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Background: Esophageal squamous cell carcinoma (ESCC), a virulent form of
cancer, markedly diminishes prospects for patient survival. The transmembrane 4
superfamily (TM4SF)-related genes (TRGs) are instrumental in the advancement
and spread of cancer. The intent of the current research was to create a
prognostic model for ESCC, grounded in the expression patterns of TRGs;
Methods: The datasets pertaining to ESCC from The Cancer Genome Atlas
(TCGA)-ESCC and the GSE53622 cohort were meticulously examined.
Differential and regression analyses discerned the pivotal signature genes.
Subsequent stratification of patients into distinct risk groups was achieved by
employing optimal risk score thresholds. This prognostic precision of model was
assessed with Kaplan-Meier (K-M) curves and receiver operating characteristic
(ROC) analyses. A nomogram integrating risk score with clinicopathological
characteristics was meticulously constructed and subsequently validated.
Additional analyses included functional enrichment, immune infiltration,
immunotherapy responses, drug sensitivity, and molecular network analysis.
The expression levels of the characteristic genes were meticulously examined
in both TCGA-ESCC datasets and patient-derived tissues;

Results: 24 candidate genes were identified. Among these, TSPAN15, TSPANS,
and TSPAN16 were selected as signature genes. The model showed high
prediction accuracy via K-M and ROC curves. Prognostic evaluations have
indicated that the risk score and the stage of the tumor are pivotal prognostic
indicators. The high-risk cohort exhibited elevated dysfunction scores,
suggesting a potentially more favorable response to immunotherapy.
Significant drug sensitivity differences were observed. GATA2 regulated all
three signature genes, with TSPAN15 and TSPAN16 downregulated and
TSPAN9 upregulated. These findings were consistent with RT-qPCR and
immunohistochemical results;
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Conclusions: TSPAN15, TSPAN9, and TSPAN16 are TM4SF-related signature
genes with prognostic value for ESCC, providing a theoretical foundation for its
diagnosis and treatment.

esophageal squamous cell carcinoma, transmembrane 4 superfamily, prognostic model,
bioinformatics analysis, immune infiltration

1 Introduction

Esophageal cancer (EC) ranks as the 7th most common form of
malignancy across global, and it stands as the sixth primary source
of cancer-related deaths, exerting a considerable toll on human
health. The latest global cancer statistics for 2020 reported 604,000
new cases of EC and 544,000 deaths. It is worth mentioning that the
prevalence of this condition is most prominent in Eastern Asia, with
China showing the highest incidence rate (1). Histopathologically,
Esophageal cancer is primarily categorized into two distinct types:
esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC). In China, ESCC prevails as the
predominant subtype, comprising 90% of all EC cases (2), with
cigarette smoking and alcohol intake identified as key risk factors (3,
4). Despite the advancements in multimodal treatments for ESCC,
the five-year survival rate remains at a disheartening 20% (4, 5). An
accurate assessment of ESCC prognosis is critical for clinicians to
devise suitable treatment plans and enhance the survival prospects
of patients. The prognosis for ESCC is primarily evaluated using
TNM staging (6, 7). However, the predictive accuracy of TNM
staging alone is limited (8, 9). Therefore, reliable biomarkers and
effective models are urgently needed to predict ESCC prognosis and
guide therapeutic strategies.

The transmembrane 4 superfamily (TM4SF) comprises a set of
evolutionarily preserved proteins, distinguished by their four
integral transmembrane segments (TM1-TM4), twin extracellular
loops (EC1 and EC2), and a solitary intracellular loop, all of which
are embedded within the membranes of eukaryotic cells (10, 11).
The EC2 domain is mainly responsible for interacting with various
tetraspanin molecules and other non-tetraspanin proteins. EC2
disulfide crosslinks help stabilize the tetraspanin structure by
stabilizing the TM domains. A total of 33 classical tetraspanins
(TSPANI-TSPAN33) (12) and 8 newly identified tetraspanins
(TM4SF1, TM4SF4, TM4SF5, TM4SF10, TM4SF11, TM4SF18,
TM4SF19, TM4SF20) from the TM4SF family have been
documented (13, 14). These proteins are instrumental in the
initiation and progression of various human malignancies, among
which includes ESCC. Studies indicate that TSPAN27 may act as a
suppressor of invasion and metastasis in ESCC by modulating TGF-
B1 signaling pathway (15-17). Our previous study identified a novel
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mechanism by which TM4SF1I facilitates ESCC metastasis through
its interaction with integrin 06 (18). The research indicates that
TMA4SF holds promise as the prognostic pointer and therapeutic
target for ESCC. Nonetheless, there currently exist only a limited
number of reliable prognostic models that utilize TM4SF-related
genes (TRGs) to forecast the outcome for patients with ESCC. Thus,
it is imperative to cultivate novel and dependable TM4SF-associated
predictive biomarkers for assessing the correlation between TRGs
and patient outcomes, and to guide this understanding of their
development and associated immune effects in ESCC. Recent
studies have shown that the tumor microenvironment (TME),
particularly its immune components, plays a decisive role in
shaping therapeutic outcomes. For example, Al-driven mutation
signatures and plasma cell-based immune classifiers have been
developed to predict immunotherapy responses across cancer
types, offering key insights into tumor-immune interactions (19,
20). Moreover, Ye et al. (21) developed an integrated Machine
Learning and Genetic Algorithm-driven Multiomics analysis
(iMLGAM), which highlights the prognostic value of immune-
related gene signatures and tumor immune infiltration. These
findings, although not specific to ESCC, highlight the prognostic
relevance of immune landscape features and support the rationale
for exploring the immunological implications of TRGs in ESCC.

To address this issue, we analyzed the TRGs in ESCC. We
crafted a predictive ESCC risk model utilizing datasets from Gene
Expression Omnibus (GEO) in conjunction with University of
California, Santa Cruz (UCSC) Xena databases. Our study aimed
to provide new insights into the pathogenesis of ESCC. The
workflow of this study is shown in Figure 1.

2 Materials and methods
2.1 Data source

ESCC-related datasets, The Cancer Genome Atlas (TCGA)-
ESCC and GSE53622, were obtained from UCSC Xena (https://
xenabrowser.net/datapages/) database and GEO database (https://
www.ncbi.nlm.nih.gov/geo/), respectively. The TCGA-ESCC
dataset contained count, FPKM, phenotype, and survival data

frontiersin.org


https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fonc.2025.1580199
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

10.3389/fonc.2025.1580199

Hao et al.
TCGA-ESCC l I TM4SF
[ 8506 DEGs ] [ 41 TRGs ]
I ]
\
[ GO & KEGG analysis ](_[ 24 candidate genes ]—)[ PPI network construction ]
RT-gPCR ]

[ K-M survival curves ](— 3 signature genes

molecular regulatory network ]

Clinical pathological features K-M survival
correlation analysis - curves
Construction and
L. validation of a risk
[ Independent prognostic analysis ] A prognostic risk model model (TCGA-ESCC]
+GSE53622)
Construction of a validated ROC curves
alignment chart
v v
[ GSVA ] [ Immune microenvironment analysis ] [ Immunotherapeutic response ] [ Drug sensilivily]
FIGURE 1

The workflow of the present study.

from 162 tumor and 11 normal samples. A total of 251 TCGA-
ESCC samples were initially retrieved. After excluding 89 cases with
non-squamous cell carcinoma histology, 162 ESCC samples
remained. Among these, 81 cases lacking survival information
were further excluded, resulting in a final analytic cohort of 81
ESCC samples with complete survival data. The detailed selection
process is presented in Supplementary Figure S1. GSE53622
(platform: GPL18109) included 60 ESCC patients and was used to
validate the risk model. Additionally, 41 TRGs were derived from a
previous study (22).

