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Prognostic alternative mRNA
splicing in lung adenocarcinoma
Panke Su*, Pei Xu and Deying Xu

Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of
Henan University of Science and Technology, Luoyang, China
Background: Alternative splicing (AS) of mRNA has emerged as a promising

biomarker for various tumors, playing a crucial role throughout nearly all stages

of tumor progression and influencing the tumor immune microenvironment

(TIME). Our study was designed to develop an AS-based signature for accurate

prognosis prediction in lung adenocarcinoma (LUAD) patients, to delineate the

associated immune cell landscape, and to pinpoint promising drug targets.

Methods: Prognostic alternative splicing events (PASEs) were identified through

univariate Cox regression analysis of RNA-Seq data from The Cancer Genome

Atlas (TCGA). These PASEs were incorporated into a least absolute shrinkage and

selection operator–Cox proportional hazards model to develop a prognostic

signature. Experimental validation was performed using reverse transcription

quantitative polymerase chain reaction, immunohistochemistry, and functional

assays in vitro and in vivo.

Results: A total of 13 PASEs were selected to form the prognostic signature,

which demonstrated excellent predictive power for 1-, 2-, and 3-year overall

survival (OS), with area under the receiver operating characteristic curve values of

0.776, 0.751, and 0.767, respectively. High-risk patients, identified by the

signature, showed significantly decreased stromal, immune, and combined

scores; increased tumor purity (P< 0.001); a reduced prevalence of various

immune cell types; diminished immune cell activity; and decreased expression

of immune checkpoint genes. Notably, elevated expression of cyclin-dependent

kinase inhibitor 2A (CDKN2A), a gene associated with PASEs, correlated with

poorer OS and significantly higher infiltration of CD8+ T cells, activated memory

CD4+ T cells, and M1 macrophages compared to patients with lower expression.

Further validation studies confirmed increased CDKN2A levels in LUAD tissues,

with CDKN2A protein expression inversely correlated with LUAD prognosis

(hazard ratio = 2.737; 95% confidence interval, 1.524–4.915; P = 0.0002).

CDKN2A was found to promote LUAD progression in vitro. Molecular docking

identified YM-201636 and VE-822 (Berzosertib) as potential drugs targeting

CDKN2A, both showing promise for LUAD treatment in vivo.

Conclusion: PASEs constitute a comprehensive biomarker for predicting

prognosis and monitoring the TIME in LUAD patients. Specifically, CDKN2A

stands out as a potential prognostic biomarker and drug target for LUAD.
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1 Introduction

Lung carcinoma is the most common tumor in the world with

high mortality (1, 2) and is the leading cause of death for men and

the second leading cause of death for women following breast

cancer (3, 4). Lung carcinoma can be categorized into small cell

lung carcinoma (SCLC) and non–small cell lung carcinoma

(NSCLC), of which NSCLC is the most prevalent type,

accounting for about 85% of lung carcinomas (5). Advances in

precision medicine allow gene-based classification of cancer

subtypes. NSCLC is considered a highly heterogeneous disease as

diverse phenotypes and genotypes are present in patients with each

NSCLC subtype, including the two most common histological

types, lung adenocarcinoma (LUAD) and lung squamous cell

carcinoma (6). Compared to other NSCLC subtypes, LUAD has

been reported to have close associations with genomic variations,

including TP53, KRAS, EGFR,NF1, BRAF,MET, and RITmutations

(7) that frequently occur and those rarely reported, such as HOXA4

and MST1 mutations (8). However, lung carcinoma mortality

remains high even after the applications of many new molecular

targeted therapies and immunotherapy agents. Early detection of

potentially tumorigenic genomic or genetic changes using new

prognostic markers may maximize the efficacy of personalized

treatment for longer survival of lung carcinoma patients.

Alternative splicing (AS) is a mechanism by which eukaryotic

mRNA isoforms are generated from a single gene by removal of

introns and selective joining of specific exons (9), thus controlling

gene expressions (10) via disturbing mRNA stability, localization,

and translation (11). It is also a post-transcriptional process

generating multiple protein products from a single gene encoding,

resulting in protein diversity (12). Eukaryotic cells utilize protein

diversity to support the functional complexity of genes (13).

Physiologically, more than 95% of human genes are associated

with AS events. However, tumor cells use abnormal AS events for

tumor progression to disrupt metabolism and cell cycle control,

stimulate invasion and metastasis of cancer cells while inhibiting

apoptosis, and promote angiogenesis, thus reconstructing the tumor

microenvironment (14). These events have been shown to reduce

the efficacy of targeted therapy, chemotherapy, and hormone

therapy or immunotherapy (15).

Growing evidence shows that mutations in AS events have the

potential to become neoepitopes for immunotherapy (16). Type- or

subtype-specific genes undergoing AS events in cancer cells often

encode components of core splicing machinery or splicing factors

(SFs) with regulatory sites and result in accumulation of mutations

that lead to cancer (17), thus having great prognostic significance.

AS events are also significantly associated with immune

microenvironment formation, the infiltration of immune cells,

and their lytic activity on tumor cells (18). Cancer-specific AS has

the potential to predict the efficacy of anticancer therapies (19).

These findings suggest that cancer-specific AS events also have

prognostic potential.

For far so long, there have been a few published reports that

comprehensively analyze AS events in LUAD and their clinical

significance. Most studies used The Cancer Genome Atlas (TCGA)
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database and explored the impact of AS events on other tumor types

rather than identifying an efficient biomarker and drug targets (20,

21). A recent study ascertained AS as a potential prognostic marker

of LUAD (21). In this study, our objective was to develop a risk

model utilizing transcriptome and clinical data from TCGA,

specifically focusing on prognostic AS events in LUAD.

Additionally, we aimed to validate the model’s efficacy in

predicting survival and characterizing the immune cell landscape.

Notably, we conducted further validation of the prognostic

significance and functional role of the identified CDKN2A

molecule and explored its potential as a therapeutic target in

LUAD treatment in vivo.
2 Materials and methods

2.1 Data collection

We collected RNA-Seq and clinical data of 535 tumor tissues

and 59 para-carcinoma tissues of LUAD patients from TCGA-GDC

(portal.gdc.cancer.gov/projects/TCGA-LUAD; Project ID: TCGA-

LUAD). AS data were downloaded from TCGA SpliceSeq (https://

bioinformatics.mdanderson.org/TCGASpliceSeq/), from which

percent spliced-in (PSI) values for splice events on samples were

obtained. Samples with a PSI value of ≥ 75% were included in

further analysis, including 513 tumorous and 59 tumor-adjacent

normal tissues.
2.2 Generation of a prognostic model

Cases without information on survival time or states or AS data

were excluded from our analysis. AS and survival data (n = 513)

were integrated and subjected to univariate Cox regression to screen

out prognostic alternative splicing events (PASEs; a P-value

threshold of 0.05 for screening), which were shown in UpSet,

volcano, and bubble plots. Least absolute shrinkage and selection

operator (LASSO) regression analysis was utilized to generate a

PASE-based risk model and prevent overfitting and improve the

accuracy of this model. The best l value was obtained for the risk

model using 10-fold cross-validation in the “glmnet” package.

