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Objective: To develop and validate a comprehensive model integrating
multiparametric magnetic resonance imaging (MRI) radiomics and deep
learning features for preoperative prediction of LVSI in early-stage
cervical cancer.

Methods: 155 patients from January 2019 to December 2023 were enrolled in
this study and divided into the training and validation cohorts randomly at a ratio
of 7:3. Radiomics and deep learning features were extracted from T2-weighted
images (T2WI), apparent diffusion coefficient (ADC) maps, and late contrast-
enhanced T1-weighted images (CE-T1WI). Mann—Whitney U test, the least
absolute shrinkage and selection operator regression (LASSO) were used to
select radiomics and deep learning features. Radiomics model (Rad model),
deep learning model (DL model), and radiomics-deep learning model (RDL
model) were derived from the training cohort using support vector machines
(SVM) classifier. The prediction performances of the three models were evaluated
with the area under the curve (AUC), calibration curve, decision curve analysis
(DCA) and tested in the validation cohort.

Results: The RDL model achieved predictive performance for LVSI in cervical
cancer with an AUC of 0.968 (95% confidence interval (Cl): 0.938-0.999) in the
training cohort, higher than 0.801(95% CI: 0.712-0.891) of Rad model and 0.902
(95 CI: 0.845-0.959) of DL model with statistical significance after Bonferroni
correction. In the validation cohort, the predictive performance of the fusion
model (RDL)(AUC = 0.859, 95% Cl| 0.751-0.967) was significantly superior to that
of the single model (AUC of DL Model = 0.745 95% CI 0.595-0.894; AUC of Rad
Model = 0.686 95% CI 0.525-0.847, P < 0.001), however, the DL and radiomics
models did not demonstrate statistically significant differences in performance
within the validation cohort (Delong test, P>0.05). Analysis of the calibration and
decision curves indicated superior predictive precision and net clinical benefit for
the RDL model relative to the others.
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Conclusions: The advanced RDL model demonstrated strong predictive
accuracy for LVSI in cervical cancer, suggesting its promising role as a
noninvasive imaging biomarker. This tool could significantly enhance
preoperative treatment planning by providing reliable insights without

invasive procedures.

cervical cancer, lymph vascular space invasion, radiomics, deep learning, magnetic
resonance imaging, machine learning

1 Introduction

Cervical cancer remains one of the most significant cancer
threats to women’s health globally, maintaining its position as the
gynecological malignancy with both the highest incidence and
mortality rates worldwide. According to 2022 global statistics, it is
estimated that there were 111,820 new diagnoses and 61,579 deaths
in China and 13,740 new diagnoses and 5,830 deaths in the United
States in 2022 (1, 2). Furthermore, the incidence and mortality rates
of cervical cancer in China have witnessed a significant increase
since 2000 (2). Lymph-vascular space invasion (LVSI) is defined as
the dissemination of neoplastic cells within lymphatic and/or blood
vessels (3, 4), and has been reported to be strongly correlated with
lymph node metastasis and poor prognosis (5-9). While
lymphovascular space invasion (LVSI) doesn’t substantially
influence the clinical staging of cervical cancer, treatment
strategies diverge significantly between LVSI-positive and LVSI-
negative patients, as outlined by the National Comprehensive
Cancer Network (NCCN) protocols. Surgeons often tailor their
approach based on this histological feature, even though it doesn’t
alter the disease’s formal classification. Specifically, patients without
LVSI have the option to choose a fertility-sparing treatment
strategy, thereby avoiding the need for radical hysterectomy (10,
11). Therefore, preoperative acknowledge of LVSI status is
significant for treatment plan decision. However, accurate
identification of LVSI can only be achieved through a detailed
pathological examination conducted after hysterectomy.