2.2 Differential, enrichment analyses and
construction of protein-protein interaction
network

Differentially expressed genes (DEGs) were discerned among
ESCC and adjacent normal tissues within TCGA-ESCC dataset by
employing DESeq2 (version 1.34.0) (23), with criteria of P value <
0.05 and [log,FC| >0.5. Next, DEGs were intersected with TRGs to
pinpoint potential candidate genes. Pathway and functional
enrichment analyses were conducted using the clusterProfiler
package (version 4.2.2) (24) to probe into these underlying
biological processes and pathways linked to these candidate genes,
with a particular emphasis on unveiling Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases,
applying a stringent significance threshold of P < 0.05. The PPI
network of candidate genes was constructed via STRING (http://
www.string-db.org/) database for evaluating protein-level
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interactions, with a confidence score of 0.3. Building and
validation of risk model.

2.3 Building and validation of risk model

Univariate Cox regression analysis was conducted for specify
potential prognostic genes linked to survival, utilizing the Coxph
function for thorough screening (P < 0.2) (25). The proportional
hazards (PH) hypothesis test (P > 0.05) was then performed, and
genes that passed the test were integrated into a comprehensive
multivariate Cox regression analysis. We used the Step function
within R software for stepwise regression, employing both forward
and backward selection strategies. At each step, the model identifies
and includes or excludes variables that most significantly improve
the model drawing on the Akaike Information Criterion (AIC) for
analysis. The iterative procedure persists until the most optimal and
stable model is pinpointed, characterized by the lowest AIC value
and encompassing the distinctive genes. Subsequent to this, risk
scores were computed by employing penalty coefficients in
conjunction with the gene expression data for predictive features.
A risk model was developed, and the risk score was calculated using
the formula: risk score = >, (coefixXi), where Xi represents the
relative expression of prognostic signature gene i, and coefi displays
Cox coefficient of signature gene i. Based on the risk score
calculation formula, the risk values of samples with survival
information in TCGA-ESCC were calculated using the R package
“survminer” (version 0.4.9) (26). The optimal cutoff value for the
risk score was then calculated by the surv cutpoint function, which
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evaluates the ability of each potential cutoff point to distinguish
survival data by calculating different values and identifies the one
maximizing the survival time difference as the optimal cutoff.
Finally, the ESCC samples with survival information were divided
into high and low risk groups according to the optimal cutoff value.
Kaplan-Meier (K-M) plots, in conjunction with a log-rank analysis,
were employed for evaluating the statistical significance of
disparities in survival rates among the distinct expression cohorts
of the identified genes. Furthermore, the participants were stratified
into different risk categories in accordance with the established
threshold values of their risk scores. The reliability and efficacy of
the predictive model were assessed through the employment of K-
M survival analysis and construction of receiver operating
characteristic (ROC) curves over a span of 1 to 3 years, utilizing
the survivalROC package (version 1.0.3) for graphical
representation. Moreover, identical analytical methods were
employed on the validation dataset GSE53622 to substantiate the
model’s predictive capabilities. The risk assessment for the
validation dataset was initially determined utilizing this risk score
equation, wherein these samples were subsequently classified into
high-risk and low-risk cohorts in accordance with the most
favorable threshold value. Drawing upon the delineation of high-
and low-risk cohorts, the reliability and efficacy of this model were
stringently verified within the validation cohort through the
employment of K-M survival analyses and ROC curve
assessments. To further evaluate the predictive accuracy and
potential overfitting of the multivariate Cox regression model, we
performed an internal validation using the bootstrap method with
1000 resamples. The mean C-index and 95% confidence intervals
from these bootstrap samples were calculated to assess the model’s
performance on independent data and to estimate the optimism.

2.4 Clinical characterization and
independent prognostic analysis

To assess the correlation between signature genes and clinical
characteristics, we examined the distribution of these genes across
various clinical features, including age, tumor stage, and
pathological stage. In the training cohort (TCGA-ESCC) and
validation cohort (GSE53622), K-M survival curve analyses were
undertaken to gauge these survival disparities among various
clinical characteristics across distinct risk categories. Moreover,
ROC curve analyses were executed to ascertain this model’s
predictive accuracy. Subsequently, these risk scores were
integrated with the clinical attributes to conduct univariate Cox
proportional hazards (PH) analysis, aiming to pinpoint the factors
that correlate with patient survival (P < 0.05). These factors were
then sequentially subjected to PH assumption testing (P > 0.05) and
multivariate Cox PH analysis (P < 0.05). Factors with a P-value of <
0.05 were considered independent prognostic factors. A nomogram
was subsequently evolved, integrating these independent prognostic
variables, to gauge a likelihood of patient survival over a 1 to 3 year
period, utilizing rms package (version 6.5-0) (26). The calibration
plot, ROC curves, and decision curve analysis (DCA) were
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employed to ascertain the nomogram’s validation and precision.
To further quantify the prediction error of the nomogram,
additional Brier scores at each time point are calculated.

2.5 Expression analysis of known ESCC
prognostic genes across clinical subgroups

To validate the biological relevance of the risk model, we
analyzed the expression patterns of seven established prognostic
genes in ESCC—tumor protein p53 (TP53), tRNA
methyltransferase 5 (TRMT5), epidermal growth factor receptor
(EGFR), kinesin family member 23 (KIF23), fat atypical cadherin 1
(FAT1I), lysine methyltransferase 2D (KMT2D), and catenin beta 1
(CTNNBI)—across different risk groups (27-30). Wilcoxon rank-
sum tests were performed to compare their expression levels
between high- and low-risk groups in both the TCGA-ESCC
training set and the GSE53622 validation dataset, with a statistical
significance threshold of P < 0.05. Furthermore, to investigate the
association between these genes and key clinical parameters, a
heatmap was generated to visualize their standardized expression
profiles across all patient samples.

2.6 Pathway enrichment analysis

To explore these intrinsic mechanisms that govern these
disparities in survival rates, gene set variation analysis (GSVA)
was conducted on TCGA-ESCC dataset, aiming to discern the
differential pathway activation between the distinct risk cohorts,
using the c2.cp.kegg.v2022.1.Hs.symbols.gmt gene set (P < 0.05).

