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Objectives: To evaluate the accuracy of different radiomics methods in

predicting the response of nasopharyngeal carcinoma (NPC) to induction

chemotherapy (IC).

Methods: A systematic search was conducted in PubMed, Embase, Web of

Science, and Cochrane Library. Radiomics studies utilizing CT and MRI were

included in this network meta-analysis. The quality of the studies was appraised

via the PROBAST, RQS, and IBSI guidelines. The sensitivity, specificity, and

accuracy of different radiomics models were analyzed.

Results: Ten eligible studies involving 1550 subjects were included. The pooled

sensitivity and specificity of the radiomics models were 0.86 (95% CI: 0.78-0.91) and

0.69 (95% CI: 0.62-0.75), respectively. The AUC based on the SROC curve was 0.83

(95% CI: 0.70-0.91). The predictive performance of each model was rated using

SUCRA values. The MRI-based support vector machine radiomics model had the

highest specificity, and accuracy, at 80.7% and 73.2%, respectively. The MRI-based

SVM radiomics combined with clinical features model had the highest sensitivity

(82.0%). Among the CTmethods, the deep learning (DL)-based convolutional neural

network model had the highest sensitivity, and accuracy, at 51.0% and 44.9%,

respectively. The PROBAST showed that 7 studies were at risk for bias.

Conclusion: This study synthesized existing evidence to confirm that radiomics

serves as a viable exploratory tool for predicting IC efficacy in NPC. MRI-based

nonlinear models and clinical-radiomics fusion models exhibit considerable

promise, whereas clinical translation necessitates three critical steps: (1)

standardized protocols following IBSI/METRICS/RQS guidelines; (2) prospective
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multicenter validation; and (3) investigating tumor microenvironment

mechanisms. These measures will facilitate the transition of radiomics from

technical exploration to clinical utility.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42024509331.
KEYWORDS

nasopharyngeal carcinoma, induction chemotherapy, radiomics, deep learning,
network meta-analysis, machine learning, Bayesian
1 Introduction

Nasopharyngeal carcinoma (NPC), found mostly in Asia, is a

form of head and neck cancer originating from the epithelium of the

nasopharynx (1), with approximately 75% of cases being diagnosed

at the locally advanced stage (2). Induction chemotherapy (IC) is

also called neoadjuvant chemotherapy (3). According to the 2022

National Comprehensive Cancer Network (NCCN) guidelines, IC

plus concurrent chemoradiotherapy (CCRT) has been listed as a

level 1 recommendation for locoregionally advanced NPC (LA-

NPC) patients (4). Several retrospective studies have investigated

the effectiveness of IC plus intensity-modulated radiotherapy

(IMRT) vs. IC plus CCRT for LA-NPC, but the conclusions have

been mixed (5–8). Despite the use of standard radiotherapy and

chemotherapy following the guidelines on tumor-node-metastasis

(TNM) stage, the 5-year treatment failure rate of LA-NPC is still up

to 30% (9). This may be because the TNM staging system is only

based on anatomical information provided by imaging and ignores

intratumoral heterogeneity, resulting in an inability to accurately

stratify the risk of LA-NPC (10, 11). Therefore, in clinical practice,

identifying the heterogeneity of characteristics within tumors and

screening patients who are sensitive to IC are essential.

Radiomics noninvasively characterizes tumor heterogeneity by

transforming medical images into high-dimensional quantitative

features (12–15). Relevant studies have shown that radiomics can be
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used to noninvasively evaluate the IC response and provide

additional benefits for NPC patients (16–21). Machine learning

(ML) serves as the foundational analytical framework, among which

the support vector machine (SVM) is a typical method of ML (22).

Fully connected neural network (FCNN) model complex nonlinear

relationships through simulated biological propagation (23, 24).

Deep learning (DL) (a subset of ML) (25), where convolutional

neural networks (CNN) excel in medical image pattern recognition.

These approaches (SVM/FCNN/CNN) have been successfully

implemented for NPC staging, treatment response prediction, and

outcome prognostication (26–31), underscoring the translational

potential of ML-driven radiomics in precision NPC oncology.

Systematic reviews/meta-analyses of radiomics-based prognostic

studies in NPC have validated the utility of radiomics, yet their

limitations warrant emphasis. Deng et al. (32) reported that the

combined AUC value of radiomics for predicting NPC prognosis was

0.8265. Wang et al. (33) evaluated MRI-based radiomics for

predicting local recurrence-free survival (LRFS), distant metastasis-

free survival (DMFS), progression-free survival (PFS), and overall

survival (OS). Meanwhile, Lee et al. (34) focused on the performance

of MRI-based radiomics in PFS prediction, yielding a pooled c-index

of 0.762. Yang et al. (31) focus on evaluating radiomics for assessing

induction chemotherapy (IC) efficacy in NPC, the overall AUC was

0.91. Collectively, existing research is limited by high heterogeneity,

potential biases, data gaps in key subgroups, and retrospective

designs, which may undermine the generalizability of conclusions.

