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Diabetes-associated
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genes as prognostic
biomarkers and therapeutic
targets in endometrial
cancer: a comprehensive
molecular analysis
Ting Zhang1†, Ruiqing Sun1†, Xuejun Lian1, Changyu Wang1,
Yuping Li1 and Kang Liu2*

1Department of Gynecology, Affiliated Chenggong Hospital of Xiamen University, Xiamen,
Fujian, China, 2Department of Burn and Plastic Surgery, Affiliated Chenggong Hospital of Xiamen
University, Xiamen, Fujian, China
Background: Uterine corpus endometrial carcinoma (UCEC) is a prevalent

malignancy increasingly observed in patients with diabetes mellitus. A

comprehensive understanding of the intricate molecular interplay between

diabetes and UCEC is crucial to develop effective prognostic and therapeutic

strategies. This study aims to elucidate the relationship between diabetes and

UCEC by identifying diabetes-related differentially expressed genes (DM-DEGs)

and to establish a prognostic model to enhance clinical outcomes.

Methods: Transcriptomic data sourced from The Cancer Genome Atlas (TCGA)

was analyzed alongside diabetes-associated genes from GeneCards. Differential

expression analysis revealed 931 differentially expressed genes (DEGs) in the

training cohort and 1,206 DEGs in the validation cohort. By intersecting these

DEGs with diabetes-related genes, we pinpointed 186 DM-DEGs, which were

further subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses.

Results: The univariate Cox analysis identified 17 DM-DEGs that demonstrated

significant prognostic relevance. Through protein-protein interaction

assessments, a LASSO regression model discerning five pivotal genes (TRPC1,

SELENOP, CDKN2A, GSN, PGR) for prognostic modeling was constructed. This

model successfully stratified patients into high- and low-risk cohorts, with

Kaplan-Meier survival analysis and Receiver Operating Characteristic (ROC)

curve assessment confirming notable survival differentiations. A personalized

nomogram, integrating clinical parameters and risk scores, exhibited robust

predictive capability, yielding a C-index of 0.781. Gene set enrichment analysis

(GSEA) suggested significant involvement in pathways related to glucose and

lipid metabolism.

Conclusion: In conclusion, our study establishes and validates a robust

prognostic signature based on diabetes-related genes (DM-DEGs) for UCEC.

This signature not only effectively stratifies patient risk but also delineates specific

molecular pathways, such as those involving SELENOP, CDKN2A, and PGR,
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through which the diabetic milieu may drive tumor aggressiveness. These

findings provide a mechanistic rationale for the diabetes-UCEC link and pave

the way for developing personalized treatment strategies. Future work should

focus on translating this signature into clinical practice and elucidating the

precise biological roles of these DM-DEGs.
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1 Introduction

Endometrial cancer (EC), also known as uterine corpus

endometrial carcinoma (UCEC), represents a significant health

concern, being one of the most prevalent gynecological

malignancies worldwide (1). The economic burden associated

with EC is substantial, encompassing direct medical costs, lost

productivity, and the emotional toll on patients and their families

(2). Current treatments mainly consist of surgery, radiation therapy,

and systemic therapies (3). Although early-stage UCEC is often

curable by surgery, the overall 5-year survival rate remains below

60%, primarily due to high recurrence rates and poor response to

chemotherapy in advanced or high-risk cases (4). Despite

advancements in understanding the molecular basis of EC, there

is still a significant gap in identifying reliable prognostic biomarkers

that can categorize patients by risk profiles and inform personalized

treatment approaches. This study aims to address this gap by

investigating diabetes-related differentially expressed genes (DM-

DEGs) in UCEC, thereby providing insights into their potential

roles in disease prognosis and therapeutic response.

This study focuses on the identification and analysis of DM-

DEGs in UCEC. Previous research has established a link between

diabetes and several types of cancer, including endometrial cancer,

suggesting that metabolic dysregulation may play a role in tumor

development (5, 6). Diabetes has long been recognized as a risk

factor for UCEC (7), and subsequent studies have further confirmed

its significance. For instance, Wise reported that women with

diabetes have a 42% higher risk of developing UCEC compared to

those without diabetes (8). Moreover, Harding et al. found that

mortality rates are significantly increased in UCEC patients with

type 1 diabetes (9). Therefore, diabetes is not only a risk factor for

UCEC development but also intricately linked to its prognosis.

However, the specific molecular mechanisms underlying the

association between diabetes and UCEC remain poorly

understood. This research uses comprehensive transcriptomic

data from The Cancer Genome Atlas (TCGA) to clarify the role

of diabetes-related genes in UCEC. This will provide insights into

potential biomarkers for prognosis and targets for therapy. The

identification of 186 DM-DEGs and their subsequent functional

enrichment analyses highlight the potential of these genes in

influencing cancer biology, particularly in the context of
02
metabolic disorders. This study not only contributes to the

existing body of knowledge but also underscores the importance

of integrating metabolic factors into cancer research, paving the way

for personalized treatment strategies in UCEC patients.

This study used a bioinformatics method to examine the gene

expression differences related to diabetes in UCEC patients. The

methodology included obtaining transcriptomic data, clinical

information, and somatic mutation data from TCGA. A total of

540 patients were included after excluding those with incomplete

clinical or follow-up information. The analysis was refined using the

Limma package in R, which led to identifying DM-DEGs. This

approach enabled us to integrate large-scale genomic data with

clinical outcomes, and thereby identify potential prognostic

biomarkers. The main objective of this research was to create a

prognostic model based on diabetes-related genes and evaluate its

predictive accuracy. Additionally, the study aimed to explore the

biological mechanisms through functional enrichment analyses,

enhancing understanding of the relationship between diabetes

and endometrial cancer prognosis.
2 Materials and methods

2.1 Data acquisition

On August 20th, we acquired transcriptomic data along

with relevant clinical and somatic mutation information for

patients diagnosed with UCEC from TCGA (10) (https://

cancergenome.nih.gov/). The dataset comprised records from 35

healthy individuals and 554 UCEC patients (11). Following the

exclusion of individuals lacking complete clinical or follow-up

information, we finalized a cohort of 540 patients for subsequent

analysis. Detailed Inclusion and Exclusion Criteria are presented in

Table 1. Furthermore, utilizing the GeneCards database (https://

www.genecards.org/), we employed a filtering criterion

encompassing protein-coding genes and diabetes-related

annotations, yielding a total of 12,374 genes. To enhance the

precision of our selection, we retained only the 3,111 genes with

correlation coefficients exceeding the average value (Supplementary

Table S1), which will be subjected to subsequent differential gene

expression analysis. The gene expression data were normalized
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using the Robust Multi-array Average (RMA) method, as