Based on multivariate Cox regression analysis, the risk score of

each patient was calculated using the following formula: riskScore =

o
n

i
PSI*bi where n, PSI, and bi represent the number of AS events,

the PSI value, and the regression coefficient, respectively. Then, the

median riskScore was calculated. Patients with a riskScore greater

than the median value were assigned to the high-risk group;

otherwise, they were classified into the low-risk group.
2.3 Validation of the risk model

We assessed the accuracy of the risk model in survival

prediction using Kaplan–Meier survival curves drawn by the

survival package in R software and receiver operating
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characteristic (ROC) curves. Risk curves, risk heatmaps, and

survival plots of LUAD patients were plotted according to the

ranking of patients’ riskScores. The independence of the risk model

in survival prediction was validated using univariate and

multivariate Cox regression.

Kaplan–Meier survival curves were plotted to obtain ROC curves.

The accuracy of the risk model and other clinicopathological factors

(age, gender, and tumor stage) in 1-, 2-, and 3-year survival

prediction was determined by the area under the ROC curve

(AUC) values. The correlation analysis of patients’ riskScore with

clinical traits was performed to validate whether the risk model can

discriminate clinical traits associated with increased LUAD risk. We

constructed a nomogram based on the sum of the scores of all clinical

traits included. Its efficacy in survival prediction was also evaluated.
2.4 Validation of the risk model in immune
cell landscape characterization

Stromal, immune, and summed scores for tumor purity were

compared between high- and low-risk groups in the estimate

package, and the results were shown in violin box plots. We

calculated the relative proportion of immune cell types of each

tumor sample in CIBERSORT (22). Single-sample gene set

enrichment analysis (ssGSEA) was utilized to obtain the immune

score of each patient. A higher score represented an increased

number of immune cells or enhanced immune-related functions.

Differences in immune cell subpopulations, immune activity, and

immune checkpoint gene expressions were compared between the

high- and low-risk groups.
2.5 Identification of PASE-related genes

We also identified differentially expressed genes (DEGs)

associated with the key PASEs included in the risk model and

assessed their correlations with survival risk and immune cell

infiltration. PASE-related DEGs in LUAD were selected with

Limma in R. P-values of genes were corrected by the Benjamini-

Hochberg method. Genes with |logFC| > 1 and P< 0.05 were

selected. The correlation analyses of PASE-related DEGs with

patient survival, immune cell subpopulations, and immune score

were performed. TIMER (http://timer.comp-genomics.org)

algorithm was employed to analyze the correlations of differential

genes with immune checkpoint gene expressions (23). Cytoscape

visualized the correlation analysis between PASEs significantly

associated with LUAD and expressions of SFs. SFs with a

correlation coefficient |R| > 0.6 and P< 0.001 were selected.
2.6 RT-qPCR

Validation studies were carried out on one LUAD tissue chip

(Cat. No. cDNA-HLugA030PG01, Shanghai Outdo Biotech,
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Shanghai, China; each tissue chip has 15 LUAD tissue points

together with 15 adjacent normal tissue points). The primer

sequences were CDKN2A forward: 5′-GGGTTTTCGTGGTTCA
CATCC-3′ and reverse: 5′-CTAGACGCTGGCTCCTCAGTA-3′,
product length of 105 bp; and GAPDH forward: CTGGGC

TACACTGAGCACC and r e v e r s e : AAGTGGTCGT

TGAGGGCAATG, product length of 101 bp. The 25-mL total

PCR reaction system contains 9 mL of RNase-free H2O, 0.5 mL of

upstream/downstream primers (10 mM), 2.5 mL cDNA template,

and 12.5 mL of SYBR Green Master (ROX) (Roche, Switzerland),

and the reaction conditions were as follows: 10 min of pre-

denaturation at 95°C, 15 s of denaturation at 95°C, and 1 min of

reaction at 60°C for a total of 30 cycles. The 2−DDCt method served

for calculating the relative gene expression.
2.7 IHC

The protein expression analysis was conducted under the

assistance of high-throughput LUAD tissue microarray (Cat. No.

HLugA180Su05, comprising 94 LUAD and 86 adjacent tissue spots;

Shanghai Outdo Biotech, Shanghai, China). For the clinical

information of LUAD tissue microarray, the operation period

spanned from July 2004 to June 2009, with the follow-up

conducted in August 2014; the duration of follow-up ranged from

5 to 10 years. Participants have not been treated by chemotherapy,

radiotherapy, or others prior to surgery. The EnVision DAB test kit

(MXB Biotechnologies, Fuzhou, China) served for the

immunohistochemical analysis on 4-mm paraffin-embedded

tissues/cells fixed in formalin, taking phosphate-buffered saline

(PBS) as a negative control. Rabbit monoclonal to CDKN2A

(EPR24167-43, Abcam) Immunoglobulin G (IgG) was diluted to

1:200. A light microscope (Olympus IX73, Japan) served for the

photographing. Two senior pathologists took charge of scoring cells

in these sections considering the coloring status and color

development degree, and the scoring criteria were based on the

published study (24).
2.8 Cell lines, cell culture, and lentiviral
vector infection

Human LUAD cells (A549) were obtained from the American

Tissue Culture Collection and validated through short tandem

repeat (STR) profiling. The A549 cells were cultured in complete

RPMI-1640 growth media (ThermoFisher, USA) supplemented

with 10% heat-inactivated fetal bovine serum (FBS; Sigma-

Aldrich, NZ). Additionally, the media contained 2 mM L-

glutamine and 1% streptomycin/penicillin (100 mg/mL, Sigma-

Aldrich, AU). The cells were maintained in a humidified

incubator at 5% CO2, 95% O2, and a steady temperature of 37°C.