This study rigorously assessed the methodological quality of

included studies and conducted the first network meta-analysis

(NMA) to compare the predictive efficacy of diverse radiomics

algorithms for IC efficacy in NPC, thereby establishing a hierarchy

of evidence to support clinical decision-making for response-

adaptive therapy.
2 Materials and methods

2.1 Program and registration

This study was conducted according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)
frontiersin.org
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guidelines (35). The original study protocol was registered with

PROSPERO before initiating the systematic search as a priori study

design (CRD42024509331). The study utilized existing published

data, eliminating the need for additional ethical approval and

informed consent procedures.
2.2 Literature search

The PubMed, Embase, Web of Science, and Cochrane Library

databases were searched from inception until May 25, 2024. The

search was conducted independently by two researchers (H.S. and

Q.L.) following the Cochrane Handbook for Systematic Reviews of

Interventions, and discrepancies or uncertainties in the articles were

resolved through discussion or consultation with a third reviewer

(J.P.). Literature was searched manually via different combinations

of free words and MeSH terms. The search terms included

“nasopharyngeal carcinoma”, “machine learning”, “deep learning”,

“radiomics”, and their variations. See Supplementary Material Table

S1 for a detailed search strategy for MeSH terms.
2.3 Inclusion and exclusion criteria

Inclusion criteria: Patients who were diagnosed with NPC and

who received IC, regardless of age, sex, race, or country. Research

type: Imaging analysis using radiomics to predict the response to IC

in NPC. Results: Sensitivity, specificity, and accuracy. Exclusion

criteria: Insufficient data integrity to extract two-by-two data tables,

conference reports, systematic reviews, summary articles, non-

English articles, or conference proceedings.
2.4 Data extraction

The following data were extracted from the included articles in a

standardized format: (1) study characteristics (first author, year of

publication, nationality, affiliation, study period, and study design);

(2) cohort characteristics (mean age, patient numbers, including the

numbers of patients in the training and validation cohorts, sex, cancer

stages, number of patients with effective treatment, and examination

methods); and (3) image feature analysis (segmentation software,

segmentation method, radiomics software, feature selection method,

type of features, number of image features selected, type of validation,

and type of algorithm).

For each study, true positive (TP), false positive (FP), false

negative (FN), and true negative (TN) values were extracted. TP was

defined as no response to treatment, and TN was defined as effective

treatment. If there were multiple imaging models of different types

in a study, among the models of the same type, the model with the

highest AUC value that could extract data was selected. The

performance metrics of the external validation cohort (or internal

validation cohort, if the former was absent) were recorded, and a
Frontiers in Oncology 03
two-by-two table was constructed. If the study did not report these

values, a two-by-two table from the diagnostic estimates presented

in the article for each index test was constructed.
2.5 Quality assessment

The Prediction Model Risk of Bias Assessment Tool (PROBAST)

checklist was used to assess the risk of bias and applicability (36). Two

authors (H.S. and Q.L.) independently assessed the presence of bias

and concerns regarding the applicability of the studies, and any

differences were resolved by consensus or with the participation of a

third reviewer (J.P.) if necessary. The radiomics quality score (RQS)

(37) was also applied by two authors (H.S. and Q.L.) to gauge the

methodological soundness of the radiomics studies, encompassing

image acquisition to validation, ensuring the dependability of the

findings. The IBSI guideline provides a comprehensive and unified

reporting checklist for radiomics studies (38). Since many items in the

IBSI checklist overlap with those in the RQS checklist, two authors

(H.S. and Q.L.) only evaluated items relevant to image pre-

processing steps.
2.6 Statistical analysis

This NMA was conducted within a Bayesian framework via

Markov chain Monte Carlo subset simulations (39) according to the

PRISMA NMA guidelines (40), and the data of the different models

included in the study were directly and indirectly compared. First,

traditional meta-analysis was conducted via a bivariate model of

pooled sensitivity and specificity, which was visualized via forest plots

and summary receiver operating characteristic (SROC) curves.

Heterogeneity between the included studies was assessed by

Cochrane’s Q test and I2, with I2 > 75% indicating greater

heterogeneity (41). To further investigate the sources of

heterogeneity, meta-regression and subgroup analyses were

performed. The following factors were considered as potential

sources of heterogeneity: device type (MRI vs. CT), events per

variable (EPV) (≥10 vs. <10), ROI structure (2D vs. 3D), model

validation (external validation vs. others), algorithms (linear vs.

nonlinear), feature quantity after feature dimensionality reduction

(≥10 vs. <10), RQS score (≥16.2 vs. <16.2), and sample size (≥200 vs.

