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Purpose: This study aims to evaluate the efficacy of utilizing automated

intertumoral susceptibility signal (ITSS) intensity extraction combined with R2*

values derived from enhanced T2*-weighted angiography (ESWAN) in magnetic

resonance imaging (MRI) to distinguish between cervical adenocarcinoma (CA)

and cervical squamous carcinoma (CSC).

Methods: Seventy-eight patients who underwent ESWAN from 2014 to 2019

were stratified into two groups: CA (26 patients) and CSC (52 patients). R2* values

of the lesions were measured, and ITSS ratios were automatically calculated

using the Anatomy Sketch (AS) software. Independent samples t-tests or Mann-

Whitney U-tests were utilized to evaluate disparities in the parameters. Binary

logistic regression was conducted to identify independent predictors. The

receiver operating characteristic curve was employed to assess diagnostic

value, and the Delong test was applied to compare differences in the area

under the curve (AUC).

Results: The CA group exhibited significantly higher values for the ITSSs, ITSSv

and R2* value, lower alpha fetoprotein (AFP) and prognostic nutritional index

(PNI) (ITSSs: 0.203 ± 0.111; ITSSv:0.206 ± 0.098; R2* value:20.340 ± 5.572Hz;

AFP: 1.73(1.33,2.99)ng/ml; PNI:49.150(45.825,51.775)) than that of the CSC group

(ITSSs: 0.072 ± 0.019; ITSSv: 0.076 ± 0.030; R2* value: 13.233 ± 4.083Hz; AFP:

2.99(1.88,2.99)ng/ml; PNI: 50.775(48.563,54.050)) (P< 0.05). Among them, ITSSv

and R2* value were independent risk predictors. The AUC values for ITSSv, R2*
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value and the combined model for differentiate between CA and CSC were

0.942, 0.851 and 0.950, respectively. The results of the Delong test indicated that

the combined model exhibited superior diagnostic efficacy compared to R2*

value (P< 0.05), but no significant difference from ITSSv (P>0.05).

Conclusion: ITSSv and R2* values derived from ESWAN facilitate the quantitative

differentiate between CA and CSC. The automated extraction of ITSSv is convenient

and reliable, making it a promising candidate for clinical implementation.
KEYWORDS

cervical adenocarcinoma, cervical squamous carcinoma, intertumoral susceptibility
signal, R2* value, ESWAN
Introduction

Cervical cancer (CC) is the fourth most common cancer among

women worldwide and ranks as the second leading cause of cancer-

related deaths in women aged 20–39 years in the United States (1,

2). It is also the fifth most prevalent cancer in China (3). Among the

various types of CC, CSC and CA are the most prevalent, with CA

accounting for approximately 20% of CC cases (4). In contrast to

CSC, CA primarily originates from the cervical stroma, is more

likely to infiltrate the lymphatic vascular space, and is associated

with lymph node and distant metastases, resulting in a relatively

aggressive clinical course, decreased sensitivity to radiotherapy (5)

and a poor prognosis (6–8). Research indicates that the 5-year

survival rate for CA is approximately 10%-20% lower than that for

CSC (9). The stagnant survival trends for CC likely reflect, in part,

an increased proportion of CA, making the identification of the two

types of cancer significant. However, conventional multiple punch

biopsy performed under vaginoscopy can be influenced by factors

such as lesion size, sampling precision and the experience of

operators (10), which may lead to variations in final pathological

outcomes. Research indicates that around 24.3% of patients

diagnosed with invasive CA exhibit negative cytological results

(11). Given the notable differences in surgical treatment

approaches and postoperative adjuvant chemotherapy between

CA and CSC, a reliable method to accurately distinguish between

the two prior to surgery is essential for enhancing patient survival

rates (12).
amous carcinoma; CA,

tion of Gynecology and
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In October 2018, the International Federation of Gynecology

and Obstetrics (FIGO) updated the CC staging system and for the

first time proposed that imaging findings could be utilized for CC

staging (13), aiming to establish a comprehensive clinical/

pathological/radiological staging framework, thereby imposing

higher requirements for imaging examinations. ESWAN

sequence, derived from susceptibility-weighted imaging, integrates

techniques that leverage magnetic susceptibility differences and

oxygen level-dependent effects. This approach facilitates the

collection of quantitative parameters, such as transverse

relaxation rate (R2*) values, through post-processing, enabling the

non-invasive assessment of oxygenation and local metabolic status

in hypoxic tumor regions (14, 15). In addition to visualizing and

delineating small vessels and microbleeds, ESWAN also contributes

to the observation of both physiological and pathological

conditions (16).

Studies have demonstrated that intratumoral hemorrhages are

frequently in the form of microhemorrhages (17). The ITSS appears

as a low-signal region on the phase map, characterized by a pattern

of continuous dots or slender lines within the tumor, primarily

resulting frommicrohemorrhages and neovascularization (18). This

feature serves as an intuitive and non-invasive imaging biomarker

for assessing vascular proliferation in pathological tissues, effectively

illustrating the density and dimensions of micro-vessels present in

the lesion (19).