2.7 Immunological microenvironmental
analysis

To assess the impact of characteristic genes on the immune
microenvironment of ESCC, this study employed the single-sample
gene set enrichment analysis (ssGSEA) method within gene set
variation analysis (GSVA) (v 1.42.0) (31) to conduct immune
infiltration analysis. Among these, the gene sets used to quantify
the infiltration levels of 28 types of immune cells in ESCC tissue
samples were derived from a previously published study (32). The
disparities in immune-infiltrating cell distributions across various
risk groups were determined through the employment of Wilcoxon
rank-sum test (P < 0.05). These correlations among risk scores,
signature genes, and differentially infiltrated immune cells were
analyzed. Furthermore, 21 major histocompatibility complex
(MHC)-related genes (33) and 64 chemokine-related genes,
including their receptors (34), were obtained from previous
studies. Differences in these genes between risk groups were
calculated via the Wilcoxon test (P < 0.05). In addition, immune
cycle-related data were extracted from the TIP website (http://
biocc.hrbmu.edu.cn/TIP/index.jsp), and ssGSEA scores for each
function were calculated using GSVA to explore differences in the
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scores for active processes of the immune cycle in cancer across
varying risk stratifications. Ultimately, we assessed differences in the
Tumor Immune Dysfunction and Exclusion (TIDE) score between
risk groups (P < 0.05), and evaluated the response rates to
immunotherapy within various risk groups. The TIDE was a
computational tool commonly used to infer immunotherapy
efficacy from genomic data, rather than a direct clinical predictive
tool (35). To further verify the characteristics of the ESCC immune
microenvironment, this study additionally employed the
CIBERSORT algorithm for immune infiltration analysis.

2.8 Chemotherapeutic drug sensitivity
analysis and molecular network
construction

Using pRRophetic (v0.5) (36), the half-maximal inhibitory
concentration (ICsg) values for 138 chemotherapeutic drugs were
calculated for each tumor sample, and variations in drug ICs, values
across risk groups were analyzed. To further investigate the
regulatory mechanisms of signature genes in ESCC, we predicted
the transcription factors (TFs) and miRNAs corresponding to them
using the JASPAR database. A TF-mRNA-miRNA network was
constructed employing Cytoscape (v3.8.2) (37).

2.9 Expression validation of signature
genes

The differential expression patterns of characteristic genes for
TCGA-ESCC were extracted to compare their expression between
ESCC and control samples. Additionally, we collected 5 pairs of
ESCC and control samples for reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) and immunohistochemistry
(THC) validation from Baoying People’s Hospital. All samples were
accumulated from untreated sufferers, and adjacent normal tissues
were obtained from areas at least 2 cm away from tumor margins to
avoid contamination. Patients with severe comorbidities or prior
cancer treatments were excluded to minimize confounding factors.
Informed consent was obtained from all participants. The study was
granted ethical approval through the Ethics Committee of Baoying
People’s Hospital.

Following sample collection, these specimens were promptly
immersed in liquid nitrogen for rapid freezing, before being
securely transferred to a -80 °C refrigerator to ensure the integrity
of RNA and mitigate degradation. Total RNA from 10 samples was
extracted using TRIzol reagent (Invitrogen, China) according to the
manufacturer’s protocol. RNA concentrations were subsequently
quantified with the NanoPhotometer N50. Following this, cDNA
was produced over reverse transcription utilizing the SureScript
First Strand cDNA Synthesis Kit (Servicebio, China). Eventually,
RT-qPCR was supervised utilizing a CFX Connect Thermal Cycler
(Bio-Rad, USA). Amplification conditions are provided in
Supplementary Table S1. The relative quantification of mRNA

transcripts was determined utilizing 2"**“" way. The AACt values
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of the RT-qPCR experiment are shown in the Supplementary Table
S2. All primer sequences are readily accessible within
Supplementary Table S3.

After sample collection, the samples were fixed by immersion in
4% paraformaldehyde for 24 to 48 hours. The specimens were
meticulously embedded within paraffin wax before being carefully
sectioned. Ten paraffin-embedded ESCC tissue blocks were
sectioned at 3 wm and baked at 64°C for 1 hour. The sections
were dewaxed twice in xylene and rehydrated through a graded
ethanol series. After blocking with 5% bovine serum albumin (BSA)
for 30 minutes, the sections were incubated with primary antibodies
against TSPAN15, TSPANY, and TSPAN16 at 4°C overnight. On
the following day, the sections were rewarmed at 37°C and
sequentially treated with a reaction enhancer and an enhanced
enzyme-labeled secondary antibody, each for 20 minutes. Finally,
the sections were developed with 3,3’- diaminobenzidine (DAB),
counterstained with hematoxylin, dehydrated through a graded
ethanol series, cleared in xylene, and mounted with neutral resin.
Ultimately, these samples were spotted, mounted on slides, and
scanned. Image] and Pro Plus software were used for analysis, while
GraphPad Prism was employed for result visualization.

2.10 Statistical analysis

All the analytical procedures were executed utilizing the R package
(v4.2.2). A P-value of < 0.05 was deemed statistically significant.

3 Results

3.1 Identification and functional enrichment
of candidate genes: a total of 24 candidate
genes were identified and subjected to
functional enrichment analysis

A total of 8,506 DEGs were discerned between these tumor and
normal tissues, with 4,242 genes exhibiting elevated expression and
4,264 genes manifesting reduced expression (Figures 2A, B). DEGs
were then overlapped with TRGs to identify 24 candidate genes
(Figure 2C). Figures 2D, E display the expression of candidate
genes. Subsequent functional and pathway enrichment analyses
uncovered that these genes pertained to the modulation of the
Notch signaling pathway, integrin binding, ion channel regulator
activity, hematopoietic cell lineage, lysosomes, and proteoglycans in
cancer (Figures 2F, G). Moreover, the PPI network revealed higher
connectivity for CD9, TSPAN2, TSPANI13, TSPANI5, and
CD63 (Figure 2H).

