risk group.

3.6 Validation of key gene protein
expression in endometrial tissue using the
HPA database

To further validate the protein expression levels of the five key
diabetes-related genes (CDKN2A, GSN, PGR, SELENOP, and
TRPC1) identified in our prognostic model, we utilized THC
staining data from the HPA database. As shown in Figure 7, IHC
images revealed that CDKN2A, SELENOP, and TRPC1 were
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expressed at higher levels in endometrial carcinoma tissues
compared to normal endometrial tissues, consistent with their
mRNA upregulation in high-risk patients. Conversely, GSN and
PGR exhibited lower protein expression in tumor tissues relative to
normal tissues, aligning with their favorable prognostic roles and
reduced expression in the high-risk group. These findings not only
corroborate our transcriptomic analysis but also reinforce the
potential biological significance of these genes in endometrial
cancer progression.

3.7 Experimental validation of key gene
expression by quantitative PCR

To molecularly validate the expression patterns of the five key
genes (TRPCI, SELENOP, CDKN2A, GSN, and PGR) identified
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Volcano plot, heat map, and Venn diagram. (A, B) The volcano plots for the Training group and Testing group, with upregulated genes represented
in red and downregulated genes in blue. (C, D) The heat maps for the Training group and Testing group. (E) Venn diagram illustrating overlapping
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from our prognostic model, we performed qRT-PCR on clinical
tissue samples. The mRNA expression levels of TRPC1, SELENOP,
and CDKN2A were significantly upregulated, while GSN and PGR
were significantly downregulated in UCEC tissues compared to
normal controls (p < 0.05) (Figures 8A-E). Furthermore,
stratification of UCEC patients by diabetic status revealed that the
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dysregulation of SELENOP, CDKN2A, and PGR was specifically
exacerbated by diabetes. The expression levels of SELENOP and
CDKN2A were significantly higher, while PGR was significantly
lower in diabetic UCEC patients than in non-diabetic patients (p <
0.05). In contrast, TRPC1 and GSN expression showed no
significant difference between these two subgroups (Figures 8F-]).
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These results not only confirm the protein-level findings from the
HPA database but also establish SELENOP, CDKN2A, and PGR as
key genes whose expression is specifically modulated by the
diabetic milieu.

3.8 The personalized prognostic prediction
model showed robust predictive accuracy

To enhance the clinical applicability of our prognostic
prediction model, we developed a personalized prediction
framework that integrates key variables such as patient age,
histological stage, grade, and risk score. As shown in Figure 9A,
this personalized model effectively estimates survival probabilities at
1, 2, 3, 5, and 10 years for patients with endometrial cancer. The
nomogram model boasts a C-index of 0.781 (95% CI: 0.72-0.84),
with a p-value of 1.le-19, reflecting its robust predictive
performance (Figure 9B). Calibration curves derived from both
training and validation datasets exhibit a strong alignment between
the nomogram’s predictions and actual outcomes, highlighting its
exceptional predictive accuracy (Figures 9C,D). By stratifying the
TCGA-UCEC dataset into high-risk and low-risk groups based on
the median risk score from the nomogram, Kaplan-Meier survival
analysis revealed a significantly more favorable prognosis for the
low-risk group compared to the high-risk group (Figure 9E).
Furthermore, ROC curve analysis for the high-risk and low-risk
groups demonstrated area under the curve (AUC) values of 0.72,
0.82, and 0.84 for 1-year, 3-year, and 5-year survival, respectively,
underscoring the model’s discriminative ability (Figure 9F).

3.9 Biological processes and pathways
enriched for the hub genes

To investigate the potential biological roles of these genes,
we performed GSEA. The results revealed significant enrichment
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in pathways concerning glucose and lipid metabolism
(PPAR_SIGNALING_PATHWAY, FATTY_ACID_METABOLISM,
INSULIN_SIGNALING_PATHWAY), cellular membrane
structure (GLYCEROPHOSPHOLIPID_METABOLISM),
embryonic development and tissue homeostasis (WNT_
SIGNALING_PATHWAY), regulation of sex hormones (GNRH_
SIGNALING_PATHWAY), and inflammatory responses
(ADIPOCYTOKINE_SIGNALING_PATHWAY) (Figure 10;
Supplementary Table S5).