In this study, CA and CSC were identified through automatic

ITSS extraction combined with R2* values derived from ESWAN,

providing a non-invasive approach for predicting the pathological

classification of CC.

Materials and methods

Patients and data collection

This retrospective study received approval from the Ethics

Committee. The clinical and imaging data of CC patients who

underwent 1.5T MRI at our hospital from April 2014 to December

2019 were retrospectively analyzed.
frontiersin.org
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The inclusion criteria for the study were as follows: (1) patients

with histologically confirmed CSC/CA following surgical resection;

(2) high-quality MRI images, including T1-weighted imaging

(T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging

(DWI), and ESWAN sequences, which provided clear visualization

of lesions, were free from artifacts, and facilitated the identification

of tumor boundaries for effect ive region of interest

(ROI) delineation.

Patients were excluded from the study for the following reasons:

(1) the presence of other coexisting uterine diseases that could affect

the observation and measurement of cervical lesions; (2) patients

who had undergone any prior treatments, such as biopsy, curettage,

radiotherapy, chemotherapy, or immunotherapy, before the MRI

examination; (3) lesions measuring less than 1.0 cm or those for

which the delineation process indicated fewer than three layers.

According to the above criteria, 271 patients were enrolled,

comprising 26 CA patients and 245 CSC patients. For the

subsequent statistical analysis, 26 CA patients and 52 controls

with CSC in a 1:2 ratio (randomly selected from 245 CSC

patients) were ultimately included in our study (20). The

flowchart of patient selection process was illustrated in Figure 1.

The demographic and clinicopathological characteristics of the two

groups were gathered from the hospital information system,

including variables such as age, irregular vaginal bleeding, tumor

size, FIGO stage, carcinoembryonic antigen, AFP, carbohydrate
Frontiers in Oncology 03
antigen 12-5, carbohydrate antigen 19-9, epididymal protein 4,

neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio,

platelet-lymphocyte ratio, systematic immune inflammation

index, pan-immune inflammation value, PNI, aspartate

aminotransferase to lymphocyte ratio index, aspartate

aminotransferase to platelet ratio index, degree of differentiation,

lymphatic vascular space invasion, perineural invasion, and lymph

node metastasis.
MRI data acquisition

All patients enrolled in the study underwent Signa HDxt 1.5T

MRI (GE Healthcare, Milwaukee, WI, USA) within a two-week time

frame prior to surgery. Birth control rings were removed one day

before the examination, and dietary abstinence was enforced for 4 to

6 hours to mitigate gastrointestinal peristaltic artifacts. Patients

were instructed to consume approximately 500 ml of water one

hour before the examination to achieve moderate bladder fullness,

and they received guidance on proper breathing techniques to

minimize respiratory motion artifacts that could compromise

image quality. Patients were positioned supine with their feet

advanced for the duration of the examination. The study

employed an 8-channel phased array body coil for imaging,

utilizing scanning sequences including T1WI, T2WI, DWI,
FIGURE 1

Flowchart of patient selection process.
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dynamic contrast-enhanced MRI (DCE-MRI) and ESWAN.

Detailed scanning parameters were provided in Table 1.
Measurement of ITSS ratios

The initial axial digital images obtained from the ESWAN

sequence were transmitted to the Advantage Workstation (AW,

Version 4.6; GE Healthcare, Milwaukee, WI, USA). Post-processing

was conducted using the Functool software to generate the phase

maps. Prior to measurement, an image de-artifacting program

developed in Python was employed to eliminate artifacts from the

phase maps. (1) Input a phase map requiring artifact removal,

containing a band-like artifact characterized by alternating dark and

bright pixel bands; pixels exhibiting these characteristics necessitate

elimination. (2) Apply median filtering to the image in step 1 to

generate a smoothed image. (3) Subtract the pixel values of the

image in step 1 from the image in step 2. Pixels in the resulting

matrix that fall below -150 are classified as having insufficient signal,

while pixels exceeding 200 are deemed to have excessive signal.

Assign -1 to pixels with insufficient signal, 1 to pixels with excessive

signal, and 0 to the remaining pixels to create a new 3D array. (4)

Extract the regions surrounding the values of 1 and -1 from the 3D

array generated in step 3, expand the resulting area by 1 pixel in the

cross-section, and designate the pixels within this region as pseudo-

imaging pixels. (5) Recalculate the pixel values of the artifactual

region by determining the average of the 26 neighboring non-

artifactual region pixels for each target pixel, thereby replacing the

original artifactual region pixel values. (6) Replace the

corresponding pixel values in the original phase map from step 1

with the pixel values obtained in step 5, resulting in the generation

of the resultant map. The Python-based artifact removal program

can be found in the Supplementary Material named “Python-Based

Artifact Removal Program.zip”.