CDKN2A overexpression and interfering lentiviral vectors were all

provided by GENECHEM (Shanghai, China). Lentivirus infection

followed the instructions provided by GENECHEM.
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2.9 CCK-8

Log-phase cells were seeded in a 96-well plate at a density of

5 × 103 cells/well, with a volume of 100 mL per well. Experimental

groups included overexpression groups (CDKN2A-OE group, Mock

group) and short hairpin RNA (shRNA) groups (Si-CDKN2A group,

Si-NC group), with five replicate wells per group. After culturing for

0, 24, 48, 72, and 96 h, 10 mL of Cell Counting Kit-8 (CCK-8) reagent
(Beyotime Biotechnology, Shanghai, China) was added to each well

and incubated for an additional 3 h. An Enzyme-Linked

Immunosorbent Assay (ELISA) reader (Thermo Scientific)

measured the optical density (OD) at 450-nm and 630-nm

wavelengths. The experiment was repeated three times, and cell

growth curves were plotted with OD values on the y-axis and time

on the x-axis.
2.10 Scratch assay

Log-phase A549 cells were plated in a six-well plate. A 10-mL
pipette tip was employed to scratch the surface of A549 cell groups,

followed by continued incubation for 48 h. The scratch widths were

observed under a microscope (Olympus IX73, Japan) at 0 and 48 h.

An incomplete medium-treated group served as the control to

compare healing rates among different groups. Five randomly

selected high-magnification fields of view were counted to

ascertain the average width.
2.11 Transwell assay

Take 300 mL of serum-free medium, add 60 mL of Matrigel, mix

well at 4°C, and add 100 mL to each upper chamber (three chambers

in total) and then incubate at 37°C for 4–5 h. Digest breast cancer

cells, wash three times with serum-free medium, count, and prepare

a cell suspension. Then, wash the Matrigel (added for the invasion

assay) (Corning, New York, USA) once with serum-free medium,

and add 100 mL of the cell suspension to each well. Subsequently,

add 500 mL of medium containing 20% FBS to the lower chamber.

Incubate in a 37°C incubator for 20 to 24 h. Remove the transwell

chamber, wash twice with PBS, and fix with 5% glutaraldehyde at

4°C. Stain with 0.1% crystal violet or Giemsa for 5 to 10 min at room

temperature, wash twice with PBS, wipe off the cells from the upper

surface with a cotton ball, and count in nine random fields under a

microscope, summarize the results.
2.12 Molecular docking

The full-length amino acid sequence of protein CDKN2A was

obtained from the UniProt database. This sequence was input into

AlphaFold 3, where the optimal protein model was selected for

analysis. The two-dimensional structure of CDKN2A was analyzed

using PDBsum. Molecular docking simulations were performed to

model the interactions between the wild-type structure of protein
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software on a computer. Small-molecule structures were

downloaded from the Selleckchem L1100-Inhibitor-Library and

imported into a small-molecule database created in MOE

v2022.02 software, where they underwent energy minimization.

The three-dimensional structure of CDKN2A predicted by

AlphaFold was imported into MOE software for pre-docking

processing and optimization of the protein side chains. Docking

was performed using the Dock module in MOE v2022.02.
2.13 Molecular dynamics

Molecular dynamics (MD) simulations lasting 100 ns were

conducted using GROMACS 2020.6 software to further validate

the docking results’ reliability and reasonableness. Parameters and

topology files for the protein and small-molecule ligands were

generated using Amber03 and Amber GAFF force fields,

respectively. Periodic boundary conditions were set, and the

protein was centered in a cubic box with a minimum distance of

1.0 nm from the edges, which was filled with water molecules at a

density of 1. To achieve electrical neutrality, some water molecules

were replaced with Na+ and Cl- ions at a concentration of

0.15 mol/L. The system’s energy was minimized using the

steepest descent method to reduce any unreasonable contacts or

atomic overlaps. Solvents and ions around the protein were pre-

equilibrated in two stages: the first stage involved an NVT ensemble

at 300 K and 100 ps to stabilize the temperature, followed by an

NPT ensemble at 1 bar and 100 ps to stabilize the pressure. The

leapfrog algorithm was used for integrative dynamics during MD

simulations, conducted under isothermal and isobaric conditions

(300 K and 1 bar) over 100 ns. Post-simulation, trajectories were

centered on the protein and analyzed for root mean square

deviation (RMSD). The interaction energy between the protein

and the small-molecule complex was calculated using the

gmx_MMPBSA v1.6.1 tool employing the single-trajectory (ST)

method. Finally, the simulation trajectories were analyzed to

compute contributions from van der Waals energy (VDWAALS),

electrostatic energy (EPB), polarization energy (ENPOLAR), gas-

phase energy (GGAS), and solvation energy (GSOLV).
2.14 Evaluation of antitumor effects in vivo

Female NOD.Cg-Prkdcscid Il2rgem1cya/Cya (NKG) mice

(weighing 16 to 23 g, aged 6 weeks, n = 6) were sourced from

Cyagen Biosciences (Suzhou, China). All in vivo experiments were

conducted in strict adherence to the guidelines outlined in the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals. The mice were provided with humane care,

and the study protocol was approved by the Institutional Animal

Care and Use Committee of Cyagen Biosciences. Orthotopic mouse

models of LUAD were established using CDKN2A-OE luciferase-

labeled human A549 cells administered via tail vein injection

(0.5 M/100 mL). Twenty-eight days post-inoculation, the mice
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were randomly assigned to the YM201636 and VE-822 groups. The

mice in the YM201636 and VE-822 groups received dosages of 2

mg/kg and 25 mg/kg, respectively, via tail vein injection once every

other day for 14 days (total of seven injections). Subsequently, the

mice were imaged using an in vivo imaging system to observe and

measure the fluorescence signal.
2.15 Statistical analysis

All statistical analyses were performed in R-4.0.2 software

(https://www.r-project.org/) and GraphPad Prism 10.2.3. The

Kaplan–Meier method was utilized to calculate the overall

survival (OS), and the logarithmic rank test was used to compare

survival curves. An AUC value of > 0.60 was considered acceptable

and that of > 0.70 was regarded to show significant effects (25, 26).

Clinical characteristics were compared between the high- and low-

risk groups. The c2 test, the logarithmic rank test, and a Cox

proportional hazards regression model were employed to compare

dichotomous variables. The significance level was set at P< 0.05.
3 Results

3.1 AS Events in LUAD

LUAD-associated AS events could be categorized into seven

types, including alternate acceptor site (AA), alternate donor site

(AD), alternate promoter (AP), alternate terminator (AT), exon

skip (ES), mutually exclusive exons (ME), and retained intron (RI).

A total of 19,523 AS events of 513 LUAD patients were identified

and shown in the UpSet plot (Figure 1A). ES, AT, and AP events

revealed the highest frequency among all AS types. Inside, 1,666 ASs

were identified by univariate Cox regression (a P-value threshold

of< 0.05) as PASEs, with ES, AT, and AP as the top three PASE

types (Figure 1B). All AS events were visualized in a volcano plot,

with red dots indicating statistically significant PASEs (Figure 1C).

