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Background: Esophageal squamous cell carcinoma (ESCC), a virulent form of

cancer, markedly diminishes prospects for patient survival. The transmembrane 4

superfamily (TM4SF)-related genes (TRGs) are instrumental in the advancement

and spread of cancer. The intent of the current research was to create a

prognostic model for ESCC, grounded in the expression patterns of TRGs;

Methods: The datasets pertaining to ESCC from The Cancer Genome Atlas

(TCGA)-ESCC and the GSE53622 cohort were meticulously examined.

Differential and regression analyses discerned the pivotal signature genes.

Subsequent stratification of patients into distinct risk groups was achieved by

employing optimal risk score thresholds. This prognostic precision of model was

assessed with Kaplan-Meier (K-M) curves and receiver operating characteristic

(ROC) analyses. A nomogram integrating risk score with clinicopathological

characteristics was meticulously constructed and subsequently validated.

Additional analyses included functional enrichment, immune infiltration,

immunotherapy responses, drug sensitivity, and molecular network analysis.

The expression levels of the characteristic genes were meticulously examined

in both TCGA-ESCC datasets and patient-derived tissues;

Results: 24 candidate genes were identified. Among these, TSPAN15, TSPAN9,

and TSPAN16 were selected as signature genes. The model showed high

prediction accuracy via K-M and ROC curves. Prognostic evaluations have

indicated that the risk score and the stage of the tumor are pivotal prognostic

indicators. The high-risk cohort exhibited elevated dysfunction scores,

suggesting a potentially more favorable response to immunotherapy.

Significant drug sensitivity differences were observed. GATA2 regulated all

three signature genes, with TSPAN15 and TSPAN16 downregulated and

TSPAN9 upregulated. These findings were consistent with RT-qPCR and

immunohistochemical results;
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Conclusions: TSPAN15, TSPAN9, and TSPAN16 are TM4SF-related signature

genes with prognostic value for ESCC, providing a theoretical foundation for its

diagnosis and treatment.
KEYWORDS

esophageal squamous cell carcinoma, transmembrane 4 superfamily, prognosticmodel,
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1 Introduction

Esophageal cancer (EC) ranks as the 7th most common form of

malignancy across global, and it stands as the sixth primary source

of cancer-related deaths, exerting a considerable toll on human

health. The latest global cancer statistics for 2020 reported 604,000

new cases of EC and 544,000 deaths. It is worth mentioning that the

prevalence of this condition is most prominent in Eastern Asia, with

China showing the highest incidence rate (1). Histopathologically,

Esophageal cancer is primarily categorized into two distinct types:

esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma (EAC). In China, ESCC prevails as the

predominant subtype, comprising 90% of all EC cases (2), with

cigarette smoking and alcohol intake identified as key risk factors (3,

4). Despite the advancements in multimodal treatments for ESCC,

the five-year survival rate remains at a disheartening 20% (4, 5). An

accurate assessment of ESCC prognosis is critical for clinicians to

devise suitable treatment plans and enhance the survival prospects

of patients. The prognosis for ESCC is primarily evaluated using

TNM staging (6, 7). However, the predictive accuracy of TNM

staging alone is limited (8, 9). Therefore, reliable biomarkers and

effective models are urgently needed to predict ESCC prognosis and

guide therapeutic strategies.

The transmembrane 4 superfamily (TM4SF) comprises a set of

evolutionarily preserved proteins, distinguished by their four

integral transmembrane segments (TM1-TM4), twin extracellular

loops (EC1 and EC2), and a solitary intracellular loop, all of which

are embedded within the membranes of eukaryotic cells (10, 11).

The EC2 domain is mainly responsible for interacting with various

tetraspanin molecules and other non-tetraspanin proteins. EC2

disulfide crosslinks help stabilize the tetraspanin structure by

stabilizing the TM domains. A total of 33 classical tetraspanins

(TSPAN1-TSPAN33) (12) and 8 newly identified tetraspanins

(TM4SF1, TM4SF4, TM4SF5, TM4SF10, TM4SF11, TM4SF18,

TM4SF19, TM4SF20) from the TM4SF family have been

documented (13, 14). These proteins are instrumental in the

initiation and progression of various human malignancies, among

which includes ESCC. Studies indicate that TSPAN27 may act as a

suppressor of invasion and metastasis in ESCC by modulating TGF-

b1 signaling pathway (15–17). Our previous study identified a novel
02
mechanism by which TM4SF1 facilitates ESCC metastasis through

its interaction with integrin a6 (18). The research indicates that

TM4SF holds promise as the prognostic pointer and therapeutic

target for ESCC. Nonetheless, there currently exist only a limited

number of reliable prognostic models that utilize TM4SF-related

genes (TRGs) to forecast the outcome for patients with ESCC. Thus,

it is imperative to cultivate novel and dependable TM4SF-associated

predictive biomarkers for assessing the correlation between TRGs

and patient outcomes, and to guide this understanding of their

development and associated immune effects in ESCC. Recent

studies have shown that the tumor microenvironment (TME),

particularly its immune components, plays a decisive role in

shaping therapeutic outcomes. For example, AI-driven mutation

signatures and plasma cell-based immune classifiers have been

developed to predict immunotherapy responses across cancer

types, offering key insights into tumor-immune interactions (19,

20). Moreover, Ye et al. (21) developed an integrated Machine

Learning and Genetic Algorithm‐driven Multiomics analysis

(iMLGAM), which highlights the prognostic value of immune-

related gene signatures and tumor immune infiltration. These

findings, although not specific to ESCC, highlight the prognostic

relevance of immune landscape features and support the rationale

for exploring the immunological implications of TRGs in ESCC.

To address this issue, we analyzed the TRGs in ESCC. We

crafted a predictive ESCC risk model utilizing datasets from Gene

Expression Omnibus (GEO) in conjunction with University of

California, Santa Cruz (UCSC) Xena databases. Our study aimed

to provide new insights into the pathogenesis of ESCC. The

workflow of this study is shown in Figure 1.
2 Materials and methods

2.1 Data source

ESCC-related datasets, The Cancer Genome Atlas (TCGA)-

ESCC and GSE53622, were obtained from UCSC Xena (https://

xenabrowser.net/datapages/) database and GEO database (https://

www.ncbi.nlm.nih.gov/geo/), respectively. The TCGA-ESCC

dataset contained count, FPKM, phenotype, and survival data
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from 162 tumor and 11 normal samples. A total of 251 TCGA-

ESCC samples were initially retrieved. After excluding 89 cases with

non-squamous cell carcinoma histology, 162 ESCC samples

remained. Among these, 81 cases lacking survival information

were further excluded, resulting in a final analytic cohort of 81

ESCC samples with complete survival data. The detailed selection

process is presented in Supplementary Figure S1. GSE53622

(platform: GPL18109) included 60 ESCC patients and was used to

validate the risk model. Additionally, 41 TRGs were derived from a

previous study (22).
2.2 Differential, enrichment analyses and
construction of protein-protein interaction
network

