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IKBKE modulates autophagy
and progestin resistance
In endometrial cancer

Jiahui Wang and Xianchao Kong*

Department of Gynaecology, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China

Background/objectives: Endometrial cancer (EC) is a prevalent malignancy in
women, with up to 16% of cases diagnosed in individuals under 40 years old.
Progestin-based therapies are essential for fertility preservation in EC patients,
but resistance to these treatments remains a major challenge. IKBKE, an
oncogenic kinase implicated in various cancers, including breast, ovarian, and
prostate, has an unclear role in autophagy regulation and progestin resistance in
EC. This study aims to investigate the involvement of IKBKE in these processes.
Methods: A progestin-resistant EC cell line was established to assess the effects
of IKBKE knockdown and treatment with CYT387, a selective IKBKE inhibitor. In
vitro assays, including MTT viability, wound healing, colony formation, and
Transwell invasion assays, were performed to evaluate cell proliferation,
migration, and invasion. Autophagic activity was analyzed following
CYT387 treatment.

Results: IKBKE knockdown significantly reduced cell proliferation, migration, in
progestin-resistant EC cells. CYT387 treatment inhibited autophagic activity and
decreased cell viability in these cells.

Conclusions: These findings highlight the crucial role of IKBKE in regulating
autophagy and mediating progestin resistance in EC. This study provides new
insights into IKBKE as a potential molecular target that contributes to
understanding the mechanisms underlying progestin resistance in
endometrial cancer.

KEYWORDS

IKBKE, endometrial cancer, progestin-resistance, autophagy, medroxyprogesterone
acetate (MPA)

1 Introduction

Endometrial cancer (EC) is a common malignancy among females, with its prevalence
rising among premenopausal women. One study reported that 44.8% of diagnosed cases
were in premenopausal women, and up to 16% of cases were diagnosed in women under 40
(1). Hormonal therapy, particularly progestin treatment, is a key therapeutic strategy for
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patients with advanced or recurrent EC, as well as for young
patients who wish to preserve fertility (2-4). However, progestin
resistance affects approximately 30% of younger patients with EC,
regardless of medication or treatment protocol, limiting treatment
efficacy and worsening survival outcomes (5, 6). Therefore,
understanding the molecular mechanisms underlying progestin
resistance in EC is critical for identifying new therapeutic targets
to enhance treatment efficacy.

IKBKE (inhibitor of nuclear factor kappa-B kinase subunit
epsilon) is an oncogenic kinase implicated in multiple cancers,
including breast, ovarian, lung, and prostate cancer (7-12). It
promotes tumor cell proliferation, survival, and immune evasion
through key signaling pathways such as NF-«xB, AKT, and STAT3
(13-17). IKBKE overexpression is linked to chemotherapy
resistance, particularly to cisplatin and paclitaxel in breast and
ovarian cancers, as well as resistance to EGFR tyrosine kinase
inhibitors in non-small cell lung cancer (18-21). Given its role in
therapeutic resistance, IKBKE represents a potential target for
overcoming drug resistance. However, its involvement in
progestin-resistant EC remains unclear.

Autophagy is a conserved process that maintains cellular
homeostasis by degrading and recycling dysfunctional organelles
and proteins (21). Dysregulated autophagy under pathological
conditions can contribute to disease progression (22-24). IKBKE
has been identified as a key regulator of autophagy in various cancer
models, modulating vesicle formation and autophagy-related
proteins such as Beclin-1 and LC3 through its aberrant
expression (17, 25, 26). IKBKE inhibition disrupts autophagy,
leading to reduced cancer cell proliferation and increased
apoptosis (19, 20). In low-grade glioma, IKBKE regulates
autophagy and contributes to disease progression through
pathways such as PI3K/AKT/mTOR. It also serves as a prognostic
marker, with its expression effectively predicting survival differences
ranging from 2 to 10 years (27). However, the relationship between
IKBKE and autophagy in EC remains to be explored.