Univariate Cox regression analysis (threshold: P< 0.05) was

performed to identify significant PASEs across seven types, which

were then visualized in a bubble plot: the x-axis represents the z-

score, whereas the y-axis displays the gene name | splicing event ID |

splicing type (Figures 1D–J).
3.2 Generation and validation of a PASE-
based risk model

After integration of AS and survival data of LUAD patients, 14

candidate PASEs were selected from 1,666 PASEs using LASSO

regression analysis (a P-value threshold of 0.05 for screening,

Figures 2A, B). The 14 PASEs were subsequently included in

multivariate Cox proportional hazards regression, and 13 PASEs

were ultimately identified, including BEST3|23,330|AT, CDKN2A|

86,004|AP, PKIB|77,377|AP, TTC39C|44,852|AP, MEGF6|315|ES,

HNRNPLL|53,258|AT, CA5B|98,313|ES, LDB1|12,935|AP,
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C12orf76|24,406|AT, AP2B1|40,327|AD, LETM2|83,398|AT,

MKL1|62,348|AP, and RPL33|53,046|ES. A 13-PASE–based

signature was established, and the median riskScore of LUAD

patients was 0.907.

The cohort of 513 LUAD patients was dichotomized into high-

and low-risk groups using the median risk score (riskScore) as the

optimal cutoff. This classification yielded balanced subgroups, with

252 patients in each risk category (high-risk: riskScore > median;

low-risk: riskScore ≤ median). The median cutoff approach was

selected to (1) maintain equal group sizes for statistical power, (2)

minimize classification bias, and (3) align with established

prognostic modeling conventions. Kaplan–Meier survival curves

revealed that high-risk patients had a markedly lower OS rate than

low-risk patients (Figure 2C). In the high-risk group, patients

showed shorter OS time (Figure 2D) and a rising number of

fatalities (Figure 2E) with increasing riskScore. Further, 8 of the

13 PASEs (BEST3|23,330|AT, CDKN2A|86,004|AP, PKIB|77,377|

AP, TTC39C|44,852|AP, C12orf76|24,406|AT, AP2B1|40,327|AD,

MKL1|62,348|AP, and RPL33|53,046|ES) showed increasing

frequency with increasing riskScore, and the other five events

(MEGF6|315|ES, HNRNPLL|53,258|AT, CA5B|98,313|ES, LDB1|

12,935|AP, and LETM2|83,398|AT) exhibited the opposite

trend (Figure 2F).

Univariate and multivariate Cox regression confirmed that the

risk model could predict the OS independent of age, gender, and

tumor stage (P< 0.001, Figure 3A). The AUCs of the risk model in 1-,

2-, and 3-year OS prediction were 0.776, 0.751, and 0.767, indicating

satisfactory accuracy in prognostic prediction, higher than those of

other clinical factors (Figure 3B). In subgroup comparisons, male

patients had a significantly higher riskScore than female patients; an

increased riskScore could also be observed in stage III–IV vs. I–II

patients, stage T3–T4 vs. T1–T2 patients, and patients withmetastatic

lymph nodes vs. non-metastatic LUAD patients (Figure 3C). Thus,

the riskScore was closely associated with gender, tumor stage and size,

and lymph node metastasis (Figure 3C). The clinical nomogram

based on the three clinical factors also showed satisfactory efficacy in

1-, 2-, and 3-year OS prediction (Figure 3D), as further supported by

the calibration curves (Figure 3E).
3.3 Relationship between TIME and risk
model

We also validated the efficacy of the risk model in immune cell

landscape characterization. High-risk patients (n = 252) showed

lower stromal, immune, and summed scores and greater tumor

purity (Figure 4A) than low-risk patients. High-risk patients

displayed increased infiltration of memory activated CD4+ T cells,

resting NK cells, M0 macrophages, and activated mast cells and

inhibited infiltration of plasma cells, memory resting CD4+ T cells,

monocytes, resting dendritic cells, resting mast cells, and

eosinophils (Figure 4B). The correlation analysis of riskScore and

immune cell infiltration showed that CD8+ T cell, M0/M1

macrophage, resting NK cell, and activated memory CD4+ T cell

infiltration were enhanced, and resting memory CD4+ T cell, resting
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FIGURE 1

Visualization of alternative splicing (AS) in LUAD. (A) An UpSet plot depicting AS with PSI ≥ 75% in LUAD patients. (B) Through UpSet plot analysis,
1,666 AS events were identified as prognostic alternative splicing events (PASEs) using univariate Cox regression (P-value threshold< 0.05), with exon
skipping (ES), alternative termination (AT), and alternative promoter (AP) representing the three most predominant PASE types. (C) Panel C presents
all alternative splicing (AS) events in a volcano plot format, with red dots indicating statistically significant PASEs. (D–J) Bubble maps were employed
to visualize highly significant PASEs across the seven categories, with the x-axis indicating the z-score and the y-axis denoting the genealternative
splicing IDsplicing type. Bubble size reflects the −log10 (P-value) derived from univariate Cox regression analysis, whereas color intensity represents
prognostic association: darker red hues indicate a higher likelihood of the AS (alternative splicing) event being linked to prognosis.
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dendritic cell, resting mast cell, and monocyte infiltration

pronouncedly decreased with increasing riskScore (Figures 4C–E).

In ssGSEA analysis, immune scores of immune cells or their

functions, including activated dendritic cells (aDCs), APC_co_

stimulation, B cells, C-C chemokine receptor (CCR), Check-point,

dendritic cells (DCs), human leukocyte antigen (HLA), immature

dendritic cells (iDCs), Master-cell, Neutrophils, plasmacytoid

dendritic cells (pDCs), T-cell_co_differentiation, T-cell_co_

stimulation, T-helper-cells, tumor infiltrating lymphocytes (TIL),

regulatory T cell (Treg), and Type-II–IFN-Repon, were significantly

higher in high- vs. low-risk patients (Figure 5A). The immune scoring

thermogram also revealed a decreased number of most types of

immune cells alongside inhibited immune cell functions in the high-

risk group (Figure 5B). The analysis identified 30 differentially
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expressed immune checkpoint genes, comprising 29 downregulated

genes (TNFRSF25, CD160, CD48, HAVCR2, LGALS9, CTLA4,

CD40LG, ICOS, HHLA2, CD86, CD44, CD27, IDO2, TNFSF15,

CD40, TNFSF14, ADORA2A, CD200, CD200R1, TNFSF18, LAIR1,

TIGIT, CD80, NRP1, BTLA, CD28, CD244, BTNL2, and TNFRSF14)

and one upregulated gene (CD276) in the high-risk group

(Figures 5C–E). Notably, HAVCR2 and CTLA4 expressions showed

progressive downregulation with increasing riskScore (Figure 5F).
3.4 Prognostic single genes in LUAD