Differentially expressed genes (DEGs) were discerned among

ESCC and adjacent normal tissues within TCGA-ESCC dataset by

employing DESeq2 (version 1.34.0) (23), with criteria of P value <

0.05 and |log2FC| >0.5. Next, DEGs were intersected with TRGs to

pinpoint potential candidate genes. Pathway and functional

enrichment analyses were conducted using the clusterProfiler

package (version 4.2.2) (24) to probe into these underlying

biological processes and pathways linked to these candidate genes,

with a particular emphasis on unveiling Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) databases,

applying a stringent significance threshold of P < 0.05. The PPI

network of candidate genes was constructed via STRING (http://

www.string-db.org/) database for evaluating protein-level
Frontiers in Oncology 03
interactions, with a confidence score of 0.3. Building and

validation of risk model.
2.3 Building and validation of risk model

Univariate Cox regression analysis was conducted for specify

potential prognostic genes linked to survival, utilizing the Coxph

function for thorough screening (P < 0.2) (25). The proportional

hazards (PH) hypothesis test (P > 0.05) was then performed, and

genes that passed the test were integrated into a comprehensive

multivariate Cox regression analysis. We used the Step function

within R software for stepwise regression, employing both forward

and backward selection strategies. At each step, the model identifies

and includes or excludes variables that most significantly improve

the model drawing on the Akaike Information Criterion (AIC) for

analysis. The iterative procedure persists until the most optimal and

stable model is pinpointed, characterized by the lowest AIC value

and encompassing the distinctive genes. Subsequent to this, risk

scores were computed by employing penalty coefficients in

conjunction with the gene expression data for predictive features.

A risk model was developed, and the risk score was calculated using

the formula: risk   score =on
i=1(coefi*Xi), where Xi represents the

relative expression of prognostic signature gene i, and coefi displays

Cox coefficient of signature gene i. Based on the risk score

calculation formula, the risk values of samples with survival

information in TCGA-ESCC were calculated using the R package

“survminer” (version 0.4.9) (26). The optimal cutoff value for the

risk score was then calculated by the surv cutpoint function, which
FIGURE 1

The workflow of the present study.
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evaluates the ability of each potential cutoff point to distinguish

survival data by calculating different values and identifies the one

maximizing the survival time difference as the optimal cutoff.

Finally, the ESCC samples with survival information were divided

into high and low risk groups according to the optimal cutoff value.

Kaplan-Meier (K-M) plots, in conjunction with a log-rank analysis,

were employed for evaluating the statistical significance of

disparities in survival rates among the distinct expression cohorts

of the identified genes. Furthermore, the participants were stratified

into different risk categories in accordance with the established

threshold values of their risk scores. The reliability and efficacy of

the predictive model were assessed through the employment of K-

M survival analysis and construction of receiver operating

characteristic (ROC) curves over a span of 1 to 3 years, utilizing

the survivalROC package (version 1.0.3) for graphical

representation. Moreover, identical analytical methods were

employed on the validation dataset GSE53622 to substantiate the

model’s predictive capabilities. The risk assessment for the

validation dataset was initially determined utilizing this risk score

equation, wherein these samples were subsequently classified into

high-risk and low-risk cohorts in accordance with the most

favorable threshold value. Drawing upon the delineation of high-

and low-risk cohorts, the reliability and efficacy of this model were

stringently verified within the validation cohort through the

employment of K-M survival analyses and ROC curve

assessments. To further evaluate the predictive accuracy and

potential overfitting of the multivariate Cox regression model, we

performed an internal validation using the bootstrap method with

1000 resamples. The mean C-index and 95% confidence intervals

from these bootstrap samples were calculated to assess the model’s

performance on independent data and to estimate the optimism.
2.4 Clinical characterization and
independent prognostic analysis

To assess the correlation between signature genes and clinical

characteristics, we examined the distribution of these genes across

various clinical features, including age, tumor stage, and

pathological stage. In the training cohort (TCGA-ESCC) and

validation cohort (GSE53622), K-M survival curve analyses were

undertaken to gauge these survival disparities among various

clinical characteristics across distinct risk categories. Moreover,

ROC curve analyses were executed to ascertain this model’s

predictive accuracy. Subsequently, these risk scores were

integrated with the clinical attributes to conduct univariate Cox

proportional hazards (PH) analysis, aiming to pinpoint the factors

that correlate with patient survival (P < 0.05). These factors were

then sequentially subjected to PH assumption testing (P > 0.05) and

multivariate Cox PH analysis (P < 0.05). Factors with a P-value of <

0.05 were considered independent prognostic factors. A nomogram

was subsequently evolved, integrating these independent prognostic

variables, to gauge a likelihood of patient survival over a 1 to 3 year

period, utilizing rms package (version 6.5-0) (26). The calibration

plot, ROC curves, and decision curve analysis (DCA) were
Frontiers in Oncology 04
employed to ascertain the nomogram’s validation and precision.

To further quantify the prediction error of the nomogram,

additional Brier scores at each time point are calculated.
2.5 Expression analysis of known ESCC
prognostic genes across clinical subgroups

To validate the biological relevance of the risk model, we

analyzed the expression patterns of seven established prognostic

gene s in ESCC— t umor p ro t e in p53 (TP53 ) , tRNA

methyltransferase 5 (TRMT5), epidermal growth factor receptor

(EGFR), kinesin family member 23 (KIF23), fat atypical cadherin 1

(FAT1), lysine methyltransferase 2D (KMT2D), and catenin beta 1

(CTNNB1)—across different risk groups (27–30). Wilcoxon rank-

sum tests were performed to compare their expression levels

between high- and low-risk groups in both the TCGA-ESCC

training set and the GSE53622 validation dataset, with a statistical

significance threshold of P < 0.05. Furthermore, to investigate the

association between these genes and key clinical parameters, a

heatmap was generated to visualize their standardized expression

profiles across all patient samples.
2.6 Pathway enrichment analysis

To explore these intrinsic mechanisms that govern these

disparities in survival rates, gene set variation analysis (GSVA)

was conducted on TCGA-ESCC dataset, aiming to discern the

differential pathway activation between the distinct risk cohorts,

using the c2.cp.kegg.v2022.1.Hs.symbols.gmt gene set (P < 0.05).
2.7 Immunological microenvironmental
analysis