CYT387, also known as momelotinib, is a multi-target JAK/
STAT inhibitor (28). In addition to its role in inhibiting JAK/STAT
signaling, preclinical studies demonstrated the efficacy of CYT387
in triple-negative breast cancer, where it suppressed tumor growth
by inhibiting IKBKE-induced NF-xB and STAT activation (29).
Therefore, CYT387 has also been identified as a potent IKBKE
inhibitor that effectively blocks NF-kB-driven tumor proliferation,
survival, and immunomodulation. Given the role of IKBKE in
autophagy and drug resistance, CYT387 serves as a useful tool to
investigate the functional impact of IKBKE inhibition in progestin-
resistant EC.

In this study, we demonstrate that IKBKE is upregulated in
progestin-resistant EC cells and promotes their proliferation and
migration. IKBKE knockdown suppresses tumor growth and
reduces autophagy, highlighting its role in autophagy-mediated
progestin resistance. Furthermore, IKBKE inhibition with
CYT387 overcomes progestin resistance. Collectively, these
findings provide new insights into the therapeutic potential of
targeting IKBKE-mediated autophagy in EC.
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2 Materials and Methods
2.1 Cell culture

Human EC Ishikawa cells were obtained from Procell Life
Science & Technology Co., Ltd. (Wuhan, China). Cells were
cultured in Dulbecco’s Modified Eagle Medium (Thermo Fisher
Scientific) supplemented with 10% fetal bovine serum and
incubated in a 5% CO, environment at 37 °C.

2.2 Establishment of progestin-resistant EC
cell lines

To induce progestin resistance, progestin-sensitive EC cells
were exposed to medroxyprogesterone acetate (MPA, CDAA-S-
590045D3, Sigma-Aldrich Co., St. Louis, MO, USA) for 6 months.
MPA concentration was doubled monthly until reaching 10 pM
(30), and the final concentration of DMSO in all drug treatment
groups during the experiment was standardized to 0.1%. The
Ishikawa cell-specific culture medium containing MPA was
replaced every three days. When cells reached 90% confluence,
viable cells were passaged and subsequently cultured in 10 pM
MPA. Cell proliferation and relevant signaling pathways were
assessed following drug selection.

2.3 RT-qPCR

Total RNA was isolated from samples and quantified to ensure
equal input (1 ug per reaction). Genomic DNA was removed using
5xgDNA Digester Mix (Yeasen, China), and reverse transcription
was carried out with the Hifair® III SuperMix Plus kit (Yeasen,
China) according to the manufacturer’s protocol. Gene-specific
primers were dissolved and diluted to working concentrations
using nuclease-free water and stored appropriately. Quantitative
PCR was performed using the Hieff® qPCR SYBR Green Master
Mix (No Rox, Yeasen, China) in a 20 ul reaction volume under two-
step cycling conditions. Relative gene expression was analyzed using
the 2A-AACt method, with normalization to internal control gene
GAPDH. The primer sequences used were: IKBKE forward 5-
GAGAAGTTCGTCTCGGTCTATGG-3 and reverse 5-TGCATG
GTACAAGGTCACTCC-3’; GAPDH forward 5-GGAGCGAGAT
CCCTCCAAAAT-3" and reverse 5-GGCTGTTGTCATACT
TCTCATGG-3’; MDRI forward 5-GGAGCCTACTTGGTGGC
ACATAA-3 and reverse 5-TGGCATAGTCAGGAGCAAATGA
AC-3’; PR forward 5-CCACCATCCACTACAACTACAT-3" and
reverse 5-AAACACGCACCTCAAAGC-3’.

2.4 Western blot

Cells were lysed on ice for 30 minutes using lysis buffer with
phenylmethylsulfonyl fluoride and centrifuged to collect protein
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extracts. A total of 30 ug protein was separated by 15% SDS-PAGE
and transferred onto polyvinylidene difluoride membranes. The
membranes were blocked at room temperature for 15 minutes using
a rapid blocking solution (Wuhan Sevier Biotechnology Co., Ltd.,
Wuhan, China). Subsequently, membranes were incubated for 16
hours at 4 °C with primary antibodies against progesterone receptor
(PR, 5264; Zen Bio, Chengdu, China), IKBKE (3416; Cell Signaling
Technology), NF-xB p65 (8242; Cell Signaling Technology),
phosphorylated NF-xB p65 (Ser536; 3033; Cell Signaling
Technology), LC3B (3868; Cell Signaling Technology), ATG5
(2630; Cell Signaling Technology), Beclin-1 (3495; Cell Signaling
Technology), P62 (5114; Cell Signaling Technology), MDR 1
(13342; Cell Signaling Technology), and B-actin (ac-026;
ABclonal, China). Membranes were then incubated with rabbit
anti-mouse IgG secondary antibodies conjugated with specific
horseradish peroxidase for 1 hour at room temperature. Protein
bands were visualized using an enhanced chemiluminescence kit
(Pierce, Rockford, IL, USA).

