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Objectives: To evaluate the accuracy of different radiomics methods in
predicting the response of nasopharyngeal carcinoma (NPC) to induction
chemotherapy (IC).

Methods: A systematic search was conducted in PubMed, Embase, Web of
Science, and Cochrane Library. Radiomics studies utilizing CT and MRI were
included in this network meta-analysis. The quality of the studies was appraised
via the PROBAST, RQS, and IBSI guidelines. The sensitivity, specificity, and
accuracy of different radiomics models were analyzed.

Results: Ten eligible studies involving 1550 subjects were included. The pooled
sensitivity and specificity of the radiomics models were 0.86 (95% Cl: 0.78-0.91) and
0.69 (95% CI: 0.62-0.75), respectively. The AUC based on the SROC curve was 0.83
(95% Cl: 0.70-0.91). The predictive performance of each model was rated using
SUCRA values. The MRI-based support vector machine radiomics model had the
highest specificity, and accuracy, at 80.7% and 73.2%, respectively. The MRI-based
SVM radiomics combined with clinical features model had the highest sensitivity
(82.0%). Among the CT methods, the deep learning (DL)-based convolutional neural
network model had the highest sensitivity, and accuracy, at 51.0% and 44.9%,
respectively. The PROBAST showed that 7 studies were at risk for bias.
Conclusion: This study synthesized existing evidence to confirm that radiomics
serves as a viable exploratory tool for predicting IC efficacy in NPC. MRI-based
nonlinear models and clinical-radiomics fusion models exhibit considerable
promise, whereas clinical translation necessitates three critical steps: (1)
standardized protocols following IBSI/METRICS/RQS guidelines; (2) prospective
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multicenter validation; and (3) investigating tumor microenvironment
mechanisms. These measures will facilitate the transition of radiomics from
technical exploration to clinical utility.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,
identifier CRD42024509331.

KEYWORDS

nasopharyngeal carcinoma, induction chemotherapy, radiomics, deep learning,
network meta-analysis, machine learning, Bayesian

1 Introduction

Nasopharyngeal carcinoma (NPC), found mostly in Asia, is a
form of head and neck cancer originating from the epithelium of the
nasopharynx (1), with approximately 75% of cases being diagnosed
at the locally advanced stage (2). Induction chemotherapy (IC) is
also called neoadjuvant chemotherapy (3). According to the 2022
National Comprehensive Cancer Network (NCCN) guidelines, IC
plus concurrent chemoradiotherapy (CCRT) has been listed as a
level 1 recommendation for locoregionally advanced NPC (LA-
NPC) patients (4). Several retrospective studies have investigated
the effectiveness of IC plus intensity-modulated radiotherapy
(IMRT) vs. IC plus CCRT for LA-NPC, but the conclusions have
been mixed (5-8). Despite the use of standard radiotherapy and
chemotherapy following the guidelines on tumor-node-metastasis
(TNM) stage, the 5-year treatment failure rate of LA-NPC is still up
to 30% (9). This may be because the TNM staging system is only
based on anatomical information provided by imaging and ignores
intratumoral heterogeneity, resulting in an inability to accurately
stratify the risk of LA-NPC (10, 11). Therefore, in clinical practice,
identifying the heterogeneity of characteristics within tumors and
screening patients who are sensitive to IC are essential.

Radiomics noninvasively characterizes tumor heterogeneity by
transforming medical images into high-dimensional quantitative
features (12-15). Relevant studies have shown that radiomics can be

Abbreviations: CCRT, Concurrent chemoradiotherapy; CNN, Convolutional
neural network; CR, Complete response; DL, Deep learning; Events per
variable, EPV; FCNN, Fully connected neural network; FN, False negative; FP,
False positive; GTV, Gross tumor volume; IBSI, Imaging biomarker
standardization initiative; IC, Induction chemotherapy; IMRT, Intensity-
modulated radiotherapy; LA-NPC, Locoregionally advanced nasopharyngeal
carcinoma; METhodological RadiomICs Score, METRICS; ML, Machine
learning; NCCN, National Comprehensive Cancer Network; NMA, Network
meta-analysis; NPC, Nasopharyngeal carcinoma; PD, Progressive disease; PR,
Partial response; PRISMA, Systematic Reviews and Meta-Analyses; PROBAST,
Prediction Model Risk of Bias Assessment Tool; ROI, Region of interest; RQS,
Radiomics quality score; SD, Stable disease; SUCRA, Surface under the
cumulative ranking curve; SVM, Support vector machine; TN, True negative;