To assess the impact of characteristic genes on the immune

microenvironment of ESCC, this study employed the single-sample

gene set enrichment analysis (ssGSEA) method within gene set

variation analysis (GSVA) (v 1.42.0) (31) to conduct immune

infiltration analysis. Among these, the gene sets used to quantify

the infiltration levels of 28 types of immune cells in ESCC tissue

samples were derived from a previously published study (32). The

disparities in immune-infiltrating cell distributions across various

risk groups were determined through the employment of Wilcoxon

rank-sum test (P < 0.05). These correlations among risk scores,

signature genes, and differentially infiltrated immune cells were

analyzed. Furthermore, 21 major histocompatibility complex

(MHC)-related genes (33) and 64 chemokine-related genes,

including their receptors (34), were obtained from previous

studies. Differences in these genes between risk groups were

calculated via the Wilcoxon test (P < 0.05). In addition, immune

cycle-related data were extracted from the TIP website (http://

biocc.hrbmu.edu.cn/TIP/index.jsp), and ssGSEA scores for each

function were calculated using GSVA to explore differences in the
frontiersin.org
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scores for active processes of the immune cycle in cancer across

varying risk stratifications. Ultimately, we assessed differences in the

Tumor Immune Dysfunction and Exclusion (TIDE) score between

risk groups (P < 0.05), and evaluated the response rates to

immunotherapy within various risk groups. The TIDE was a

computational tool commonly used to infer immunotherapy

efficacy from genomic data, rather than a direct clinical predictive

tool (35). To further verify the characteristics of the ESCC immune

microenvironment, this study additionally employed the

CIBERSORT algorithm for immune infiltration analysis.
2.8 Chemotherapeutic drug sensitivity
analysis and molecular network
construction

Using pRRophetic (v0.5) (36), the half-maximal inhibitory

concentration (IC50) values for 138 chemotherapeutic drugs were

calculated for each tumor sample, and variations in drug IC50 values

across risk groups were analyzed. To further investigate the

regulatory mechanisms of signature genes in ESCC, we predicted

the transcription factors (TFs) and miRNAs corresponding to them

using the JASPAR database. A TF-mRNA-miRNA network was

constructed employing Cytoscape (v3.8.2) (37).
2.9 Expression validation of signature
genes

The differential expression patterns of characteristic genes for

TCGA-ESCC were extracted to compare their expression between

ESCC and control samples. Additionally, we collected 5 pairs of

ESCC and control samples for reverse transcription-quantitative

polymerase chain reaction (RT-qPCR) and immunohistochemistry

(IHC) validation from Baoying People’s Hospital. All samples were

accumulated from untreated sufferers, and adjacent normal tissues

were obtained from areas at least 2 cm away from tumor margins to

avoid contamination. Patients with severe comorbidities or prior

cancer treatments were excluded to minimize confounding factors.

Informed consent was obtained from all participants. The study was

granted ethical approval through the Ethics Committee of Baoying

People’s Hospital.

Following sample collection, these specimens were promptly

immersed in liquid nitrogen for rapid freezing, before being

securely transferred to a -80 °C refrigerator to ensure the integrity

of RNA and mitigate degradation. Total RNA from 10 samples was

extracted using TRIzol reagent (Invitrogen, China) according to the

manufacturer’s protocol. RNA concentrations were subsequently

quantified with the NanoPhotometer N50. Following this, cDNA

was produced over reverse transcription utilizing the SureScript

First Strand cDNA Synthesis Kit (Servicebio, China). Eventually,

RT-qPCR was supervised utilizing a CFX Connect Thermal Cycler

(Bio-Rad, USA). Amplification conditions are provided in

Supplementary Table S1. The relative quantification of mRNA

transcripts was determined utilizing 2-DDCt way. The DDCt values
Frontiers in Oncology 05
of the RT-qPCR experiment are shown in the Supplementary Table

S2. All primer sequences are readily accessible within

Supplementary Table S3.

After sample collection, the samples were fixed by immersion in

4% paraformaldehyde for 24 to 48 hours. The specimens were

meticulously embedded within paraffin wax before being carefully

sectioned. Ten paraffin-embedded ESCC tissue blocks were

sectioned at 3 mm and baked at 64°C for 1 hour. The sections

were dewaxed twice in xylene and rehydrated through a graded

ethanol series. After blocking with 5% bovine serum albumin (BSA)

for 30 minutes, the sections were incubated with primary antibodies

against TSPAN15, TSPAN9, and TSPAN16 at 4°C overnight. On

the following day, the sections were rewarmed at 37°C and

sequentially treated with a reaction enhancer and an enhanced

enzyme-labeled secondary antibody, each for 20 minutes. Finally,

the sections were developed with 3,3’- diaminobenzidine (DAB),

counterstained with hematoxylin, dehydrated through a graded

ethanol series, cleared in xylene, and mounted with neutral resin.

Ultimately, these samples were spotted, mounted on slides, and

scanned. ImageJ and Pro Plus software were used for analysis, while

GraphPad Prism was employed for result visualization.
2.10 Statistical analysis

All the analytical procedures were executed utilizing the R package

(v4.2.2). A P-value of < 0.05 was deemed statistically significant.
3 Results

3.1 Identification and functional enrichment
of candidate genes: a total of 24 candidate
genes were identified and subjected to
functional enrichment analysis

A total of 8,506 DEGs were discerned between these tumor and

normal tissues, with 4,242 genes exhibiting elevated expression and

4,264 genes manifesting reduced expression (Figures 2A, B). DEGs

were then overlapped with TRGs to identify 24 candidate genes

(Figure 2C). Figures 2D, E display the expression of candidate

genes. Subsequent functional and pathway enrichment analyses

uncovered that these genes pertained to the modulation of the

Notch signaling pathway, integrin binding, ion channel regulator

activity, hematopoietic cell lineage, lysosomes, and proteoglycans in

cancer (Figures 2F, G). Moreover, the PPI network revealed higher

connectivity for CD9, TSPAN2, TSPAN13, TSPAN15, and

CD63 (Figure 2H).
3.2 Construction of a risk model with a
high accuracy

Of the 24 candidate genes, 8 were found to be connected to

survival using univariate Cox regression analysis (P < 0.2) and
frontiersin.org
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successfully passed the PH assumption test (P > 0.05) (Figure 3A). A

multivariate Cox PH model was subsequently developed

incorporating an influence of 8 genes (Figure 3B), and the

optimal model was selected using stepwise regression (P < 0.05),

which included 3 signature genes: TSPAN15 (P = 0.012, HR = 1.847,

confidence interval (CI) = 1.1e + 00 - 2.990), TSPAN9 (P = 0.017,

HR = 0.290, CI = 1.0e - 01 - 0.800), and TSPAN16 (P = 0.026, HR =

0.001, CI = 1.2e - 06 - 0.430) (Figure 3C). Furthermore, these

signature genes significantly differed among high and low-

expression groups within K-M survival curves (P < 0.029, P <
Frontiers in Oncology 06
0.012, P < 0.041) (Figure 3D). In addition, the formula for the risk

score is: RiskScore = TSPAN15*(0:614) + TSPAN9*( − 1:238) + TS

PAN16*( − 7:253). Sufferers of TCGA-ESCC were categorized into

different risk groups drawing upon the optimal threshold of risk

score. The survival analysis revealed that individuals within high-

risk cohort exhibited diminished survival probabilities (Figure 4A).