2.5 Transfection

Adenovirus carrying IKBKE shRNA (HYKY-230307016-DLV,
OBiO Technology, Shanghai), viral titer 3x10® PFU/mL. Cells were
seeded into 24-well culture plates and trypsinised for quantification.
The cell suspension density was standardized to 5x10* cells/well to
achieve 30-40% confluence at viral transduction. Lentiviral particles
were added after replacing the medium with fresh culture solution
when target confluence was attained. Twelve hours post-
transduction, the medium was completely replaced to maintain
cell viability. After 72 hours of incubation, puromycin selection was
applied to isolate stable clones. Viral expression efficiency was
assessed over time using qPCR, western blotting, or fluorescence-
activated cell sorting with target-specific antibodies.

2.6 Cell proliferation assay

The MTT assay was performed to evaluate cell viability and
proliferation. Briefly, the selected cell lines were cultured in
complete medium containing an appropriate concentration of
serum. Cells were seeded into 96-well plates at a density of 1 x
10 cells per well and cultured for various durations (e.g., 24, 48, and
72 hours). MTT stock solution was prepared by dissolving MTT
powder in sterile PBS at a final concentration of 5 mg/mL, followed
by filtration sterilization and storage in the dark. At each time point,
20 uL MTT solution was added to each well and the plates were
incubated for an additional 4 h to allow for the formation of
formazan crystals. After incubation, the supernatant was carefully
removed without disturbing the attached cells, and 200 pL of
DMSO was added to each well to solubilize the formazan crystals.
The plates were gently shaken and incubated at room temperature
for 10-15 minutes to ensure complete dissolution. Absorbance was
measured at 570 nm using a microplate reader. Optical density
(OD) values were recorded, and cell proliferation rates were
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calculated accordingly.

OD, experiment

Cell Proliferation Rate (%) = x 100 %

control
where OD (experimentand OD (coneroly Tepresent the absorbance
of treated cells and untreated control cells respectively.

2.7 Cell migration assay

The scratch assay was performed to evaluate the migratory
ability of cells. Briefly, cells were cultured in complete medium until
they reached 80-90% confluence. Cells were then harvested,
counted, and seeded into 6-well plates at a density of 1x10° cells
per well. The plates were incubated until a confluent monolayer was
formed. A sterile 200 UL pipette tip was used to make a straight
scratch in the center of the cell monolayer. Care was taken to
maintain consistent scratch width and length across wells. The wells
were then gently washed 2-3 times with PBS to remove detached
cells and debris. Fresh culture medium was added to each well.
Images of the initial wound area were captured under a microscope
immediately after scratching (0 h). The plates were then returned to
the incubator and cultured for 24 h to allow cell migration. After
incubation, images of the wound area were taken again. Wound
closure was quantified using ImageJ by measuring the wound area
at 0 h and 24h. The percentage of wound closure was calculated to
assess cell migration. The percentage of wound closure was
calculated as follows:

Ay — A

Wound Closure Rate (% ) = x 100 %

0

where A, represents the initial wound area at 0 h, and A, is the
wound area at 24 h. The scratch-wound assay was performed
without mitomycin-C or serum starvation. Therefore, wound
closure observed after 48 h may partly reflect cell proliferation.
Assessment of migration was based on the 24-h data, when
proliferative differences between groups were minimal, and
should be interpreted cautiously.