implemented in the limma R package (12).
2.2 Selection of diabetes-related genes

The training and testing cohorts were developed using the

TCGA dataset, where we performed a random split of the data in

a 70/30 ratio. To ensure the robustness and generalizability of our

model training, we employed a standard data splitting technique

with random grouping implemented in the R programming

language. During the grouping process, we utilized a stratified

sampling method and fixed the random number seed (seed=21)

to ensure the reproducibility of the results. The dataset for this

investigation was randomly partitioned into two distinct groups: a

training cohort comprising 70% (377 endometrial cancer patients

and 24 controls) and a testing cohort consisting of 30% (163

endometrial cancer patients and 11 controls), with the number of

samples from each group delineated in Table 2. A preliminary

differential expression analysis was conducted utilizing Limma

(version 3.48.3) within the R programming environment. We

applied stringent screening criteria of |log2Fold change| > 1.5 and

P < 0.001 to pinpoint DEGs in both the training and testing cohorts.

The identified DEGs were visualized through volcano plots and

heatmaps, generated using the ggplot2 R package (https://

ggplot2.tidyverse.org) and the pheatmap R package (https://

CRAN.R-project.org/package=pheatmap), respectively. The

intersection of DEGs from both cohorts with diabetes-associated

genes led to the identification of DM-DEGs (Diabetes Mellitus),

which was illustrated through a Venn diagram.
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2.3 Functional enrichment analysis of DM-
DEGs

To explore the potential biological implications of diabetes-

related genes in endometrial cancer compared to a normal control

group, we conducted gene ontology (GO) (13) enrichment analysis

and Kyoto Encyclopedia of Genes and Genomes (KEGG) (14)

pathway analysis on the identified genes within the overlapping

set. This analysis was performed using the R package clusterProfiler.

Pathways were considered statistically significant at a false

discovery rate (FDR) of <0.05 and a P value of <0.05.

2.4 Gene prognostic model construction

In this study, we utilized the R package ‘survival’ to integrate

survival duration, survival outcome, and gene expression data,

employing the Cox proportional hazards model to evaluate the

prognostic significance of individual genes. Genes exhibiting

statistically significant variations in univariate Cox analysis were

subsequently analyzed through LASSO-Cox regression (15) using

the glmnet R package, which also encompassed survival duration,

survival outcome, and gene expression data. To ascertain the most

effective prognostic model, we implemented a 10-fold cross-

validation procedure that determined the optimal lambda value to

be 0.0397805821179575. Consequently, we developed a prognostic

model that incorporated five genes, represented by the following

equation: RiskScore = 0.0369622344921353 * CDKN2A -

0.0152533112991654 * GSN - 0.162293585605867 * PGR +

0.190782928845233 * SELENOP + 0.0536308514116534 * TRPC1.

For risk stratification, we used the maxstat R package (version

0.7-25) to determine the optimal cut-off value for the RiskScore,

ensuring that the smallest group contained no less than 25% and the

largest no more than 75% of the samples. The optimal cut-off value

was identified as 0.189733273285035. Based on this threshold,

patients were divided into high and low risk groups. We then

used the survfit function from the survival R package to analyze

prognostic differences between the two groups and conducted a log-

rank test to assess their significance. The analysis demonstrated a

statistically significant difference in prognosis, with a p-value of

1.1e-10. To evaluate the predictive performance of the model, we

performed Receiver Operating Characteristic (ROC) analysis

utilizing the pROC R package (version 1.17.0.1). The roc function

was implemented to conduct ROC analysis at intervals of 365, 1095,

and 1825 days, while the CI function was employed to estimate the

Area Under the Curve (AUC) along with its confidence intervals.

This methodology was similarly applied to validate the prognostic

model using an independent validation cohort.
2.5 Validation of key gene protein
expression in endometrial tissue

To further validate the expression patterns of the five key genes

(CDKN2A, GSN, PGR, SELENOP, and TRPC1) identified in our
TABLE 2 Number of samples from each group.

Sample
type

Train group
(TCGA)

Validation group
(TCGA)

Total

UCEC 377 163 540

Normal 24 11 35
TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Patients were pathologically diagnosed
with endometrial carcinoma (UCEC).

Patients with a history of other
malignancies.

Complete clinical follow-up data,
including overall survival (OS)
time and status, were available.

Incomplete or missing key clinical data
(e.g., survival time, pathological type).

Gene expression profiles were
complete and suitable for subsequent

analysis.

Poor-quality gene expression data
(e.g., insufficient sample size,

excessive outliers).

Data were obtained from public
databases (e.g., TCGA, GEO) or

ethically approved clinical cohorts.