<200). The network was next drawn, where nodes represent each

method and lines represent direct comparisons. The node size was

correlated with the number of studies. The line thickness represents

the number of comparisons between two studies. The control group

was established as the clinical gold standard based on RECIST 1.1

criteria, primarily serving dual purposes: (1) evaluating lesion

remission status following IC and (2) Providing a benchmark for

comparative validation of predictive models. The data likelihood was

specified using a binomial distribution to model the TP and TN

counts for each study; a logit link function was employed to

transform the accuracy metrics; and the random effects covariance
frontiersin.org
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structure was modeled via a multivariate normal distribution to

characterize the correlation between sensitivity and specificity. We

implemented the node-splitting method to estimate the consistency

between the direct and indirect evidence for the whole study and then

chose the consistency model or the inconsistency model based on the

results (42). To estimate the predictive performance and ranking

probability for each model, we used the surface under the cumulative

ranking curve (SUCRA). The SUCRA percentages range from 0 to 1,

with higher values indicating a greater likelihood of being the best

prediction model (43). The predictive performance of the different

models was judged by analyzing the sensitivity, specificity, and

accuracy indicators. We tested the robustness of the results by

sensitivity analysis. In addition, we constructed comparison-

adjusted funnel plots and Deek’s test to assess potential

publication bias.

Traditional meta-analysis was performed using the “midas” and

“metan” package in Stata (version 17.0; Stata Corporation, College

Station, Texas, USA). Bayesian NMA and associated graphical

analyses were implemented via the “network” package within the

same Stata framework.
2.7 Evaluation criteria for IC

The response evaluation of IC in all included studies was based

on the RECIST version 1.1 (44). Complete response (CR) and

partial response (PR) were defined as effective treatment, whereas

stable disease (SD) and progressive disease (PD) were defined as no
Frontiers in Oncology 04
response to treatment. According to this standard, a control group

(the gold standard) was established to evaluate whether the lesion

was in remission and to compare and verify different models.
3 Results

3.1 Literature selection

The initial search for this study yielded a total of 1245 index

records. After removing 633 duplicate articles, further review

focused on titles and abstracts and excluded an additional 584

unrelated articles. The remaining 28 articles were subsequently

evaluated more rigorously, including the accessibility of the full-

text version and the feasibility of data extraction, and 10 full-text

studies that met the predetermined inclusion criteria were identified

for evaluation. The PRISMA flowchart of the selection process is

shown in Figure 1.
3.2 Baseline characteristics of the included
studies

These 10 articles included data from 1550 subjects. The baseline

characteristics of the included studies are summarized in Table 1.

Imaging methods included MRI and CT. The models were divided

into the following seven types according to different features: (1) the

radiomics combined with linear algorithms (logistic regression,
FIGURE 1

Flow chart of the study selection process.
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TABLE 1 Baseline characteristics of the included studies.

First Year Country Affiliation Study Study Mean Number of patients
(Training/Validation)

Sex
(Male/
Female)

tumor
stage

Number of patients
with effective
treatment

Imaging
method

108 80/28 III-IV 52 MRI

165 (85/80) 119/46 III-IVb 116 MRI

120 95/25 II-IV 70 MRI

265
TP group (106/44)
GP group (81/34)

115/150 II-IVb 125 MRI

123 (100/23) 36/87 III-IVb 34 MRI

297 (208/89) 215/82 II-IVa 159 CT

286 (200/86) 209/77 III-IVa 220 MRI

184 (132/52) 134/50 II-IV 102 MRI

284 (200/84) 220/64 III-IVa 172 MRI

168 (114/54) 100/68 II-IV 98 MRI

ective; TP group, nasopharyngeal carcinoma treated with gemcitabine plus cisplatin; GP group, nasopharyngeal carcinoma treated
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author period design Age,
(Year)

Piao (20) 2021 China
Cancer Hospital of the University
of Chinese Academy of Sciences

January 2016 to
December 2016

R 54(22-70)*

Wang
(17)

2022 China
Sichuan Cancer Hospital &
Institute

January 2009 to
December 2014
, June 2016 to
February 2018

R
47.22 ±
11.44

Wang
(19)

2018 China Guangdong General Hospital
August 2009 to
May 2016

R
46.81 ±
10.89

Zhang
(18)

2020 China
Cancer Hospital of the University
of Chinese Academy of Sciences

January 2018 to
April 2020

R 42(18-68)*

Zhao
(27)