2.8 Cell invasion assay

Cell invasion ability was assessed using the Transwell assay.
Cells were cultured in complete growth medium until reaching
80%-90% confluence. Cells were then harvested, counted, and
resuspended in serum-free medium to a final concentration of
approximately 3 x 10* cells per well. A total of 300 pL cell
suspension was added to the upper chamber of the Transwell
insert (8 UM pore size). The lower chamber was filled with
medium containing a chemoattractant to promote cell migration.
After incubation for 24 hours, non-migrated cells on the upper
surface of the membrane were gently removed using a cotton swab.
Migrated cells on the lower surface were fixed with methanol for
15-20 minutes, then washed 1-2 times with PBS. The cells were
then stained with 0.1% crystal violet solution for 15-30 minutes,
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followed by thorough rinsing with water. The number of migrated
cells was counted under a light microscope.

2.9 Colony formation assay

For colony formation assays, cells were cultured in complete
growth medium until reaching 80-90% confluence. Cells were then
harvested, counted, and seeded into 6-well plates at a density of
200-1000 cells per well. Plates were gently agitated to ensure
uniform cell distribution and incubated under standard
conditions for 2 weeks. Upon visible colony formation, cells were
fixed with pre-chilled methanol for 15-20 minutes, washed with
PBS, and stained with 0.1% crystal violet for 15-30 minutes. Excess
dye was removed by gentle rinsing. Colonies were subsequently
visualized and quantified under a Leica DMil microscope, and
image analysis software (Image]) was employed to assess colony
number, size.

2.10 Transfection with mRFP-GFP-LC3
adenovirus and fluorescence microscopy

Cells (1x10* per well) were seeded onto coverslips in a 24-well
plate. After cells had adhered, they were transfected with mRFP-
GFP-LC3 adenovirus and incubated for 12 hours. Following
medium replacement, the cells were subjected to a 24-hour
treatment of MPA (10 puM). Following fixation with 4%
paraformaldehyde and PBS washing, cells were stained with DAPI
(BL105A), rinsed with PBS, and mounted using 30% glycerol.
Fluorescence microscope (DM IL LED, Leica) was used to
examine autophagy, with yellow puncta representing
autophagosomes and red puncta representing autolysosome.

2.11 Lentiviral infection of cells

IKBKE knockdown lentivirus was obtained from Shanghai
Heyuan Biology Co., Ltd. It displayed resistance to purines and
had the following sequence: 5'-GCATCATCGAACGGCTAAATA-
3’; The NC group sequence of IKBKE shRNA is:5'-
CCTAAGGTTAAGTCGCCCTCG-3'. The day prior to
transfection, cells were seeded into 24-well plates and allowed to
grow overnight, until they had reached 20-30% confluence. After 48
hours, puromycin was introduced into the cells at a final
concentration of 8 ug/ml. Cells were maintained under this
condition for one week before further experiments.

2.12 Statistical analysis

Data analysis was performed using SPSS 16.0. Results are
presented as mean + standard deviation (SD) based on three
independent experiments. For the MTT assay, two-way ANOVA
was conducted to evaluate the effects of treatment duration (24 h,
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48 h, 72 h) and treatment type (drug-resistant, IKBKE knockdown,
inhibitor treatment) on cell proliferation. For comparisons between
two groups, Student’s t-test was applied. A P value of < 0.05 was
considered statistically significant.

3 Results

3.1 Progestin-resistant cells exhibit
increased cell growth

Progestin-resistant EC cell line was established through
prolonged exposure to MPA. Western blot analysis confirmed a
significant reduction in PR (Figure 1A). In addition, multidrug
resistance protein 1 (MDRI1), a well-established drug resistance
marker, was significantly upregulated in progestin-resistant
cells (Figure 1B).

MTT assay results showed that prolonged progestin exposure
induces PR downregulation, sustaining cell proliferation despite
continued MPA treatment (Figure 1C).

3.2 IKBKE inhibits the growth of progestin-
resistant EC cells

Western blot and RT-PCR assays demonstrated that IKBKE
protein and RNA levels were elevated in progestin-resistant EC cells
compared to progestin-resistant EC cells (Figures 2A, B). Stable
IKBKE-knockdown cell lines were generated using shRNA
lentivirus transfection, and knockdown efficiency was confirmed
via Western blot and RT-qPCR (Figures 2C, D).