This model exhibited exceptional prognostic precision for overall

survival (OS), achieving area under the curve (AUC) metrics of

0.672 (95% Cl: 0.473-0.864), 0.723 (95% Cl: 0.529-0.924), and 0.760

(95% Cl: 0.540-1.019) for the 1-, 2-, and 3-year survival forecasts,
FIGURE 2

Identification and functional enrichment of differentially expressed TRGs in ESCC patients. (A) The volcano plot of DEGs. Red indicated up-regulated
genes, blue indicated down-regulated genes, and grey indicated non-significant genes. (B) The heatmap of top 10 distinctly up-regulated and
down-regulated genes. The colors represented the relative expression of the genes, with red representing relatively high expression and blue
representing relatively low expression. (C) The Venn diagram of DEGs and TM4SF. (D) The volcano plot and (E) heatmap of candidate genes. (F) GO
enrichment analysis and (G) KEGG pathway enrichment analysis of the 24 candidate TRGs. (H) PPI network of candidate TRGs. The nodes represent
genes, the size of the dots represents the magnitude of connectivity, and the colors represent up-down relationships.
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respectively (Figure 4B). The Harrell’s C index was 0.691 (95% Cl:

0.542-0.833). Significantly, the survival distribution graphs revealed

a progressive rise in mortality rates corresponding to ascending risk

scores, with TSPAN9 being overexpressed in the low-risk cohort

and TSPAN15 exhibiting reduced expression (Figure 4C). Likewise,

we substantiated the model’s predictive capability within the

GSE53622 dataset. The high-risk cohort exhibited consistently

poorer survival outcomes, with a statistical significance of P <

0.044 (Figure 4D), and AUC metrics for 1-year, 2-year, and 3-

year predictive intervals for patients were recorded at 0.739 (95%

CI: 0.575–0.897), 0.666 (95% CI: 0.505–0.794), and 0.640 (95% CI:

0.508–0.771), respectively (Figure 4E), aligning with TCGA-ESCC

findings. The Harrell’s C index was 0.625 (95% Cl: 0.530-0.714).

The low-risk cohort demonstrated an elevation in the expression of

these three pivotal signature genes (Figure 4F). The mean C-index

derived from the bootstrap method was 0.772 (95% CI: 0.645–

0.893), which was higher than the original C-index of 0.707 (95%
Frontiers in Oncology 07
CI: 0.590–0.750). These results indicated that the model effectively

discriminated survival risks among patients and possessed clinical

reference value.
3.3 Risk score and tumor stage as
independent prognostic factors for ESCC
and construction of a validated alignment
chart

Patients with varying clinical features require different

therapeutic strategies and have different prognoses. We

investigated the correlation between risk scores and clinical

attributes. Figure 5A depicts the distribution of clinical traits and

signature genes across various risk categories. To ascertain the

efficacy of risk scores across various clinical subgroups as

prognostic indicators, we conducted a K-M survival analysis and
FIGURE 3

Identification of the signature genes. (A) Forest plot of univariate Cox analysis, genes with P < 0.2 were defined as associated with prognosis. (B) Forest
plot of multifactorial Cox analysis based on eight genes associated with prognosis. (C) stepwise regression analysis of forest maps to identify signature
genes. (D) K-M survival curves of patients between high and low expression groups of signature genes. *P < 0.05.
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receiver ROC curve assessments for these subgroups. OS within

high-risk group was considerably smaller than in low-risk group for

M0 stage (P < 0.018), T3-T4 group (P < 0.017), and stage I-II group

(P < 0.039). Additionally, AUC values at 1, 2, and 3 years exceeded

0.7 (Supplementary Figure S2). In the validation set GSE53622,

high-risk patients aged 60 years or younger (P < 0.047), and those

within T3-T4 group (P < 0.034) exhibited significantly shorter OS

than low-risk patients. At the 1-year, 2-year, and 3-year marks,

AUC values all surpassed 0.6 (Supplementary Figure S3). Although

not statistically significant in other clinical subgroups, high-risk

group patients typically exhibited a less favorable outcome

compared to their low-risk counterparts. The research indicates

that the risk score model exhibits enhanced precision in forecasting
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outcomes for patients in the T3-T4 stage, surpassing its predictive

capabilities in other patient subsets. Building upon the clinical

features and risk scores, we meticulously crafted a predictive

nomogram for prognosis. The univariate Cox regression analyses

exemplified that a risk score (P = 0.001, HR = 2.474, CI = 1.462 -

4.188), tumor stage (P = 0.044, HR = 2.368, CI = 1.023 - 5.481), and

pathological N stage (P = 0.030, HR = 2.623, CI = 1.095 – 6.284)

were associated with patients’ survival prognosis (Figure 5B).

Among them, risk score, tumor stage and pathological N stage

passed the PH assumption test. Risk score (P = 0.000086, HR =

3.918, CI = 1.982 - 7.747) and tumor stage (P = 0.024, HR = 3.764,

CI = 1.187 - 11.93) were recognized as standalone predictive

indicators (Figure 5C). Subsequently, an alignment chart
FIGURE 4

Construction of the risk model based on signature genes. K-M survival curves for patients between high and low risk groups in (A) the training set
and (D) the validation set. ROC curves for patient survival at 1,2,3 years in (B) the training set and (E) the validation set. The survival status, survival
time, and gene expression in (C) the training set and (F) the validation set. In the distribution plot of patient survival time and survival status, the
horizontal coordinates were the samples of patients sorted according to their risk scores, with increasing risk scores from left to right, and the
vertical coordinates were the patient survival time and risk scores, respectively. In the heat map of gene expression, red represented higher relative
expression and blue lower.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1580199
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hao et al. 10.3389/fonc.2025.1580199
incorporating risk score and tumor stage was developed to assess

patient survival probabilities at 1–3 years (Figure 5D). Furthermore,

these calibration curves closely matched the ideal curves

(Figure 5E). AUC values for patients at 1–3 years consistently

exceeded 0.6, with corresponding 95% CIs of 0.45–0.87, 0.54–

0.90, and 0.56–1.00 (Figure 5F), demonstrating the model’s
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accuracy and validity. The Harrell’s C index was 0.741 (95% Cl:

0.647-0.835). The DCA curve verification showed that a net benefit

value greater than 0 indicated a favorable predictive effect of the

model (Figure 5G). The Brier score analysis demonstrated that the

prediction error for 1-year OS was relatively low (0.10), indicating

good accuracy at this time point. The prediction errors for 2-year
FIGURE 5

Construction of a prognostic model related to signature genes. (A) Distribution of clinicopathological features in the two risk groups. (B) Univariate
Cox regression analyses of prognosis according to the risk score and clinical factors. Where P < 0.05 indicated that the clinical factor is associated
with the patient’s survival prognosis. (C) Multivariate Cox regression analyses of prognosis according to the risk score and clinical factors. Where P <
0.05 indicated that the clinical factor is an independent prognostic factor. (D) The nomogram integrates the tumor stage and risk score for
predicting the 1-, 2-, and 3-year OS of patients with ESCC. (E) The calibration curves and (F) ROC curves for the nomogram for evaluating the
predictive value. (G) DCA of the nomogram model. The x-axis represents the risk threshold and the y-axis represents the net benefit. The purple line
(“None”) indicates no intervention for any patients, and the blue line (“All”) indicates intervention for all patients. The red and brown lines represent
the predictive effects of risk score and tumor stage, respectively, while the green line represents the predictive effect of the integrated nomogram.
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OS (0.23) and 3-year OS (0.25) increased gradually, which is

consistent with the general pattern observed in prognostic

models, where predictive performance tends to decrease with

longer follow-up.
3.4 Expression patterns of known ESCC
prognostic genes across risk groups and
clinical subgroups