Follow-up duration was too short
(e.g., less than 30 days) for meaningful

survival analysis.
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prognos t i c mode l a t the prote in l eve l , we ut i l i z ed

immunohistochemistry (IHC) staining data from the Human

Protein Atlas (HPA) (https://www.proteinatlas.org/). The HPA

database provides high-resolution IHC images for a wide range of

human proteins in both normal and cancerous tissues. We

specifically retrieved and analyzed the IHC staining results for

these five proteins in normal endometrial tissue and UCEC samples.
2.6 Nomogram construction

In this study, we utilized the R package rms to construct a

nomogram that integrates survival time, survival status, and four

key characteristics of patients through Cox regression analysis. This

technique assesses the prognostic relevance of these variables within

a cohort of 377 individuals. The upper section of the nomogram

operates as a scoring mechanism, while the lower section serves as a

predictive tool. By calculating both the total score and the individual

contributions of each characteristic, we successfully predicted the

survival rates and recurrence probabilities for EC patients at 1, 2, 3,

5, and 10 years. The model’s predictive capabilities were further

validated through calibration curves, ROC curves, Kaplan-Meier

survival curves, and the C-index, affirming its efficacy in forecasting

survival outcomes.
2.7 GSEA enrichment analysis of hub genes

We carried out Gene Set Enrichment Analysis (GSEA) to

investigate the role of hub genes in influencing UCEC. The GSEA

software (version 3.0) was obtained from the GSEA website (16)

(http://software.broadinstitute.org/gsea/index.jsp). Based on the

expression levels of hub genes, samples were categorized into

high-expression groups (≥50%) and low-expression groups

(<50%). We downloaded the c2.cp.kegg.v7.4.symbols.gmt subset

from the Molecular Signatures Database (17) (http://www.gsea-

msigdb.org/gsea/downloads.jsp) to assess pertinent pathways and

molecular mechanisms. We established the minimum gene set size

at 5 and the maximum at 5000, performing 1000 permutations

based on gene expression profiles and phenotypic classifications.

A P value of < 0.05 and an FDR of < 0.25 were deemed

statistically significant.
2.8 Correlation analysis of tumor
microenvironment and immune infiltration

We examined alterations in the tumor microenvironment

(TME) of patients diagnosed with UCEC utilizing the R package

“estimate” to score the TCGA-UCEC dataset based on the Stromal

Score, Immune Score, and ESTIMATE Score. Subsequently, we

applied the CIBERSORT methodology (18) from the IOBR package

to compute scores for 22 distinct types of immune infiltrating cells

in each sample. We compared immune cell infiltration between

high-risk and low-risk patient groups, with results visualized
Frontiers in Oncology 04
through stacked plots and box plots. Moreover, we analyzed

correlations among the 22 immune cell types utilizing Pearson’s

correlation test, representing these correlations with a

correlation matrix.
2.9 Mutation correlation analysis

We conducted an exhaustive analysis of the disparities in

somatic mutations between high-risk and low-risk groups. The

TCGA database offers exome sequencing data for nearly 30 cancer

types. We employed the R package maftools for our analysis,

visualizing the outcomes with the oncoplot function.
2.10 Validation of the expression of
biomarkers

To validate the differential expression of five diabetes-related

genes (TRPC1, SELENOP, CDKN2A, GSN, and PGR) in uterine

corpus endometrial carcinoma (UCEC) and to investigate the

influence of diabetes comorbidity, we performed quantitative real-

time polymerase chain reaction (qRT-PCR). A total of 24

endometrial tissue samples were collected from the Affiliated

Chenggong Hospital of Xiamen University and divided into three

groups: UCEC A (UCEC+DM, n=8), UCEC B (UCEC, n=8), and

Control group (n=8). Detailed clinical characteristics of the

participants are summarized in Supplementary Table S7. The

study protocol received approval from the Medical Ethics

Committee of the Affiliated Chenggong Hospital of Xiamen

University (Ethics No. 73JYY2025199192).

Total RNA was extracted from each sample using TRIZol

reagent (Thermo Fisher, Shanghai, China) and reverse-

transcribed into cDNA using the SureScript-First-strand-cDNA-

synthesis-kit (Servicebio, Wuhan, China). qRT-PCR was conducted

using SYBR Green qPCRMaster Mix, with each reaction performed

in triplicate. The housekeeping gene GAPDH served as an internal

control for normalization. The primer sequences for all target genes

and GAPDH are listed in Supplementary Table S6.

Relative gene expression was quantified using the 2−DDCt

method, with the Control group designated as the calibrator to

express results as fold changes. First, to assess basal expression

differences in UCEC, the combined UCEC A and UCEC B groups

(n=16) were compared against the Control group. Second, to

determine the specific impact of diabetes, a direct comparison

was made between UCEC A and UCEC B. A p-value of less than

0.05 was considered statistically significant.
2.11 Statistical analysis

All statistical evaluations and data visualizations, including volcano

plots, forest plots, box plots, violin plots, scatter plots, heatmaps,

Kaplan-Meier curves, and ROC curves, were executed using

R software version 4.2.1 (available at https://www.r-project.org/).
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To identify genes associated with prognosis, we performed

univariate Cox regression analysis. The Wilcoxon rank-sum test

was utilized to evaluate differences in immune infiltration scores and

checkpoint-related gene expression between the two risk groups. A t-

test was employed to examine differential gene expression between

UCEC and normal tissue samples. Furthermore, Pearson correlation

analyses were conducted to investigate the interrelationships among

the 22 distinct immune cell types. For the time-dependent ROC

analysis, the “timeROC” package was used to assess the predictive

accuracy of the risk score at 1, 3, and 5 years, and the CI function

from the same package was applied to compute the 95% confidence

intervals for the AUC values via bootstrap resampling. Statistical

significance of the gene expression differences was assessed using the

Mann-Whitney U test. All statistical tests were two-tailed, with

significance levels denoted as follows: P < 0.05 was indicated by *, P <

0.01 by **, P < 0.001 by ***, and P < 0.0001 by ****. Non-significant

differences were denoted as ns.
3 Results

The flow chart of this study is shown in Figure 1.
3.1 Identification of DEGs associated with
diabetes mellitus in endometrial cancer