TNM, Tumor-node-metastasis; TP, True positive.
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used to noninvasively evaluate the IC response and provide
additional benefits for NPC patients (16-21). Machine learning
(ML) serves as the foundational analytical framework, among which
the support vector machine (SVM) is a typical method of ML (22).
Fully connected neural network (FCNN) model complex nonlinear
relationships through simulated biological propagation (23, 24).
Deep learning (DL) (a subset of ML) (25), where convolutional
neural networks (CNN) excel in medical image pattern recognition.
These approaches (SVM/FCNN/CNN) have been successfully
implemented for NPC staging, treatment response prediction, and
outcome prognostication (26-31), underscoring the translational
potential of ML-driven radiomics in precision NPC oncology.

Systematic reviews/meta-analyses of radiomics-based prognostic
studies in NPC have validated the utility of radiomics, yet their
limitations warrant emphasis. Deng et al. (32) reported that the
combined AUC value of radiomics for predicting NPC prognosis was
0.8265. Wang et al. (33) evaluated MRI-based radiomics for
predicting local recurrence-free survival (LRFS), distant metastasis-
free survival (DMES), progression-free survival (PFS), and overall
survival (OS). Meanwhile, Lee et al. (34) focused on the performance
of MRI-based radiomics in PFS prediction, yielding a pooled c-index
of 0.762. Yang et al. (31) focus on evaluating radiomics for assessing
induction chemotherapy (IC) efficacy in NPC, the overall AUC was
0.91. Collectively, existing research is limited by high heterogeneity,
potential biases, data gaps in key subgroups, and retrospective
designs, which may undermine the generalizability of conclusions.

This study rigorously assessed the methodological quality of
included studies and conducted the first network meta-analysis
(NMA) to compare the predictive efficacy of diverse radiomics
algorithms for IC efficacy in NPC, thereby establishing a hierarchy
of evidence to support clinical decision-making for response-
adaptive therapy.

2 Materials and methods
2.1 Program and registration

This study was conducted according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
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guidelines (35). The original study protocol was registered with
PROSPERO before initiating the systematic search as a priori study
design (CRD42024509331). The study utilized existing published
data, eliminating the need for additional ethical approval and
informed consent procedures.

2.2 Literature search

The PubMed, Embase, Web of Science, and Cochrane Library
databases were searched from inception until May 25, 2024. The
search was conducted independently by two researchers (H.S. and
Q.L.) following the Cochrane Handbook for Systematic Reviews of
Interventions, and discrepancies or uncertainties in the articles were
resolved through discussion or consultation with a third reviewer
(J.P.). Literature was searched manually via different combinations
of free words and MeSH terms. The search terms included
“nasopharyngeal carcinoma”, “machine learning”, “deep learning”,
“radiomics”, and their variations. See Supplementary Material Table
S1 for a detailed search strategy for MeSH terms.

2.3 Inclusion and exclusion criteria

Inclusion criteria: Patients who were diagnosed with NPC and
who received IC, regardless of age, sex, race, or country. Research
type: Imaging analysis using radiomics to predict the response to IC
in NPC. Results: Sensitivity, specificity, and accuracy. Exclusion
criteria: Insufficient data integrity to extract two-by-two data tables,
conference reports, systematic reviews, summary articles, non-
English articles, or conference proceedings.

2.4 Data extraction

The following data were extracted from the included articles in a
standardized format: (1) study characteristics (first author, year of
publication, nationality, affiliation, study period, and study design);
(2) cohort characteristics (mean age, patient numbers, including the
numbers of patients in the training and validation cohorts, sex, cancer
stages, number of patients with effective treatment, and examination
methods); and (3) image feature analysis (segmentation software,
segmentation method, radiomics software, feature selection method,
type of features, number of image features selected, type of validation,
and type of algorithm).

For each study, true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) values were extracted. TP was
defined as no response to treatment, and TN was defined as effective
treatment. If there were multiple imaging models of different types
in a study, among the models of the same type, the model with the
highest AUC value that could extract data was selected. The
performance metrics of the external validation cohort (or internal
validation cohort, if the former was absent) were recorded, and a
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two-by-two table was constructed. If the study did not report these
values, a two-by-two table from the diagnostic estimates presented
in the article for each index test was constructed.