Following the artifact removal process, the phase maps were

exported to NII format using a batch program and subsequently

transmitted to AS software, which incorporates C++ programming
Frontiers in Oncology 04
along with Qt and VTK libraries, for the calculation of ITSS ratios.

The analysis codes are available in a GitHub repository (https://

github.com/DlutMedimgGroup/AnatomySketch-Software).

Two physicians, each with 6 and 11 years of experience in

uterine MRI imaging diagnosis, utilized a double-blind method to

identify tumor lesions. Referring to T2WI, DWI and apparent

diffusion coefficient maps, the ROIs were delineated using an

interactive semi-automatic method from the first to the last layer

of the lesions on the phase maps. The edges of the lesions were

defined based on DCE-MRI, with the ROIs outlined within 0.5 cm

of the tumor edge to minimize volume effects. Therefore, lesions

with a narrow range were excluded to ensure the accuracy of lesion

delineation and the reliability of subsequent quantitative analysis.

Upon completion of the delineations, three-dimensional volumes of

interest were generated using the AS software. Subsequently, a plug-

in within the AS software was utilized to determine the ITSS regions

in the volumes of interest by establishing a threshold value of 2020.

The ITSS ratios were then automatically calculated, including the

ratio of the ITSS area in the maximum ITSS layer to the tumor area

at that layer (intratumoral susceptibility signal sectional, ITSSs) and

the ratio of tumor ITSS volume to the whole tumor volume

(intratumoral susceptibility signal volume, ITSSv), as depicted

in Figure 2.
Measurement of R2* values of the ESWAN
sequence

The ESWAN imaging post-processing was performed using the

GE AW4.6 workstation equipped with Functool software to

generate R2* maps. Without prior knowledge of the pathological

results, two observers delineated irregularly shaped ROIs at the

largest extent of the tumor parenchymal region, referencing T2WI,

DWI, apparent diffusion coefficient maps and DCE-MRI. This

process ensured that the ROIs encompassed the solid tumor area

as comprehensively as possible while avoiding regions of necrosis,

hemorrhage, and cystic degeneration. Measurements were taken
TABLE 1 Scanning sequence parameters.

Sequence orientation
TR
(ms)

TE (ms)
ACQ Voxel

(mm2)
NEX

FOV
(mm2)

Thickness/ Gap
(mm)

Scan
time

T1WI AXI 680 10 320*192 2.0 30*30 1.0/1.0 1min 37s

T2WI AXI 5660 88.4 288*224 3.0 30*30 5.0/1.0 3min 13s

DWI AXI 3725 71.1 128*128 6.0 30*30 5.0/1.0 1min 15s

T2WI SAG 3980 91.8 256*224 3.0 30*30 5.0/1.0 2min 55s

DWI SAG 3725 71.1 192*192 6.0 31*31 5.0/1.0 1min 15s

LAVA AXI 3.9 1.9 128*128 0.71 39*39 5.0/2.5 3min 29s

ESWAN AXI 16.5
2.1/5.1/8.0/10.9/

13.8
256*192 0.71 40*40 5.0/2.0 21 s
f

The 2 b values of DWI were 0, 1000 s/mm2. AXI, axial; DWI,diffusion-weighted imaging; ESWAN,enhanced T2*-weighted angiography; FOV, field of view; LAVA, liver acceleration volume
acquisition; NEX, number of excitations; SAG, sagittal; TE, echo time; TR, repetition time; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging.
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FIGURE 3

(A–F) presented a 75-year-old patient diagnosed with poorly differentiated CA, classified as FIGO stage IIB. (A) Axial T2WI image: the mass
demonstrated mixed iso-hyperintense signal; (B) Axial DWI image: the mass with restricted diffusion showed significant hyperintense signal; (C) Axial
enhanced image of the delayed period: the mass revealed uneven hypointense signal and annular enhancement; (D) The schematic diagram
illustrated the ITSS intensity measured using AS software, where the green area on the diagram signified the ITSS within the tumor, with an ITSSs of
0.204 and ITSSv of 0.229; (E) R2* map of the ESWAN sequence, where the mean value of R2* for this patient was 23.184Hz. (F) Pathological image
confirmed CA.
FIGURE 2