In the training cohort, a total of 931 DEGs were detected when

comparing 377 UCEC samples to 24 control samples, with 374

genes exhibiting upregulation and 557 genes showing

downregulation (Figures 2A, C). In the validation cohort, 1206

DEGs were identified between 164 UCEC samples and 11 control

samples, comprising 397 upregulated genes and 809 downregulated

genes (Figures 2B, D). Subsequently, by cross-referencing with 3111

diabetes-associated genes, a total of 186 DM-DEGs (Supplementary

Table S2) were obtained (Figure 2E).
3.2 GO and KEGG enrichment analysis of
DM-DEGs

The 186 identified DM-DEGs were enriched across 1925 GO

biological functions (Supplementary Table S3), which included

cellular responses to stress (such as responses to oxygen-

containing compounds and hormonal responses), regulatory

mechanisms in cellular processes (including regulation of cell

proliferation and multicellular organismal process), as well as

adaptation and maintenance of homeostasis in response to

environmental stressors (e.g., hypoxia and low oxygen levels)

(Figure 3A). Additionally, these genes were found to be

implicated in 26 KEGG pathways (listed in Supplementary Table

S4), encompassing Type II diabetes mellitus, central carbon

metabolism in cancer, glycolysis/gluconeogenesis, cancer

pathways, and the PI3K-Akt signaling pathway (Figure 3B).
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3.3 Identification and correlation analysis
of prognostic-related DEGs

Among the 186 DM-DEGs, univariate Cox regression analysis

confirmed that 17 DM-DEGs were significantly correlated with the

prognosis of EC patients (P < 0.05) (Figure 4A). A correlation

analysis of these 17 DEGs revealed notable interrelations among

most of these genes (Figure 4B). These 17 genes were submitted to

the STRING database and analyzed using Cytoscape 3.8.0 software

for constructing a protein-protein interaction (PPI) network, which

consisted of 17 nodes and 20 edges (Figure 4C).

3.4 Development and validation of a
prognostic model for endometrial cancer
based on diabetes-related genes

In this investigation, Lasso regression analysis was utilized to

ascertain five genes associated with prognosis: TRPC1, SELENOP,

CDKN2A, GSN, and PGR. Among these, CDKN2A, SELENOP, and

TRPC1 were identified as indicators of poor prognosis, while GSN and

PGR were linked to favorable outcomes (Figures 5A, B). Based on the

prognostic model, the optimal cut-off value was determined for the

risk assessment. In the training cohort, the high-risk classification

included 119 individuals, while the low-risk classification

encompassed 258 individuals. In the validation cohort, the high-risk

group consisted of 92 individuals, and the low-risk group included 71

individuals. Following this classification, we conducted a comparative

analysis of the ROC curves and the survival outcomes of patients

diagnosed with UCEC across both cohorts. The Kaplan-Meier survival

analysis indicated that individuals within the low-risk category

exhibited significantly superior overall survival (OS) compared to

their high-risk counterparts, a trend that was evident in both the

training cohort (P < 0.001) and the validation cohort (P < 0.01). This

finding suggests that the risk score serves as a reliable prognostic

indicator for EC patients (Figures 5C, E). Furthermore, the ROC curve

analysis evaluated the predictive capacity of the risk model in both

datasets, affirming the robustness and accuracy of the prognostic

model predicated on diabetes-associated genes (Figures 5D, F).

3.5 Association of diabetes-related genes
with risk stratification and survival
outcomes in EC patients

In our model, we identified five differentially expressed

diabetes-related genes, with GSN and PGR exhibiting heightened

expression levels in the low-risk group, whereas CDKN2A,

SELENOP, and TRPC1 demonstrated increased expression in the

high-risk group. The findings from both the training and validation

cohorts were largely consistent (Figures 6A, B). We undertook a

comparative analysis of the risk score distributions, survival

statuses, and heatmaps between the training and validation sets

for EC patients (Figures 6C, D), which revealed no notable

differences between the two cohorts. The risk curves and scatter

plots for both sets indicated a positive correlation between mortality
frontiersin.org
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and risk scores. The heatmaps for the three classifications

confirmed the elevated expression of GSN and PGR in the low-

risk group, while demonstrating increased levels of CDKN2A,

SELENOP, and TRPC1 in the high-risk group.
3.6 Validation of key gene protein
expression in endometrial tissue using the
HPA database

To further validate the protein expression levels of the five key

diabetes-related genes (CDKN2A, GSN, PGR, SELENOP, and

TRPC1) identified in our prognostic model, we utilized IHC

staining data from the HPA database. As shown in Figure 7, IHC

images revealed that CDKN2A, SELENOP, and TRPC1 were
Frontiers in Oncology 06
expressed at higher levels in endometrial carcinoma tissues

compared to normal endometrial tissues, consistent with their

mRNA upregulation in high-risk patients. Conversely, GSN and

PGR exhibited lower protein expression in tumor tissues relative to

normal tissues, aligning with their favorable prognostic roles and

reduced expression in the high-risk group. These findings not only

corroborate our transcriptomic analysis but also reinforce the

potential biological significance of these genes in endometrial

cancer progression.

3.7 Experimental validation of key gene
expression by quantitative PCR

To molecularly validate the expression patterns of the five key

genes (TRPC1, SELENOP, CDKN2A, GSN, and PGR) identified
FIGURE 1

Study design flowchart.
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from our prognostic model, we performed qRT-PCR on clinical

tissue samples. The mRNA expression levels of TRPC1, SELENOP,

and CDKN2A were significantly upregulated, while GSN and PGR

were significantly downregulated in UCEC tissues compared to

normal controls (p < 0.05) (Figures 8A–E). Furthermore,

stratification of UCEC patients by diabetic status revealed that the
Frontiers in Oncology 07
dysregulation of SELENOP, CDKN2A, and PGR was specifically

exacerbated by diabetes. The expression levels of SELENOP and

CDKN2A were significantly higher, while PGR was significantly

lower in diabetic UCEC patients than in non-diabetic patients (p <

0.05). In contrast, TRPC1 and GSN expression showed no

significant difference between these two subgroups (Figures 8F–J).
FIGURE 2

Volcano plot, heat map, and Venn diagram. (A, B) The volcano plots for the Training group and Testing group, with upregulated genes represented
in red and downregulated genes in blue. (C, D) The heat maps for the Training group and Testing group. (E) Venn diagram illustrating overlapping
genes from both groups and the diabetes database.
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These results not only confirm the protein-level findings from the