Among PASE-related genes, cyclin-dependent kinase inhibitor

2A (CDKN2A) showed the most significant upregulation in tumor
FIGURE 2

Prognostic model based on PASEs. (A) The Lambda value distribution plot of the 14 candidate PASEs demonstrated a bell-shaped curve with a
central peak and symmetrical bilateral tapering, resembling a normal distribution. This pattern suggests a stable data generation process operating
within expected variability limits. (B) The coefficient of PASEs were derived through LASSO regression analysis. (C) The Kaplan–Meier survival curves
were stratified by risk groups (high vs. low) on the basis of the prognostic model, demonstrating significant divergence in clinical outcomes (log-rank
P< 0.001). (D) Scatter plots illustrate the distribution of low-to-high risk values among LUAD patients. (E) Scatter plot displaying survival time and
status in LUAD patients. (F) A heatmap shows the PSI of PASE in the LUAD prognostic model.
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tissues compared with adjacent normal tissues (|logFC| = 1.38,

P< 0.001) (Figure 6A). Therefore, all LUAD patients included were

assigned to the high (n = 252)– or low (n = 252)–expression group

according to the median expression score of CDKN2A. Kaplan–

Meier survival curves showed that patients with CDKN2A

overexpression had worse OS (Figure 6B), indicating the

prognostic significance of the CDKN2A gene in LUAD.

Then, the correlation of CDKN2A expression with immune cell

infiltration was assessed. High CDKN2A expression was significantly

associated with increased CD8+ T cell, activated memory CD4+ T cell

and M1 macrophage infiltration, and suppressed resting memory

CD4+ T cell and dendritic cell infiltration in LUAD (Figures 6C, D).
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Patients with high CDKN2A expression showed higher

immune scores of APC_co_differentiation, CD8+-T-cells, Check-

point, HLA, Infection-promotion, MHC-class-I, NK-cells,

T-cell_co_differentiation, Tfh, and Th1-cells compared to those

with low CDKN2A expression (Figure 6E). Fourteen immune

checkpoint genes were found differentially expressed in LUAD,

comprising 13 upregulated genes (CD48, HAVCR2, CTLA4, ICOS,

CD86, CD40, ADORA2A, PDCD1, CD70, TIGIT, LAG3, IDO1, and

CD274) and the downregulated TNFSF15 in the high expression

group (Figure 6F). The co-expression of CDKN2A and the immune

checkpoint gene CD274 was enhanced with elevated tumor

purity (Figure 6G).
FIGURE 3

Evaluation of the prognostic risk model’s value. (A) Forest plots presenting the results of univariate and multivariate Cox regression analysis. The
forest plots illustrate hazard ratios (HRs) with 95% confidence intervals (CIs) for each variable assessed in the prognostic model. (B) ROC curves
comparing the prognostic model and other clinical factors. The area-under-the-ROC-curve (AUC) values quantify predictive accuracy, with the risk
model outperforming traditional clinical factors at 1-, 3-, and 5-year survival intervals. (C) Comparative analysis of clinical characteristics between the
high- and low-risk groups. Boxplots illustrate the distribution of age, whereas stacked bar charts depict categorical variables (gender, tumor stage,
and TNM [tumor, node, metastasis] classification) stratified by the prognostic risk model’s stratification (high- vs. low-risk groups). (D) A line graph
depicting survival probability over time. (E) The calibration curve. This plot assesses agreement between predicted and observed survival rates at a
defined timepoint. Ideal calibration (45° dashed line) is compared to our model’s predictions (solid line), with minor deviations indicating
high reliability.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1579017
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Su et al. 10.3389/fonc.2025.1579017
The SF-AS regulatory network was characterized to provide a

glimpse into the potential mechanisms of LUAD tumorigenesis. We

identified 188 PASEs, including 54 high-risk events and 134 low-

risk events, which were associated with 45 SFs in LUAD by

correlation analysis between SFs and PASEs. A total of 135

PASEs were positively correlated with 43 SFs, and 53 PASEs were

negatively correlated with 38 SFs (Figure 6H). Overall, most high-

risk PASEs were associated with inhibited expressions of SFs

(Figure 6H). Among these SFs, family members such as SRSF5

and SRSF11 showed positive correlations with multiple high-risk

PASEs, suggesting that these factors may promote the occurrence of

oncogenic splicing variants. Notably, SRSF11 demonstrated strong
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positive correlations with aberrant splicing events of genes

including METTL3 (R = 0.65) and METTL17 (R = 0.65), which

may represent one of the key mechanisms underlying the

dysregulated expression of multiple PASEs in LUAD. The

correlation analysis results between SFs and PASEs are presented

in Supplementary Table 1.
3.5 Validation study

Validation was performed using LUAD tissue and cDNA

microarrays. Immunohistochemistry (IHC) and subsequent
FIGURE 4

Comprehensive characterization of tumor microenvironment and immune cell infiltration stratified by risk groups in LUAD. (A) Violin plots
quantitatively compare stromal score (reflecting extracellular matrix components), immune score (representing overall immune cell infiltration),
tumor purity (estimated proportion of malignant cells), and ESTIMATE score (combined microenvironment evaluation) between high- and low-risk
LUAD patients. (B) Boxplots with notches (representing 95% confidence intervals of the median) demonstrate statistically significant variations in
22 immune cell subtypes quantified by CIBERSORTx deconvolution algorithm between risk groups. (C) Scatter plots with locally weighted smoothing
(LOESS) regression illustrate the non-linear associations between continuous risk scores and immune cell infiltration, revealing a positive correlation
with CD8+ cytotoxic T cell abundance and a positive relationship with M0 macrophage infiltration. (D, E) Systematic immune correlation profiling.
Expanded correlation matrices highlight risk-associated immune features. *P< 0.05 and *** P< 0.001.
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analyses revealed that CDKN2A protein predominantly localized in

the cytoplasm of LUAD cells (Figure 7A). Of the 94 LUAD cases

examined, 22 exhibited high CDKN2A expression, and 57 displayed

low to medium expression, including fifteen CDKN2A-negative

cases. The positive expression rate of CDKN2A in LUAD was

84.04% (79/94), significantly exceeding the 47.67% (41/86) observed

in adjacent non-tumor tissues. Moreover, the average expression

level (rating score) of CDKN2A were elevated in LUAD tissues

compared to those in adjacent non-tumor tissues (Figure 7B).