A schematic diagram of the AS software was utilized to calculate the tumor ITSS ratio. By employing the interpolation and labeling tools within the
AS software, the ITSS ratio within the ROI was determined. The ITSS ratio is operationally defined as the ratio of pixels exhibiting low signal intensity
within the ROI to the total number of pixels present within the ROI.
Frontiers in Oncology frontiersin.org05
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three times, one month apart, to calculate an average. As illustrated

in Figures 3 and 4.
Statistical analysis

Statistical analysis was performed using SPSS 21.0 software

(Chicago, IL, USA) and MedCalc 15.2.2 software (Med Calc

Software, Ostend, Belgium). Intra-class correlation coefficients were

utilized to evaluate the agreement between ITSSs, ITSSv, and R2*

values measured by two observers. The Shapiro-Wilk test was
Frontiers in Oncology 06
employed to assess the normality of the measurements, and either

the two independent samples t-test or the Mann-Whitney U-test was

employed to compare quantitative parameters between CA and CSC

groups. The clinicopathological data of the two groups were presented

as frequencies or percentages, with group comparisons conducted

using the chi-square test or Fisher’s exact test. Binary logistic

regression was employed to identify independent predictors that

differentiate CA from CSC. Receiver operating characteristic curve

analysis was applied to assess the statistically significant parameters

and their combinations for distinguishing between CA and CSC. The

Delong test was utilized to compare the differences in the AUC.
FIGURE 5

Violin plot displaying the distribution of parameters within CA and CSC group. (A–C) differential comparison of ITSSv, ITSSs and R2* value between
two groups of patients.
FIGURE 4

(A–F) presented a 66-year-old patient diagnosed with poorly differentiated CSC, classified as FIGO stage IIA. (A) Axial T2WI image: the mass
presented isointense signal; (B) Axial DWI image: the mass with restricted diffusion exhibited significant hyperintense signal; (C) Axial enhanced
image of the delayed period: the mass displayed low level of enhancement; (D) The schematic diagram illustrated the ITSS intensity measured using
AS software, where the green area on the diagram signified the ITSS within the tumor, with an ITSSs of 0.091 and ITSSv of 0.077; (E) R2* map of the
ESWAN sequence, where the mean value of R2* for this patient was 10.440Hz. (F) Pathological image confirmed CSC.
frontiersin.org
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Results

Comparison of the general
clinicopathological data between the two
groups

The AFP and PNI levels in the CA group were significantly

lower than those in the CSC group (P< 0.05). Other general

clinicopathological features, including age, irregular vaginal

bleeding, tumor size, FIGO stage, carcinoembryonic antigen,

carbohydrate antigen 12-5, carbohydrate antigen 19-9,

epididymal protein 4, neutrophil-lymphocyte ratio, monocyte-

lymphocyte ratio, platelet-lymphocyte ratio, systematic

immune inflammation index, pan-immune inflammation

value, aspartate aminotransferase to lymphocyte ratio index,

aspartate aminotransferase to platelet ratio index, degree of

differentiation, lymphatic vascular space invasion, perineural

invasion and lymph node metastasis, were analyzed; however,
Frontiers in Oncology 07
the differences were not statistically significant (P>0.05). As

shown in Table 2.

Consistency analysis of the measurements
between the two observers

The inter-rater reliability of the ITSSs, ITSSv and R2* values, as

assessed by the two observers, was deemed satisfactory, with all

intra-class correlation coefficients values exceeding 0.75, as

indicated in Table 3. The average of the measurements obtained

from the two observers was utilized for subsequent analysis.

Comparison of the ITSSs, ITSSv and R2*
values between the two groups

The ITSSs, ITSSv and R2* values of the CA group were

significantly higher than those of the CSC group (P< 0.05), as

shown in Table 4 and Figure 5.
TABLE 2 Comparison of general clinical data of two groups of patients.

Characteristics n CSC(n=52) CA(n=26) c2/Z P

Age (year) 78 52.19±10.34 56.77±10.83 35.786 0.182*

Irregular vaginal bleeding n/%

No 13 8/52 (15.38%) 5/26 (51.88%)
0.185 0.7511

Yes 65 44/52 (84.62%) 21/26 (48.12%)

Tumor size (cm) 78 3.45(2.60,4.20) 3.30(2.08.5.00) -0.286 0.775#

FIGO stage n/%

I stage 47 35/52 (67.31%) 12/26 (46.15%)

4.965 0.081*II stage 23 11/52 (21.15%) 12/26 (46.15%)

III stage 8 6/52 (11.54%) 2/26 (7.69%)