3.10 Analysis of risk score correlation with
tumor microenvironment, immunity, and
somatic mutations

The assessment of the TME underscores its pivotal role in either
immune suppression or activation, which is crucial for cancer
prevention and therapeutic strategies. The pathway enrichment
analysis indicated a relationship with immunity between the two risk
groups. Considering the influence of gene transcripts (GTs) in the
TME, we applied an estimation algorithm to derive scores for
individual samples within the high-risk and low-risk groups. Our
results demonstrated that the ImmuneScore, ESTIMATEScore, and
StromalScore were all significantly elevated in the low-risk group in
comparison to the high-risk group (Figure 11A). The TME, comprising
immune cells, extracellular matrix, inflammatory cytokines, and
diverse growth factors, plays a substantial role in determining clinical
treatment responses and diagnostic outcomes. The CIBERSORT
algorithm was utilized to estimate the proportions of 22 immune cell
types in UCEC samples from 258 individuals in the low-risk group and
119 in the high-risk group, as depicted in histograms (Figure 11C). The
results of the correlation analysis for these immune cell types are
outlined (Figure 11B), and a comparative examination of immune cell
expression profiles across the low-risk and high-risk groups is
presented through box plots (Figure 11D). Additionally, we
conducted an analysis of somatic mutations in both risk groups,
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(A) Univariate Cox regression analysis of the 186 DM-DEGs, identifying 17 genes significantly associated with prognosis. (B) Correlation matrix for the
17 DM-DEGs. (C) PPI networks and key modules constructed via STRING and Cytoscape, featuring 20 edges and 17 nodes.

revealing the top ten genes with the highest mutation frequencies,
illustrated through waterfall plots (Figures 11E, F). Notably, the gene
exhibiting the highest mutation frequency within the high-risk group
was TP53, which accounted for 71.2% of the total mutations.

4 Discussion

UCEC (19, 20) is a prevalent gynecological cancer that
significantly challenges women’s health worldwide. The incidence
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of UCEC is increasing. It is closely linked to metabolic disorders like
diabetes (5, 6). Diabetes may worsen cancer development through
various biological pathways and negatively impact patient prognosis
(21-23).Consequently, researching the interaction between
diabetes-related factors and the molecular mechanisms of UCEC
has become a key area of focus. A deeper understanding in this field
is expected to drive the development of more effective therapeutic
strategies and improve prognostic models for patients.

Utilizing data from TCGA, this study identified 186 DM-DEGs
in UCEC within the context of diabetes. Previous research has
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FIGURE 5

Construction and validation of a prognostic model based on diabetes-related genes in UCEC. (A, B) Lasso Cox regression analysis of 17 prognosis-
related genes. (A) Coefficient path plot showing variable shrinkage with increasing lambda (optimal lambda = 0.0398). (B) Partial likelihood deviance
plot identifying the optimal lambda (vertical line). Five genes (TRPC1, SELENOP, CDKN2A, GSN, PGR) were selected for the final model. (C, E) Kaplan-
Meier survival curves comparing overall survival (OS) between high-risk and low-risk groups in the training (C) and validation (E) cohorts. Patients
were stratified by the optimal risk score cut-off (0.1897). Significant OS differences were confirmed by log-rank test (training: P < 0.001; validation:

P = 0.001). (D, F) Time-dependent ROC curves evaluating the model's predictive accuracy for 1-, 3-, and 5-year OS in the training (D) and validation
(F) cohorts. AUC values: training (1-year: 0.69, 3-year: 0.74, 5-year: 0.76; all P < 0.001); validation (1-year: 0.75, 3-year: 0.67, 5-year: 0.67; all

P <0.01).