HPA database but also establish SELENOP, CDKN2A, and PGR as

key genes whose expression is specifically modulated by the

diabetic milieu.
3.8 The personalized prognostic prediction
model showed robust predictive accuracy

To enhance the clinical applicability of our prognostic

prediction model, we developed a personalized prediction

framework that integrates key variables such as patient age,

histological stage, grade, and risk score. As shown in Figure 9A,

this personalized model effectively estimates survival probabilities at

1, 2, 3, 5, and 10 years for patients with endometrial cancer. The

nomogram model boasts a C-index of 0.781 (95% CI: 0.72-0.84),

with a p-value of 1.1e-19, reflecting its robust predictive

performance (Figure 9B). Calibration curves derived from both

training and validation datasets exhibit a strong alignment between

the nomogram’s predictions and actual outcomes, highlighting its

exceptional predictive accuracy (Figures 9C,D). By stratifying the

TCGA-UCEC dataset into high-risk and low-risk groups based on

the median risk score from the nomogram, Kaplan-Meier survival

analysis revealed a significantly more favorable prognosis for the

low-risk group compared to the high-risk group (Figure 9E).

Furthermore, ROC curve analysis for the high-risk and low-risk

groups demonstrated area under the curve (AUC) values of 0.72,

0.82, and 0.84 for 1-year, 3-year, and 5-year survival, respectively,

underscoring the model’s discriminative ability (Figure 9F).
3.9 Biological processes and pathways
enriched for the hub genes

To investigate the potential biological roles of these genes,

we performed GSEA. The results revealed significant enrichment
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in pathways concerning glucose and lipid metabolism

(PPAR_SIGNALING_PATHWAY, FATTY_ACID_METABOLISM,

INSULIN_SIGNALING_PATHWAY), cellular membrane

structure (GLYCEROPHOSPHOLIPID_METABOLISM),

embryonic development and tissue homeostasis (WNT_

SIGNALING_PATHWAY), regulation of sex hormones (GNRH_

SIGNALING_PATHWAY), and inflammatory responses

(ADIPOCYTOKINE_SIGNALING_PATHWAY) (Figure 10;

Supplementary Table S5).
3.10 Analysis of risk score correlation with
tumor microenvironment, immunity, and
somatic mutations

The assessment of the TME underscores its pivotal role in either

immune suppression or activation, which is crucial for cancer

prevention and therapeutic strategies. The pathway enrichment

analysis indicated a relationship with immunity between the two risk

groups. Considering the influence of gene transcripts (GTs) in the

TME, we applied an estimation algorithm to derive scores for

individual samples within the high-risk and low-risk groups. Our

results demonstrated that the ImmuneScore, ESTIMATEScore, and

StromalScore were all significantly elevated in the low-risk group in

comparison to the high-risk group (Figure 11A). The TME, comprising

immune cells, extracellular matrix, inflammatory cytokines, and

diverse growth factors, plays a substantial role in determining clinical

treatment responses and diagnostic outcomes. The CIBERSORT

algorithm was utilized to estimate the proportions of 22 immune cell

types in UCEC samples from 258 individuals in the low-risk group and

119 in the high-risk group, as depicted in histograms (Figure 11C). The

results of the correlation analysis for these immune cell types are

outlined (Figure 11B), and a comparative examination of immune cell

expression profiles across the low-risk and high-risk groups is

presented through box plots (Figure 11D). Additionally, we

conducted an analysis of somatic mutations in both risk groups,
FIGURE 3

Pathway enrichment analysis of DM-DEGs. (A) KEGG analysis diagram of 186 DM-DEGs. (B) GO analysis diagram of 186 DM-DEGs.
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revealing the top ten genes with the highest mutation frequencies,

illustrated through waterfall plots (Figures 11E, F). Notably, the gene

exhibiting the highest mutation frequency within the high-risk group

was TP53, which accounted for 71.2% of the total mutations.
4 Discussion

UCEC (19, 20) is a prevalent gynecological cancer that

significantly challenges women’s health worldwide. The incidence
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of UCEC is increasing. It is closely linked to metabolic disorders like

diabetes (5, 6). Diabetes may worsen cancer development through

various biological pathways and negatively impact patient prognosis

(21–23).Consequently, researching the interaction between

diabetes-related factors and the molecular mechanisms of UCEC

has become a key area of focus. A deeper understanding in this field

is expected to drive the development of more effective therapeutic

strategies and improve prognostic models for patients.

Utilizing data from TCGA, this study identified 186 DM-DEGs

in UCEC within the context of diabetes. Previous research has
FIGURE 4

(A) Univariate Cox regression analysis of the 186 DM-DEGs, identifying 17 genes significantly associated with prognosis. (B) Correlation matrix for the
17 DM-DEGs. (C) PPI networks and key modules constructed via STRING and Cytoscape, featuring 20 edges and 17 nodes.
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indicated that metabolic dysregulation in diabetes is associated with

altered gene expression in cancers, including UCEC (24, 25).