To evaluate whether our TM4SF-based risk model captures

established molecular phenotypes in ESCC, we analyzed the
Frontiers in Oncology 10
expression of seven previously validated prognostic genes. In the

TCGA-ESCC cohort, several genes—including KIF23, EGFR,

KMT2D, FAT1, and CTNNB1—were significantly upregulated in

the low-risk group (P < 0.05). In the independent GSE53622

validation set, KMT2D and TRMT5 showed marked upregulation

in the low-risk group, whereas TP53 was elevated in high-risk

patients (P < 0.05). Notably, KMT2D was consistently

downregulated in high-risk groups across both datasets. The

concordant expression trends observed for most genes between

the two independent cohorts support the robustness of our risk

stratification approach (Figure 6A). Further analysis of gene

expression across clinical strata revealed that genes such as TP53
FIGURE 6

Expression patterns of known ESCC prognostic genes across risk groups and clinical strata. (A) Box plots illustrating the differential expression of
ESCC prognosis-associated genes between high- and low-risk groups in the training and validation sets. The top row represents the training set,
while the bottom row corresponds to the validation set. In each box plot, the x-axis indicates the high- and low-risk groups, and the y-axis
represents the gene expression level. (B) Heatmap showing the distribution of seven prognostic genes across different clinical features. The top of
the heatmap displays the risk groups along with major clinical features, while the heatmap body represents the relative expression levels of each
gene in high-risk and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns no statistical significance.
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and TRMT5 were generally expressed at higher levels in high-risk

patients (Figure 6B). Importantly, this expression pattern correlated

with adverse clinical features—including advanced tumor stage (III/

IV), deeper invasion (T3/T4), and lymph node metastasis (N1/N2/

N3)—suggesting that these molecular signatures align with an

aggressive disease phenotype.
3.5 Differences in relevant pathways
between risk groups

We further examined pathway differences between distinct risk

groups using GSVA. The examination uncovered notable activation

across various pathways, such as the metabolism of xenobiotics by

cytochrome P450, drug metabolism by cytochrome P450,
Frontiers in Oncology 11
phenylalanine metabolism, oxidative phosphorylation, and cardiac

muscle contraction (Figure 7A). Furthermore, these pathways were

highly prevalent within the high-risk cohort (Figure 7B).
3.6 Signature genes played an essential
role in the immune microenvironment and
better response to treatment in patients in
high-risk group

For further investigating the relationship among signature

genes and immune microenvironment, we conducted immune

infiltration analyses. Significant positive correlations were

observed in the majority of the 28 immune cell types (Figure 8A).

High-risk group showed elevated infiltration scores for central
FIGURE 7

Functional enrichment analysis of differential genes between different risk groups. (A) Bar chart and (B) heat map for KEGG pathways.
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memory CD8 T cells, T follicular helper cells, and immature

dendritic cells (DCs), whereas type 2 T helper (Th2) cells had

reduced infiltration scores (Figure 8B). Additionally, a heatmap was

employed to delineate the correlation matrix between triad of

signature genes and the various subsets of differentially expressed

immune cells. Although some prognostic genes are associated with
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immune cells (P < 0.05), the correlation is relatively low (cor < 0.5).

TSPAN9 and risk scores were significantly linked to type 2 T helper

cells and immature DCs, while TSPAN15 showed a marked positive

correlation with T follicular helper cells (cor = 0.23) and central

memory CD8 T cells (cor = 0.32) (Figure 8C). Additionally, CCL26,

CXCL2, CCL21, XCL1, CXCL5, and CXCL17 among chemokines
FIGURE 8

Association between the risk score and tumor microenvironment. (A) Correlation heatmap of 28 immune cells. (B) Distribution level of 28 immune
cells in the high- and low-risk groups. B cell: B lymphocyte. T cell: T lymphocyte. CD4T: CD4+T lymphocyte. CD8T: CD8+T lymphocyte. MDCS:
Myeloid-derived suppressor cell. (C) Heat map of the correlation between three signature genes and differentially expressed immune cells. Heat
maps of the gene expression of (D) chemokines and their receptor-related genes, and (E) MHC genes, between high- and low-risk groups. (F) The
ssGSEA score of immune cycling processes in different risk groups. (G) Difference of TIDE, dysfunction and exclusion scores in different risk groups.
(H) Comparisons of the proportions of no responders and responders to immunotherapy among high- and low-risk groups. *P < 0.05, **P < 0.01,
***P < 0.001, ns no statistical significance.
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and their receptor-related genes, and HLA-E among MHC genes

were prominently expressed in different risk groups (Figures 8D, E).

Furthermore, we collected gene sets representing immune cycling

processes and analyzed them using ssGSEA. The data showed that

immune cycling processes, specifically Step 4 basophil recruitment,

Step 4 Th2 cell recruitment, and Step 7 killing of cancer cells, were

substantially elevated within high-risk group (Figure 8F). To

explore potential differences in immunotherapy response between

risk groups, we applied the TIDE algorithm to TCGA datasets of

ESCC patients. High-risk cohort exhibited elevated Dysfunction

scores, indicating a propensity for impaired or abnormal tumor

immunity (Figure 8G). Among the analyzed samples, a higher

proportion of patients in the high-risk cohort were inferred to

potentially show a positive response to immunotherapy (P < 0.001).

(Figure 8H). These insights indicate that individuals within the

high-risk category exhibit signs of immune system activation,

implying a potentially enhanced response to immunotherapeutic

treatments, although clinical data are still needed for verification.

The results of the CIBERSORT analysis showed that most of the 22

types of immune cells exhibited a positive correlation with each

other (Supplementary Figure S4A). When analyzing the immune

cell infiltration levels between the high-risk and low-risk groups,

significant differences were found only in the infiltration levels of

two types of immune cells, CD4+ Tem and epithelial cells (P < 0.05)

(Supplementary Figure S4B). The correlation analysis between

characteristic genes and immune cells showed that TSPAN9 had

the strongest correlation with CD4+ Tem and epithelial cells, and

both correlations were negative (Supplementary Figure S4C). This

suggested that TSPAN9 might be involved in the remodeling of the

ESCC immune microenvironment by regulating the infiltration

levels of these two types of immune cells.
3.7 Discussion of drug sensitivity and
molecular regulation