indicated that metabolic dysregulation in diabetes is associated with
altered gene expression in cancers, including UCEC (24, 25).
Functional enrichment analysis revealed that DM-DEGs play a
pivotal role in cellular stress response and proliferation regulation,
processes that are crucial for tumor initiation and progression. In
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particular, DM-DEGs were enriched in key metabolic pathways
such as the PPAR signaling pathway, which is vital for glucose and
lipid metabolism, and its dysregulation may promote tumorigenesis
(26, 27). The PI3K-Akt signaling pathway and central carbon
metabolism pathways in cancer were also significantly enriched,
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determined by the Wilcoxon rank-sum test (****P < 0.0001, ***P < 0.001, **P < 0.01). Notably, GSN and PGR were significantly upregulated in the
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(0.1897), with high-risk patients (red) showing higher mortality rates. The heatmap confirmed consistent expression patterns across cohorts, with
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indicating that metabolic dysregulation plays a key role in the
pathogenesis of UCEC under diabetic conditions (28, 29).
Moreover, alterations in the insulin signaling pathway, a hallmark
of type 2 diabetes, were associated with the aggressive behavior of
UCEC, suggesting that therapeutic interventions targeting this
pathway may be particularly important for diabetic patients.
Additionally, the study found that the abnormal activation of the
Whnt signaling pathway, which is related to cancer progression (30,
31), also operates in diabetes-associated UCEC. These findings
underscore the pivotal role of molecular crosstalk in the diabetes-
UCEC link, pinpointing targets for innovative therapeutic
development to enhance patient outcomes. The study elucidates
their complex interplay and introduces a prognostic model
incorporating clinical variables, offering a novel approach to
personalized care.

We identified five key genes—CDKN2A, SELENOP, GSN, PGR,
and TRPCI—as significant biomarkers in the prognostic model for
patient stratification. Notably, the expression patterns of these genes
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in high-risk patients revealed distinct pathogenic insights.
CDKN2A, a classic tumor suppressor gene that regulates the cell
cycle by inhibiting cyclin-dependent kinases (32, 33), was
surprisingly upregulated in our high-risk UCEC group. This
finding aligns with the model wherein its overexpression signifies
cellular senescence or a compensatory response to oncogenic stress,
a mechanism potentially exacerbated by metabolic dysfunction.
SELENOP (34),
antioxidant defense, was also upregulated in high-risk patients.
Elevated SELENOP levels, linked to both cancer progression and
diabetes, may promote tumor growth by modulating inflammation

a selenium transport protein critical for

and oxidative stress. TRPCI, a calcium channel associated with cell
proliferation (35), was upregulated in the high-risk group,
suggesting its role in enhancing tumor invasiveness and
therapeutic resistance.

To further validate the protein expression levels of the identified
key genes in endometrial tissue, we utilized IHC staining data from
the HPA database. The HPA database provided IHC images of

frontiersin.org


https://doi.org/10.3389/fonc.2025.1591040
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

10.3389/fonc.2025.1591040

Cancer

CDKN2A
(CAB000093)

GSN
(HPA054026)

PGR
(HPA008428)

SELENOP
(HPA036287)

TRPC1
(CAB009387)

FIGURE 7

Validation of protein expression levels of five key diabetes-related genes in EC and normal endometrial tissues using the HPA database.
Representative IHC staining images show the protein expression of CDKN2A, GSN, PGR, SELENOP, and TRPC1 in normal endometrial tissues and
endometrial carcinoma tissues. CDKN2A, SELENOP, and TRPC1 exhibit higher protein expression in EC tissues compared to normal tissues, whereas

GSN and PGR show lower expression in EC tissues.