Survival analysis indicated that patients with high CDKN2A
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expression tended to have worse prognoses and shortened OS

time (hazard ratio = 2.737; 95% confidence interval: 1.524–4.915;

P = 0.0002) (Figure 7C). Prognostic analysis using Cox proportional

hazards regression models to evaluate the association between

clinicopathological variables and survival outcomes in LUAD

patients is shown in Table 1. Correspondingly, qRT-PCR analysis

indicated that CDKN2A expression was significantly higher in

LUAD tissues than in matched control samples (Figure 7D).

To determine whether CDKN2A could influence the LUAD cell

phenotype, we conducted both overexpression and knockdown
FIGURE 5

Comprehensive immune profiling and checkpoint expression patterns in LUAD risk groups. (A) Boxplots with overlaid individual data points compare
the abundance of tumor-infiltrating immune cells and immune functional scores between high- and low-risk LUAD patients. (B) Multi-dimensional
immune landscape characterization. The heatmap demonstrates systematic variations in immune signatures across risk groups. Columns represent
patients (stratified by risk), whereas rows show immune features. (C) Spearman correlation matrix identifies clinically relevant immune checkpoints
significantly associated with risk scores. Circle size represents correlation strength, while color indicates direction (red, positive; and blue, negative).
(D, E) Key checkpoint expression dynamics. LOESS regression plots depict non-linear relationships between: (D) HAVCR2 expression and risk scores,
with marginal histogram showing risk score distribution; (E) CTLA4 expression and risk scores. Both checkpoints show monotonic increases with risk
progression. (F) Comparative boxplots confirm elevated expression of one clinically targetable checkpoints (CD276) in high-risk patients. *P< 0.05,
**P< 0.01, and *** P< 0.001.
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FIGURE 6

Comprehensive analysis of CDKN2A in high- and low-risk LUAD patients. (A) Differentially expressed genes (DEGs) between high- and low-risk LUAD
groups reveal key transcriptional alterations linked to CDKN2A status. (B) Kaplan–Meier survival analysis demonstrates distinct clinical outcomes
between tumor tissues and adjacent normal tissues when stratified by CDKN2A expression levels. (C) Comparative analysis of immune cell infiltration
patterns shows significantly different immune microenvironment compositions between CDKN2A high- and low-expression groups. (D) Correlation
analysis elucidates the quantitative relationship between CDKN2A expression levels and immune cell abundance in the tumor microenvironment.
(E) Comprehensive evaluation of immune cell subpopulations and functional activity scores demonstrates CDKN2A-dependent immunomodulatory
effects. (F) Systematic comparison of immune checkpoint molecule expression (PD-1, CTLA-4, etc.) reveals differential immune evasion potential
between CDKN2A expression groups. (G) Scatter plot analysis identifies a significant correlation between CDKN2A expression and CD274 (PD-L1)
levels, suggesting potential implications for immunotherapy response. (H) The SF-AS regulatory network analysis identifies 188 prognosis-associated
splicing events (54 high-risk and 134 low-risk) coordinated by 45 splicing factors, providing mechanistic insights into CDKN2A-mediated LUAD
pathogenesis through alternative splicing regulation. *P< 0.05, **P< 0.01, and ***P< 0.001.
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experiments in A549 LUAD cells, which yielded relatively moderate

CDKN2A expression. Results indicated that overexpression of

CDKN2A promoted growth, proliferation, clonogenicity, as well

as invasion and migration capabilities of A549 cells; conversely,

knocking down CDKN2A expression in A549 cells reduced their

growth, proliferation, clonogenic formation, and their in vitro

invasion and migration capabilities (Figures 7E–H). Collectively,

these results suggest that CDKN2A acts as a tumor promoter that

facilitates LAUD progression in vitro.
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3.6 Prediction of targeted drugs of
CDKN2A and the antitumor effects in vivo

Molecular docking was utilized to forecast the potential

therapeutic efficacy and plausible mechanism of CDKN2A in

treating LUAD. Among the findings for CDKN2A wild-type and

prospective small-molecule inhibitors, YM-201636 and VE-822

(Berzosertib) emerged as the top two small molecules

(Figures 8A, B). Additionally, a 3D representation of YM-201636
FIGURE 7

Elevation of CDKN2A expression in LUAD and its biological function in A549 cells. (A, B) CDKN2A expression levels were compared between LUAD
and adjacent noncancer tissues [individual cohort form a tissue chip (Cat. No. HLugA180Su05), comprising 94 LUAD and 86 adjacent tissue spots;
Shanghai Outdo Biotech, Shanghai, China]. (C) An inverse correlation was observed between increased CDKN2A expression and overall survival (OS)
time. (D) Elevated CDKN2A mRNA levels in LUAD were validated using a cDNA chip (Cat. No. cDNA-HLugA030PG01, Shanghai Outdo Biotech,
Shanghai, China; each tissue chip has 15 LUAD tissue points together with 15 adjacent normal tissue points). (E) CCK-8 assays were conducted to
assess the viability of A549 cells with CDKN2A overexpression (CDKN2A-OE) or CDKN2A knockdown (Si-CDKN2A). (F) Colony formation ability was
evaluated. (G, H) Migration and invasion capacities of A549 cells were assessed through Transwell and wound healing assays, employing stable
transfections with CDKN2A-OE, Mock, Si-CDKN2A, and negative control siRNA (Si-NC) vectors. All data are presented as means ± SDs. Statistical
analysis was performed using Student’s t-test or the Mann – Whitney test in (B, D–H); Kaplan–Meier analysis was used in (C). **P< 0.01, and
***P< 0.001.
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and VE-822 binding to CDKN2A is depicted in Figures 8C, D,

respectively. The screening process and results of the candidate

small-molecule inhibitors of CDKN2A protein is shown in

Supplementary Figure 1. Additional candidate small-molecule

inhibitors that were screened are listed in Supplementary Table 1.

MDS analysis was conducted to corroborate the binding

capabilities between CDKN2A and the top two drugs (YM-

201636/VE-822). The drug discovery workflow (including

primary screening data) for CDKN2A-targeting compounds is

detailed in Supplementary Figure 1 and Supplementary Table 2.