Functional enrichment analysis revealed that DM-DEGs play a

pivotal role in cellular stress response and proliferation regulation,

processes that are crucial for tumor initiation and progression. In
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particular, DM-DEGs were enriched in key metabolic pathways

such as the PPAR signaling pathway, which is vital for glucose and

lipid metabolism, and its dysregulation may promote tumorigenesis

(26, 27). The PI3K-Akt signaling pathway and central carbon

metabolism pathways in cancer were also significantly enriched,
FIGURE 5

Construction and validation of a prognostic model based on diabetes-related genes in UCEC. (A, B) Lasso Cox regression analysis of 17 prognosis-
related genes. (A) Coefficient path plot showing variable shrinkage with increasing lambda (optimal lambda = 0.0398). (B) Partial likelihood deviance
plot identifying the optimal lambda (vertical line). Five genes (TRPC1, SELENOP, CDKN2A, GSN, PGR) were selected for the final model. (C, E) Kaplan-
Meier survival curves comparing overall survival (OS) between high-risk and low-risk groups in the training (C) and validation (E) cohorts. Patients
were stratified by the optimal risk score cut-off (0.1897). Significant OS differences were confirmed by log-rank test (training: P < 0.001; validation:
P = 0.001). (D, F) Time-dependent ROC curves evaluating the model’s predictive accuracy for 1-, 3-, and 5-year OS in the training (D) and validation
(F) cohorts. AUC values: training (1-year: 0.69, 3-year: 0.74, 5-year: 0.76; all P < 0.001); validation (1-year: 0.75, 3-year: 0.67, 5-year: 0.67; all
P < 0.01).
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indicating that metabolic dysregulation plays a key role in the

pathogenesis of UCEC under diabetic conditions (28, 29).

Moreover, alterations in the insulin signaling pathway, a hallmark

of type 2 diabetes, were associated with the aggressive behavior of

UCEC, suggesting that therapeutic interventions targeting this

pathway may be particularly important for diabetic patients.

Additionally, the study found that the abnormal activation of the

Wnt signaling pathway, which is related to cancer progression (30,

31), also operates in diabetes-associated UCEC. These findings

underscore the pivotal role of molecular crosstalk in the diabetes-

UCEC link, pinpointing targets for innovative therapeutic

development to enhance patient outcomes. The study elucidates

their complex interplay and introduces a prognostic model

incorporating clinical variables, offering a novel approach to

personalized care.

We identified five key genes—CDKN2A, SELENOP, GSN, PGR,

and TRPC1—as significant biomarkers in the prognostic model for

patient stratification. Notably, the expression patterns of these genes
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in high-risk patients revealed distinct pathogenic insights.

CDKN2A, a classic tumor suppressor gene that regulates the cell

cycle by inhibiting cyclin-dependent kinases (32, 33), was

surprisingly upregulated in our high-risk UCEC group. This

finding aligns with the model wherein its overexpression signifies

cellular senescence or a compensatory response to oncogenic stress,

a mechanism potentially exacerbated by metabolic dysfunction.

SELENOP (34), a selenium transport protein critical for

antioxidant defense, was also upregulated in high-risk patients.

Elevated SELENOP levels, linked to both cancer progression and

diabetes, may promote tumor growth by modulating inflammation

and oxidative stress. TRPC1, a calcium channel associated with cell

proliferation (35), was upregulated in the high-risk group,

suggesting its role in enhancing tumor invasiveness and

therapeutic resistance.

To further validate the protein expression levels of the identified

key genes in endometrial tissue, we utilized IHC staining data from

the HPA database. The HPA database provided IHC images of
FIGURE 6

Expression differences and risk stratification of model genes in UCEC patients. (A, B) Box plots comparing the expression of five prognostic genes
(TRPC1, SELENOP, CDKN2A, GSN, PGR) between high-risk and low-risk groups in the training (A) and validation (B) cohorts. Significance was
determined by the Wilcoxon rank-sum test (****P < 0.0001, ***P < 0.001, **P < 0.01). Notably, GSN and PGR were significantly upregulated in the
low-risk group, while CDKN2A, SELENOP, and TRPC1 were elevated in the high-risk group. (C, D) Integrated visualization of risk scores, survival
outcomes, and gene expression heatmaps for the training (C) and validation (D) cohorts. Patients were stratified by the optimal risk score cut-off
(0.1897), with high-risk patients (red) showing higher mortality rates. The heatmap confirmed consistent expression patterns across cohorts, with
high-risk patients exhibiting elevated CDKN2A/SELENOP/TRPC1 and low-risk patients showing dominant GSN/PGR expression.
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endometrial cancer and normal endometrial tissues, allowing us to

confirm the differential expression of CDKN2A, SELENOP, GSN,

PGR, and TRPC1 at the protein level. This validation step is crucial

as it bridges the gap between transcriptomic data and protein

expression, reinforcing the biological significance of our findings.

Critically, IHC staining confirmed strong accumulation of
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CDKN2A/p16 protein in tumor tissues, which aligns with its

mRNA upregulation in high-risk patients. While CDKN2A is a

tumor suppressor, its robust protein expression is a recognized

biomarker of oncogene-induced cellular senescence or a

dysfunctional cell cycle checkpoint in many cancers, a state that

could be exacerbated by the diabetic metabolic environment.
FIGURE 7

Validation of protein expression levels of five key diabetes-related genes in EC and normal endometrial tissues using the HPA database.
Representative IHC staining images show the protein expression of CDKN2A, GSN, PGR, SELENOP, and TRPC1 in normal endometrial tissues and
endometrial carcinoma tissues. CDKN2A, SELENOP, and TRPC1 exhibit higher protein expression in EC tissues compared to normal tissues, whereas
GSN and PGR show lower expression in EC tissues.
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Similarly, SELENOP was overexpressed in tumor tissues, where it

may promote tumor growth through increased inflammation and

oxidative stress. In contrast, the reduced expression of GSN and

PGR in tumor tissues supports their role as favorable prognostic
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markers, potentially through impaired cell adhesion and hormone

response, respectively. Lastly, TRPC1 was upregulated in

endometrial carcinoma, potentially enhancing tumor cell

proliferation and invasive capabilities through its regulation of
FIGURE 8

Differential expression of diabetes-related genes in UCEC tissues. (A–E) Comparison of gene expression between the combined UCEC group (UCEC
A + UCEC B, n=16) and the Control group (normal endometrium, n=8): CDKN2A (A), GSN (B), PGR (C), SELENOP (D), TRPC1 (E). (F–J). Direct
comparison of gene expression between UCEC patients with diabetes (UCEC A, n=8) and those without diabetes (UCEC B, n=8): CDKN2A (F), GSN
(G), PGR (H), SELENOP (I), TRPC1 (J). Statistical significance: ns > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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FIGURE 9