endometrial cancer and normal endometrial tissues, allowing us to
confirm the differential expression of CDKN2A, SELENOP, GSN,
PGR, and TRPCI at the protein level. This validation step is crucial
as it bridges the gap between transcriptomic data and protein
expression, reinforcing the biological significance of our findings.
Critically, THC staining confirmed strong accumulation of
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CDKN2A/pl6 protein in tumor tissues, which aligns with its
mRNA upregulation in high-risk patients. While CDKN2A is a
tumor suppressor, its robust protein expression is a recognized
biomarker of oncogene-induced cellular senescence or a
dysfunctional cell cycle checkpoint in many cancers, a state that
could be exacerbated by the diabetic metabolic environment.
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Differential expression of diabetes-related genes in UCEC tissues. (A—E) Comparison of gene expression between the combined UCEC group (UCEC
A + UCEC B, n=16) and the Control group (normal endometrium, n=8): CDKN2A (A), GSN (B), PGR (C), SELENOP (D), TRPCL1 (E). (F-J). Direct
comparison of gene expression between UCEC patients with diabetes (UCEC A, n=8) and those without diabetes (UCEC B, n=8): CDKN2A (F), GSN
(G), PGR (H), SELENOP (1), TRPC1 (J). Statistical significance: ns > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Similarly, SELENOP was overexpressed in tumor tissues, where it
may promote tumor growth through increased inflammation and
oxidative stress. In contrast, the reduced expression of GSN and
PGR in tumor tissues supports their role as favorable prognostic
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markers, potentially through impaired cell adhesion and hormone
response, respectively. Lastly, TRPCI was upregulated in
endometrial carcinoma, potentially enhancing tumor cell
proliferation and invasive capabilities through its regulation of
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FIGURE 9
Personalized prognostic model for progression-free survival (PFS) in UCEC patients. (A) Nomogram predicting 1-, 2-, 3-, 5-, and 10-year PFS
probabilities based on risk score and clinical parameters. The asterisks (-, **, ***) next to each variable denote its statistical significance in the
multivariate Cox model (-P > 0.05, **P < 0.01, ***P < 0.001). (B) Model performance assessed by C-index (0.781, 95% CI: 0.72-0.84, P = 1.1e-19),
indicating excellent discriminative ability. (C, D) Calibration curves for training (C) and validation (D) cohorts, showing alignment between predicted
and observed PFS (Hosmer-Lemeshow test P > 0.05, no significant deviation). (E) Kaplan-Meier survival curves stratified by nomogram-predicted risk
groups, with significant PFS difference between high-risk and low-risk patients (log-rank test P < 0.001). (F) Time-dependent ROC curves for 1-, 3-,
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GSEA of hub genes in UCEC. (A-E) GSEA plots showing enriched pathways for each hub gene: (A) CDKN2A, (B) GSN, (C) PGR, (D) SELENOP, (E) TRPC1.

P value of < 0.05 and FDR of < 0.25.

calcium signaling and crosstalk with hormone pathways. These
protein-level observations significantly bolster the clinical relevance
of our prognostic model.

To experimentally validate these findings, we further
investigated the expression patterns of these five key genes in
clinical tissue samples. Our analysis revealed a distinct
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stratification: while TRPCI, SELENOP, CDKN2A, GSN, and PGR
all showed significant dysregulation in UCEC tissues compared to
normal endometrium, only SELENOP, CDKN2A, and PGR
exhibited diabetes-specific modifications in UCEC patients.
Specifically, we observed significant further suppression of PGR
and enhanced upregulation of SELENOP and CDKN2A in diabetic
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FIGURE 11
Association between risk score and TME in UCEC. (A) Violin plots comparing StromalScore, ImmuneScore, and ESTIMATEScore between high-risk
and low-risk groups (Wilcoxon test, P < 0.001). (B) Correlation matrix of 22 immune cell populations (Pearson correlation, significant correlations
marked with P < 0.05). (C) Stacked bar plots showing the distribution of immune cell types in high-risk vs. low-risk groups (e.g., CD8 T cells enriched
in low-risk group, P = 0.002). (D) Box plots highlighting differential expression of key immune cells (e.g., M1 macrophages: P < 0.01; Tregs: P < 0.05).
(E, F) Waterfall plots of somatic mutations in low-risk (E) and high-risk (F) groups. TP53 mutation frequency was higher in high-risk group (71.2% vs.
32.5%, Fisher's exact test P < 0.001). Statistical significance: -P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

UCEC tissues. These results strongly suggest that the diabetic
milieu, particularly hyperinsulinemia and associated oxidative
stress, actively remodels the molecular landscape of UCEC by
specifically enhancing progesterone receptor loss while amplifying
stress-response and senescence pathways. In contrast, expression
levels of TRPCI and GSN remained comparable between diabetic
and non-diabetic UCEC subgroups, indicating their involvement in
general carcinogenesis rather than diabetes-specific pathways.