The results indicate that knockdown of IKBKE significantly
slows down the proliferation of progestin-resistant cells.
Specifically, the average OD value of progestin-resistant EC cells
with IKBKE knockdown was 0.93, in contrast, untreated progestin-
resistant EC cells had an OD value of 1.45(P < 0.0001) (Figure 3A).
Colony formation assays further demonstrated that at the end of the
culture period, progestin-resistant EC cells formed an average of
100 colonies, whereas IKBKE-knockdown progestin-resistant EC
cells formed an average of 26 colonies, representing a 47.6%
reduction in colony formation (P < 0.0001) (Figure 3B).

Wound healing and Transwell assays demonstrated that IKBKE
knockdown significantly impaired cell migration. The average
wound closure area decreased from 61% to 23% (P<0.001),
indicating that IKBKE knockdown significantly impaired cell
migration (Figure 3C), and the number of migrating cells was
reduced from 1,194 to 626 (P< 0.0001), further confirming that
IKBKE knockdown significantly reduced both migration and
invasion capacities (Figure 3D). These findings indicate that
IKBKE promotes proliferation and migration in progestin-
resistant EC cells.

MTT assay showing reduced proliferation in IKBKE-
knockdown cells. (B) Colony formation assay showing significant
inhibition of proliferation in IKBKE-knockdown cells. (C) Scratch
assay demonstrating a significant demonstrating impaired
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FIGURE 1

Progestin-resistant cells exhibit increased cell proliferation. (A) Western blot analysis of PR expression in progestin-sensitive and progestin-resistant
Ishikawa cells. (B) Western blot analysis of MDR1 expression in progestin-sensitive and progestin-resistant Ishikawa cells. (C) MTT assay showing cell
proliferation in response to MPA treatment in progestin-sensitive and progestin-resistant Ishikawa cells. N = 3 independent experiments. The bar

graphs are based on the mean + S.D. ***P<0.001. ****p < 0.0001.

migration in IKBKE-knockdown cells. (D) Transwell assay
revealing that IKBKE knockdown substantially reduces cell
migration and invasion. *P<0.05. **P<0.01, ***P<0.001. Scale
bar=200 pm.

3.3 IKBKE modulates autophagy in
progestin-resistant EC cells

To investigate the role of autophagy in progestin resistance,
western blot analysis was performed following MPA treatment to
assess the expression of autophagy-related proteins in both
Ishikawa cells and progestin-resistant EC cells. Compared with
progestin-sensitive EC cells, the resistant cells exhibited elevated
expression levels of LC3, Beclin-1, and ATG5, when autophagy is
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activated, LC3-I undergoes lipidation to convert into LC3-II and
binds to autophagosome membranes. Therefore, the LC3-II/B-actin
ratio is commonly used as an indicator of autophagy activity. In this
study, following IKBKE knockout or CQ treatment, LC3-II band
intensity significantly increased while LC3-I band intensity
correspondingly decreased. Concurrently, P62 levels markedly
decreased, indicating enhanced autophagy activity. (P < 0.01)
(Figure 4A). To further evaluate whether autophagy contributes
to the proliferation of progesterone-resistant EC cells, autophagy
inhibitor CQ was administered to progesterone-resistant cells
exhibiting increased autophagy. These cells were then co-treated
with MPA alongside progesterone-sensitive Ishikawa cells showing
reduced autophagy. Subsequently, the proliferation of both cell
types was assessed using the MTT assay. In MPA-treated EC
cells, the OD value was 0.29, whereas CQ+MPA-treated
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progestin-resistant EC cells had an OD value of 0.24 (P > 0.5)
(Figure 4B). These results demonstrate that CQ suppressed
proliferation in progestin-resistant EC cells, and that inhibition of
autophagy sensitised resistant cells to MPA, resulting in a response
comparable to that of progestin-sensitive Ishikawa cells.

To determine whether IKBKE regulates autophagy in resistant
cells, Western blot analysis was conducted in progestin-resistant EC
cells following IKBKE knockdown. Silencing of IKBKE significantly
decreased the expression of LC3, Beclin-1, and ATGS5, and
increased P62 expression (P < 0.01), indicating inhibition of
autophagy (Figure 4C).