2.5 Quality assessment

The Prediction Model Risk of Bias Assessment Tool (PROBAST)
checklist was used to assess the risk of bias and applicability (36). Two
authors (H.S. and Q.L.) independently assessed the presence of bias
and concerns regarding the applicability of the studies, and any
differences were resolved by consensus or with the participation of a
third reviewer (J.P.) if necessary. The radiomics quality score (RQS)
(37) was also applied by two authors (H.S. and Q.L.) to gauge the
methodological soundness of the radiomics studies, encompassing
image acquisition to validation, ensuring the dependability of the
findings. The IBSI guideline provides a comprehensive and unified
reporting checklist for radiomics studies (38). Since many items in the
IBSI checklist overlap with those in the RQS checklist, two authors
(H.S. and Q.L.) only evaluated items relevant to image pre-
processing steps.

2.6 Statistical analysis

This NMA was conducted within a Bayesian framework via
Markov chain Monte Carlo subset simulations (39) according to the
PRISMA NMA guidelines (40), and the data of the different models
included in the study were directly and indirectly compared. First,
traditional meta-analysis was conducted via a bivariate model of
pooled sensitivity and specificity, which was visualized via forest plots
and summary receiver operating characteristic (SROC) curves.
Heterogeneity between the included studies was assessed by
Cochrane’s Q test and I°, with I* > 75% indicating greater
heterogeneity (41). To further investigate the sources of
heterogeneity, meta-regression and subgroup analyses were
performed. The following factors were considered as potential
sources of heterogeneity: device type (MRI vs. CT), events per
variable (EPV) (=10 vs. <10), ROI structure (2D vs. 3D), model
validation (external validation vs. others), algorithms (linear vs.
nonlinear), feature quantity after feature dimensionality reduction
(=10 vs. <10), RQS score (216.2 vs. <16.2), and sample size (=200 vs.
<200). The network was next drawn, where nodes represent each
method and lines represent direct comparisons. The node size was
correlated with the number of studies. The line thickness represents
the number of comparisons between two studies. The control group
was established as the clinical gold standard based on RECIST 1.1
criteria, primarily serving dual purposes: (1) evaluating lesion
remission status following IC and (2) Providing a benchmark for
comparative validation of predictive models. The data likelihood was
specified using a binomial distribution to model the TP and TN
counts for each study; a logit link function was employed to
transform the accuracy metrics; and the random effects covariance

frontiersin.org


https://doi.org/10.3389/fonc.2025.1590420
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Jian et al.

structure was modeled via a multivariate normal distribution to
characterize the correlation between sensitivity and specificity. We
implemented the node-splitting method to estimate the consistency
between the direct and indirect evidence for the whole study and then
chose the consistency model or the inconsistency model based on the
results (42). To estimate the predictive performance and ranking
probability for each model, we used the surface under the cumulative
ranking curve (SUCRA). The SUCRA percentages range from 0 to 1,
with higher values indicating a greater likelihood of being the best
prediction model (43). The predictive performance of the different
models was judged by analyzing the sensitivity, specificity, and
accuracy indicators. We tested the robustness of the results by
sensitivity analysis. In addition, we constructed comparison-
adjusted funnel plots and Deek’s test to assess potential
publication bias.

Traditional meta-analysis was performed using the “midas” and
“metan” package in Stata (version 17.0; Stata Corporation, College
Station, Texas, USA). Bayesian NMA and associated graphical
analyses were implemented via the “network” package within the
same Stata framework.

2.7 Evaluation criteria for IC

The response evaluation of IC in all included studies was based
on the RECIST version 1.1 (44). Complete response (CR) and
partial response (PR) were defined as effective treatment, whereas
stable disease (SD) and progressive disease (PD) were defined as no

10.3389/fonc.2025.1590420

response to treatment. According to this standard, a control group
(the gold standard) was established to evaluate whether the lesion
was in remission and to compare and verify different models.

3 Results
3.1 Literature selection

The initial search for this study yielded a total of 1245 index
records. After removing 633 duplicate articles, further review
focused on titles and abstracts and excluded an additional 584
unrelated articles. The remaining 28 articles were subsequently
evaluated more rigorously, including the accessibility of the full-
text version and the feasibility of data extraction, and 10 full-text
studies that met the predetermined inclusion criteria were identified
for evaluation. The PRISMA flowchart of the selection process is
shown in Figure 1.