CEA (ng/ml) 78 1.61(1.07,2.30) 2.73(1.06,5.03) -1.111 0.267#

AFP (ng/ml) 78 2.99(1.88,2.99) 1.73(1.33,2.99) -2.901 0.004#

CA12-5 (U/ml) 78 19.43(10.09,67.91) 27.46(12.99,109.85) -1.210 0.226#

CA19-9 (U/ml) 78 10.71(6.16,19.10) 17.17(9.43,28.08) -1.767 0.077#

HE4 (pmol/L) 78 53.48(44.47,66.36) 64.25(48.14,90.81) -1.062 0.109#

NLR 78 1.705(1.187,2.331) 1.951(11.325,2.640) -1.518 0.129#

MLR 78 0.195(0.167,0.271) 0.219(0.151,0.341) -0.490 0.624#

PLR 78 128.067(106.091,170.874) 143.429(101.381,173.622) -0.305 0.761#

SII 78 414.388(276.503,637.761) 400.378(273.347,675.647) -0.359 0.720#

PIV 78 161.840(96.449,235.306) 140.132(84.169,237.374) -0.207 0.836#

PNI 78 50.775(48.563,54.050) 49.150(45.825,51.775) -2.401 0.016#

ALRI 78 9.078(6.954,12.146) 10.048(7.199,17.037) -1.425 0.154#

APRI 78 0.069(0.050,0.093) 0.078(0.056,0.114) -1.001 0.317#

(Continued)
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Independent predictors for differentiating
between CA and CSC

The comprehensive clinicopathological data and various

quantitative MRI parameters with P values below 0.1 between the

two groups were incorporated into the subsequent analysis.

Following univariate and multivariate logistic regression analyses,

the ITSSv and R2* value emerged as independent predictors for

differentiating between CA and CSC, as illustrated in Table 5.
Efficiency of ITSSv, R2* value and the
combined model for differentiating
between CA and CSC

The AUC for ITSSv, R2* value, and the combined model for

differentiating between CA and CSC were 0.942, 0.851, and 0.950,

respectively, as depicted in Figure 6. The Delong test indicated that
Frontiers in Oncology 08
the diagnostic efficacy of the combined model was superior to that

of the R2* value (P< 0.05); however, there was no significant

difference when compared to ITSSv (P>0.05), as shown in Table 6.

Pairwise comparisons of the single parameters ITSSs, ITSSv,

R2* value, and the combined models were compared pairwise. The

Delong test revealed that the AUCs for ITSSv compared to R2*

value, ITSSs + R2* value compared to R2* value, ITSSv + R2* value

compared to R2* value, and ITSSs + ITSSv + R2* value compared

to R2* value between the two groups were statistically significant

(P< 0.05), as presented in Table 7.
Discussion

The primary discovery of this study was the efficacy of

automated ITSS intensity extraction in conjunction with R2*

values for differentiating between CA and CSC. Our research

revealed that the ITSSs, ITSSv and R2* values in the CA group
TABLE 2 Continued

Characteristics n CSC(n=52) CA(n=26) c2/Z P

Degree of differentiation n/%

Low 48 35/52 (67.31%) 13/26 (50.00%)
2.194 0.2171

Middle/High 30 17/52 (32.69%) 13/26 (50.00%)

LVSI n/%

No 49 29/52 (62.79%) 20/26 (65.41%)
3.321 0.0851

Yes 29 23/52 (37.21%) 6/26 (34.59%)

Perineural invasion n/%

No 71 46/52 (75.58%) 25/26 (85.71%)
1.256 0.4141

Yes 7 6/52 (24.42%) 1/26 (14.29%)

LNM n/%

No 70 46/52 (75.58%) 24/26 (92.48%)
0.279 0.7121

Yes 8 6/52 (24.42%) 2/26 (7.52%)
The independent samples t-test was applied to the data marked "1"; Fisher's exact test was applied to the data marked "*"; and the Mann-Whitney U test was applied to the data marked "#". Data in
bold are statistically significant. AFP, alpha-fetoprotein; ALRI, aspartate aminotransferase to lymphocyte ratio index; APRI, aspartate aminotransferase to platelet ratioindex; CA, cervical
adenocarcinoma; CA12-5, carbohydrate antigen 12-5; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CSC,cervical squamous carcinoma; FIGO, International Federation
of Gynecology and Obstetrics; HE4, epididymal protein 4; LNM, lymph node metastasis; LVSI, lymphatic vascular space invasion; MLR, monocyte-lymphocyte ratio; NLR, neutrophil-
lymphocyte ratio; PIV, pan-immune inflammation value; PLR, platelet-lymphocyte ratio; PNI, prognostic nutritional index; SII, systematic immune inflammation index.
TABLE 3 Comparison of consistency of measurement data between two observers.

Parameters Group Observer1 Observer2 ICC(95%CI)

ITSSs(%)
CSC 0.073±0.019 0.071±0.021 0.944(0.905,0.968)

CA 0.202±0.116 0.204±0.109 0.968(0.930,0.986)

ITSSv(%)
CSC 0.078±0.031 0.073±0.029 0.944(0.904,0.967)

CA 0.211±0.100 0.201±0.099 0.963(0.918,0.984)

R2* value (Hz)
CSC 13.134±4.232 13.326±4.243 0.923(0.866,0.956)

CA 20.279±6.040 20.401±5.419 0.940(0.865,0.973)
CA, cervical adenocarcinoma; CSC, cervical squamous carcinoma; ICC, intra-class correlation coefficients; ITSSs, intratumoral susceptibility signal sectional; ITSSv, intratumoral susceptibility
signal volume.
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were significantly higher than those in the CSC group. Furthermore,

after controlling for confounding variables, ITSSv and R2* values

emerged as independent factors. The combined model

demonstrated high diagnostic efficacy in distinguishing between

CA and CSC, revealing significant differences when compared to

R2* values alone.