Magnetic resonance imaging, with high soft-tissue resolution, is
an important component in the diagnosis and staging of cervical
cancer, but it still cannot provide intuitive information to identify
LVSI status. As a result, an increasing number of researchers are
employing MRI-based radiomics models to predict LVSI status in
CC, and a large number of original studies have been published,
many results are encouraging (12-18). However, the low-order
nature of radiomics features may limit their ability to characterize
the heterogeneity of medical images. Recently, deep learning has
become an emerging field on medical image processing problems.
Convolutional Neural Networks, or CNNs, are particularly adept at
identifying more advanced features in medical images while
preserving essential spatial data—crucial factor for enhancing
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medical diagnosis when stacked up against radiomics approaches
(19, 20). However, the main current constraint on the performance
of deep learning models is limited training data. A previous study
indicated that the combination of radiomics and deep learning
features has great potential on using limited data to predict LVSI
status in CC (21), yet the results were not satisfactory.

Lymphovascular space invasion (LVSI) serves as a key
prognostic marker for cervical cancer progression. Yet, the
diagnostic potential of deep learning-derived features in assessing
LVSI remains underexplored. This study aims to bridge that gap by
systematically comparing radiomic and deep learning feature
extraction techniques. We developed and validated an integrated
predictive model leveraging multiparametric MRI data to
noninvasively determine LVSI status in early-stage cervical cancer
patients, incorporating cross-modal imaging features for enhanced
diagnostic accuracy.

2 Materials and methods
2.1 Patient population

This retrospective study received approval from the
institutional ethics review board, which waived the need for
patient consent or written authorization. The research cohort
comprised 155 individuals diagnosed with cervical cancer through
pathological confirmation, with cases drawn from January 2019
through December 2023. The inclusion criteria of this study were as
follows: (1) patients who underwent a pelvic MRI examination
within one week before operation, (2) no history of preoperative
treatment, (3) diagnosed by postoperative pathology with complete
clinical data. Exclusion criteria were as follows: (1) images with
severe motion artifacts or evident noise; (2) tumors were invisible,
(3) combination with other tumor diseases. Participants were
assigned to either training or validation cohorts (7:3 stratified
ratio, random assignment). Process depicted in Figure 1.

We collected these patients’ images and clinical data from our
hospital’s regular clinical records and picture archiving and
communication systems (PACS). We retrospectively analyzed

their clinical information including age, maximum tumor
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Early-stage cervical cancer from January 2019 to December 2023 who undergone MRI examination
within one week prior to radical hysterectomy (n=189)

Exclusion:

1. Tumors is invisible on MRI images(n=12);

2. Other treatments before surgery(n=14)

3. Lack of complete sequences or severe artifacts(n=5)
4. Missing data (n=3)

155 patients were included (92 LVSI +, 63 LVSI-)

|

[

|

training cohort(67 LVSI+, 42 LVSI-)

validation cohort(25 LVSI+, 21 LVSI-)

Model Building

Model Comparation

FIGURE 1
The flowchart of patient selection.

diameter, menopausal status, HPV infection status, reproductive
history and various serum markers including squamous cell
carcinoma antigen (SCC-Ag).

2.2 MRI protocol

The MRI scans were conducted using either a 3.0T or 1.5T
scanner in the supine posture with an 18-channel abdominal-
phased array coil. For contrast-enhanced imaging, gadolinium
diethylenetriamine penta-acetic acid was administered
intravenously at a standard dose of 0.1 mmol/kg, injected at a
rate of 3 milliliters per second. The imaging protocol included axial
T2WI, axial diffusion-weighted imaging (DWI), sagittal contrast
enhanced TIWI The parameters are as follows: (1) Axial T2-
weighred images: repetition time(TR), 4000ms; echo time (TE),
109ms; slice thickness, 5mmy; fields of view (FOV), 549x250mm;
pixels size, 0.5%0.5 mm; spacing between slices, 6.75mm; acquisition
matrix, 256x256. (2) Axial diffusion-weighted images:TR, 3000ms;
TE, 84ms; slice thickness, 5mm; FOV, 549x250mm; pixels size,
2.34x2.34mm; spacing between slices, 6.75mm; acquisition matrix,
128x104. (3) Sagittal contrast-enhanced T1- weighted images: TR,
5.77ms; TE, 2.66ms; slice thickness, 2.5mm; FOV, 703x320mm;
pixels spacing, 1.25x1.25mm; spacing between slices, 2.5mm;
acquisition matrix, 256x146.