3.2 Construction of a risk model with a
high accuracy

Of the 24 candidate genes, 8 were found to be connected to
survival using univariate Cox regression analysis (P < 0.2) and
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successfully passed the PH assumption test (P > 0.05) (Figure 3A). A
multivariate Cox PH model was subsequently developed
incorporating an influence of 8 genes (Figure 3B), and the
optimal model was selected using stepwise regression (P < 0.05),
which included 3 signature genes: TSPAN15 (P = 0.012, HR = 1.847,
confidence interval (CI) = 1.1e + 00 - 2.990), TSPAN9 (P = 0.017,
HR =0.290, CI = 1.0e - 01 - 0.800), and TSPAN16 (P = 0.026, HR =
0.001, CI = 1.2e - 06 - 0.430) (Figure 3C). Furthermore, these
signature genes significantly differed among high and low-
expression groups within K-M survival curves (P < 0.029, P <
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0.012, P < 0.041) (Figure 3D). In addition, the formula for the risk
score is: RiskScore = TSPAN15%(0.614) + TSPAN9+( — 1.238) + TS
PAN16x( —7.253). Sufferers of TCGA-ESCC were categorized into
different risk groups drawing upon the optimal threshold of risk
score. The survival analysis revealed that individuals within high-
risk cohort exhibited diminished survival probabilities (Figure 4A).
This model exhibited exceptional prognostic precision for overall
survival (OS), achieving area under the curve (AUC) metrics of
0.672 (95% Cl: 0.473-0.864), 0.723 (95% Cl: 0.529-0.924), and 0.760
(95% Cl: 0.540-1.019) for the 1-, 2-, and 3-year survival forecasts,
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Identification of the signature genes. (A) Forest plot of univariate Cox analysis, genes with P < 0.2 were defined as associated with prognosis. (B) Forest
plot of multifactorial Cox analysis based on eight genes associated with prognosis. (C) stepwise regression analysis of forest maps to identify signature
genes. (D) K-M survival curves of patients between high and low expression groups of signature genes. *P < 0.05.

respectively (Figure 4B). The Harrell’s C index was 0.691 (95% Cl:
0.542-0.833). Significantly, the survival distribution graphs revealed
a progressive rise in mortality rates corresponding to ascending risk
scores, with TSPAN9 being overexpressed in the low-risk cohort
and TSPANI5 exhibiting reduced expression (Figure 4C). Likewise,
we substantiated the model’s predictive capability within the
GSE53622 dataset. The high-risk cohort exhibited consistently
poorer survival outcomes, with a statistical significance of P <
0.044 (Figure 4D), and AUC metrics for 1-year, 2-year, and 3-
year predictive intervals for patients were recorded at 0.739 (95%
CL 0.575-0.897), 0.666 (95% CI: 0.505-0.794), and 0.640 (95% CI:
0.508-0.771), respectively (Figure 4E), aligning with TCGA-ESCC
findings. The Harrell’s C index was 0.625 (95% Cl: 0.530-0.714).
The low-risk cohort demonstrated an elevation in the expression of
these three pivotal signature genes (Figure 4F). The mean C-index
derived from the bootstrap method was 0.772 (95% CI: 0.645-
0.893), which was higher than the original C-index of 0.707 (95%
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CI: 0.590-0.750). These results indicated that the model effectively
discriminated survival risks among patients and possessed clinical
reference value.

3.3 Risk score and tumor stage as
independent prognostic factors for ESCC
and construction of a validated alignment
chart

Patients with varying clinical features require different
therapeutic strategies and have different prognoses. We
investigated the correlation between risk scores and clinical
attributes. Figure 5A depicts the distribution of clinical traits and
signature genes across various risk categories. To ascertain the
efficacy of risk scores across various clinical subgroups as
prognostic indicators, we conducted a K-M survival analysis and
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receiver ROC curve assessments for these subgroups. OS within
high-risk group was considerably smaller than in low-risk group for
MO stage (P < 0.018), T3-T4 group (P < 0.017), and stage I-II group
(P < 0.039). Additionally, AUC values at 1, 2, and 3 years exceeded
0.7 (Supplementary Figure S2). In the validation set GSE53622,
high-risk patients aged 60 years or younger (P < 0.047), and those
within T3-T4 group (P < 0.034) exhibited significantly shorter OS
than low-risk patients. At the 1-year, 2-year, and 3-year marks,
AUC values all surpassed 0.6 (Supplementary Figure S3). Although
not statistically significant in other clinical subgroups, high-risk
group patients typically exhibited a less favorable outcome
compared to their low-risk counterparts. The research indicates
that the risk score model exhibits enhanced precision in forecasting
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outcomes for patients in the T3-T4 stage, surpassing its predictive
capabilities in other patient subsets. Building upon the clinical
features and risk scores, we meticulously crafted a predictive
nomogram for prognosis. The univariate Cox regression analyses
exemplified that a risk score (P = 0.001, HR = 2.474, CI = 1.462 -
4.188), tumor stage (P = 0.044, HR = 2.368, CI = 1.023 - 5.481), and
pathological N stage (P = 0.030, HR = 2.623, CI = 1.095 - 6.284)
were associated with patients’ survival prognosis (Figure 5B).
Among them, risk score, tumor stage and pathological N stage
passed the PH assumption test. Risk score (P = 0.000086, HR =
3.918, CI = 1.982 - 7.747) and tumor stage (P = 0.024, HR = 3.764,
Cl =
indicators (Figure 5C). Subsequently, an alignment chart

1.187 - 11.93) were recognized as standalone predictive
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incorporating risk score and tumor stage was developed to assess  accuracy and validity. The Harrell’s C index was 0.741 (95% Cl:
patient survival probabilities at 1-3 years (Figure 5D). Furthermore,  0.647-0.835). The DCA curve verification showed that a net benefit
these calibration curves closely matched the ideal curves  value greater than 0 indicated a favorable predictive effect of the
(Figure 5E). AUC values for patients at 1-3 years consistently = model (Figure 5G). The Brier score analysis demonstrated that the
exceeded 0.6, with corresponding 95% CIs of 0.45-0.87, 0.54—  prediction error for 1-year OS was relatively low (0.10), indicating
0.90, and 0.56-1.00 (Figure 5F), demonstrating the model’s  good accuracy at this time point. The prediction errors for 2-year
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OS (0.23) and 3-year OS (0.25) increased gradually, which is
consistent with the general pattern observed in prognostic
models, where predictive performance tends to decrease with
longer follow-up.

3.4 Expression patterns of known ESCC
prognostic genes across risk groups and
clinical subgroups

To evaluate whether our TM4SF-based risk model captures
established molecular phenotypes in ESCC, we analyzed the

10.3389/fonc.2025.1580199

expression of seven previously validated prognostic genes. In the
TCGA-ESCC cohort, several genes—including KIF23, EGFR,
KMT2D, FATI, and CTNNBI—were significantly upregulated in
the low-risk group (P < 0.05). In the independent GSE53622
validation set, KMT2D and TRMT5 showed marked upregulation
in the low-risk group, whereas TP53 was elevated in high-risk
patients (P < 0.05). Notably, KMT2D was consistently
downregulated in high-risk groups across both datasets. The
concordant expression trends observed for most genes between
the two independent cohorts support the robustness of our risk
stratification approach (Figure 6A). Further analysis of gene
expression across clinical strata revealed that genes such as TP53
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Expression patterns of known ESCC prognostic genes across risk groups and clinical strata. (A) Box plots illustrating the differential expression of
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represents the gene expression level. (B) Heatmap showing the distribution of seven prognostic genes across different clinical features. The top of
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gene in high-risk and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns no statistical significance.
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and TRMT5 were generally expressed at higher levels in high-risk
patients (Figure 6B). Importantly, this expression pattern correlated
with adverse clinical features—including advanced tumor stage (III/
IV), deeper invasion (T3/T4), and lymph node metastasis (N1/N2/

N3)—suggesting that these molecular signatures align with an
aggressive disease phenotype.