Further validation was performed using mRFP-GFP-LC3
adenovirus transfection. After MPA treatment, progestin-resistant
cells displayed numerous yellow fluorescent puncta, indicating high
autophagic flux. In contrast, IKBKE knockdown markedly reduced
fluorescence intensity, confirming autophagy inhibition
(Figures 4D, E). Based on the observed increase in LC3-II and
decrease in p62 levels, together with corresponding changes in
fluorescence intensity, it can be inferred that IKBKE knockout likely
enhances autophagic activity.

3.4 CYT387 inhibits proliferation and
autophagy in progestin-resistant EC cells

To assess the therapeutic potential of CYT387, an IKBKE
inhibitor, progestin-resistant EC cells were treated with 534.5 nM
CYT387, and cell proliferation was evaluated using MTT assays.
CYT387 treatment significantly reduced cell proliferation
(p<0.0001), with the average OD value of CYT387-treated
progestin-resistant EC cells at 0.66, corresponding to a
proliferation rate of 37.5% + 7.4%. In contrast, untreated
progestin-resistant EC cells had an OD value of 1.64,
corresponding to a proliferation rate of 223.7% * 16.9% (p<0.001)
(Figure 5A). Western blot analysis revealed that CYT387 treatment
also suppressed autophagy, as indicated by a significant decrease in
LC3B-II(LC3B/B-actin), Beclin-1, and ATGS5 levels and an increase
in P62 expression (Figure 5B). These results suggest that CYT387
effectively inhibits both proliferation and autophagy in progestin-
resistant EC cells, highlighting its therapeutic potential in EC.

4 Discussion

EC is a common malignant tumor in women. Despite the
availability of progestin-based therapies, resistance remains a
significant challenge, compromising therapeutic efficacy and
fertility preservation (31). Understanding the mechanisms
underlying progestin resistance in EC is essential developing more
effective treatment strategies. In the present study, we demonstrated
thatIKBKE plays a crucial role in mediating progestin resistance in
EC. Specifically, IKBKE knockdown significantly inhibited the
proliferation and migration of progestin-resistant EC cells,
suggesting its potential as a therapeutic target.
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Previous studies have shown that IKBKE is associated with
inflammatory responses and metabolic diseases and is highly
expressed in various malignant tumors, including non-small cell
lung cancer, renal clear cell carcinoma, breast cancer, ovarian
cancer, and glioma (15). Its expression is positively correlated
with tumor grade, drug resistance, and malignant progression.
For instance, Lee found elevated IKBKE levels in 63 of 96 ovarian
cancer specimens, which correlated with advanced and high-grade
tumors. Furthermore, IKBKE overexpression was linked to cisplatin
resistance, while knockdown of IKBKE reversed this resistance (32).
Notably, IKBKE has emerged as a therapeutic target for advanced
prostate cancer due to its role in inhibiting resistance to androgen
receptor-targeted therapies, as well as its effects on proliferation,
migration, and colony formation (33-35). Consistently, our
findings indicate that IKBKE knockdown reduces proliferation
and migration in progestin-resistant EC cells, highlighting its role
in sustaining drug resistance and tumor progression.

Our study revealed that in progesterone-resistant cells, elevated
IKBKE expression was accompanied by increased levels of
autophagy-related proteins (such as LC3, Beclin-1, and ATG5)
and decreased P62 expression, indicating enhanced autophagy
activity. Conversely, IKBKE knockdown suppressed autophagy,
manifested by reduced LC3, Beclin-1, and ATG5 levels and
increased P62 expression. Given autophagy’s role as a survival
mechanism enabling cancer cells to adapt to metabolic stress and
evade treatment-induced apoptosis (25), these findings align with
previous studies demonstrating that IKBKE functions as a positive
regulator of autophagy, facilitating tumor progression and therapy
resistance (36, 37). However, autophagy plays a dual role in cancer,
functioning as both a pro-survival and pro-death mechanism
depending on the context. While our results indicate that
autophagy supports drug resistance in progestin-resistant EC
cells, some studies suggest that sustained autophagic activity can
promote tumor cell death (38). This discrepancy may stem from
differences in progestin receptor expression, tumor
microenvironmental factors, or alternative regulatory
mechanisms. Further investigation is warranted to elucidate the
precise role of autophagy in progestin-resistant EC and determine
whether autophagy inhibition or induction is the optimal
therapeutic approach. Precise quantification of autophagy flux
requires further validation through co-treatment experiments
with BafAl.