Personalized prognostic model for progression-free survival (PFS) in UCEC patients. (A) Nomogram predicting 1-, 2-, 3-, 5-, and 10-year PFS
probabilities based on risk score and clinical parameters. The asterisks (-, **, ***) next to each variable denote its statistical significance in the
multivariate Cox model (-P > 0.05, **P < 0.01, ***P < 0.001). (B) Model performance assessed by C-index (0.781, 95% CI: 0.72–0.84, P = 1.1e-19),
indicating excellent discriminative ability. (C, D) Calibration curves for training (C) and validation (D) cohorts, showing alignment between predicted
and observed PFS (Hosmer-Lemeshow test P > 0.05, no significant deviation). (E) Kaplan-Meier survival curves stratified by nomogram-predicted risk
groups, with significant PFS difference between high-risk and low-risk patients (log-rank test P < 0.001). (F) Time-dependent ROC curves for 1-, 3-,
and 5-year PFS prediction, with AUC values of 0.72, 0.82, and 0.84, respectively (all P < 0.001).
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calcium signaling and crosstalk with hormone pathways. These

protein-level observations significantly bolster the clinical relevance

of our prognostic model.

To experimentally validate these findings, we further

investigated the expression patterns of these five key genes in

clinical tissue samples. Our analysis revealed a distinct
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stratification: while TRPC1, SELENOP, CDKN2A, GSN, and PGR

all showed significant dysregulation in UCEC tissues compared to

normal endometrium, only SELENOP, CDKN2A, and PGR

exhibited diabetes-specific modifications in UCEC patients.

Specifically, we observed significant further suppression of PGR

and enhanced upregulation of SELENOP and CDKN2A in diabetic
FIGURE 10

GSEA of hub genes in UCEC. (A-E) GSEA plots showing enriched pathways for each hub gene: (A) CDKN2A, (B) GSN, (C) PGR, (D) SELENOP, (E) TRPC1.
P value of < 0.05 and FDR of < 0.25.
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UCEC tissues. These results strongly suggest that the diabetic

milieu, particularly hyperinsulinemia and associated oxidative

stress, actively remodels the molecular landscape of UCEC by

specifically enhancing progesterone receptor loss while amplifying

stress-response and senescence pathways. In contrast, expression

levels of TRPC1 and GSN remained comparable between diabetic

and non-diabetic UCEC subgroups, indicating their involvement in

general carcinogenesis rather than diabetes-specific pathways.

We validated the predictive performance of the risk score model

using ROC analysis and Kaplan-Meier survival curves. Significant
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differences in OS were observed between high-risk and low-risk

groups in both the training and validation cohorts, with p-values of

1.1 × 10^-10 and 0.001, respectively. This underscores the model’s

effectiveness in stratifying patient risk. This is consistent with

previous studies that established the prognostic value of gene

expression profiles in various cancers, including endometrial

cancer (36, 37). The AUC values for 1-year, 3-year, and 5-year

survival outcomes were 0.72, 0.82, and 0.84, respectively, further

confirming the accuracy of the model. Additionally, the calibration

curve showed a high degree of concordance between predicted and
FIGURE 11

Association between risk score and TME in UCEC. (A) Violin plots comparing StromalScore, ImmuneScore, and ESTIMATEScore between high-risk
and low-risk groups (Wilcoxon test, P < 0.001). (B) Correlation matrix of 22 immune cell populations (Pearson correlation, significant correlations
marked with P < 0.05). (C) Stacked bar plots showing the distribution of immune cell types in high-risk vs. low-risk groups (e.g., CD8 T cells enriched
in low-risk group, P = 0.002). (D) Box plots highlighting differential expression of key immune cells (e.g., M1 macrophages: P < 0.01; Tregs: P < 0.05).
(E, F) Waterfall plots of somatic mutations in low-risk (E) and high-risk (F) groups. TP53 mutation frequency was higher in high-risk group (71.2% vs.
32.5%, Fisher’s exact test P < 0.001). Statistical significance: -P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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observed outcomes, which reinforces the reliability of our

nomogram. In summary, our study not only identified key

biomarkers associated with diabetes and UCEC but also

established a validated prognostic model that aids in clinical

decision-making. Integrating diabetes-related DEGs into the

prognostic framework offers a new perspective on the interplay

between metabolic disorders and cancer prognosis, a field

warranting further exploration in future research.

This study revealed significant differences in immune cell

infiltration between high-risk and low-risk UCEC patients, as

evidenced by the CIBERSORT algorithm and metrics like

ImmuneScore, ESTIMATEScore, and StromalScore. These

findings underscore the pivotal role of the TME in shaping

immune responses and influencing prognosis (38). The observed

discrepancies in immune scores between high-risk and low-risk

groups not only delineate tumor biological characteristics but also

likely influence immune responses. This aligns with existing

research demonstrating how the TME affects tumor behavior and

patient survival outcomes, highlighting the importance of robust

immune responses in tumor suppression and enhanced prognosis

(39). The relationship between immune scoring and risk

stratification further emphasizes the vital role of immune

regulation in cancer progression and treatment response (40, 41).

Notably, the differential expression of CD8 T cells, Tregs, and

dendri t ic ce l l s suggests new avenues for developing

immunotherapeutic strategies aimed at bolstering anti-tumor

immunity and improving clinical outcomes for UCEC patients.

For instance, enhancing CD8 T cell infiltration and activity while

modulating Treg function could potentially tip the balance toward

more effective tumor immune surveillance and destruction.

Moreover, our findings align with previous research indicating

that metabolic dysfunction-related genes can accelerate EC

progression not only by directly affecting tumor cells but also by

modulating the tumor immune microenvironment (42). The TME,

including infiltrating immune cells, plays a crucial role in shaping

tumor development, therapeutic resistance, and clinical outcomes.