3.2 Baseline characteristics of the included
studies

These 10 articles included data from 1550 subjects. The baseline
characteristics of the included studies are summarized in Table 1.
Imaging methods included MRI and CT. The models were divided
into the following seven types according to different features: (1) the
radiomics combined with linear algorithms (logistic regression,

PubMed (n=317) Embase (n=499)

Records identified through database searching (n=1245)

Web of Science (n=400) Cochrane Library (n=29)

------------- >< Duplicate records removed (n=633) |

Records screened (n=612)

J [ Screening ] [Identiﬁcation]

Records excluded based on title and
abstract screening (n=584)

2
ﬁo Full-text articles assessed for eligibility (n=28)
m
Full-text references excluded (n=18)
_____________ -Not available full-text article
-Outcome indicators different
zg -Missing data
é’ Articles included in quantitative synthesis [Network Meta-Analysis] (n=10)

FIGURE 1
Flow chart of the study selection process.
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TABLE 1 Baseline characteristics of the included studies.
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Except where indicated, the data are the numbers of patients or means + SDs; * Data are the medians, with IQRs in parentheses; R = retrospective; TP group, nasopharyngeal carcinoma treated with gemcitabine plus cisplatin; GP group, nasopharyngeal carcinoma treated
with docetaxel plus cisplatin.
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LASSO) was used to construct a Radiomics model; (2) the SVM-
based radiomics method was used to construct an SVM model; (3)
the FCNN-based radiomics method was used to construct a FCNN
model; (4) the pretrained CNN of DL was used to construct a CNN
model; (5) the radiomics combined with linear algorithms and
clinical features was used to construct a Radiomics-Clinical model;
(6) the SVM-based radiomics combined with clinical features was
used to construct an SVM-Clinical model; and (7) the SVM-based
radiomics combined with CNN was used to construct an SVM-
CNN model. According to the imaging methods and model types,
the following 9 prediction models were included in this study: the
MRI Radiomics model, the MRI Radiomics-Clinical model, the
MRI SVM model, the MRI SVM-Clinical model, the MRI FCNN
model, the CT SVM model, the CT SVM-Clinical model, the CT
CNN model, and the CT SVM-CNN model.

3.3 Image analyses

Detailed information on the image analyses included in the
study and the predictive performance measures of the models are
summarized in Table 2 and Supplementary Table S2. With respect
to the selection of the region of interest (ROI), the primary and
lymph node gross tumor volume (GTV) was segmented in one
study (17), whole tumors were segmented in seven studies (16, 18,
21,27, 29, 31, 45), and only the largest axial slice was segmented in
two studies (19, 20). The number of image features selected for the
prediction models analyzed in this study ranged from 2 to 24.
Except for one study that did not report model validation details
(20), internal validation was performed in the remaining studies.

3.4 Quality assessment

The PROBAST assessment revealed that the overall risk of bias
(ROB) was low in three studies (17, 20, 21). In the analysis, the
number of EPV was less than 10 in six studies (16, 18, 19, 21, 29, 45),
and one study (31) selected predictors based on univariate analysis,
which had a high risk of bias; thus, the overall risk of bias was high.
Another study (27) revealed that, among participants, the inclusion
and exclusion criteria for all participants were vague; thus, the risk of
bias was unclear, and the EPV in the analysis was less than 10,
resulting in an overall high risk of bias. The overall applicability of all
the studies’ concerns was low (Figure 2). The average RQS for the 10
studies was 16.2 (45.0%). The pre-processing steps were carried out
following the IBSI guidelines, with an overall adherence rate of 60.0%
(42/70). Detailed evaluations are available in Supplementary Material
(Supplementary Tables S3, $4, S5).

3.5 Traditional meta-analysis

In the 18 cohorts of 10 studies in which radiomics was used to
predict the efficacy of IC in NPC, the pooled sensitivity and
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specificity were 0.86 (95% CI: 0.78-0.91) and 0.69 (95% CI: 0.62-
0.75), respectively. From the plotted SROC curve, an AUC of 0.83
(95% CI: 0.70-0.91) was obtained. The forest plot of the sensitivity
and specificity of the predictive performance of the radiomics
model is shown in Figure 3A, and the SROC curve is shown
in Figure 3B.

Methodologically, this study computed pooled HSROC AUC
for individual models only when two or more studies were available.
The MRI radiomics model (8 studies (16-21, 29, 45)) demonstrated
pooled sensitivity of 0.88 (95% CI: 0.80-0.90), specificity of 0.70
(95% CI: 0.59-0.80), and HSROC AUC of 0.88 (95% CI: 0.84-0.90).
Similarly, the MRI radiomics-clinical model (3 studies (21, 29, 45))
showed pooled sensitivity of 0.83 (95% CI: 0.71-0.90), specificity of
0.74 (95% CI: 0.47-0.90), and HSROC AUC of 0.84 (95% CI:
0.81-0.87). Detailed performance metrics are presented in
Supplementary Material (Supplementary Figure S1). Models with
fewer than two studies were excluded due to insufficient meta-
analytic feasibility.