3.5 Differences in relevant pathways
between risk groups

We further examined pathway differences between distinct risk
groups using GSVA. The examination uncovered notable activation
across various pathways, such as the metabolism of xenobiotics by
cytochrome P450, drug metabolism by cytochrome P450,

10.3389/fonc.2025.1580199

phenylalanine metabolism, oxidative phosphorylation, and cardiac

muscle contraction (Figure 7A). Furthermore, these pathways were
highly prevalent within the high-risk cohort (Figure 7B).

3.6 Signature genes played an essential
role in the immune microenvironment and
better response to treatment in patients in
high-risk group

For further investigating the relationship among signature
genes and immune microenvironment, we conducted immune
infiltration analyses. Significant positive correlations were
observed in the majority of the 28 immune cell types (Figure 8A).
High-risk group showed elevated infiltration scores for central

sig [ w

20

GLYCOSAMINOGLYCAN_DEGRADATION
DRUG_METABOLISM_OTHER_ENZYMES
TYROSINE_METABOLISM
HISTIDINE_METABOLISM
GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE
PROXIMAL_TUBULE_BICARBONATE_RECLAMATION
ALZHEIMERS_DISEASE
RETINOL_METABOLISM
PORPHYRIN_AND_CHLOROPHYLL_METABOLISM
PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
ARGININE_AND_PROLINE_METABOLISM
PARKINSONS_DISEASE
ARACHIDONIC_ACID_METABOLISM
GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES
GLUTATHIONE_METABOLISM
CARDIAC_MUSCLE_CONTRACTION
OXIDATIVE_PHOSPHORYLATION
PHENYLALANINE_METABOLISM
DRUG_METABOLISM_CYTOCHROME_P450

METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450

-0.5

W risk

I HISTIDINE_METABOLISM
PHENYLALANINE_METABOLISM
| TYROSINE_METABOLISM

ALZHEIMERS_DISEASE
OXIDATIVE_PHOSPHORYLATION
PARKINSONS_DISEASE
GLUTATHIONE_METABOLISM

FIGURE 7

Functional enrichment analysis of differential genes between different risk groups. (A) Bar chart and (B) heat map for KEGG pathways.

Frontiers in Oncology 11

I GLYCOSAMINOGLYCAN_DEGRADATION

J GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES 04
GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE 02
RETINOL_METABOLISM
METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 0
DRUG_METABOLISM_CYTOCHROME_P450
PROXIMAL_TUBULE_BICARBONATE_RECLAMATION
ARACHIDONIC_ACID_METABOLISM
ARGININE_AND_PROLINE_METABOLISM
’ |

CARDIAC_MUSCLE_CONTRACTION

DRUG_METABOLISM_OTHER_ENZYMES
PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
PORPHYRIN_AND_CHLOROPHYLL_METABOLISM

o

0.5

risk
06 Low risk
High risk

-02
-0.4
-0.6

frontiersin.org


https://doi.org/10.3389/fonc.2025.1580199
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

10.3389/fonc.2025.1580199

Association between the risk score and tumor microenvironment. (A) Correlation
cells in the high- and low-risk groups. B cell: B lymphocyte. T cell: T lymphocyte
maps of the gene expression of (D) chemokines and their receptor-related genes, and (E) MHC genes, between high- and low-risk groups. (F) The

FIGURE 8
ssGSEA score of immune cycling processes in different risk groups. (G) Difference of TIDE, dysfunction and exclusion scores in different risk groups.

Myeloid-derived suppressor cell. (C) Heat map of the correlation between three signature genes and differentially expressed immune cells. Heat
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memory CD8 T cells, T follicular helper cells, and immature

dendritic cells (DCs), whereas type 2 T helper (Th2) cells had
reduced infiltration scores (Figure 8B). Additionally, a heatmap was

employed to delineate the correlation matrix between triad of

TSPAN9 and risk scores were significantly linked to type 2 T helper
cells and immature DCs, while TSPAN15 showed a marked positive

correlation with T follicular helper cells (cor = 0.23) and central
memory CD8 T cells (cor = 0.32) (Figure 8C). Additionally, CCL26,

CXCL2, CCL21, XCL1, CXCL5, and CXCL17 among chemokines

frontiersin.org

signature genes and the various subsets of differentially expressed

immune cells. Although some prognostic genes are associated with
12

Frontiers in Oncology


https://doi.org/10.3389/fonc.2025.1580199
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Hao et al.

and their receptor-related genes, and HLA-E among MHC genes
were prominently expressed in different risk groups (Figures 8D, E).
Furthermore, we collected gene sets representing immune cycling
processes and analyzed them using ssGSEA. The data showed that
immune cycling processes, specifically Step 4 basophil recruitment,
Step 4 Th2 cell recruitment, and Step 7 killing of cancer cells, were
substantially elevated within high-risk group (Figure 8F). To
explore potential differences in immunotherapy response between
risk groups, we applied the TIDE algorithm to TCGA datasets of
ESCC patients. High-risk cohort exhibited elevated Dysfunction
scores, indicating a propensity for impaired or abnormal tumor
immunity (Figure 8G). Among the analyzed samples, a higher
proportion of patients in the high-risk cohort were inferred to
potentially show a positive response to immunotherapy (P < 0.001).
(Figure 8H). These insights indicate that individuals within the
high-risk category exhibit signs of immune system activation,
implying a potentially enhanced response to immunotherapeutic
treatments, although clinical data are still needed for verification.
The results of the CIBERSORT analysis showed that most of the 22
types of immune cells exhibited a positive correlation with each
other (Supplementary Figure S4A). When analyzing the immune
cell infiltration levels between the high-risk and low-risk groups,
significant differences were found only in the infiltration levels of
two types of immune cells, CD4+ Tem and epithelial cells (P < 0.05)
(Supplementary Figure S4B). The correlation analysis between
characteristic genes and immune cells showed that TSPAN9 had
the strongest correlation with CD4+ Tem and epithelial cells, and
both correlations were negative (Supplementary Figure S4C). This
suggested that TSPAN9 might be involved in the remodeling of the
ESCC immune microenvironment by regulating the infiltration
levels of these two types of immune cells.