We also explored the therapeutic potential of CYT387, a
selective IKBKE inhibitor. CYT387 has been tested in renal cell
carcinoma, myeloproliferative necrosis, and myeloproliferative
tumors (39, 40). In renal cell carcinoma, the combination of
CYT387 and dasatinib decreased cell proliferation and increased
apoptosis. In non-small cell lung cancer resistant to epidermal
growth factor receptor inhibitors, the combination of cetuximab
and CYT387 significantly inhibited proliferation (41). Our study
shows that CYT387 effectively reduces IKBKE expression,
suppresses autophagy, and inhibits the proliferation of progestin-
resistant EC cells. These findings suggest that targeting IKBKE with
CYT387 may serve as a viable therapeutic strategy for progestin
resistance in EC.
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At present, the precise mechanisms underlying progestin
resistance in EC remain incompletely understood. One key
pathway implicated in drug resistance across various
gynecological malignancies, including EC, cervical cancer, and
ovarian cancer, is the PI3K/Akt/mTOR signaling pathway (42).
Dysregulated activation of this pathway prevents drug-induced
growth inhibition, leading to sustained proliferation and survival.
Amplification and overexpression of PI3K and Akt have been
observed in EC, reinforcing this pathway as a potential
therapeutic target. Notably, sustained activation of PI3K/Akt
signaling in drug-resistant EC strains has been linked to a failure
of drug-mediated cell cycle arrest and apoptosis, further
contributing to resistance. Increasing PTEN expression through
protease inhibitors has been shown to restore drug sensitivity in
these resistant strains (43). In addition to the PI3K/Akt/mTOR
pathway, progesterone may also promote cell proliferation by
activating membrane receptors, which not only enhance the
expression of proliferation-related genes but also inhibit apoptotic
pathways, including TANK, NF-kB, Bcl-1, and Bcl-2 (44, 45). Given
that IKBKE can activate NF-xB and regulate autophagy, it may
serve as a critical mediator of progesterone-driven proliferation and
survival signaling. Future studies should investigate the interplay
between IKBKE, NF-xB activation, and autophagy in progestin-
resistant EC to refine therapeutic strategies.

This study has several limitations. First, our findings are based
on a single progestin-resistant EC cell line, and validation using
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additional cell lines would strengthen the generalizability of our
conclusions. Second, further exploration of downstream signaling
pathways influenced by IKBKE would provide deeper mechanistic
insights into its role in progestin resistance. This study evaluated
cell migration only and did not assess invasion (which requires
Matrigel). The regulatory effect of IKBKE on endometrial cancer
cell invasion requires subsequent experimental validation. Lastly,
this study focused on the in vitro function of IKBKE using the
Ishikawa cell line model. No in vivo experiments, such as
subcutaneous xenografts, were performed to evaluate the effects of
IKBKE knockdown on tumor growth, pharmacological response, or
Ki-67/LC3-II expression in tumor tissues. Therefore, the conclusion
that IKBKE represents a therapeutic target should be considered a
preliminary observation derived from in vitro findings, in vivo
studies are needed to assess the therapeutic potential of
IKBKE inhibition.

5 Conclusions

Our study demonstrates that progestin-resistant EC cells exhibit
increased proliferation and migration, driven by IKBKE
overexpression. Inhibition of IKBKE significantly impairs these
tumorigenic properties while reducing autophagic activity.
Furthermore, the selective IKBKE inhibitor CYT387 effectively
suppresses both cell proliferation and autophagy in progestin-
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resistant EC cells. These findings provide novel insights into the role
of IKBKE in mediating progestin resistance and lay the groundwork
for the development of targeted therapeutic strategies to enhance
treatment efficacy in EC.
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