3.6 Heterogeneity exploration and meta-
regression

The I* statistic reveals significant heterogeneity in sensitivity
(P = 78.31%) and moderate heterogeneity in specificity (I* =
74.55%) (Supplementary Table S6). As shown in Supplementary
Tables S7, eight covariates were used to explore potential sources of
heterogeneity. Meta-regression and joint model analysis indicated
the following factors as contributors to significant heterogeneity in
the meta-analysis: device type (MRI vs. CT) (P < 0.01), sample
(2200 vs. <200) (P = 0.02). The device type was a highly
heterogeneous source (I = 82.00%), while the CT equipment
came from the same study. We therefore performed a subgroup
analysis of multiple studies of MRI devices.

Results were analyzed in subgroups according to MRI device
(Table 3). Compared to studies with an EPV <10, those with
EPV=10 showed lower pooled sensitivity (0.85 vs. 0.90, P = 0.01)
but higher specificity (0.77 vs. 0.67, P = 0.68, nonsignificant). The
sensitivity of 3D ROI was lower than that of 2D ROIT (0.87 vs. 0.93,
P =0.03), and the specificity of 3D ROI was similar (0.71 vs. 0.70,
P = 0.59, nonsignificant). Studies that validated the predictive
performance of the model on external validation cohorts
manifested lower sensitivity (0.87 vs. 0.93, P = 0.03) and similar
specificity (0.71 vs. 0.70, P = 0.59, nonsignificant). Linear models
demonstrated lower sensitivity than nonlinear models (0.87 vs. 0.97,
P = 0.03) and similar specificity (0.71 vs. 0.70, P = 0.58,
nonsignificant). Compared to using >10 features, those with < 10
features showed lower pooled sensitivity (0.85 vs. 0.90, P = 0.28,
nonsignificant) but higher specificity (0.77 vs. 0.67, P = 0.04).
Higher RQS correlated with decreased sensitivity (0.88 vs. 0.91,
P = 0.02) and specificity (0.69 vs. 0.74, P = 0.15, nonsignificant).
Notably, studies with larger sample sizes (2200) showed higher
pooled sensitivity (0.90 vs. 0.88, P = 0.15, nonsignificant) but lower
specificity(0.61 vs. 0.76, P = 0.01) compared to smaller cohorts.
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Mann-Whitney U
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PyRadiomics
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Chen (45)

features validation testing
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Radiomics-
Clinical

GTV, gross tumor volume; DL, deep learning; LASSO, least absolute shrinkage and selection operator; mRMR, maximum relevance minimum redundancy; SVM, support vector machine; FCNN, fully connected neural network; CNN, convolutional neural network; SE,

sensitivity; SP, specificity; ACC, accuracy. GP group, nasopharyngeal carcinoma treated with docetaxel plus cisplatin. NR, Not Reported.
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3.7 Network evidence diagram

Figure 4 quantifies the density of direct comparative evidence
within the NMA, demonstrating that both the MRI Radiomics
model and MRI Radiomics-Clinical model have undergone
extensive validation across multiple studies.

3.8 Consistency and inconsistency analysis

The sensitivity, specificity, and accuracy of all included studies
were analyzed via inconsistency analysis employing the node-
splitting method, and the results indicated consistency among the
direct and indirect evidence of all outcomes (all p > 0.05). Therefore,
the consistency model was applied in the current study.

3.9 Network meta-analysis

NMA revealed that the CT CNN model was superior to the CT
SVM model (OR = 3.47, 95% CI: 1.16-10.38), the CT SVM-Clinical
model (OR = 5.15, 95% CI: 1.75-15.15), and the CT SVM-CNN
model (OR = 6.21, 95% CI: 2.12-18.23) in sensitivity. The MRI
FCNN model was superior to the MRI Radiomics-Clinical model
(OR = 2.71, 95% CI: 1.34-5.48) and the MRI Radiomics model
(OR = 3.14, 95% CI: 1.55-6.33) in specificity. The MRI FCNN
model was superior to the MRI Radiomics-Clinical model (OR =
2.72,95% CI: 1.13-6.60) and the MRI Radiomics model (OR = 2.90,
95% CI: 1.20-6.99) in accuracy. The league table of the outcome
indicators is shown in Supplementary Material Table Sé.