3.7 Discussion of drug sensitivity and
molecular regulation

To assess the susceptibility of individuals across various risk
categories to various chemotherapeutic agents, we first calculated
the IC5, values for 138 commonly used drugs. Wilcoxon test was
used to evaluate differences between these risk groups. Among
these, 21 drugs showed significant differences (Figure 9A), with
BAY.61.3606, AZD6482, BMS.536924, and PD.0332991 showing
the most notable difference (Figure 9B). Detailed information on 21
drugs can be found in Supplementary Table S4. The low-risk cohort
exhibited enhanced responsiveness to BAY.61.3606 and AZD6482,
whereas the high-risk cohort manifested a heightened sensitivity to
BMS.536924 and PD.0332991. Based on these findings,
individualized chemotherapy could be tailored for different risk
populations. Additionally, TFs and miRNAs associated with the
signature genes were predicted, and a TF-mRNA-miRNA network
was constructed. All three signature genes were found to be
regulated by TFs and miRNAs, with GATA2 regulating all three
simultaneously (Figure 9C).
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3.8 Expression validation of signature
genes

In TCGA-ESCC, TSPANI5 (P < 0.0001) and TSPANI6 (P <
0.05) were considerably downregulated, while TSPAN9 (P < 0.001)
was notably upregulated (Figure 10A). Additionally, RT-qPCR
results confirmed that TSPANI5 (P < 0.0001) and TSPANI6 (P <
0.0001) were also obviously downregulated within disease group,
consistent with the expression trend observed in TCGA-ESCC
(Figure 10B). Finally, IHC further validated our findings, showing
that TSPAN15 (P < 0.01) and TSPANI16 (P < 0.01) were
downregulated within disease group, while TSPAN9 (P < 0.05)
was upregulated (Figure 10C).

4 Discussion

ESCC is a prevalent malignant tumor globally, characterized by
poor prognosis, high recurrence, and high mortality rates (3).
Despite the development of aggressive multimodal treatments
over the past decades, treatment outcomes remain unsatisfactory
(38, 39). Mounting research indicates that TM4SF is instrumental in
progression, invasion, and metastasis of cancer cells (15-17).
Nevertheless, the predictive significance of TM4SF in ESCC is yet
to be fully elucidated. This investigation pinpointed TSPANIS,
TSPANY, and TSPANIG6 as signature genes associated with
TMA4SF in ESCC, and crafted an innovative predictive model
capable of accurately forecasting the outcomes for patients with
ESCC, while clarifying their significant roles in the ESCC tumor
immune microenvironment.

This study identified 24 candidate DEGs correlated with TM4SF
through differential analysis in ESCC. Enrichment analysis
demonstrated that 24 prospective genes were intimately correlated
with Notch signaling pathway, integrin binding, ion channel
regulator activity, hematopoietic cell lineage, lysosome, and
proteoglycans in cancer. Previous research has demonstrated that
TSPAN proteins, like CD9, CD81, CD151, and TM4SFI, promote
cancer metastasis by interacting with integrin a3B1 or a6, which
aligns with our functional enrichment results (18, 40). A literature
review revealed that TSPANs form dimers, such as CD9-CD9 and
CD151-CD81, serving as essential components in complexes
involving TSPANs and other partners in cancer (17, 41).
Homologous dimers are instrumental in the sphere of tumor
biology, significantly impacting cellular processes including
adhesion, migration, invasive capabilities, and signaling
transduction (15, 42, 43). In summary, these findings highlight
the relationship between ESCC and TRGs.

In this study, we identified TSPAN15, TSPANY, and TSPANI6
as signature genes associated with ESCC. The majority of research
predominantly concentrates on the TSPANY function in
suppressing tumor development and progression, especially
within the context of gastric cancer (44-46). Previous research
indicates that TSPAN9 has the potential to inhibit the migratory
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Chemotherapeutic drug sensitivity analysis and molecular network construction. (A) Differences in ICsq between risk groups for 138 common
chemotherapeutic agents. (B) ICsq of BAY.61.3606, AZD6482, BMS.536924, and PD.0332991 in high- and low-risk groups. (C) The TF-mRNA-miRNA
regulatory network. Blue nodes represent signature genes, yellow triangles represent TFs and green squares represent miRNAs. *P < 0.05, **P < 0.01.

and invasive capabilities of gastric cancer SGC7901 cells via
decreasing matrix metalloproteinase-9 (MMP-9) and urokinase-
type plasminogen activator (uPA) secretion through extracellular
signal-regulated kinases 1 and 2 (ERKI1/2) pathway (44).
Additionally, Elastic Microfibril Interface Located Protein 1
(EMILINI) can synergistically inhibit gastric cancer cell invasion
and metastasis through enhancing TSPANY expression (45). A
latest investigation indicates that TSPAN9 boosts the resistance of
gastric cancer cells to 5-FU by stimulating autophagy through the
suppression of the PI3K/AKT/mTOR signaling pathway (46). Tan
et al. (47) suggested that low expression of TSPANY in
hepatocellular carcinoma patients correlates in conjunction with
an unfavorable prognosis. These findings align with our results
regarding this prognostic impact of TSPAN9 in ESCC. Conversely,
mounting evidence denotes that TSPAN15 serves as an oncogene,
exerting an important influence on pathogenesis, progression,
metastasis, and resistance to chemotherapy in cancer. Studies
conducted both in vitro and in vivo have demonstrated that
TSPANI5 engages in a precise interaction with beta-transducin

Frontiers in Oncology

repeat-containing E3 ubiquitin-protein ligase (BTRC), facilitating
the ubiquitination of phosphorylated IxBow (p-IxkBe). This action
primes p-IxkBo for degradation by the proteasome. Consequently,
this cascade results in the migration of nuclear factor-xB (NF-xB) to
this cell nucleus, thereby contributing to an enhancement of
metastatic potential in ESCC (48). TSPANIS5, identified as a
distinct binding affiliate of disintegrin and metalloproteinase 10
(ADAM]10) (49), appears to participate in oncogenic mechanisms
through an ADAM10-mediated pathway, as well as by stimulating
NF-xB signaling (50-52). These investigations furnish further
substantiation for our discovery that elevated expression levels of
TSPANI15 correlate with an unfavorable outcome. To date, the
exploration of TSPANIG6 in the context of cancer remains scarce.
Research indicates that TSPANI6 is characteristically expressed at
reduced levels in 33 varieties of cancer when contrasted with their
corresponding normal tissue samples (10), which aligns with our
findings. Our study identified TSPANIG6 as being regulated by hsa-
miR-200b-3p, a microRNA with well-documented roles in cancer
initiation and progression. For example, increasing hsa-miR-200b-
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Expression validation of 3 signature genes. The mRNA expression levels of signature genes in (A) TCGA-ESCC and (B) patient tissue specimens.
(C) Immunohistochemical detection of TSPAN15, TSPAN9, and TSPAN16 expression. Images captured at 200x magnification (scale bar = 50 ym) and
400x magnification (scale bar = 25 pm). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, no statistical significance.