2.3 Image preprocessing and segmentation

All images were stored in Digital Imaging and Communications
in Medicine (DICOM) format. Prior to analysis, all images
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underwent a process of resampling and standardization to ensure
the reliability and repeatability of the results finally obtained.
Without access to patients’ histopathological data, two
radiologist-each boasting a minimum of five years’ experience in
medical imaging diagnosis -independently performed manual
segmentation of the regions of interest. They utilized ITK-SNAP
software (Version 3.8.0, available at http://www.itksnap.org) to
meticulously outline the target areas slice by slice. Both specialists
remained unaware of pathological findings throughout the
segmentation process to maintain objectivity. A radiologist with
over 15 years of experience in radiological diagnosis validated the
manual delineations. The delineations of ROIs were stored in the
NIfTT (Neuroimaging Informatics Technology Initiative) format as
a mask for subsequent analysis. thirty patients were randomly
selected for ROI resegmentation by the radiologists 1 after one
month to investigate the stability and reproducibility of
extracted features.

2.4 Radiomics handcrafted feature
extraction

Using the pyradiomics toolkit, we generated a total of 4,227
manually engineered radiomic features across three imaging
modalities for each tumor region. These features fall into three
distinct categories: (1) geometric, (2) intensity-based, and (3)
textural characteristics. Geometric features capture the tumor’s
three-dimensional morphological properties, while intensity
features quantify the first-order statistical patterns of voxel values
within the lesion. Textural features, derived through multiple
computational approaches, reveal higher-order spatial relationships
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between intensity values. Specifically, we employed four established
texture analysis techniques: gray-level co-occurrence matrix (GLCM),
gray-level run length matrix (GLRLM), gray-level size zone matrix
(GLSZM), and neighborhood gray-tone difference matrix
(NGTDM) methodologies.

2.5 Deep learning-based feature extraction

We implemented ResNet-50 network which consist of 49
convolutional layers and one fully connected layer with 2048
neurons as the core convolutional neural network architecture to
extract deep learning-based features. To optimize training efficiency
despite limited data availability, transfer learning strategy was
employed. Model weights were initialized using ImageNet
pretraining. This study utilized the maximum ROI of the whole
tumor originated from T2WI, DWI and CE-T1WI as inputs for
CNN model training. Real-time augmentation techniques (random
horizontal flipping/cropping) were incorporated during training. A
total of 6144 deep learning-based features were finally obtained for
further analysis. To improve model interpretability, Gradient-weighted
Class Activation Mapping (Grad-CAM) was implemented for visual
analysis. These class activation mappings were generated by leveraging

original image

feature extraction

radiomics

FIGURE 2
The flowchart of model construction and assessment.
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gradient data derived from the CNN’s terminal convolutional layer
which highlight the most important regions associated with the LVSI
status in the images during the deep learning decision-making process.

2.6 Feature selection

Three sets of fusion features were generated based on the fusion
strategy at the feature level across modalities (T2WI, ADC and CE-
T1WTI) or across feature types (traditional radiomics methods and
deep learning methods). Feature selection process was as follows:
first, features with Intraclass correlation coefficient(ICC) <0.75 and
zero variance were screened, and all continuous features were
subjected to Z-score standardization, scaled to a range of 0-1.
Afterwards, Mann-Whitney U test was performed to select
statistically significant features (P < 0.05). At last, the least
absolute shrinkage and selection operator (LASSO) regression was
performed utilizing 10-fold cross-validation to select the A value,
adhering to the one standard error (1SE) criterion to eliminate
redundant and irrelevant features. The same feature selection
process was applied to the three independent feature sets to select
the most predictive features. The detailed procedure is presented
in Figure 2.

featurte selection

features SetS L, S ®E MBI R RTDG @ % 22270

=
|

deep learning

Misc
025

Log Lambda

model validation
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2.7 Development of the radiomics models