3.10 SUCRA values

The SUCRA values for the 9 prediction models are summarized
in Figure 5. The MRI SVM model had the highest specificity, and
accuracy (SUCRA) at 80.7%, and 73.2%, respectively. The MRI SVM-
Clinical model had the highest sensitivity (82.0%). The sensitivity,
specificity, and accuracy of the MRI FCNN model ranked the top
two, which were 76.7%, 68.6%, and 68.6%, respectively. Among the
CT methods, the CNN model of DL had the highest SUCRA values
for sensitivity, and accuracy at 51.0%, and 44.9%, respectively. The
SUCRA curves are presented in Figure 6.

3.11 Sensitivity analyses
No significant changes were observed when each included study

was eliminated from the analysis one by one. The results of
sensitivity analyses for each study are shown in Figure 7.

3.12 Assessment of publication bias

The comparison-adjusted funnel plots (Figure 8) show roughly
symmetrical scatter points of the same color, indicating the
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negligible presence of publication bias or other forms of bias within
the studies, as confirmed by Deek’s test (P = 0.427 > 0.05). This
symmetry bolstered the reliability of the findings.

4 Discussion

The efficacy of IC serves as a robust predictor of survival
outcomes in NPC patients post-IC (31). Prior evidence indicates a
CR/PR rate of 76.9% following IC in NPC cohorts (46), underscoring
that not all patients derive clinical benefit from IC. Our study
demonstrated that the MRI SVM model achieved the highest
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specificity (80.7%), effectively reducing FP and ensuring aggressive
therapies like IC are reserved for high-confidence responders.
Conversely, the MRI SVM-Clinical model exhibited peak sensitivity
(82.0%), capturing more true responders at the cost of increased over-
treatment and potential exposure to IC-associated toxicities without
survival benefit. In resource-limited settings, model thresholds can be
calibrated to prioritize cost-effectiveness (e.g., avoiding IC in low-
response-probability subgroups). For high-toxicity regimens such as
cisplatin-based IC (47), stringent thresholds may be preferred to
mitigate harm. Iterative adjustments based on real-world outcome
monitoring (e.g., post-IC surveillance) further enable dynamic
refinement of decision boundaries as evidence evolves.
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TABLE 3 Investigation of heterogeneity using meta-regression and subgroup analysis of MRI devices.

Parameter

Category

Sensitivity Py

Joint model analysis

P LRT
chi?

Specificity Py

210 4 0.85 (0.75-0.96) 0.77 (0.64-0.90)

EPV 0.01 0.68 0.49 0.0 (0.0-100.0) 145
<10 10 0.90 (0.85-0.96) 0.67 (0.57-0.78)
3D 12 0.87 (0.81-0.93) 0.71 (0.61-0.80)

ROI 0.03 059 0.51 0.0 (0.0-100.0) 135
2D 2 0.93 (0.86-1.00) 0.70 (0.47-0.92)

External

idati 12 0.87 (0.81-0.93) 0.71 (0.61-0.80)

Validation validation 0.03 059 0.51 0.0 (0.0-100.0) 1.35
Others 2 0.93 (0.86-1.00) 0.70 (0.47-0.92)
Linear 11 0.87 (0.81-0.92) 0.71 (0.62-0.81)

Algorithms 003 058 011 55.0 (0.0-100.0) 444
Nonlinear 3 0.97 (0.92-1.00) 0.70 (0.48-0.93)
210 10 0.90 (0.85-0.96) 0.67 (0.57-0.78)

Feature 028 004 0.49 0.0 (0.0-100.0) 145
<10 4 0.85 (0.75-0.96) 0.77 (0.64-0.90)
2162 10 0.88 (0.81-0.94) 0.69 (0.58-0.80)

RQS 0.02 0.15 0.56 0.0 (0.0-100.0) 115
<16.2 4 0.91 (0.83-0.98) 0.74 (0.59-0.88)
2200 5 0.90 (0.83-0.98) 0.61 (0.47-0.75)

Sample 0.15 0.01 022 35.0 (0.0-100.0) 3.07
<200 9 0.88 (0.82-0.94) 0.76 (0.67-0.85)

EPV, events per variable; RO, region of interest; RQS, radiomics quality score.
The bold values denote P<0.05.