3p expression may help restore the suppressive influence of Noxa
on gastric carcinoma cell proliferation (53). Furthermore, the
lengthy non-coding RNA known as X-inactive specific transcript
(XIST) functions as a molecular absorbent for miR-200b-3p,
thereby regulating the expression of zinc finger E-box binding
homeobox (ZEB) 1/2 and consequently stimulating the
proliferation, migration, and invasive capabilities in hepatocellular
carcinoma (54). However, these specific regulatory interactions
between TSPANI6 and hsa-miR-200b-3p in ESCC warrant
further investigation. Our findings are the first to suggest that
TSPANIG6 significantly impacts prognostic prediction in ESCC
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patients, offering a new perspective for future research. To further
substantiate the robustness of our bioinformatics findings, we
conducted expression validation at both the transcript and
protein levels. Specifically, mRNA expression of the signature
genes was confirmed using TCGA-ESCC data and RT-qPCR,
while protein expression was validated by IHC in patient tissue
samples. These complementary approaches provide consistent
evidence supporting the reliability of our analysis.

This study developed an innovative risk model to accurately
predict ESCC prognosis. Several prognostic biomarkers and
predictive models have already been proposed for ESCC. A recent
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study established a novel risk model based on cancer-associated
fibroblasts, achieving satisfactory AUC values. This model can also
effectively predict OS and immunotherapy outcomes in ESCC
patients (55). Prior research has indicated that pyroptosis plays a
significant role in initiation and advancement of diverse types of
cancers. Zhang et al. evolved a risk model for ESCC using four
pyroptosis-related genes, which revealed poorer survival outcomes
within the high-risk group (56). This research marks a pioneering
effort in exploring this prognostic predictive power of a risk model
founded on TRGs in ESCC patients. The model has showcased
remarkable coherence and a potent predictive capacity concerning
the outcomes for ESCC patients. To validate the broad applicability
of the model, we employed an independent validation dataset,
GSE53622. The results showed that the AUC values for 1-, 2-,
and 3-year survival predictions were 0.739, 0.666, and 0.640,
respectively. Although a moderate decline was observed over
time, the values consistently remained above 0.6, indicating stable
predictive performance. This gradual decrease in predictive
efficiency over time is a common phenomenon observed in
prognostic models, primarily due to the accumulation of
unmeasured clinical events and therapeutic interventions that
may dilute the initial prognostic signal (57). In addition, tumor
heterogeneity and clonal evolution dynamically alter the molecular
landscape, thereby weakening the predictive power of baseline gene
expression features for long-term outcomes (58). Similar time-
dependent declines in AUC have also been documented in other
ESCC prognostic models (9, 56). Despite limitations such as the
sample size of the validation cohort, our model maintained robust
performance (AUC > 0.6 at all-time points), supporting its reliable
clinical applicability for short- to medium-term survival prediction.
To ascertain the model’s efficacy more comprehensively, we carried
out an exhaustive examination of its efficacy among different
patient demographics. We found that combining the risk score
with tumor stage significantly improved the accuracy and reliability
of survival predictions for ESCC patients. Notably, in the T3 and T4
stage patient groups, the risk score demonstrated a significant
prognostic benefit over other subgroups, consistently achieving
AUC values above 0.6 for 1-year, 2-year, and 3-year predictions.
This not only further validates the model’s clinical application
potential but also underscores its significance and value in
clinical practice.

We also compared our TRGs-based risk model with seven well-
established ESCC prognostic genes, including TP53, TRMT5, EGER,
KIF23, FATI, KMT2D, and CTNNBI (27-30). This comparison
showed that the expression patterns of these genes were consistent
with our model in both high- and low-risk groups across two
independent datasets (TCGA-ESCC and GSE53622). These
consistent results across multiple datasets reinforce the reliability
of our TRGs-based model, supporting its potential as a
complementary tool alongside traditional prognostic markers
in ESCC.

Over the last decade, cancer immunotherapy has emerged as a
powerful treatment modality, heavily dependent on understanding
the immune landscape within tumor microenvironments (59). This
study examined the immune landscape of ESCC using a TM4SF-
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related risk signature. Low-risk group showed significantly higher
levels of Th2 cell infiltration. Research by Schreiber et al. (60)
indicated that Th2 cell-mediated type 2 immunity may enhance
anti-tumor immune responses. Mattes et al. (61) revealed that
tumor-bearing mice receiving ovalbumin-specific Th2 cells
effectively cleared lung and visceral melanoma metastases through
M2 macrophage recruitment. Peng and colleagues (62) discovered a
significant positive association between the levels of Th2 cells and
OS in ESCC patients who did not undergo postoperative
chemotherapy, indicating its promising role as a prognostic
indicator. Interestingly, high-risk group showed elevated levels of
central memory CD8+ T cells, T follicular helper cells, and
immature DCs. DCs within the tumor microenvironment display
dual functionality, with research indicating that their pro-oncogenic
effects result from activating regulatory T cells to inhibit anti-tumor
immune responses (63). As a result, DC recruitment in cancer
correlates with poor prognosis (64, 65), potentially explaining their
high expression in high-risk groups. Furthermore, our research has
uncovered a crucial friendship among risk scores and factors such
as chemokines, chemokine receptors, MHC genes, and immune
cycle processes in ESCC. Notably, HLA-E is the only MHC
component that expression levels notably vary between high-risk
and low-risk populations, exhibiting reduced regulation within the
high-risk cohort. This suggests that its lower expression may be
associated with poor prognosis in ESCC patients. Research by Xu
et al. (66) demonstrated that patients with elevated levels of HLA-E
immunostaining experienced significantly longer OS compared to
those with lower levels, supporting our hypothesis. In line with this,
increased HLA-E expression was linked to extended survival for
several human tumors, including cervical adenocarcinomas (67)
and glioblastomas (68). These findings suggest that risk score
metrics could be critically involved in modulating the immune
responsiveness of tumor cells to immunotherapeutic interventions.
TIDE results provide preliminary clues that high-risk patients may
exhibit relatively better responses to immunotherapy compared
with low-risk patients, which is consistent with our initial
hypothesis. However, it should be emphasized that this inference
is based solely on computational simulation using the TIDE
algorithm, and its clinical relevance must be further validated
through prospective clinical data.

Our immune infiltration analysis using the CIBERSORT
algorithm revealed distinct immune cell subsets between high-
and low-risk groups. Specifically, we observed statistically
significant differences in the infiltration levels of CD4+ Tem and
epithelial cells. In contrast, the infiltration levels of CD8+ Tem did
not show statistically significant differences. Although CD8+ Tem,
as a critical effector population in anti-tumor immunity, did not
show a significant difference in our cohort, their role in ESCC
cannot be overlooked. The presence of effector memory T cells
(including CD4+ Tem and CD8+ Tem) is essential for maintaining
long-term anti-tumor immune responses (69, 70). The significant
changes in CD4+ Tem can provide critical help for the activation
and function of CD8+ T cells, while the lack of significant changes
in CD8+ Tem might indicate a more complex qualitative
dysfunction in the T-cell compartment of high-risk ESCC (71).
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For example, CD8+ Tem cells in the high-risk tumor
microenvironment may be in a state of functional exhaustion or
impairment, which might not be reflected merely by their numbers
(59, 72). This concept is supported by other cancer studies, which
indicate that the functional status of T cells often predicts prognosis
and treatment response more accurately than their absolute
numbers (73). Therefore, while our quantitative analysis
highlighted CD4+ Tem as a key differential subset, future studies
should incorporate functional markers such as Programmed Cell
Death Protein 1 (PD-I), T Cell Immunoglobulin and Mucin-
Domain Containing-3 (TIM-3), and Granzyme B (GZMB) to
explore the roles of CD4+ Tem and CD8+ Tem in the TM4SF-
defined ESCC subtype (73-75), which may reveal immune escape
mechanisms beyond changes in cell infiltration numbers.