2020 China Xijing Hospital
January 2012 to
December 2016

R
48.16 ±
10.47

Yang
(31)

2022 China West China Hospital
January 2012 to
December 2018

R
52.70 ±
14.16

Liao (29) 2021 China
Guangxi Medical University
Cancer Hospital

January 2015 to
June 2018

R 43.7 ± 11.0

Wang
(21)

2023 China
Sichuan Cancer Hospital &
Institute

July 2017 to
August 2021

R
48.51 ±
11.32

Hu (16) 2021 China Fujian Cancer Hospital
January 2014 to
July 2015

R
47.07 ±
11.19

Chen
(45)

2024 China
General Hospital of Ningxia
Medical
University

December 2015
to April 2022

R
52.5(45.0-
59.0)*

Except where indicated, the data are the numbers of patients or means ± SDs; * Data are the medians, with IQRs in parentheses; R = retros
with docetaxel plus cisplatin.
p
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LASSO) was used to construct a Radiomics model; (2) the SVM-

based radiomics method was used to construct an SVM model; (3)

the FCNN-based radiomics method was used to construct a FCNN

model; (4) the pretrained CNN of DL was used to construct a CNN

model; (5) the radiomics combined with linear algorithms and

clinical features was used to construct a Radiomics-Clinical model;

(6) the SVM-based radiomics combined with clinical features was

used to construct an SVM-Clinical model; and (7) the SVM-based

radiomics combined with CNN was used to construct an SVM-

CNN model. According to the imaging methods and model types,

the following 9 prediction models were included in this study: the

MRI Radiomics model, the MRI Radiomics-Clinical model, the

MRI SVM model, the MRI SVM-Clinical model, the MRI FCNN

model, the CT SVM model, the CT SVM-Clinical model, the CT

CNN model, and the CT SVM-CNN model.
3.3 Image analyses

Detailed information on the image analyses included in the

study and the predictive performance measures of the models are

summarized in Table 2 and Supplementary Table S2. With respect

to the selection of the region of interest (ROI), the primary and

lymph node gross tumor volume (GTV) was segmented in one

study (17), whole tumors were segmented in seven studies (16, 18,

21, 27, 29, 31, 45), and only the largest axial slice was segmented in

two studies (19, 20). The number of image features selected for the

prediction models analyzed in this study ranged from 2 to 24.

Except for one study that did not report model validation details

(20), internal validation was performed in the remaining studies.
3.4 Quality assessment

The PROBAST assessment revealed that the overall risk of bias

(ROB) was low in three studies (17, 20, 21). In the analysis, the

number of EPV was less than 10 in six studies (16, 18, 19, 21, 29, 45),

and one study (31) selected predictors based on univariate analysis,

which had a high risk of bias; thus, the overall risk of bias was high.

Another study (27) revealed that, among participants, the inclusion

and exclusion criteria for all participants were vague; thus, the risk of

bias was unclear, and the EPV in the analysis was less than 10,

resulting in an overall high risk of bias. The overall applicability of all

the studies’ concerns was low (Figure 2). The average RQS for the 10

studies was 16.2 (45.0%). The pre-processing steps were carried out

following the IBSI guidelines, with an overall adherence rate of 60.0%

(42/70). Detailed evaluations are available in Supplementary Material

(Supplementary Tables S3, S4, S5).
3.5 Traditional meta-analysis

In the 18 cohorts of 10 studies in which radiomics was used to

predict the efficacy of IC in NPC, the pooled sensitivity and
Frontiers in Oncology 06
specificity were 0.86 (95% CI: 0.78-0.91) and 0.69 (95% CI: 0.62-

0.75), respectively. From the plotted SROC curve, an AUC of 0.83

(95% CI: 0.70-0.91) was obtained. The forest plot of the sensitivity

and specificity of the predictive performance of the radiomics

model is shown in Figure 3A, and the SROC curve is shown

in Figure 3B.

Methodologically, this study computed pooled HSROC AUC

for individual models only when two or more studies were available.

The MRI radiomics model (8 studies (16–21, 29, 45)) demonstrated

pooled sensitivity of 0.88 (95% CI: 0.80–0.90), specificity of 0.70

(95% CI: 0.59–0.80), and HSROC AUC of 0.88 (95% CI: 0.84–0.90).