The RMSD behavior of the two complexes, CDKN2A-YM201636

and CDKN2A-VE-822, exhibited similarity: initially, RMSD values

surged rapidly, signifying the system’s adaptation toward a more

stable configuration (Figures 8E, F). Subsequently, the equilibrium

stage was reached, where the RMSD value stabilized, indicating that

the atomic interactions had attained an equilibrium state. The

CDKN2A-YM201636 complex demonstrated an average

interaction energy of −47.98 kcal/mol, whereas the CDKN2A-VE-

822 complex exhibited an average interaction energy of −39.27 kcal/

mol, and both complexes displayed a relatively stable binding state

(Figures 8G, H). The results indicated that van der Waals forces

predominantly contributed to the interaction energy. Overall, these

findings suggest that both CDKN2A-YM201636 and CDKN2A-

VE-822 possess favorable binding abilities (Figures 8I, J).

To further assess the antitumor activity of YM201636 and VE-

822, additional orthotopic mouse models of LUAD were established

using CDKN2A-OE luciferase-labeled human A549 cells delivered

by tail vein injection (Figure 8K). After treatment with YM201636

(2 mg/kg) or VE-822 (25 mg/kg) via tail vein injection, the

fluorescence intensity of LUAD tumors treated with both drugs

was significantly reduced (Figures 8L, M). These findings indicate

that YM201636 and VE-822 may serve as potential CDKN2A-

targeted therapies for LUAD treatment.
4 Discussion

Currently, the majority of patients with LUAD subtypes that

present with metastatic disease cannot yield a satisfactory response
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to anticancer therapies. A new prognostic marker for risk prediction

of OS and TIME characterization to identify high-risk patients early

on and timely monitor individualized treatment is necessary.

Notably, complex mechanisms controlling LUAD tumorigenesis

and progression (27), such as AS events producing multiple mRNA

isoforms and protein diversity, means that a network-based

signature may be more capable of predicting patient survival

accurately and specifically than a multigene signature.

However, most studies focusing on gene mutation and

transcription fail to explain why the same mutated gene may

induce various or even opposite carcinogenic effects in different

tumor types or problems alike (28, 29). AS events can be a plausible

answer to the question. Their roles in the occurrence and prognosis

of LUAD have been previously proven (30, 31). In the present study,

we explored PASEs related to LUAD and identified 13 key events

(BEST3|23,330|AT, CDKN2A|86,004|AP, PKIB|77,377|AP,

TTC39C|44,852|AP, MEGF6|315|ES, HNRNPLL|53,258|AT,

CA5B|98,313|ES, LDB1|12,935|AP, C12orf76|24,406|AT, AP2B1|

40,327|AD, LETM2|83,398|AT, MKL1|62,348|AP, and RPL33|

53,046|ES) for risk model establishment. The 513 LUAD patients

were stratified into high- and low-risk groups based on the median

riskScore cutoff. Kaplan–Meier analysis confirmed significantly

poorer OS in high-risk patients, with mortality rising alongside

riskScore. Univariate and multivariate Cox regression demonstrated

the risk model’s independent prognostic value, outperforming

clinical factors in predictive accuracy (AUCs > 0.75). Notably,

riskScore correlated with advanced tumor stage, male gender, and

lymph node metastasis, reinforcing its clinical relevance. The

nomogram integrating these factors exhibited robust predictive

performance, validated by calibration curves. These findings

underscore the model’s utility in stratifying LUAD prognosis.

LUAD patients often have a varying response to

immunotherapy, which primarily depends on their immune cell

landscape (32). Infiltrated immune cells in some malignant tumors

have been proven to significantly impair immunotherapy response

and patient prognosis (33–35). In the TIME, the immune cell

landscape is a critical link for clinical outcomes as infiltrated

immune cells may improve or impair the immune response and

angiogenesis directly or indirectly (36). Numerous studies have

shown that tumor infiltration of CD8+ T cells is significantly

associated with the prognosis of lung carcinoma patients (37).

Circulating macrophages infiltrate tumor tissues and differentiate

and mature into tumor-associated macrophages triggered by

inhibitory cytokines derived from tumor cells and the TIME to

promote tumor angiogenesis and lymphangiogenesis (38). In this

study, we assessed the relationship between the riskScore and

immune cell infiltration and found a milieu favorable for tumor

immune escape, like the increased infiltration of CD8+ T cells, M0/

M1 macrophages, resting NK cells, and activated memory CD4+ T

cells and inhibited resting memory CD4+ T cell, resting dendritic

cell, resting mast cell, and monocyte infiltration with increasing

riskScore. Our ssGSEA results also revealed critical differences in

immune landscapes between risk groups. The low-risk group

demonstrates significantly enhanced immune activity across

multiple cell types (aDCs and B cells) and functional pathways
TABLE 1 Cox regression analysis of clinicopathological variables and
survival in LUAD.

Clinical parameters HR 95%CI P value

Sex (Male vs. Female) 0.772 0.445-1.340 0.3580

Age (>60 years vs. ≤60 years) 1.009 0.605-1.683 0.9740

Clinical stage (I+II vs. III+IV) 2.338 1.148-4.763 0.0190

T stage 0.930 0.451-1.917 0.8440

N stage 2.199 1.213-3.990 0.0090

EGFR mutation (Positive vs. Negative) 1.199 0.615-2.338 0.5940

CDKN2A (High vs. Low) 2.737 1.524-4.915 0.0002
LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval; EGFR, epidermal
growth factor receptor; CDKN2A, cyclin-dependent kinase inhibitor 2A.
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(antigen-presenting cell (APC) co-stimulation, type-II IFN

response) , whereas high-r i sk pat ients exhibi t broad

immunosuppression with coordinated downregulation of effector

cells and immunostimulatory pathways. Notably, we observed
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differential expression of 30 immune checkpoint genes, with 29

(including CTLA4 and HAVCR2) progressively downregulated and

only CD276 upregulated in high-risk patients. These patterns

suggest that 1) our riskScore quantitatively reflects both
FIGURE 8

Screening of targeted drugs for CDKN2A through molecular docking and kinetic analysis, and their antitumor effects in vivo. (A, B) Structural formulas of
the identified drugs YM-201636 and VE-822 are shown. (C, D) 3D diagrams depict the binding of YM-201636 and VE-822 to CDKN2A. (E, F) RMSD
behavior of YM-201636 and VE-822 in molecular dynamics simulations is displayed. (G, H) The single-trajectory method was used to calculate the
interaction energy of the protein–small-molecule drug complex. (I, J) The energy contributions of van der Waals (VDWAALS), electrostatic energy (EPB),
polarization energy (ENPOLAR), gas phase energy (GGAS), and solvation energy (GSOLV) were calculated. (K) A schematic diagram illustrating the
antitumor effects in vivo is presented. (L, M) Alterations in tumor fluorescence signal before and after treatment with YM-201636 or VE-822 are shown.
All results are expressed as means ± SDs. Statistical analysis was performed using Student’s t-test or the Mann – Whitney test in (L, M). ***P< 0.001.
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functional immune impairment and regulatory alterations; 2) the

high-risk microenvironment exhibits global immune dysfunction

beyond individual checkpoint changes; and 3) CD276 upregulation

may represent a compensatory mechanism. These findings have

important implications for immunotherapy stratification,

particularly the observed progressive immune exhaustion with

increasing riskScore. The coordinated downregulation of multiple

inhibitory checkpoints (CTLA4, HAVCR2, and TIGIT) in high-risk

patients may explain their poorer prognosis while suggesting

potential resistance mechanisms to current immunotherapies.