To assess the susceptibility of individuals across various risk

categories to various chemotherapeutic agents, we first calculated

the IC50 values for 138 commonly used drugs. Wilcoxon test was

used to evaluate differences between these risk groups. Among

these, 21 drugs showed significant differences (Figure 9A), with

BAY.61.3606, AZD6482, BMS.536924, and PD.0332991 showing

the most notable difference (Figure 9B). Detailed information on 21

drugs can be found in Supplementary Table S4. The low-risk cohort

exhibited enhanced responsiveness to BAY.61.3606 and AZD6482,

whereas the high-risk cohort manifested a heightened sensitivity to

BMS.536924 and PD.0332991. Based on these findings,

individualized chemotherapy could be tailored for different risk

populations. Additionally, TFs and miRNAs associated with the

signature genes were predicted, and a TF-mRNA-miRNA network

was constructed. All three signature genes were found to be

regulated by TFs and miRNAs, with GATA2 regulating all three

simultaneously (Figure 9C).
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3.8 Expression validation of signature
genes

In TCGA-ESCC, TSPAN15 (P < 0.0001) and TSPAN16 (P <

0.05) were considerably downregulated, while TSPAN9 (P < 0.001)

was notably upregulated (Figure 10A). Additionally, RT-qPCR

results confirmed that TSPAN15 (P < 0.0001) and TSPAN16 (P <

0.0001) were also obviously downregulated within disease group,

consistent with the expression trend observed in TCGA-ESCC

(Figure 10B). Finally, IHC further validated our findings, showing

that TSPAN15 (P < 0.01) and TSPAN16 (P < 0.01) were

downregulated within disease group, while TSPAN9 (P < 0.05)

was upregulated (Figure 10C).
4 Discussion

ESCC is a prevalent malignant tumor globally, characterized by

poor prognosis, high recurrence, and high mortality rates (3).

Despite the development of aggressive multimodal treatments

over the past decades, treatment outcomes remain unsatisfactory

(38, 39). Mounting research indicates that TM4SF is instrumental in

progression, invasion, and metastasis of cancer cells (15–17).

Nevertheless, the predictive significance of TM4SF in ESCC is yet

to be fully elucidated. This investigation pinpointed TSPAN15,

TSPAN9, and TSPAN16 as signature genes associated with

TM4SF in ESCC, and crafted an innovative predictive model

capable of accurately forecasting the outcomes for patients with

ESCC, while clarifying their significant roles in the ESCC tumor

immune microenvironment.

This study identified 24 candidate DEGs correlated with TM4SF

through differential analysis in ESCC. Enrichment analysis

demonstrated that 24 prospective genes were intimately correlated

with Notch signaling pathway, integrin binding, ion channel

regulator activity, hematopoietic cell lineage, lysosome, and

proteoglycans in cancer. Previous research has demonstrated that

TSPAN proteins, like CD9, CD81, CD151, and TM4SF1, promote

cancer metastasis by interacting with integrin a3b1 or a6, which
aligns with our functional enrichment results (18, 40). A literature

review revealed that TSPANs form dimers, such as CD9-CD9 and

CD151-CD81, serving as essential components in complexes

involving TSPANs and other partners in cancer (17, 41).

Homologous dimers are instrumental in the sphere of tumor

biology, significantly impacting cellular processes including

adhesion, migration, invasive capabilities, and signaling

transduction (15, 42, 43). In summary, these findings highlight

the relationship between ESCC and TRGs.

In this study, we identified TSPAN15, TSPAN9, and TSPAN16

as signature genes associated with ESCC. The majority of research

predominantly concentrates on the TSPAN9 function in

suppressing tumor development and progression, especially

within the context of gastric cancer (44–46). Previous research

indicates that TSPAN9 has the potential to inhibit the migratory
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and invasive capabilities of gastric cancer SGC7901 cells via

decreasing matrix metalloproteinase-9 (MMP-9) and urokinase-

type plasminogen activator (uPA) secretion through extracellular

signal-regulated kinases 1 and 2 (ERK1/2) pathway (44).

Additionally, Elastic Microfibril Interface Located Protein 1

(EMILIN1) can synergistically inhibit gastric cancer cell invasion

and metastasis through enhancing TSPAN9 expression (45). A

latest investigation indicates that TSPAN9 boosts the resistance of

gastric cancer cells to 5-FU by stimulating autophagy through the

suppression of the PI3K/AKT/mTOR signaling pathway (46). Tan

et al. (47) suggested that low expression of TSPAN9 in

hepatocellular carcinoma patients correlates in conjunction with

an unfavorable prognosis. These findings align with our results

regarding this prognostic impact of TSPAN9 in ESCC. Conversely,

mounting evidence denotes that TSPAN15 serves as an oncogene,

exerting an important influence on pathogenesis, progression,

metastasis, and resistance to chemotherapy in cancer. Studies

conducted both in vitro and in vivo have demonstrated that

TSPAN15 engages in a precise interaction with beta-transducin
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repeat-containing E3 ubiquitin-protein ligase (BTRC), facilitating

the ubiquitination of phosphorylated IkBa (p-IkBa). This action

primes p-IkBa for degradation by the proteasome. Consequently,

this cascade results in the migration of nuclear factor-kB (NF-kB) to
this cell nucleus, thereby contributing to an enhancement of

metastatic potential in ESCC (48). TSPAN15, identified as a

distinct binding affiliate of disintegrin and metalloproteinase 10

(ADAM10) (49), appears to participate in oncogenic mechanisms

through an ADAM10-mediated pathway, as well as by stimulating

NF-kB signaling (50–52). These investigations furnish further

substantiation for our discovery that elevated expression levels of

TSPAN15 correlate with an unfavorable outcome. To date, the

exploration of TSPAN16 in the context of cancer remains scarce.

Research indicates that TSPAN16 is characteristically expressed at

reduced levels in 33 varieties of cancer when contrasted with their

corresponding normal tissue samples (10), which aligns with our

findings. Our study identified TSPAN16 as being regulated by hsa-

miR-200b-3p, a microRNA with well-documented roles in cancer

initiation and progression. For example, increasing hsa-miR-200b-
FIGURE 9

Chemotherapeutic drug sensitivity analysis and molecular network construction. (A) Differences in IC50 between risk groups for 138 common
chemotherapeutic agents. (B) IC50 of BAY.61.3606, AZD6482, BMS.536924, and PD.0332991 in high- and low-risk groups. (C) The TF-mRNA-miRNA
regulatory network. Blue nodes represent signature genes, yellow triangles represent TFs and green squares represent miRNAs. *P < 0.05, **P < 0.01.
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3p expression may help restore the suppressive influence of Noxa

on gastric carcinoma cell proliferation (53). Furthermore, the

lengthy non-coding RNA known as X-inactive specific transcript

(XIST) functions as a molecular absorbent for miR-200b-3p,

thereby regulating the expression of zinc finger E-box binding

homeobox (ZEB) 1/2 and consequently stimulating the

proliferation, migration, and invasive capabilities in hepatocellular

carcinoma (54). However, these specific regulatory interactions

between TSPAN16 and hsa-miR-200b-3p in ESCC warrant

further investigation. Our findings are the first to suggest that

TSPAN16 significantly impacts prognostic prediction in ESCC
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patients, offering a new perspective for future research. To further

substantiate the robustness of our bioinformatics findings, we

conducted expression validation at both the transcript and

protein levels. Specifically, mRNA expression of the signature

genes was confirmed using TCGA-ESCC data and RT-qPCR,

while protein expression was validated by IHC in patient tissue

samples. These complementary approaches provide consistent

evidence supporting the reliability of our analysis.