Following feature selection, a Support Vector Machine (SVM)
prediction model was constructed. Hyperparameter optimization
was performed via grid search, focusing on the penalty parameter C
(explored over the logarithmic range 107 to 10°). The kernel
function types evaluated was radial basis function (RBF). ROC
curve analysis assessed model performance, with the Youden Index
determining the optimal cutoff. The area under the curve (AUC),
accuracy, sensitivity, specificity, positive prediction value (PPV),
and negative prediction value (NPV) were also calculated to further
evaluate the performance of the model. DeLong’s test was employed
to assess statistically significant differences between support vector
machine (SVM) prediction models constructed using distinct
feature types. The calibration curves were plotted using the
Hosmer-Lemeshow (H-L) test, which measured how close the
prediction outcome generated by the predictive model was to the
observation value. Decision curve analysis (DCA) was also
employed to quantify the net benefits associated with different
threshold probabilities to evaluate the model’s clinical efficiency.
Feature selection and model construction were performed on the
training set and then validated on the test set.

2.8 Statistical analysis

For this study, all statistical analyses were performed using R
(v4.2.3). Continuous variables, reported as mean + standard deviation,
were analyzed using either Student’s t-test or the Mann-Whitney U
test, depending on data distribution. Categorical variables, expressed as
proportions, were evaluated with either chi-square or Fisher’s exact
tests. A 95% confidence interval was used throughout, with statistical
significance set at p < 0.05 for all two-tailed tests.

3 Results
3.1 Clinical characteristics

Table 1 outlines the clinical profiles of the patients studied.
While most traits showed no notable variation between the LVSI-
positive and LVSI-negative groups, tumor size and invasion depth
stood out as exceptions in the training cohort. The validation
cohort, however, revealed statistically significant disparities in
invasion depth, lymph node involvement, and SCC levels. Across
both the training and validation cohorts, all other characteristics
remained comparable between patients with and without LVSL

3.2 Feature extraction and selection

For each patient, a total of 4227 hand-crafted features and 6144
deep learning-based features were extracted from the maximum
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ROIs of T2WI, ADC and CE-T1WI. Figure 3A-C shows the input
image and its corresponding Grad-CAM heatmap from the same
patient, highlighting the areas of interest which the deep learning
model pays most attention to when extracting deep learning
features related to LVSI. The Grad-CAM map for T2WI
demonstrates the deep learning model focused on regions of
cervical stromal ring disruption which indicated structural
compromise, it potentially associated with tumor invasion
patterns. For ADC, salient activation localizes to diffusion-
restricted zones along vascular courses at the tumor periphery
which may highlight areas correlating with tumor thrombus
location. For CE-TIWI, the map prioritizes spiculated
enhancement at the tumor margin which may reflect heightened
neovascular activity. Notably, the ADC sequence contributed
highest weight to LVSI prediction, consistent with the
pathological mechanism of diffusion restriction secondary to
tumor thrombi. Table 2 delineates the range of features chosen
(from 4 to 14) across various feature sets, which are subsequently
employed in the SVM models’ training process.

3.3 Performance comparison of model

Table 2 presents the receiver operating characteristic (ROC)
analysis outcomes across the three models. For LVSI prediction, the
Rad model demonstrated AUCs of 0.801 (95%CI: 0.712-0.891) in
training cohort and 0.686 (95%CI: 0.525-0.847) in validation
cohort. Meanwhile, the DL model yielded stronger performance,
with AUCs of 0.902 (95%CI: 0.845-0.959) and 0.745 (95%CI: 0.595-
0.894) in the training and validation cohorts, respectively. The RDL
model outperformed both, achieving exceptional discrimination
with an AUC of 0.968 (95% CI: 0.938-0.999) in training cohort
and 0.859 (95% CI: 0.751-0.967) in validation cohort.

Statistical comparisons revealed the RDL model’s superiority
over both the Rad and DL models in training cohort (Bonferroni-
adjusted p=0.000158 and p = 0.001093, respectively), though this
advantage did not hold in the validation cohort (p > 0.05). ROC
curves for all models in both cohorts are illustrated in Figures 4A, D.