These findings suggest the prognostic effect of immune cell

infiltration in tumors. The prognostic model we established can

serve as a tool to offer a window into the mechanisms for the pro-

tumorigenic immune microenvironment.

Genes related to the 13 PASEs included in the risk model have

been shown to have close associations with tumor occurrence and

progression. Among them, only CDKN2A was differentially

expressed in LUAD. The CDKN2A gene, or multiple tumor

suppressor 1 (MTS1), is an 8,500-bp gene located at 9p21 in

humans (39), contains three exons, and encodes p16INK4a

protein (40). p16INK4a is a cell cycle–dependent protein as it

binds to CDK4 and CDK6 and inhibits the kinase activity of

cyclin/CDK4 complexes to block Rb phosphorylation and induce

cell-cycle arrest at G phase, thus inhibiting cell proliferation (41).

Mutations in the CDKN2A gene often lead to loss of anti-cancer

activity of CDKN2A, thus promoting cell proliferation and

tumorigenesis (42). Tumor cells often show faster proliferation

and differentiation than normal cells, which may be, in part,

explained by CDKN2A mutations or inactivation (43). In LUAD,

some study has shown that the frequency of CDKN2A mutations is

higher in lung carcinoma tissues than in tumor-adjacent normal

tissues, indicating that CDKN2A mutations can be associated with

tumorigenesis (44). Thus, the CDKN2A gene is expected to be a new

direction of molecular targeted therapy for LUAD.

In this study, we also found that CDKN2A was positively

correlated with the expression of an important immune

checkpoint gene CD274. Currently, only a few studies reported the

expression pattern of CDKN2A in LUAD (45), and the relationship

between CDKN2A and the development and prognosis of LUAD as

well as the functional role is uncertain. Our analysis showed that

CDKN2A gene upregulation was closely associated with reductions

in immune effector cells and their functions, aberrant immune

checkpoint gene expressions, and worse OS of patients. We further

validated the expression and prognostic significance of CDKN2A in

LUAD through reverse transcription quantitative polymerase chain

reaction (RT-qPCR) and IHC. The results indicated an increase in

CDKN2A in LUAD tissues; correspondingly, the CDKN2A protein

was also upregulated in LUAD tissue, and patients exhibiting higher

CDKN2A expression exhibited shortened OS time. Additionally, a

pan-cancer study has demonstrated that the total expression of

CDKN2A was significantly elevated in LUAD (46). In SCLC, it has

been reported that CDKN2A mRNA levels in 357 SCLC cases were

notably higher than those in the control group, and patients with

higher CDKN2A expression had considerably poorer OS rates
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compared to those with lower CDKN2A levels (47). Our in vitro

study further revealed that CDKN2A displayed oncogenic biological

behavior in LUAD. Contrary to our in vitro results, Liu et al. reported

that CDKN2A silencing stimulates cell proliferation, migration, and

invasion in both A549 and H322 cells (48). We consider that factors

such as differing cell sources and knockdown sequences may account

for these disparate effects. Notably, our study pioneeringly confirmed

that CDKN2A can serve as a drug target in the treatment of LUAD.

Furthermore, YM201636 and VE-822, both high-affinity drugs that

bind to CDKN2A, exhibited promising anti-tumor effects in vivo.

Our study reveals distinct antitumor mechanisms of YM201636 and

VE-822 in lung cancer. YM201636, a PIKfyve inhibitor,

demonstrates dose-dependent suppression of NSCLC cell

proliferation with cell-type–specific claudin modulation

(upregulating CLDN1/3/5 in HCC827, CLDN3/5 in Calu-1, and

CLDN5 with CLDN1 reduction in H1299) and consistent epidermal

growth factor receptor (EGFR) mRNA induction, suggesting

PIKfyve-EGFR crosstalk in EGFR-activated NSCLC (49).

Meanwhile, the ataxia telangiectasia and Rad3-related protein

(ATR) inhibitor VE-822 exhibits LUAD suppression through a

novel OTUD1-FHL1 axis, inhibiting tumor growth both in vitro

and in vivo (50). While our preliminary data suggest CDKN2A

involvement, the cell-specific claudin effects and VE-822’s dual

mechanism as both ATR inhibitor and OTUD1 activator warrant

further investigation in clinically relevant models to assess their

therapeutic potential, particularly in CDKN2A-altered tumors and

combination regimens.

This study has several important limitations that warrant

consideration. The experimental scope was constrained by a

relatively small tissue sample size and the use of only one cell line

for functional validation, which may limit the generalizability of our

findings. Additionally, the in vivo experiments involved a restricted

number of animal subjects, potentially affecting the statistical power

of those results. While our risk scoring system shows promising

correlations with immune microenvironment features and

demonstrates capacity for immunological stratification, these

observations currently rely exclusively on computational analyses

and preclinical data, lacking validation in clinical immunotherapy

cohorts. Although we have begun assembling a cohort of anti-PD-1-

treated patients and designed follow-up validation protocols, the

model’s true predictive value for immunotherapy responses cannot

be definitively established until rigorous clinical correlation studies

are completed with actual treatment outcome data. Lastly, the

binding affinity and specificity between YM-201636/VE-822 and

CDKN2A protein require further validation through surface

plasmon resonance, isothermal titration calorimetry, or co-

crystallization experiments. These methodological constraints

highlight the need for more comprehensive, large-scale

investigations to both verify our current findings and further

elucidate the multifaceted role of CDKN2A in LUAD

pathogenesis and treatment response. Future studies

incorporating diverse cell models, expanded clinical samples, and

prospective validation cohorts will be essential to translate these

preliminary findings into clinically applicable biomarkers.
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In conclusion, PASEs offer novel insights into the TIME during

the tumorigenesis and progression of LUAD. The PASE-based risk

model can forecast prognosis, can delineate the immune cell

signature of LUAD patients, and can emerge as a promising

biomarker for personalized immunotherapy monitoring in clinical

settings. Furthermore, genes associated with PASEs represent

potential oncogenic drivers that merit further investigation.

Notably, CDKN2A functions as an oncogene and could be

considered a promising drug target for LUAD.
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