We validated the predictive performance of the risk score model
using ROC analysis and Kaplan-Meier survival curves. Significant
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differences in OS were observed between high-risk and low-risk
groups in both the training and validation cohorts, with p-values of
1.1 x 10~-10 and 0.001, respectively. This underscores the model’s
effectiveness in stratifying patient risk. This is consistent with
previous studies that established the prognostic value of gene
expression profiles in various cancers, including endometrial
cancer (36, 37). The AUC values for 1-year, 3-year, and 5-year
survival outcomes were 0.72, 0.82, and 0.84, respectively, further
confirming the accuracy of the model. Additionally, the calibration
curve showed a high degree of concordance between predicted and
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observed outcomes, which reinforces the reliability of our
nomogram. In summary, our study not only identified key
biomarkers associated with diabetes and UCEC but also
established a validated prognostic model that aids in clinical
decision-making. Integrating diabetes-related DEGs into the
prognostic framework offers a new perspective on the interplay
between metabolic disorders and cancer prognosis, a field
warranting further exploration in future research.

This study revealed significant differences in immune cell
infiltration between high-risk and low-risk UCEC patients, as
evidenced by the CIBERSORT algorithm and metrics like
ImmuneScore, ESTIMATEScore, and StromalScore. These
findings underscore the pivotal role of the TME in shaping
immune responses and influencing prognosis (38). The observed
discrepancies in immune scores between high-risk and low-risk
groups not only delineate tumor biological characteristics but also
likely influence immune responses. This aligns with existing
research demonstrating how the TME affects tumor behavior and
patient survival outcomes, highlighting the importance of robust
immune responses in tumor suppression and enhanced prognosis
(39). The relationship between immune scoring and risk
stratification further emphasizes the vital role of immune
regulation in cancer progression and treatment response (40, 41).
Notably, the differential expression of CD8 T cells, Tregs, and
dendritic cells suggests new avenues for developing
immunotherapeutic strategies aimed at bolstering anti-tumor
immunity and improving clinical outcomes for UCEC patients.
For instance, enhancing CD8 T cell infiltration and activity while
modulating Treg function could potentially tip the balance toward
more effective tumor immune surveillance and destruction.

Moreover, our findings align with previous research indicating
that metabolic dysfunction-related genes can accelerate EC
progression not only by directly affecting tumor cells but also by
modulating the tumor immune microenvironment (42). The TME,
including infiltrating immune cells, plays a crucial role in shaping
tumor development, therapeutic resistance, and clinical outcomes.
Our observation that patients in the low-risk group exhibited higher
TME scores and more diverse immune cell infiltration further
supports the notion that a more active immune response is
associated with a better prognosis. The enrichment of immune-
related pathways in the low-risk group, as indicated by our pathway
enrichment analysis, further strengthens this association.

Importantly, the observed differences in immune infiltration
between high-risk and low-risk UCEC patients, as reflected by the
immune scores, may also shed light on the interplay between
diabetes and cancer, as chronic inflammation and immune
dysregulation are common features of both conditions. In
diabetes, immune cells can contribute to a pro-tumor
microenvironment by promoting metabolic dysregulation,
angiogenesis, and fibrosis. For instance, immune cells in diabetes
can foster a pro-tumor microenvironment by augmenting the
production of inflammatory cytokines, which can fuel tumor
growth and angiogenesis, and modify immune checkpoint
expression, thereby suppressing anti-tumor immunity. This
suggests that the immune alterations observed in UCEC may be
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further exacerbated in the context of comorbid diabetes,
highlighting the need to consider diabetes status when
interpreting immune scores and developing therapeutic strategies.

These findings suggest that immune scores could be used to
stratify UCEC patients and identify those who may benefit from
specific immunotherapies, particularly those with comorbid diabetes.
Specifically, exploring the mechanisms by which immune cells
interact with metabolic pathways in the context of UCEC could
unveil novel targets for therapeutic intervention, potentially leading
to improved outcomes for patients with this aggressive form of
cancer. In conclusion, while our study primarily focuses on the
impact of diabetes-associated genes on UCEC, the immune score
provides valuable insights into the tumor’s immune landscape, which
may have broader implications for understanding the interplay
between diabetes, inflammation, and cancer. Future research
should further investigate the complex relationship between
diabetes, immune infiltration, and cancer progression to develop
more effective therapeutic strategies for patients with both conditions.