In terms of diagnostic metrics, the RDL model boasts accuracy
of 0.908, sensitivity of 0.866, specificity of 0.976, NPV of 0.820, and
PPV of 0.983 in training cohort, and corresponding values of 0.826,
0.760, 0.905, 0.760, and 0.905 in validation cohort.

The calibration curves for RDL model demonstrated good
agreement between actual results and the probabilities estimated
(Figures 4B, E), and the Hosmer-Lemeshow test showed
nonsignificant statistical difference in the training cohort (P =
0.935) and validation cohort (P = 0.504). The decision curve
analysis (DCA) results for the RDL model demonstrated
consistent clinical value, with a positive net benefit spanning a
broad spectrum of probability thresholds in both training and
validation groups (Figures 4C, F). This robust performance
underscores the model’s practical usefulness in assessing LVSI
risk for patients with early-stage cervical cancer.
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TABLE 1 Characteristics of cervical cancer patients in training and validation cohorts.

Training cohort (N = 109) Validation cohort (N = 46)
Characteristics
LVSI- (N = 42) LVSI+(N=67) P LVSI- (N =21) LVSI+(N=25) P
Maximum tumor diameter (mm), mean + SD 25.79 + 10.50 36.10 + 13.74 <.001 2543 +23.22 32,92 +10.33 .153
Age (years), mean + SD 51.10 £ 11.7 52.88 + 10.69 415 49.24 + 9.74 51.36 £ 9.05 448
PLR, n, mean + SD 151.16 + 76.39 183.00 + 93.07 .066 140.85 + 44.89 154.23 + 38.51 282
NLR, n, mean + SD 3.09 +2.62 324 +£3.31 .807 235+ 143 3.09 +3.49 364
Gestation, n, mean + SD 3.74 + 1.56 3.97 £ 1.69 474 324 +1.70 3.80 + 1.44 232
Parturition, n, mean + SD 240 + 1.33 2.64 +1.55 415 1.76 £ 1.26 2.28 £ 1.02 131
Abortion, n, mean + SD 131124 131 £1.29 988 124 £1.18 132 £ 1.44 .836
FIGO Stage 173 .150
stage I 24 (57.1%) 26 (38.8%) 14 (66.7%) 15 (60%)
stage 1T 13 (31%) 29 (43.3%) 7 (33.3%) 6 (24%)
stage I1I 5 (11.9%) 12 (17.9%) 0 (0%) 4 (16%)
Histological type 264 1.000
Squamous cell carcinoma 35 (83.3%) 57 (85.1%) 12 (57.1%) 22 (88%)
Adenocarcinoma 7 (16.7%) 7 (10.4%) 9 (42.9%) 3 (12%)
Adenosquamous carcinoma 0 (0%) 3 (4.5%) 0 (0%) 0 (0%)
Degree of cellular differentiation 361 1.000
High 2 (4.8%) 1 (1.5%) 0 (0%) 0 (0%)
Middle 32 (76.2%) 47 (70.1%) 18 (85.7%) 21 (84%)
Low 8 (19%) 19 (28.4%) 3 (14.3%) 4 (16%)
Depth of invasion <.001 .022
<1/3 20 (47.6%) 8 (11.9%) 12 (57.1%) 5 (20%)
>1/3 22 (52.4%) 59 (88.1%) 9 (42.9%) 20 (80%)
Parametrial Involvement 1.000 1.000
No 42 (100%) 66 (98.5%) 21 (100%) 25 (100%)
Yes 0 (0%) 1 (1.5%) 0 (0%) 0 (0%)
Lymph node involvement 266 .049
No 38 (90.5%) 54 (80.6%) 21 (100%) 19 (76%)
Yes 4 (9.5%) 13 (19.4%) 0 (0%) 6 (24%)
SCC .535 .003
Not Elevated 19 (45.2%) 25 (37.3%) 12 (57.1%) 3 (12%)
Elevated 23 (54.8%) 42 (62.7%) 9 (42.9%) 22 (88%)
Menopausal_status .690 .587
Menstruation 20 (47.6%) 28 (41.8%) 11 (52.4%) 10 (40%)
Menopause 22 (52.4%) 39 (58.2%) 10 (47.6%) 15 (60%)
HPV Infection 229 1.000
No 11 (26.2%) 10 (14.9%) 5 (23.8%) 6 (24%)
Yes 31 (73.8%) 57 (85.1%) 16 (76.2%) 19 (76%)