Both our study and Yang et al. (31) focused on assessing
radiomics to evaluate IC efficacy in NPC. Notably, compared with
Yang et al. (31), our research included more primary studies and
models (6 vs. 10 primary studies and 6 vs. 18 models), compared
multiple radiomics algorithms, standardized the definitions of TP/FP
cases to clarify model performance, and applied meta-regression and
subgroup analyses to address heterogeneity. We performed the first
NMA to compare the value of 9 different models in predicting IC
efficacy in NPC. Based on the SUCRA values of different models, the
following conclusions are drawn: Radiomics based on MRI and CT
serves as a viable exploratory tool for predicting IC efficacy in NPC.
Among them, the MRI FCNN model ranked in the top two for
sensitivity, specificity, and accuracy, indicating superior overall
predictive performance. The MRI SVM model had better specificity
and accuracy, while the MRI SVM-Clinical model had better
sensitivity. The above nonlinear ML combined with radiomics had
a good predictive performance for the noninvasive identification of
IC treatment response in NPC. Moreover, Li et al. (48) reported that
the FCNN model exhibited optimal performance in evaluating
HER2-low breast cancer undergoing neoadjuvant therapy.
Therefore, the combination of FCNN and radiomics may be a
promising method for predicting NPC treatment response.

The three studies (16, 29, 45) in this NMA showed that the MRI
Radiomics-Clinical model could improve the predictive performance
over that of the MRI Radiomics model. However, Wang et al. (21)
showed that the MRI Radiomics-Clinical model could not improve
predictive performance. Our research revealed that, compared with
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the MRI Radiomics model, the MRI Radiomics-Clinical model had
greater specificity, and a lower sensitivity in the surca ranking. This is
consistent with the pooled sensitivity and specificity ranking, which
confirms the surca value accuracy of NMA. Owing to the lack of data,
the clinical characteristics (such as EBV-DNA, LDH, etc.) that were
independent predictors in other studies were not included in the
study of Wang et al. (21), which might explain why the performance
of the MRI Radiomics-Clinical model was lower than that of the MRI
Radiomics model. In future studies, more relevant clinical data
should be included to analyze the correlation between tumor
microenvironment and radiomics features.

Notably, the I* values of specificity, and accuracy of the 9
models ranged were 74.55% and 69.51%, respectively, indicating
moderate heterogeneity, whereas the I* value of sensitivity was
78.31%, greater than 75%, indicating high heterogeneity. Device
type (MRI vs. CT)(P < 0.01) was the source of high heterogeneity
(Supplementary Table S7). MRI led the studies (9/10), while CT was
the only study (Table 1). The prediction efficiency of the MRI
models was generally greater than that of the CT models. The
possible reason is that MRI has significantly better resolution of soft
tissue than CT does and effectively shows the range of the
parapharyngeal space, skull base, and intracranial tumors (49),
thus providing more realistic internal characteristics of the
tumors. In the model based on CT images, we found that the
SUCRA values of sensitivity, and accuracy of the CNN model were
the highest, and sensitivity, and accuracy were even higher than
those of the linear algorithms MRI models (MRI Radiomics model
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FIGURE 4

Diagram of the evidence network included in this study. (A), Control group (clinical gold standard for IC efficacy assessment based on RECIST 1.1);
(B), MRI Radiomics-Clinical model; (C), CT CNN model; (D), CT SVM model; (E), CT SVM-Clinical model; (F), MRl FCNN model; (G), MRI Radiomics
model; (H), MRI SVM model; (I), MRl SVM-Clinical model; (3), CT SVM-CNN model.

Sensitivity(%) Specificity (%) Accuracy(%)

MRI SVM-Clinical model

MRI SVM model

MRI FCNN model

MRI Radiomics-Clinical model 47.6 41.7 41.2

MRI Radiomics model

CT CNN model

CT SVM model

CT SVM-Clinical model

CT SVM-CNN model

Worse Better

FIGURE 5
The SUCRA values for the 9 prediction models with 3 endpoints.
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FIGURE 6

Cumulative ranking probability plots for the 9 prediction models with 3 endpoints.

and MRI Radiomics-Clinical model) (Figure 5). The CNN has
multiple layers of neuron-like computational connections, which
sets a target-size bounding box on the lesion area, evaluates the
malignant probability of the identified lesion, and achieves end-to-
end output of entire image sequences (50). It reduces the need for
manual intervention and traditional preprocessing steps by
automating the extraction of complex features. Comes et al. (51)
showed that MRI-based radiomics combined with a CNN model
could predict the pathological CR of patients with breast cancer to
neoadjuvant chemotherapy early, with an AUC of 0.82 (95% CI:
0.75-0.88). Therefore, the combination of CNN and MRI in future
studies of NPC can provide a new way to predict the efficacy of IC.