Similarly, the MRI radiomics-clinical model (3 studies (21, 29, 45))

showed pooled sensitivity of 0.83 (95% CI: 0.71–0.90), specificity of

0.74 (95% CI: 0.47–0.90), and HSROC AUC of 0.84 (95% CI:

0.81–0.87). Detailed performance metrics are presented in

Supplementary Material (Supplementary Figure S1). Models with

fewer than two studies were excluded due to insufficient meta-

analytic feasibility.
3.6 Heterogeneity exploration and meta-
regression

The I2 statistic reveals significant heterogeneity in sensitivity

(I2 = 78.31%) and moderate heterogeneity in specificity (I2 =

74.55%) (Supplementary Table S6). As shown in Supplementary

Tables S7, eight covariates were used to explore potential sources of

heterogeneity. Meta-regression and joint model analysis indicated

the following factors as contributors to significant heterogeneity in

the meta-analysis: device type (MRI vs. CT) (P < 0.01), sample

(≥200 vs. <200) (P = 0.02). The device type was a highly

heterogeneous source (I2 = 82.00%), while the CT equipment

came from the same study. We therefore performed a subgroup

analysis of multiple studies of MRI devices.

Results were analyzed in subgroups according to MRI device

(Table 3). Compared to studies with an EPV <10, those with

EPV≥10 showed lower pooled sensitivity (0.85 vs. 0.90, P = 0.01)

but higher specificity (0.77 vs. 0.67, P = 0.68, nonsignificant). The

sensitivity of 3D ROI was lower than that of 2D ROI (0.87 vs. 0.93,

P = 0.03), and the specificity of 3D ROI was similar (0.71 vs. 0.70,

P = 0.59, nonsignificant). Studies that validated the predictive

performance of the model on external validation cohorts

manifested lower sensitivity (0.87 vs. 0.93, P = 0.03) and similar

specificity (0.71 vs. 0.70, P = 0.59, nonsignificant). Linear models

demonstrated lower sensitivity than nonlinear models (0.87 vs. 0.97,

P = 0.03) and similar specificity (0.71 vs. 0.70, P = 0.58,

nonsignificant). Compared to using ≥10 features, those with < 10

features showed lower pooled sensitivity (0.85 vs. 0.90, P = 0.28,

nonsignificant) but higher specificity (0.77 vs. 0.67, P = 0.04).

Higher RQS correlated with decreased sensitivity (0.88 vs. 0.91,

P = 0.02) and specificity (0.69 vs. 0.74, P = 0.15, nonsignificant).

Notably, studies with larger sample sizes (≥200) showed higher

pooled sensitivity (0.90 vs. 0.88, P = 0.15, nonsignificant) but lower

specificity(0.61 vs. 0.76, P = 0.01) compared to smaller cohorts.
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TABLE 2 Methodological characteristics and predictive performance of included radiomics models.

First Year Segmentation Feature Feature Algorithm Number Validation Validation
od

Validation
sample
size

Prediction
model

SE SP ACC AUC

108 MRI Radiomics 0.857 0.833 0.843 0.905

dent
80 MRI Radiomics 0.783 0.825 0.813 0.925

p

es)
120 MRI Radiomics 0.980 0.529 0.717 0.822

dent
34 (GP group) MRI Radiomics 0.943 0.706 0.824 0.886

dent
23

MRI SVM 0.882 0.833 0.870 0.873

MRI SVM-
Clinical

1.000 0.333 0.826 0.863

dent
89

CT CNN 0.881 0.617 0.742 0.811

CT SVM 0.667 0.553 0.607 0.663

CT SVM-
Clinical

0.571 0.702 0.640 0.690

CT SVM-CNN 0.524 0.702 0.618 0.694
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3.7 Network evidence diagram

Figure 4 quantifies the density of direct comparative evidence

within the NMA, demonstrating that both the MRI Radiomics

model and MRI Radiomics-Clinical model have undergone

extensive validation across multiple studies.
3.8 Consistency and inconsistency analysis

The sensitivity, specificity, and accuracy of all included studies

were analyzed via inconsistency analysis employing the node-

splitting method, and the results indicated consistency among the

direct and indirect evidence of all outcomes (all p > 0.05). Therefore,

the consistency model was applied in the current study.
3.9 Network meta-analysis