LVSI, lymph-vascular space invasion; SD, standard deviation; FIGO, Federation International of Gynecology and Obstetrics; SCC, squamous cell carcinoma antigen; HPV, Human
Papillomavirus. PLR, Platelet-to-Lymphocyte Ratio; NLR, Neutrophil-to-Lymphocyte Ratio.
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FIGURE 3
Grad-CAM heatmap. (A-C) shows the input image and its corresponding Grad-CAM heatmap for the T2WI, ADC maps and CE-T1WI respectively for
the same patient.

4 Discussion patients. The model showed strong predictive capabilities, achieving
an area under the curve (AUC) of 0.968 (95% CI, 0.938-0.999) in

This research introduces a hybrid RDL model that integrates ~ the training cohort and 0.859 (95% CI, 0.751-0.967) in the
traditional radiomics features with deep learning-derived featuresto ~ validation cohort. Our approach uses a three-step decision
predict lymph-vascular space invasion (LVSI) in cervical cancer  process: first, locating structural damage using T2-weighted

TABLE 2 Prediction performance of SVM-based models.

Model Name Feature size Cohort AUC (95%Cl) ACC SEN SPE NPV PPV
RDL Model 14 training cohort 0.968(0.938-0.999) 0.908 0.866 0.976 0.820 0.983
test cohort 0.859(0.751-0.967) 0.826 0.760 0.905 0.760 0.905
DL Model 5 training cohort 0.902(0.845-0.959) 0.817 0716 0.976 0.683 0.980
test cohort 0.745(0.595-0.894) 0717 0.840 0571 0.750 0.700
Rad Model 4 training cohort 0.801(0.712-0.891) 0.771 0.821 0.691 0.707 0.809
test cohort 0.686(0.525-0.847) 0.739 0.960 0476 0.686 0.909

AUCG, area under receiver operating characteristic curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value;
Rad, radiomics; DL, deep learning; RDL, radiomics and deep learning.
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FIGURE 4

Performance Comparison of the Rad Model, DL Model, and RDL Model. (A, B) shows the ROC curves, calibration curves and DCA curves of the Rad
Model, DL Model, and RDL Model on the training cohort; (D-F) shows the ROC curves, calibration curves and DCA curves of the Rad Model, DL

Model, and RDL Model on the validation cohort.

imaging; second, identifying restricted diffusion via ADC mapping;
and third, evaluating new blood vessel formation with contrast-
enhanced T1-weighted imaging. This mirrors the actual
pathological progression of LVSI, allowing us to predict its
presence. Notably, the ADC mapping may be able to pick up on
micrometastatic deposits that were too small to find with the naked
eye. In short, our findings suggest that the RDL model offers a
promising imaging biomarker for predicting LVSI in cervical
cancer, which could ultimately lead to better treatment decisions
for patients.

Both in the worldwide and China, cervical cancer is still the
biggest threat to women’s health, its incidence is still rising, and the
age of onset is decreasing. With the increasing childbearing age of
women in modern society, the clinical demand for early fertility
preservation surgery has not been fully met. Therefore, it is a long-
term and arduous task to improve the rate of fertility preservation
surgery for patients with early cervical cancer. Although LVSI does
not affect the clinical stage of cervical cancer, it can affect the
prognosis of early stage CC and have an impact on surgical strategy
selection (22). According to the NCCN guidelines, surgery is the
mainstay of treatment for early-stage cervical cancer, and for
patients without LVSI at clinical stage IA, only cervical conization
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is required, which avoids radical hysterectomy and allows for
fertility preservation. The presence of lymphovascular space
invasion (LVSI) has been linked to a higher risk of lymph node
metastasis, which unfortunately bodes poor for patient outcomes.
As a result, patients diagnosed with early-stage cervical cancer who
test positive for LVSI typically require lymph node dissection to
determine the extent of lymph node involvement. Consequently,
being able to accurately predict LVSI before surgery could be a real
game-changer, paving the way for more targeted and effective
treatment strategies and a more precise prediction of how the
patient will ultimately fare.