In this study, the clinical manifestations of patients with CA and

CSC were found to be similar, primarily, presenting as irregular

vaginal bleeding. There was no statistically significant difference

between the two groups, which complicates differentiation. Most

laboratory tests indicated no obvious discrepancies between CA and

CSC; however, AFP and PNI exhibited significant differences. AFP, a

glycoprotein belonging to the serum albumin gene family, is

commonly utilized as a biomarker for liver cancer. Nevertheless, He

et al. (21) observed elevated serum AFP levels in patients with various
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cancers and non-cancerous diseases, including CC. The results of this

study demonstrated that AFP levels in the CA group were significantly

lower than those in the CSC group, suggesting its potential clinical

utility, although the underlying molecular mechanisms warrant

further investigation. PNI, derived from serum albumin levels and

peripheral blood lymphocyte counts, serves as an important indicator

of both nutritional status and systemic inflammation. Serum albumin,

an acute-phase protein, is linked to systemic inflammation, while

lymphocytes are essential components of cell-mediated immunity.

Both nutrition and inflammation significantly influence

tumorigenesis, cancer progression, and metastasis by affecting the

tumor microenvironment (22). Therefore, PNI may serve as a

powerful prognostic indicator for patients with various types of

cancer, as confirmed by numerous studies (23–27). Niu et al. (28)

conducted a meta-analysis that revealed a significant association

between decreased PNI and poorer overall survival and progression-

free survival, as well as an increased likelihood of tumormetastasis and

higher tumor burden. The results of this study indicated that PNI

values in the CA group were notably lower than those in the CSC

group, suggesting that CA represents a more advanced tumor with a

worse prognosis compared to CSC. However, the diagnostic efficacy of

AFP and PNI was found to be limited, with AUC of 0.698 and 0.667,

respectively. Consequently, this study aims to explore the value of

imaging indicators in the differential diagnosis of CA and CSC.

Currently, the predominant assessments of ITSS primarily rely

on semi-quantitative methods (17, 29–36). Bhattacharjee et al. (37)

attempted to conduct a quantitative analysis of ITSS in brain

glioma. However, these approaches are constrained by several
TABLE 4 Comparison of the differences between the parameters in the
two groups of patients.

Parameters
CSC
(n=52)

CA
(n=26)

t/z P

ITSSs (%) 0.072±0.019 0.203±0.111 -5.925 <0.001

ITSSv (%) 0.076±0.030 0.206±0.098 -6.328 <0.001

R2* value (Hz) 13.233±4.083
20.340
±5.572

-5.024 <0.001
Data in bold were statistically significant. CA, cervical adenocarcinoma; CSC, cervical
squamous carcinoma; ITSSs, intratumoral susceptibility signal sectional; ITSSv,
intratumoral susceptibility signal volume.
FIGURE 6

Receiver operating characteristic curves analyzing the efficacy of ITSSv+R2*value, R2* value and ITSSv to distinguish CA and CSC with AUC values of
0.950, 0.851 and 0.942, respectively.
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limitations. Firstly, manual counts in previous studies have not

always been consistent, likely due to the absence of an established

objective standard for ITSS quantification. This inconsistency is

further exacerbated by the challenges associated with manually

calculating ITSS, which is susceptible to subjective interpretation

by the evaluator, resulting in inadequate reproducibility. Secondly,

the focus on the head as the study subject, which experiences

minimal interference from respiratory and motion artifacts,

highlights the need for further investigation into the applicability

and reliability of these methods for abdominal organs. Thirdly, the

failure to address phase diagram artifacts may result in inaccuracies

in the findings. To overcome the limitations of existing

methodologies, this study utilized the ESWAN sequence for pre-

processing phase map artifacts, specifically targeting challenges

related to respiratory and motion-induced artifacts in abdominal

organs. Furthermore, an automated approach was implemented to

extract the ITSS ratios for patients with CC, calculated based on the

ratio of low-signal region pixels within the tumor to the total

number of pixels in both the maximum ITSS layer (ITSSs) and

the whole tumor volume (ITSSv). This method is characterized by

its simplicity, reproducibility, and reduced subjectivity, rendering it

highly suitable for clinical applications.