This study developed an innovative risk model to accurately

predict ESCC prognosis. Several prognostic biomarkers and

predictive models have already been proposed for ESCC. A recent
FIGURE 10

Expression validation of 3 signature genes. The mRNA expression levels of signature genes in (A) TCGA-ESCC and (B) patient tissue specimens.
(C) Immunohistochemical detection of TSPAN15, TSPAN9, and TSPAN16 expression. Images captured at 200× magnification (scale bar = 50 µm) and
400× magnification (scale bar = 25 µm). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, no statistical significance.
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study established a novel risk model based on cancer-associated

fibroblasts, achieving satisfactory AUC values. This model can also

effectively predict OS and immunotherapy outcomes in ESCC

patients (55). Prior research has indicated that pyroptosis plays a

significant role in initiation and advancement of diverse types of

cancers. Zhang et al. evolved a risk model for ESCC using four

pyroptosis-related genes, which revealed poorer survival outcomes

within the high-risk group (56). This research marks a pioneering

effort in exploring this prognostic predictive power of a risk model

founded on TRGs in ESCC patients. The model has showcased

remarkable coherence and a potent predictive capacity concerning

the outcomes for ESCC patients. To validate the broad applicability

of the model, we employed an independent validation dataset,

GSE53622. The results showed that the AUC values for 1-, 2-,

and 3-year survival predictions were 0.739, 0.666, and 0.640,

respectively. Although a moderate decline was observed over

time, the values consistently remained above 0.6, indicating stable

predictive performance. This gradual decrease in predictive

efficiency over time is a common phenomenon observed in

prognostic models, primarily due to the accumulation of

unmeasured clinical events and therapeutic interventions that

may dilute the initial prognostic signal (57). In addition, tumor

heterogeneity and clonal evolution dynamically alter the molecular

landscape, thereby weakening the predictive power of baseline gene

expression features for long-term outcomes (58). Similar time-

dependent declines in AUC have also been documented in other

ESCC prognostic models (9, 56). Despite limitations such as the

sample size of the validation cohort, our model maintained robust

performance (AUC > 0.6 at all-time points), supporting its reliable

clinical applicability for short- to medium-term survival prediction.

To ascertain the model’s efficacy more comprehensively, we carried

out an exhaustive examination of its efficacy among different

patient demographics. We found that combining the risk score

with tumor stage significantly improved the accuracy and reliability

of survival predictions for ESCC patients. Notably, in the T3 and T4

stage patient groups, the risk score demonstrated a significant

prognostic benefit over other subgroups, consistently achieving

AUC values above 0.6 for 1-year, 2-year, and 3-year predictions.

This not only further validates the model’s clinical application

potential but also underscores its significance and value in

clinical practice.

We also compared our TRGs-based risk model with seven well-

established ESCC prognostic genes, including TP53, TRMT5, EGFR,

KIF23, FAT1, KMT2D, and CTNNB1 (27–30). This comparison

showed that the expression patterns of these genes were consistent

with our model in both high- and low-risk groups across two

independent datasets (TCGA-ESCC and GSE53622). These

consistent results across multiple datasets reinforce the reliability

of our TRGs-based model, supporting its potential as a

complementary tool alongside traditional prognostic markers

in ESCC.

Over the last decade, cancer immunotherapy has emerged as a

powerful treatment modality, heavily dependent on understanding

the immune landscape within tumor microenvironments (59). This

study examined the immune landscape of ESCC using a TM4SF-
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related risk signature. Low-risk group showed significantly higher

levels of Th2 cell infiltration. Research by Schreiber et al. (60)

indicated that Th2 cell-mediated type 2 immunity may enhance

anti-tumor immune responses. Mattes et al. (61) revealed that

tumor-bearing mice receiving ovalbumin-specific Th2 cells

effectively cleared lung and visceral melanoma metastases through

M2 macrophage recruitment. Peng and colleagues (62) discovered a

significant positive association between the levels of Th2 cells and

OS in ESCC patients who did not undergo postoperative

chemotherapy, indicating its promising role as a prognostic

indicator. Interestingly, high-risk group showed elevated levels of

central memory CD8+ T cells, T follicular helper cells, and

immature DCs. DCs within the tumor microenvironment display

dual functionality, with research indicating that their pro-oncogenic

effects result from activating regulatory T cells to inhibit anti-tumor

immune responses (63). As a result, DC recruitment in cancer

correlates with poor prognosis (64, 65), potentially explaining their

high expression in high-risk groups. Furthermore, our research has

uncovered a crucial friendship among risk scores and factors such

as chemokines, chemokine receptors, MHC genes, and immune

cycle processes in ESCC. Notably, HLA-E is the only MHC

component that expression levels notably vary between high-risk

and low-risk populations, exhibiting reduced regulation within the

high-risk cohort. This suggests that its lower expression may be

associated with poor prognosis in ESCC patients. Research by Xu

et al. (66) demonstrated that patients with elevated levels of HLA-E

immunostaining experienced significantly longer OS compared to

those with lower levels, supporting our hypothesis. In line with this,

increased HLA-E expression was linked to extended survival for

several human tumors, including cervical adenocarcinomas (67)

and glioblastomas (68). These findings suggest that risk score

metrics could be critically involved in modulating the immune

responsiveness of tumor cells to immunotherapeutic interventions.

TIDE results provide preliminary clues that high-risk patients may

exhibit relatively better responses to immunotherapy compared

with low-risk patients, which is consistent with our initial

hypothesis. However, it should be emphasized that this inference

is based solely on computational simulation using the TIDE

algorithm, and its clinical relevance must be further validated

through prospective clinical data.

Our immune infiltration analysis using the CIBERSORT

algorithm revealed distinct immune cell subsets between high-

and low-risk groups. Specifically, we observed statistically

significant differences in the infiltration levels of CD4+ Tem and

epithelial cells. In contrast, the infiltration levels of CD8+ Tem did

not show statistically significant differences. Although CD8+ Tem,

as a critical effector population in anti-tumor immunity, did not

show a significant difference in our cohort, their role in ESCC

cannot be overlooked. The presence of effector memory T cells

(including CD4+ Tem and CD8+ Tem) is essential for maintaining

long-term anti-tumor immune responses (69, 70). The significant

changes in CD4+ Tem can provide critical help for the activation

and function of CD8+ T cells, while the lack of significant changes

in CD8+ Tem might indicate a more complex qualitative

dysfunction in the T-cell compartment of high-risk ESCC (71).
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For example, CD8+ Tem cells in the high-risk tumor

microenvironment may be in a state of functional exhaustion or

impairment, which might not be reflected merely by their numbers

(59, 72). This concept is supported by other cancer studies, which

indicate that the functional status of T cells often predicts prognosis

and treatment response more accurately than their absolute

numbers (73). Therefore, while our quantitative analysis

highlighted CD4+ Tem as a key differential subset, future studies

should incorporate functional markers such as Programmed Cell

Death Protein 1 (PD-1), T Cell Immunoglobulin and Mucin-

Domain Containing-3 (TIM-3), and Granzyme B (GZMB) to

explore the roles of CD4+ Tem and CD8+ Tem in the TM4SF-

defined ESCC subtype (73–75), which may reveal immune escape

mechanisms beyond changes in cell infiltration numbers.