NMA revealed that the CT CNN model was superior to the CT

SVM model (OR = 3.47, 95% CI: 1.16-10.38), the CT SVM-Clinical

model (OR = 5.15, 95% CI: 1.75-15.15), and the CT SVM-CNN

model (OR = 6.21, 95% CI: 2.12-18.23) in sensitivity. The MRI

FCNN model was superior to the MRI Radiomics-Clinical model

(OR = 2.71, 95% CI: 1.34-5.48) and the MRI Radiomics model

(OR = 3.14, 95% CI: 1.55-6.33) in specificity. The MRI FCNN

model was superior to the MRI Radiomics-Clinical model (OR =

2.72, 95% CI: 1.13-6.60) and the MRI Radiomics model (OR = 2.90,

95% CI: 1.20-6.99) in accuracy. The league table of the outcome

indicators is shown in Supplementary Material Table S6.
3.10 SUCRA values

The SUCRA values for the 9 prediction models are summarized

in Figure 5. The MRI SVM model had the highest specificity, and

accuracy (SUCRA) at 80.7%, and 73.2%, respectively. The MRI SVM-

Clinical model had the highest sensitivity (82.0%). The sensitivity,

specificity, and accuracy of the MRI FCNN model ranked the top

two, which were 76.7%, 68.6%, and 68.6%, respectively. Among the

CT methods, the CNN model of DL had the highest SUCRA values

for sensitivity, and accuracy at 51.0%, and 44.9%, respectively. The

SUCRA curves are presented in Figure 6.
3.11 Sensitivity analyses

No significant changes were observed when each included study

was eliminated from the analysis one by one. The results of

sensitivity analyses for each study are shown in Figure 7.
3.12 Assessment of publication bias

The comparison-adjusted funnel plots (Figure 8) show roughly

symmetrical scatter points of the same color, indicating the
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negligible presence of publication bias or other forms of bias within

the studies, as confirmed by Deek’s test (P = 0.427 > 0.05). This

symmetry bolstered the reliability of the findings.
4 Discussion

The efficacy of IC serves as a robust predictor of survival

outcomes in NPC patients post-IC (31). Prior evidence indicates a

CR/PR rate of 76.9% following IC in NPC cohorts (46), underscoring

that not all patients derive clinical benefit from IC. Our study

demonstrated that the MRI SVM model achieved the highest
Frontiers in Oncology 09
specificity (80.7%), effectively reducing FP and ensuring aggressive

therapies like IC are reserved for high-confidence responders.

Conversely, the MRI SVM-Clinical model exhibited peak sensitivity

(82.0%), capturingmore true responders at the cost of increased over-

treatment and potential exposure to IC-associated toxicities without

survival benefit. In resource-limited settings, model thresholds can be

calibrated to prioritize cost-effectiveness (e.g., avoiding IC in low-

response-probability subgroups). For high-toxicity regimens such as

cisplatin-based IC (47), stringent thresholds may be preferred to

mitigate harm. Iterative adjustments based on real-world outcome

monitoring (e.g., post-IC surveillance) further enable dynamic

refinement of decision boundaries as evidence evolves.
FIGURE 2

PROBAST results of the included studies. +, high; -, low;?, unclear.
FIGURE 3

(A) Forest plots of the pooled sensitivity and specificity. (B) SROC curve for the ability of radiomics to predict IC efficacy in NPC patients.
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Both our study and Yang et al. (31) focused on assessing

radiomics to evaluate IC efficacy in NPC. Notably, compared with

Yang et al. (31), our research included more primary studies and

models (6 vs. 10 primary studies and 6 vs. 18 models), compared

multiple radiomics algorithms, standardized the definitions of TP/FP

cases to clarify model performance, and applied meta-regression and

subgroup analyses to address heterogeneity. We performed the first

NMA to compare the value of 9 different models in predicting IC

efficacy in NPC. Based on the SUCRA values of different models, the

following conclusions are drawn: Radiomics based on MRI and CT

serves as a viable exploratory tool for predicting IC efficacy in NPC.

Among them, the MRI FCNN model ranked in the top two for

sensitivity, specificity, and accuracy, indicating superior overall

predictive performance. The MRI SVM model had better specificity

and accuracy, while the MRI SVM-Clinical model had better

sensitivity. The above nonlinear ML combined with radiomics had

a good predictive performance for the noninvasive identification of

IC treatment response in NPC. Moreover, Li et al. (48) reported that

the FCNN model exhibited optimal performance in evaluating

HER2-low breast cancer undergoing neoadjuvant therapy.

Therefore, the combination of FCNN and radiomics may be a

promising method for predicting NPC treatment response.

The three studies (16, 29, 45) in this NMA showed that the MRI

Radiomics-Clinical model could improve the predictive performance

over that of the MRI Radiomics model. However, Wang et al. (21)

showed that the MRI Radiomics-Clinical model could not improve

predictive performance. Our research revealed that, compared with
Frontiers in Oncology 10
the MRI Radiomics model, the MRI Radiomics-Clinical model had

greater specificity, and a lower sensitivity in the surca ranking. This is

consistent with the pooled sensitivity and specificity ranking, which

confirms the surca value accuracy of NMA. Owing to the lack of data,

the clinical characteristics (such as EBV-DNA, LDH, etc.) that were

independent predictors in other studies were not included in the

study of Wang et al. (21), which might explain why the performance

of the MRI Radiomics-Clinical model was lower than that of the MRI

Radiomics model. In future studies, more relevant clinical data

should be included to analyze the correlation between tumor

microenvironment and radiomics features.