Additionally, we further investigated variations in
responsiveness to chemotherapeutic agents among the high- and
low-risk groups. Our comprehensive examination has uncovered
that BAY.61.3606 and AZD6482 showed greater efficacy within
low-risk group, while BMS.536924 and PD.0332991 were more
effective within high-risk group. BMS-536924 has been reported to
effectively inhibit an activation of Akt and mitogen-activated
protein kinases (MAPK), thereby enhancing 5-fluorouracil (5-
FU)-induced apoptosis in a manner proportional to the dose
administered, along with exhibiting anti-neoplastic effects in
esophageal cancer cells (76). Similarly, PD-0332991, a potent
inhibitor of cyclin DI-cyclin-dependent kinase 4/6 (CDK4/6), has
been shown curtail cell proliferation, induce apoptosis and
senescence, and suppress migration, invasion, and metastasis in
ESCC. Additionally, it has been found to enhance the effectiveness
of 5-FU and cisplatin in ESCC cells (77). Currently, no studies have
reported the role of BAY.61.3606 and AZD6482 in ESCC. However,
previous research has demonstrated that these compounds hold
promising potential in cancer therapy—not only by exerting clear
anti-neoplastic effects to suppress cancer cell growth, but also by
significantly enhancing the sensitivity of cancer cells to targeted
molecular therapies, thereby providing important rationale for their
potential application in oncology (78). Nevertheless, additional
investigation is requisite to ascertain their precise functions in
ESCC. These findings could guide personalized chemotherapy
and targeted therapy approaches.

Nevertheless, these findings should be interpreted with caution.
The drug sensitivity predictions in this study were generated using
the pRRophetic algorithm, which is based on Genomics of Drug
Sensitivity in Cancer (GDSC) cell-line data. In vitro cell-line models
differ substantially from the in vivo tumor microenvironment
(TME) and thus may not fully capture the actual therapeutic
responses in patients. Conventional two-dimensional cell lines,
typically derived from monoclonal cultures, only reflect basic
biological behaviors of tumor cells but fail to reproduce the
complex interactions among tumor cells, stromal cells, immune
cells, and extracellular matrix components (59, 79, 80).
Consistently, our functional enrichment analysis revealed
pathways related to integrin binding and the Notch signaling
pathway, both of which involve stromal-tumor interactions that
are absent in monoculture systems. Moreover, ESCC is
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characterized by a unique immunosuppressive landscape and
dynamic immune-cell equilibrium, which cannot be replicated in
cell-line systems. Recently, ESCC organoid models have emerged as
more physiologically relevant preclinical platforms that preserve
tissue architecture and tumor heterogeneity, providing an
opportunity to bridge the gap between cell-line predictions and
patient biology (81). Therefore, while our pRRophetic results
provide useful preliminary insights, further validation in ESCC
organoid models or in vivo animal models will be necessary to
confirm the therapeutic implications.

To enhance comprehension of the relationships and potential
regulatory mechanisms among signature genes, we established
regulatory loops involving TFs, mRNAs, and miRNAs. Our
analysis revealed that GATA2 can target TSPANI15, TSPANIG,
and TSPAN9. GATA2, a member of the GATA family of
transcription factors (GATAI-GATAG6), binds to the “GATA”
DNA motif via two zinc-finger domains (82). Recent research has
indicated that GATA2 fulfills a function in transcriptional
regulation of specific ESCC target genes, although the precise
mechanisms remain incompletely understood (83). Thus, it is
hypothesized that GATA2 may contribute to tumorigenesis and
progression by regulating the transcription of signature genes
(TSPAN15, TSPANI6, and TSPANY). Therefore, additional
investigation is essential to delve into this conjecture.

This study has several limitations, which should be noted. This
represented a backward-looking examination of information culled
from publicly accessible databases; therefore, the potential for
selection and confounding biases was unavoidable. Moreover, no
prospective validation or cross-validation in independent clinical
cohorts or other external datasets was performed, which may limit
the robustness of the conclusions. Finally, while the training cohort
from TCGA-ESCC was composed predominantly of non-Asian
patients, the validation cohort (GSE53622) consisted entirely of
Asian patients. Considering the known differences in etiology,
genetic background, and molecular characteristics of ESCC across
ethnic groups, the global applicability of our model remains
uncertain, and its predictive performance in non-Asian
populations requires further confirmation. Furthermore, the
relatively small sample size of the validation cohort and the
imbalance between high- and low-risk groups defined by the
optimal cutoff may have affected statistical power. As real-world
clinical prognostic and treatment response data were not
incorporated, the clinical utility and predictive performance of the
model cannot yet be fully established. These factors may affect the
robustness and broad applicability of our findings. At the
experimental and mechanistic level, this study only validated
molecular expression using RT-qPCR and THC, without clinical
correlation analyses or functional experiments, leaving the
mechanistic interpretation incomplete. Moreover, the TIDE
algorithm has been validated primarily in melanoma and non-
small-cell lung cancer; given the distinct tumor microenvironment
of ESCC, its predictive results in this context remain uncertain. To
address the above limitations and to further validate and extend our
findings, future work will focus on three major directions: First,
conducting large-scale prospective studies incorporating multi-
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center and multi-ethnic ESCC cohorts (including both Asian and
non-Asian populations) with comprehensive real-world clinical
data, including long-term follow-up and treatment response
records, to enhance the accuracy, reliability, and generalizability
of the conclusions. Second, performing systematic functional
experiments to elucidate the roles of the signature genes in ESCC,
characterize the downstream regulatory networks of key
transcription factors such as GATA2, and identify their molecular
targets in ESCC pathogenesis, while simultaneously leveraging
clinical datasets such as KEYNOTE-181 (84) and KEYNOTE-590
(85) to validate and calibrate the TIDE algorithm and to identify
ESCC-specific immunological biomarkers. Third, based on refined
cohort data and mechanistic insights, further optimizing the
prognostic model to better meet clinical needs and exploring the
potential of the identified molecules as diagnostic biomarkers or
therapeutic targets, thereby providing new strategies for precision
diagnosis and treatment.

5 Conclusions

For the first time, we identified signature genes for ESCC
associated with TM4SF, including TSPAN15, TSPANY, and
TSPANI6, and constructed a risk model that effectively predicts
ESCC prognosis. This risk model demonstrates remarkable
performance in independently evaluating ESCC prognosis and
offers potential guidance for tumor-targeted therapies.
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