Additionally, we further investigated variations in

responsiveness to chemotherapeutic agents among the high- and

low-risk groups. Our comprehensive examination has uncovered

that BAY.61.3606 and AZD6482 showed greater efficacy within

low-risk group, while BMS.536924 and PD.0332991 were more

effective within high-risk group. BMS-536924 has been reported to

effectively inhibit an activation of Akt and mitogen-activated

protein kinases (MAPK), thereby enhancing 5‐fluorouracil (5‐

FU)-induced apoptosis in a manner proportional to the dose

administered, along with exhibiting anti-neoplastic effects in

esophageal cancer cells (76). Similarly, PD‐0332991, a potent

inhibitor of cyclin D1‐cyclin‐dependent kinase 4/6 (CDK4/6), has

been shown curtail cell proliferation, induce apoptosis and

senescence, and suppress migration, invasion, and metastasis in

ESCC. Additionally, it has been found to enhance the effectiveness

of 5‐FU and cisplatin in ESCC cells (77). Currently, no studies have

reported the role of BAY.61.3606 and AZD6482 in ESCC. However,

previous research has demonstrated that these compounds hold

promising potential in cancer therapy—not only by exerting clear

anti-neoplastic effects to suppress cancer cell growth, but also by

significantly enhancing the sensitivity of cancer cells to targeted

molecular therapies, thereby providing important rationale for their

potential application in oncology (78). Nevertheless, additional

investigation is requisite to ascertain their precise functions in

ESCC. These findings could guide personalized chemotherapy

and targeted therapy approaches.

Nevertheless, these findings should be interpreted with caution.

The drug sensitivity predictions in this study were generated using

the pRRophetic algorithm, which is based on Genomics of Drug

Sensitivity in Cancer (GDSC) cell-line data. In vitro cell-line models

differ substantially from the in vivo tumor microenvironment

(TME) and thus may not fully capture the actual therapeutic

responses in patients. Conventional two-dimensional cell lines,

typically derived from monoclonal cultures, only reflect basic

biological behaviors of tumor cells but fail to reproduce the

complex interactions among tumor cells, stromal cells, immune

cells, and extracellular matrix components (59, 79, 80).

Consistently, our functional enrichment analysis revealed

pathways related to integrin binding and the Notch signaling

pathway, both of which involve stromal–tumor interactions that

are absent in monoculture systems. Moreover, ESCC is
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characterized by a unique immunosuppressive landscape and

dynamic immune-cell equilibrium, which cannot be replicated in

cell-line systems. Recently, ESCC organoid models have emerged as

more physiologically relevant preclinical platforms that preserve

tissue architecture and tumor heterogeneity, providing an

opportunity to bridge the gap between cell-line predictions and

patient biology (81). Therefore, while our pRRophetic results

provide useful preliminary insights, further validation in ESCC

organoid models or in vivo animal models will be necessary to

confirm the therapeutic implications.

To enhance comprehension of the relationships and potential

regulatory mechanisms among signature genes, we established

regulatory loops involving TFs, mRNAs, and miRNAs. Our

analysis revealed that GATA2 can target TSPAN15, TSPAN16,

and TSPAN9. GATA2, a member of the GATA family of

transcription factors (GATA1–GATA6), binds to the “GATA”

DNA motif via two zinc-finger domains (82). Recent research has

indicated that GATA2 fulfills a function in transcriptional

regulation of specific ESCC target genes, although the precise

mechanisms remain incompletely understood (83). Thus, it is

hypothesized that GATA2 may contribute to tumorigenesis and

progression by regulating the transcription of signature genes

(TSPAN15, TSPAN16, and TSPAN9). Therefore, additional

investigation is essential to delve into this conjecture.

This study has several limitations, which should be noted. This

represented a backward-looking examination of information culled

from publicly accessible databases; therefore, the potential for

selection and confounding biases was unavoidable. Moreover, no

prospective validation or cross-validation in independent clinical

cohorts or other external datasets was performed, which may limit

the robustness of the conclusions. Finally, while the training cohort

from TCGA-ESCC was composed predominantly of non-Asian

patients, the validation cohort (GSE53622) consisted entirely of

Asian patients. Considering the known differences in etiology,

genetic background, and molecular characteristics of ESCC across

ethnic groups, the global applicability of our model remains

uncertain, and its predictive performance in non-Asian

populations requires further confirmation. Furthermore, the

relatively small sample size of the validation cohort and the

imbalance between high- and low-risk groups defined by the

optimal cutoff may have affected statistical power. As real-world

clinical prognostic and treatment response data were not

incorporated, the clinical utility and predictive performance of the

model cannot yet be fully established. These factors may affect the

robustness and broad applicability of our findings. At the

experimental and mechanistic level, this study only validated

molecular expression using RT-qPCR and IHC, without clinical

correlation analyses or functional experiments, leaving the

mechanistic interpretation incomplete. Moreover, the TIDE

algorithm has been validated primarily in melanoma and non-

small-cell lung cancer; given the distinct tumor microenvironment

of ESCC, its predictive results in this context remain uncertain. To

address the above limitations and to further validate and extend our

findings, future work will focus on three major directions: First,

conducting large-scale prospective studies incorporating multi-
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center and multi-ethnic ESCC cohorts (including both Asian and

non-Asian populations) with comprehensive real-world clinical

data, including long-term follow-up and treatment response

records, to enhance the accuracy, reliability, and generalizability

of the conclusions. Second, performing systematic functional

experiments to elucidate the roles of the signature genes in ESCC,

characterize the downstream regulatory networks of key

transcription factors such as GATA2, and identify their molecular

targets in ESCC pathogenesis, while simultaneously leveraging

clinical datasets such as KEYNOTE-181 (84) and KEYNOTE-590

(85) to validate and calibrate the TIDE algorithm and to identify

ESCC-specific immunological biomarkers. Third, based on refined

cohort data and mechanistic insights, further optimizing the

prognostic model to better meet clinical needs and exploring the

potential of the identified molecules as diagnostic biomarkers or

therapeutic targets, thereby providing new strategies for precision

diagnosis and treatment.
5 Conclusions

For the first time, we identified signature genes for ESCC

associated with TM4SF, including TSPAN15, TSPAN9, and

TSPAN16, and constructed a risk model that effectively predicts

ESCC prognosis. This risk model demonstrates remarkable

performance in independently evaluating ESCC prognosis and

offers potential guidance for tumor-targeted therapies.
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