Notably, the I2 values of specificity, and accuracy of the 9

models ranged were 74.55% and 69.51%, respectively, indicating

moderate heterogeneity, whereas the I2 value of sensitivity was

78.31%, greater than 75%, indicating high heterogeneity. Device

type (MRI vs. CT)(P < 0.01) was the source of high heterogeneity

(Supplementary Table S7). MRI led the studies (9/10), while CT was

the only study (Table 1). The prediction efficiency of the MRI

models was generally greater than that of the CT models. The

possible reason is that MRI has significantly better resolution of soft

tissue than CT does and effectively shows the range of the

parapharyngeal space, skull base, and intracranial tumors (49),

thus providing more realistic internal characteristics of the

tumors. In the model based on CT images, we found that the

SUCRA values of sensitivity, and accuracy of the CNN model were

the highest, and sensitivity, and accuracy were even higher than

those of the linear algorithms MRI models (MRI Radiomics model
TABLE 3 Investigation of heterogeneity using meta-regression and subgroup analysis of MRI devices.

Parameter Category N Sensitivity P1 Specificity P2

Joint model analysis

P I²
LRT
chi2

EPV
≥10 4 0.85 (0.75–0.96)

0.01
0.77 (0.64–0.90)

0.68 0.49 0.0 (0.0–100.0) 1.45
<10 10 0.90 (0.85–0.96) 0.67 (0.57–0.78)

ROI
3D 12 0.87 (0.81–0.93)

0.03
0.71 (0.61–0.80)

0.59 0.51 0.0 (0.0–100.0) 1.35
2D 2 0.93 (0.86–1.00) 0.70 (0.47–0.92)

Validation

External
validation

12 0.87 (0.81–0.93)
0.03

0.71 (0.61–0.80)
0.59 0.51 0.0 (0.0–100.0) 1.35

Others 2 0.93 (0.86–1.00) 0.70 (0.47–0.92)

Algorithms
Linear 11 0.87 (0.81–0.92)

0.03
0.71 (0.62–0.81)

0.58 0.11 55.0 (0.0–100.0) 4.44
Nonlinear 3 0.97 (0.92–1.00) 0.70 (0.48–0.93)

Feature
≥10 10 0.90 (0.85–0.96)

0.28
0.67 (0.57–0.78)

0.04 0.49 0.0 (0.0–100.0) 1.45
<10 4 0.85 (0.75–0.96) 0.77 (0.64–0.90)

RQS
≥16.2 10 0.88 (0.81–0.94)

0.02
0.69 (0.58–0.80)

0.15 0.56 0.0 (0.0–100.0) 1.15
<16.2 4 0.91 (0.83–0.98) 0.74 (0.59–0.88)

Sample
≥200 5 0.90 (0.83–0.98)

0.15
0.61 (0.47–0.75)

0.01 0.22 35.0 (0.0–100.0) 3.07
<200 9 0.88 (0.82–0.94) 0.76 (0.67–0.85)
fr
EPV, events per variable; ROI, region of interest; RQS, radiomics quality score.
The bold values denote P<0.05.
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FIGURE 4

Diagram of the evidence network included in this study. (A), Control group (clinical gold standard for IC efficacy assessment based on RECIST 1.1);
(B), MRI Radiomics-Clinical model; (C), CT CNN model; (D), CT SVM model; (E), CT SVM-Clinical model; (F), MRI FCNN model; (G), MRI Radiomics
model; (H), MRI SVM model; (I), MRI SVM-Clinical model; (J), CT SVM-CNN model.
FIGURE 5

The SUCRA values for the 9 prediction models with 3 endpoints.
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and MRI Radiomics-Clinical model) (Figure 5). The CNN has

multiple layers of neuron-like computational connections, which

sets a target-size bounding box on the lesion area, evaluates the

malignant probability of the identified lesion, and achieves end-to-

end output of entire image sequences (50). It reduces the need for

manual intervention and traditional preprocessing steps by

automating the extraction of complex features. Comes et al. (51)

showed that MRI-based radiomics combined with a CNN model

could predict the pathological CR of patients with breast cancer to

neoadjuvant chemotherapy early, with an AUC of 0.82 (95% CI:

0.75-0.88). Therefore, the combination of CNN and MRI in future

studies of NPC can provide a new way to predict the efficacy of IC.

In MRI-based radiomics subgroup analyses, studies with EPV ≥

10 demonstrated significantly lower sensitivity than EPV <10

cohorts (0.85 vs. 0.90, P = 0.01). This inverse relationship indicates

that low EPV (<10) may induce model overfitting to training data

noise, thereby inflating sensitivity estimates in smaller cohorts (52).