This study has several limitations that should be acknowledged.
First, the analysis primarily relies on publicly available datasets such
as TCGA, which predominantly represents the American population.
This introduces potential biases related to sample collection,
processing, and annotation, and limits the generalizability of the
findings to other geographical regions or populations with distinct
clinical characteristics. Although we employed stratified random
sampling and 10-fold cross-validation to construct and validate the
prognostic model, these approaches may not fully eliminate the
potential heterogeneity inherent in the dataset. Therefore, future
research should focus on incorporating data from diverse
ethnicities, regions, and clinical backgrounds—particularly
including patients with confirmed diabetes status—to enhance the
model’s robustness and broader applicability.

Second, the absence of an independent external validation cohort
weakens the robustness of the diabetes-related gene expression
model. While internal validation methods were utilized, external
validation remains essential for confirming the model’s predictive
accuracy across different populations. Moreover, the study was based
solely on gene expression data, without functional validation of the
identified genes or their roles in diabetes-associated tumorigenesis.

Third, due to the lack of detailed clinical information regarding
diabetes status in the TCGA cohort, we were unable to directly
investigate the causal links between diabetes itself, diabetes-related
genes, and cancer outcomes. This limitation is particularly evident in
two aspects: 1) Mutation analysis: Although we stratified somatic
mutations by risk score and observed significantly higher mutation
frequencies of genes such as TP53 in the high-risk group, we did not
explore whether these mutation differences are directly related to
diabetes status. The absence of diabetes annotations prevented us
from assessing causal relationships between mutational profiles and
diabetes, rendering current conclusions indirect and speculative.
Future studies should integrate clinical cohorts with well-
documented diabetes information, combining genomic and
metabolic data to explore the potential roles of diabetes-related
mutations in endometrial cancer pathogenesis. 2) Biological
mechanism inference: While enrichment analysis revealed that
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diabetes-associated differentially expressed genes (DM-DEGs) are
significantly involved in biological processes such as glucose and
lipid metabolism and insulin signaling pathways, the lack of
definitive diabetes status data prevents direct validation of whether
these gene expression changes are driven by diabetes or linked to its
pathophysiological mechanisms. Thus, our conclusions should be
considered preliminary and exploratory. Future prospective cohort
studies incorporating clinical samples and molecular subtyping from
diabetic patients are needed to clarify the true roles of DM-DEGs
within the diabetes-endometrial cancer axis.

Finally, the cross-sectional nature of the data limits the ability to
infer causal relationships between diabetes-related genes and
endometrial cancer outcomes. Further longitudinal studies are
necessary to elucidate these associations. Additionally, larger
sample sizes through multi-center collaborations, particularly
including patient data stratified by diabetes status, will be crucial
to validate the generalizability and clinical utility of the model.

5 Conclusion

This study identified and characterized DM-DEGs in UCEC
using TCGA data. Through LASSO-COX regression analysis, we
developed a robust prognostic model based on five key DM-DEGs—
TRPCI1, SELENOP, CDKN2A, GSN, and PGR—that effectively
stratifies patients into high- and low-risk groups. Our analysis of
the tumor microenvironment and immune infiltration revealed
potential for personalized treatments, underscoring the importance
of metabolic disorders in cancer progression. Although the study is
limited by the lack of diabetes status annotations in the TCGA cohort,
which restricts the ability to directly establish causal links between
diabetes-related mutations and cancer outcomes, it still provides
novel insights into the complex interplay between diabetes and
endometrial cancer. The DM-DEGs and associated pathways
identified in this study—such as the PPAR and insulin signaling
pathways—not only enhance our understanding of how diabetes
influences UCEC pathogenesis but also lay a solid foundation for
developing individualized therapeutic strategies for patients with both
diabetes and endometrial cancer.

In summary, despite some conclusions being preliminary due to
the indirect nature of current data, this work offers important
evidence supporting the role of diabetes-related genes in
endometrial cancer and sets the stage for future mechanistic and
translational studies. We anticipate that subsequent research will
build upon these findings to further validate their clinical
applicability and broaden their implications.
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