In this study, we demonstrated the potential utility of ITSS in

differentiating between CA and CSC. ITSS provides a comprehensive

depiction of neovascularization and microhemorrhage within

tumors, serving as a noninvasive and intuitive imaging marker for

vascular proliferation. Our findings indicated that ITSSs and ITSSv

were significantly higher in the CA group compared to the CSC

group. This observation can be attributed to the more malignant and

aggressive nature of CA, which expresses markedly higher levels of

vascular endothelial growth factor-A than CSC (38). This over

expression leads to neovascularization characterized by thin walls,

high vascular permeability, and frequent microhemorrhages, thereby

contributing to the elevated ITSSs and ITSSv. Furthermore, ITSS

ratios offer the advantage of automated quantification, simplifying
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implementation and minimizing subjective bias when compared to

other quantitative parameters, such as R2*, derived from ESWAN.

ESWAN is a type of magnetic-sensitive sequence, specifically a

multi-echo T2*-weighted 3D gradient echo sequence, that reflects

the magnetic-sensitive characteristics of tissues (39). The R2* value

represents the apparent transverse relaxation rate, which is obtained

through gradient echo imaging at different time intervals. The

presence of paramagnetic substances, such as iron compounds,

can induce inhomogeneity in the magnetic field, resulting in

accelerated proton phase dispersion. This phenomenon leads to a

more rapid attenuation of the transverse magnetization vector and

an increase in the R2* value. Consequently, the R2* value is directly

related to the concentration of deoxyhemoglobin containing iron

ions. A higher R2* value, indicative of increased deoxyhemoglobin,

suggests lower oxygen content, thereby allowing the R2* value to

quantitatively evaluate changes in local tissue oxygen levels (40).

Typically, paramagnetic substances, including iron and

hemosiderin, influence the R2* value. Notably, the liver, which is

the primary organ in the body that stores iron, exhibits

characteristics that differ from those of other tissues or organs;

however, to date, no evidence of iron deposition has been found in

normal cervical tissue or cervical lesions (41, 42). Therefore, we

conclude that R2* has promising applications in the detection of

hypoxia in cervical cancer (43).

Currently, the R2* value has been preliminarily applied in the

context of diseases affecting the female pelvic system (15, 44).

However, its application in CC is limited and warrants further

exploration. Li et al. (45) investigated the R2* value as a predictor

of prognosis in advanced CSC treated with concurrent

chemoradiotherapy. Additionally, research by Li-Ou Z et al. (43)

confirmed a moderate correlation between activated hypoxia

inducible factor-1a expression and the R2* value in CC. Our study

found that R2* values were significantly higher in the CA group

compared to the CSC group. CA is characterized by relatively

aggressive tumor behavior (46), with tumor cells exhibiting rapid
TABLE 5 Univariate and multivariate analyses to distinguish CA and CSC.

Parameters
Univariate analysis Multivariate analysis

OR (95%CI) P OR (95%CI) P

FIGO stage 2.467 (0.930 - 6.541) 0.0700

LVSI 0.378 (0.131 - 1.096) 0.0730

AFP (ng/ml) 0.502 (0.287 - 0.876) 0.0154

CA19-9 (U/ml) 1.000 (1.000 - 1.001) 0.4740

PNI 0.866 (0.768 - 0.977) 0.0193

ITSSs(%) 1.770 (1.235 - 2.536) <0.0001

ITSSv (%) 1.586 (1.257- 2.002) <0.0001 1.475 (1.175 - 1.852) 0.0008

R2* value (Hz) 1.371(1.185- 1.588) <0.0001 1.198 (0.996 - 1.441) 0.0555
All variables with P< 0.1 in the univariate analysis were included in the multivariate regression analysis. Bold text in the table indicates statistically significant logistic regression analysis. AFP,
alpha-fetoprotein; CA, cervical adenocarcinoma; CA19-9, carbohydrate antigen 19-9; CI, confidence interval; CSC, cervical squamous carcinoma; FIGO, International Federation of Gynecology
and Obstetrics; ITSSs, intratumoral susceptibility signal sectional; ITSSv, intratumoral susceptibility signal volume; LVSI, lymphatic vascular space invasion; OR, odds ratio; PNI, prognostic
nutritional index.
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proliferation and metabolism. This results in an increased uptake of

nutrients, including sugars and proteins, along with heightened

oxygen consumption (47). Hypoxia prompts tumor cells to release

various angiogenic factors, stimulating the formation of immature

neovascularization, which further reduces oxygen saturation.