For ROI segmentation, 3D showed reduced sensitivity versus 2D

(0.87 vs. 0.93, P = 0.03). While 2D segmentation risks missing

heterogeneous tumor regions (increasing FN), 3D segmentation

introduces non-target biological signals (e.g., necrosis/edema) (53).

This sensitivity reduction reflects technical-biological complexity

coupling, not methodological inferiority. The future requires

dynamically optimizing ROI and adaptive segmentation based on

necrosis proportion (54), coupled with analyzing how tumor

microenvironment components (e.g., necrotic core vs. active
Frontiers in Oncology 12
margins) influence IC sensitivity, to unlock the potential of 3D

imaging in resolving spatial heterogeneity of treatment effects.

External validation cohorts exhibited lower sensitivity than internal

cohorts (0.87 vs. 0.93, P = 0.03), indicating overfitting risks. Large-

sample studies (≥200 patients) showed poorer specificity than small-

sample cohorts (0.61 vs. 0.76, P = 0.01), likely due to increased patient

diversity compromising model discriminability. Conversely, small

samples risk overfitting (e.g., Zhao et al. (27), validation n = 23,

sensitivity = 100%). Therefore, on the basis of expanding the sample

size, punitive modeling should be promoted simultaneously to solve the

risk of overfitting in small samples. Nonlinear algorithms outperformed

linear algorithms in sensitivity (0.97 vs. 0.87, P = 0.03), aligning with

NPC’s complex response dynamics (55) and SUCRA rankings

(Figure 5). Models with <10 features achieved higher specificity than

those with ≥10 features (0.77 vs. 0.67, P = 0.04). This finding

demonstrates that reduced feature quantity can mitigate model

complexity, thereby decreasing false-positive predictions and

enhancing both the robustness and diagnostic accuracy of radiomics

models in predicting IC efficacy in NPC. While a previous study

reported an average RQS of 31.0% (56), our analysis showed that the

average RQS increased to 45.0%, which indicates a methodological

advance. However, Low RQS studies correlated with inflated sensitivity

(0.88 vs. 0.91, P = 0.02), highlighting uncorrected optimism bias.

Therefore, we advocate that the methodological radiomics score

(METRICS) be followed in future studies, a new scoring tool for

assessing the methodological quality of the radiomics research (57).
FIGURE 6

Cumulative ranking probability plots for the 9 prediction models with 3 endpoints.
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FIGURE 7

Results of sensitivity analyses.
FIGURE 8

Comparison-adjusted funnel plot for 9 prediction models. Each data point represents a single study. (A), Control group (clinical gold standard for IC
efficacy assessment based on RECIST 1.1). (B), MRI Radiomics-Clinical model; (C), CT CNN model; (D), CT SVM model; (E), CT SVM-Clinical model;
(F), MRI FCNN model; (G), MRI Radiomics model; (H), MRI SVM model; (I), MRI SVM-Clinical model; (J), CT SVM-CNN model.
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The “feature stability” and “model development” domains of

METRICS systematically identify optimism bias sources overlooked

by RQS, while its core domains of “clinical utility” and “reproducibility”

address clinically detached optimism bias at its root. According to

Supplementary Table S5, only 40% of studies (4/10) adhered to IBSI

preprocessing protocols, with critical gaps in gray-level discretization

(40% implementation) and image interpolation (40%), collectively

contributing to diminished feature stability.

There were several limitations in this study. First, studies with

two arms or more were relatively rare, and the extractable data were

limited, without forming a closed loop. Second, the ROB ratings of

some studies included in this study were high, mainly because the

EPV was less than 10, which may have led to an increased risk of

overfitting the prediction model. Future model development studies

must ensure EPV ≥10 via a priori sample size estimation based on

radiomics-specific guidelines. Third, the universal absence of

external validation fundamentally limits the generalizability of

current radiomics models, which prevents robust validation

across institutionally heterogeneous cohorts.
5 Conclusions

This study provides a clinical reference for IC efficacy prediction

in NPC by synthesizing radiomics evidence. As an exploratory tool,

radiomics demonstrates potential; nevertheless, its performance

generalizability requires cautious interpretation owing to technical

heterogeneity. MRI-based nonlinear models and clinical-integrated

frameworks demonstrate significant potential for clinical translation;

however, achieving reliable deployment necessitates three critical

steps: (1) standardized protocols adhering to IBSI/METRICS/RQS

guidelines to reduce heterogeneity, (2) rigorous validation

frameworks employing prospective multicenter designs to address

generalization gaps, and (3) biological mechanism exploration linking

imaging features to tumor microenvironment dynamics. Collectively,

these strategies will facilitate the transition of radiomics from

technical exploration to clinical utility in NPC precision oncology.
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