Detecting lymphovascular space invasion (LVSI) through
standard imaging methods remains difficult since it’s a
microscopic histopathological feature. Although research has
linked LVSI to tumor size, parametrial involvement, stromal
invasion depth, and FIGO stage, the rise of radiomics—fueled by
breakthroughs in Al and computational technology—now provides
a more sophisticated way to predict these subtle pathological
markers (13, 23-25). Prior work has used radiomics to forecast
LVSI in cervical tumors (12-17, 26). Li et al. created an MR
radiomics nomogram using 1.5T axial T1 CE-MRI scans from
105 patients to preoperatively predict LVSI, showing AUCs of
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0.754 (training) and 0.727 (validation) (26). Wu et al. created and
tested a multimodal MRI radiomics nomogram using 1.5T and 3.0T
scans (T1WI, FS-T2WI, CE) from 168 cervical cancer patients
across two centers to evaluate LVSI status. The model
demonstrated strong predictive accuracy in both training and test
groups (AUCs: 0.883 and 0.830) (13). Liu et al. created and
validated a multiparametric MRI radiomics nomogram using
sFOV HR-T2WI, DWI, and DCE-T1WI from 177 patients (3.0T
MRI) to preoperatively predict LVSI, achieving AUCs of 0.838
(training) and 0.837 (testing) (16). Ma et al. developed and validated
an MRI radiomics model using ADC, T2WI SPAIR, and T2WI
sequences from 124 patients’ 1.5T MRI images to predict
lymphovascular space invasion (LVSI) in resectable cervical
cancer (CC). The nomogram achieved AUCs of 0.897 and 0.833
in the training and test cohorts, respectively (15). Xiao et al. created
a radiomics nomogram using 1.5T multiparametric MRI from 233
stage IB-1IB cervical cancer patients (T1WI, FS-T2WI, DWI, ADC,
CE) to predict lymph-vascular space invasion (LVSI). The model
achieved AUCs of 0.78 and 0.82 in training and test cohorts,
respectively (12). Huang et al. developed a multi-parametric MRI
radiomics model using 3.0 T MRI, incorporating sFOV HR-T2WTI,
ADC, T2WI, FS-T2WI, and axial/sagittal T1c images to predict
LVSI in 125 cervical cancer patients, achieving an AUC of 0.94 (17).
Tumor heterogeneity significantly impacts treatment efficacy and
prognosis. Wang et al. found that a radiomics model using tumor
sub-regional habitats outperformed whole-tumor analysis in
predicting LVSI among 300 cervical cancer patients across two
institutions, achieving an AUC of 0.873 (14).