In MRI-based radiomics subgroup analyses, studies with EPV >
10 demonstrated significantly lower sensitivity than EPV <10
cohorts (0.85 vs. 0.90, P = 0.01). This inverse relationship indicates
that low EPV (<10) may induce model overfitting to training data
noise, thereby inflating sensitivity estimates in smaller cohorts (52).
For ROI segmentation, 3D showed reduced sensitivity versus 2D
(0.87 vs. 093, P = 0.03). While 2D segmentation risks missing
heterogeneous tumor regions (increasing FN), 3D segmentation
introduces non-target biological signals (e.g., necrosis/edema) (53).
This sensitivity reduction reflects technical-biological complexity
coupling, not methodological inferiority. The future requires
dynamically optimizing ROI and adaptive segmentation based on
necrosis proportion (54), coupled with analyzing how tumor
microenvironment components (e.g., necrotic core vs. active
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margins) influence IC sensitivity, to unlock the potential of 3D
imaging in resolving spatial heterogeneity of treatment effects.
External validation cohorts exhibited lower sensitivity than internal
cohorts (0.87 vs. 0.93, P = 0.03), indicating overfitting risks. Large-
sample studies (=200 patients) showed poorer specificity than small-
sample cohorts (0.61 vs. 0.76, P = 0.01), likely due to increased patient
diversity compromising model discriminability. Conversely, small
samples risk overfitting (e.g, Zhao et al. (27), validation n = 23,
sensitivity = 100%). Therefore, on the basis of expanding the sample
size, punitive modeling should be promoted simultaneously to solve the
risk of overfitting in small samples. Nonlinear algorithms outperformed
linear algorithms in sensitivity (0.97 vs. 0.87, P = 0.03), aligning with
NPC’s complex response dynamics (55) and SUCRA rankings
(Figure 5). Models with <10 features achieved higher specificity than
those with 210 features (0.77 vs. 0.67, P = 0.04). This finding
demonstrates that reduced feature quantity can mitigate model
complexity, thereby decreasing false-positive predictions and
enhancing both the robustness and diagnostic accuracy of radiomics
models in predicting IC efficacy in NPC. While a previous study
reported an average RQS of 31.0% (56), our analysis showed that the
average RQS increased to 45.0%, which indicates a methodological
advance. However, Low RQS studies correlated with inflated sensitivity
(0.88 vs. 091, P = 0.02), highlighting uncorrected optimism bias.
Therefore, we advocate that the methodological radiomics score
(METRICS) be followed in future studies, a new scoring tool for
assessing the methodological quality of the radiomics research (57).
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(F), MRI FCNN model; (G), MRI Radiomics model; (H), MRI SVM model; (I), MRI SVM-Clinical model; (J), CT SVM-CNN model.
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The “feature stability” and “model development” domains of
METRICS systematically identify optimism bias sources overlooked
by RQS, while its core domains of “clinical utility” and “reproducibility”
address clinically detached optimism bias at its root. According to
Supplementary Table S5, only 40% of studies (4/10) adhered to IBSI
preprocessing protocols, with critical gaps in gray-level discretization
(40% implementation) and image interpolation (40%), collectively
contributing to diminished feature stability.

There were several limitations in this study. First, studies with
two arms or more were relatively rare, and the extractable data were
limited, without forming a closed loop. Second, the ROB ratings of
some studies included in this study were high, mainly because the
EPV was less than 10, which may have led to an increased risk of
overfitting the prediction model. Future model development studies
must ensure EPV >10 via a priori sample size estimation based on
radiomics-specific guidelines. Third, the universal absence of
external validation fundamentally limits the generalizability of
current radiomics models, which prevents robust validation
across institutionally heterogeneous cohorts.

5 Conclusions

This study provides a clinical reference for IC efficacy prediction
in NPC by synthesizing radiomics evidence. As an exploratory tool,
radiomics demonstrates potential; nevertheless, its performance
generalizability requires cautious interpretation owing to technical
heterogeneity. MRI-based nonlinear models and clinical-integrated
frameworks demonstrate significant potential for clinical translation;
however, achieving reliable deployment necessitates three critical
steps: (1) standardized protocols adhering to IBSI/METRICS/RQS
guidelines to reduce heterogeneity, (2) rigorous validation
frameworks employing prospective multicenter designs to address
generalization gaps, and (3) biological mechanism exploration linking
imaging features to tumor microenvironment dynamics. Collectively,
these strategies will facilitate the transition of radiomics from
technical exploration to clinical utility in NPC precision oncology.
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