Our observation that patients in the low-risk group exhibited higher

TME scores and more diverse immune cell infiltration further

supports the notion that a more active immune response is

associated with a better prognosis. The enrichment of immune-

related pathways in the low-risk group, as indicated by our pathway

enrichment analysis, further strengthens this association.

Importantly, the observed differences in immune infiltration

between high-risk and low-risk UCEC patients, as reflected by the

immune scores, may also shed light on the interplay between

diabetes and cancer, as chronic inflammation and immune

dysregulation are common features of both conditions. In

diabetes, immune cells can contribute to a pro-tumor

microenvironment by promoting metabolic dysregulation,

angiogenesis, and fibrosis. For instance, immune cells in diabetes

can foster a pro-tumor microenvironment by augmenting the

production of inflammatory cytokines, which can fuel tumor

growth and angiogenesis, and modify immune checkpoint

expression, thereby suppressing anti-tumor immunity. This

suggests that the immune alterations observed in UCEC may be
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further exacerbated in the context of comorbid diabetes,

highlighting the need to consider diabetes status when

interpreting immune scores and developing therapeutic strategies.

These findings suggest that immune scores could be used to

stratify UCEC patients and identify those who may benefit from

specific immunotherapies, particularly those with comorbid diabetes.

Specifically, exploring the mechanisms by which immune cells

interact with metabolic pathways in the context of UCEC could

unveil novel targets for therapeutic intervention, potentially leading

to improved outcomes for patients with this aggressive form of

cancer. In conclusion, while our study primarily focuses on the

impact of diabetes-associated genes on UCEC, the immune score

provides valuable insights into the tumor’s immune landscape, which

may have broader implications for understanding the interplay

between diabetes, inflammation, and cancer. Future research

should further investigate the complex relationship between

diabetes, immune infiltration, and cancer progression to develop

more effective therapeutic strategies for patients with both conditions.

This study has several limitations that should be acknowledged.

First, the analysis primarily relies on publicly available datasets such

as TCGA, which predominantly represents the American population.

This introduces potential biases related to sample collection,

processing, and annotation, and limits the generalizability of the

findings to other geographical regions or populations with distinct

clinical characteristics. Although we employed stratified random

sampling and 10-fold cross-validation to construct and validate the

prognostic model, these approaches may not fully eliminate the

potential heterogeneity inherent in the dataset. Therefore, future

research should focus on incorporating data from diverse

ethnicities, regions, and clinical backgrounds—particularly

including patients with confirmed diabetes status—to enhance the

model’s robustness and broader applicability.

Second, the absence of an independent external validation cohort

weakens the robustness of the diabetes-related gene expression

model. While internal validation methods were utilized, external

validation remains essential for confirming the model’s predictive

accuracy across different populations. Moreover, the study was based

solely on gene expression data, without functional validation of the

identified genes or their roles in diabetes-associated tumorigenesis.

Third, due to the lack of detailed clinical information regarding

diabetes status in the TCGA cohort, we were unable to directly

investigate the causal links between diabetes itself, diabetes-related

genes, and cancer outcomes. This limitation is particularly evident in

two aspects: 1) Mutation analysis: Although we stratified somatic

mutations by risk score and observed significantly higher mutation

frequencies of genes such as TP53 in the high-risk group, we did not

explore whether these mutation differences are directly related to

diabetes status. The absence of diabetes annotations prevented us

from assessing causal relationships between mutational profiles and

diabetes, rendering current conclusions indirect and speculative.

Future studies should integrate clinical cohorts with well-

documented diabetes information, combining genomic and

metabolic data to explore the potential roles of diabetes-related

mutations in endometrial cancer pathogenesis. 2) Biological

mechanism inference: While enrichment analysis revealed that
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diabetes-associated differentially expressed genes (DM-DEGs) are

significantly involved in biological processes such as glucose and

lipid metabolism and insulin signaling pathways, the lack of

definitive diabetes status data prevents direct validation of whether

these gene expression changes are driven by diabetes or linked to its

pathophysiological mechanisms. Thus, our conclusions should be

considered preliminary and exploratory. Future prospective cohort

studies incorporating clinical samples and molecular subtyping from

diabetic patients are needed to clarify the true roles of DM-DEGs

within the diabetes–endometrial cancer axis.

Finally, the cross-sectional nature of the data limits the ability to

infer causal relationships between diabetes-related genes and

endometrial cancer outcomes. Further longitudinal studies are

necessary to elucidate these associations. Additionally, larger

sample sizes through multi-center collaborations, particularly

including patient data stratified by diabetes status, will be crucial

to validate the generalizability and clinical utility of the model.
5 Conclusion

This study identified and characterized DM-DEGs in UCEC

using TCGA data. Through LASSO-COX regression analysis, we

developed a robust prognostic model based on five key DM-DEGs—

TRPC1, SELENOP, CDKN2A, GSN, and PGR—that effectively

stratifies patients into high- and low-risk groups. Our analysis of

the tumor microenvironment and immune infiltration revealed

potential for personalized treatments, underscoring the importance

of metabolic disorders in cancer progression. Although the study is

limited by the lack of diabetes status annotations in the TCGA cohort,

which restricts the ability to directly establish causal links between

diabetes-related mutations and cancer outcomes, it still provides

novel insights into the complex interplay between diabetes and

endometrial cancer. The DM-DEGs and associated pathways

identified in this study—such as the PPAR and insulin signaling

pathways—not only enhance our understanding of how diabetes

influences UCEC pathogenesis but also lay a solid foundation for

developing individualized therapeutic strategies for patients with both

diabetes and endometrial cancer.

In summary, despite some conclusions being preliminary due to

the indirect nature of current data, this work offers important

evidence supporting the role of diabetes-related genes in

endometrial cancer and sets the stage for future mechanistic and

translational studies. We anticipate that subsequent research will

build upon these findings to further validate their clinical

applicability and broaden their implications.
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