Consequently, the increase in deoxygenated hemoglobin leads to

elevated R2* values, resulting in higher R2* values in the CA group

compared to the CSC group.
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In this study, ITSSv and R2* values were identified as

independent factors for distinguishing between CA and CSC. The

combined model utilizing ITSSv and R2* values demonstrated the

highest diagnostic efficiency, achieving an AUC of 0.950; notably,

the inclusion or exclusion of ITSSs did not influence the results. The

combined model outperformed the R2* value, but did not surpass

ITSSv, indicating that ITSSv carries greater significance within the

model compared to both ITSSs and R2* values. This can be

attributed to the following reasons: (1) The comprehensive three-

dimensional evaluation provided by ITSSv offers a holistic view of

the lesions, particularly for irregular and complex formations. In

contrast, ITSSs only capture the maximum ITSS layer of the lesion,

which fails to convey complete information. (2) ITSSv is derived

from the automatic extraction of the AS software and is calculated

through volume delineation, streamlining the process and

effectively minimizing variability between observers. Conversely,

the R2* value can be influenced by subjective interpretations among

observers regarding the solid tumor portions and lesion boundaries,

potentially affecting the accuracy of the results. Furthermore,

utilizing a ratio to characterize ITSS intensity provides a more

accurate reflection of the relationship between the ITSS components

and the entire tumor. This method also enables more effective

comparisons between lesions, which is preferable to the ITSS

volume value employed by Bhattacharjee et al. (36).

The limitations of this study are as follows: (1) The limited

number of cases of CA restricted the ability to refine the

pathological classification of CA, including subtypes such as

mucinous adenocarcinoma and gastric-type adenocarcinoma. (2)

This study was conducted at a single center and involved a relatively

small sample size. Future research will aim to increase the sample

size and conduct a multi-center study to facilitate a more

comprehensive analysis.
Conclusion

In conclusion, the combination of ITSSv and R2* values derived

from ESWAN has the potential to significantly enhance the

accuracy of differentiating between CA and CSC. By integrating

the automated extraction process of ITSS with AS software, both

two-dimensional (ITSSs) and three-dimensional (ITSSv)

parameters can be obtained concurrently. ITSSv serves as an

independent risk predictor, demonstrating notable advantages

over ITSSs and exhibiting strong diagnostic efficacy comparable

to the combined use of ITSSv and R2* values. This approach
TABLE 6 The efficiency of ITSSv, R2
* value and the combined parameter to distinguish CA and CSC.

Parameters AUC (95%CI) Thresholds Sensitivity (%) Specificity (%) Delong test

ITSSv (%) 0.942 (0.864 - 0.982) 0.107 88.46 84.62 Z=0.691 P=0.4898

R2* value (Hz) 0.851 (0.752 - 0.921) 15.698 80.77 76.92 Z=2.858 P=0.0043

ITSSv+R2* value 0.950(0.876 - 0.987) 0.264 88.46 94.23 NA NA
Data in bold are statistically significant. AUC, area under the curve; CA, cervical adenocarcinoma; CI, confidence interval; CSC, cervical squamous carcinoma; ITSSv, intratumoral susceptibility
signal volume.
TABLE 7 Comparison of multiple quantitative parameters and combined
parameters to distinguish CA and CSC.

Parameters
AUC difference
value(95%CI)

Delong test

ITSSv (%) - ITSSs (%) 0.029(0.036-0.017) Z=1.203 P=0.2291

ITSSv (%) - R2* value
(Hz)

0.091(0.112 - 0,061) Z=2.137 P=0.0326

ITSSs (%) - R2* value
(Hz)

0.062(0.076 - 0.044) Z=1.357 P=0.1749

ITSSs+R2* value - R2*
value (Hz)

0.086(0.106 - 0.059) Z=2.473 P=0.0134

ITSSs+R2* value - ITSSs
(%)

0.024(0.030 - 0.015) Z=1.344 P=0.1790

ITSSv (%) - ITSSs+R2*
value

0.005(0.006 - 0.002) Z=0.221 P=0.8250

ITSSv+R2* value - R2*
value (Hz)

0.099(0.124 - 0.066) Z=2.858 P=0.0043

ITSSv+R2* value - ITSSs
(%)

0.037(0.048 - 0.022) Z=1.484 P=0.1377

ITSSv+R2* value - ITSSv
(%)

0.008(0.012 - 0.005) Z=0.691 P=0.4898

ITSSv+R2* value - ITSSs
+R2* value

0.013(0.018 - 0.007) Z=0.963 P=0.3357

ITSSs+ITSSv+R2* value -
R2* value (Hz)

0.099(0.124 - 0.066) Z=2.858 P=0.0043

ITSSs+ITSSv+R2* value -
ITSSs (%)

0.037(0.048 - 0.022) Z=1.484 P=0.1377

ITSSs+ITSSv+R2* value
- ITSSv (%)

0.008(0.012 - 0.005) Z=0.691 P=0.4898

ITSSs+ITSSv+R2* value -
ITSSs+R2* value

0.013(0.018- 0.007) Z=0.963 P=0.3357
Data in bold were statistically significant. AUC, area under the curve; CA, cervical
adenocarcinoma; CI, confidence interval; CSC, cervical squamous carcinoma; ITSSs,
intratumoral susceptibility signal sectional; ITSSv, intratumoral susceptibility signal volume.
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facilitates a comprehensive assessment of lesions and yields more

precise information. This advancement is poised to supplant

traditional R2* value measurements, presenting promising

prospects for future clinical applications and widespread adoption.
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