Despite radiomic research on multi-parametric MRI for
Lymph-Vascular Space Invasion (LVSI) prediction in Cervical
Cancer (CC), deep learning applications for LVSI prediction
remain scarce. Shi et al. developed a radiomics model using both
handcrafted and deep-learning features from 3.0T MRI T2WI scans
of 160 patients. This intratumoral-peritumoral approach achieved
AUCs of 0.859 (training) and 0.832 (testing) for improved
predictive performance (27). Hua et al. applied a multiparametric
MRI-based radiomics and deep learning approach to predict LVSI
(21). The method, utilizing VGG-19, achieved AUCs of 0.842 in the
training and 0.775 in the validation cohorts. It combined radiomics
and deep features from tumor and peri-tumor tissues at varying
radial distances (21). In another study, Jiang et al. employed a
customized, end-to-end VGG19 network to distinguish lymph-
vascular space invasion (LVSI) in 167 cervical cancer patients.
Using both dynamic contrast-enhanced T1-weighted (DCE-T1)
and T2-weighted (T2WI) MRI images, their model achieved an
area under the curve (AUC) of 0.911, boasting a sensitivity of 0.881
and a specificity of 0.752 (19). Our predictive model, developed
using multiparametric MRI sequences—including T2-weighted
imaging (T2WI), apparent diffusion coefficient (ADC), and
contrast-enhanced T1-weighted imaging (CE-TIWI)—
demonstrated outstanding performance. Analyzing data from 155
patients scanned at both 1.5 T and 3.0 T, the model achieved an
impressive AUC of 0.968 (95% CI: 0.938-0.999) in the training
cohort and 0.859 (95% CI: 0.751-0.967) in the validation cohort.
These results significantly outperformed prior studies, showcasing
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its superior predictive accuracy. The superior performance of our
study is primarily attributed to two methodological innovations.
First, the prediction model synergistically incorporates multi-
parametric MRI sequences (including T2-weighted imaging,
apparent diffusion coefficient mapping, and contrast-enhanced
T1-weighted imaging), enabling holistic assessment of structural
abnormalities, functional alterations, and tumor angiogenesis in
relation to lymphovascular space invasion (LVSI). Secondly, the
utilization of ResNet50 for deep feature extraction—contrasted with
conventional VGG19—demonstrates enhanced capability in
capturing LVSI-associated pathological patterns, likely attributable
to its superior hierarchical feature representation and residual
learning mechanisms.

Deep learning can autonomously extract features from medical
images and construct models for classification tasks without human
intervention. Yet this automated process presents a fundamental
challenge-radiologists can’t easily decipher the logical reasoning
behind the algorithm’s conclusions, creating what’s known as the
“black box” dilemma in AI diagnostics (28, 29). This lack of
interpretability is receiving increasing attention within clinical
contexts, sparking growing demand for more transparent deep
learning systems. While the “black box” of convolutional neural
networks (CNNs) impedes traceability of decision rationales,
Gradient-weighted Class Activation Mapping (Grad-CAM) (30)
mitigates this limitation by generating visual saliency maps that
localize prediction-critical regions. This visualization elucidates
model attention mechanisms, aligning computational focus with
clinically relevant image features. In medical imaging contexts,
where precise lesion localization underpins diagnostic and
therapeutic planning, Grad-CAM serves as a validation tool for
highlighting pathognomonic abnormalities and morphometric
alterations. In this study, we employed the Gradient-weighted
Class Activation Mapping (Grad-CAM) algorithm to enhance
model transparency and facilitate clinician understanding. In our
ResNet50-based model, Grad-CAM mappings revealed modality-
specific attention patterns: T2-weighted imaging (T2WI) heatmaps
were predominantly localized to zones of cervical stromal
disruption (indicating structural compromise); Apparent
Diffusion Coefficient (ADC) mappings concentrated on functional
impairment foci exhibiting diffusion restriction; Contrast-enhanced
TIWI (CE-T1WI) activations highlighted regions with heightened
tumor neovascularization at the lesion periphery. This tripartite
attention alignment corresponds with the pathophysiological
alterations implicated in lymphovascular space invasion (LVSI) of
cervical carcinoma, where: Stromal ring rupture on T2WI may
reflect tumor-induced matrix degradation; ADC restriction may
signature correlate with intravascular tumor thrombus formation;
Peritumoral neovascularization on CE-TIWI may indicate
angiogenic switch activation.

In addition, this study explored the integration of the handcrafted
radiomics and deep learning methods, and found that the fusion
model demonstrated superior efficacy to single feature type models for
the preoperative prediction of LVSL This might be attributed to the
restricted amount of information that can be offered by a single
modality. The features extracted from diverse MRI sequences as well
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as different feature types might contain information that can reflect the
tumor heterogeneity from various aspects. Moreover, by integrating
the information from multiple modalities or even multiple feature
types, the information on tumor heterogeneity can be mutually
complementary, and finally improve the performance of the model.
These findings suggest that radiomics and DL can be used as an
important adjunct to significantly improve the accuracy of
preoperative clinical decisions. The integration of deep learning with
radiomics serves to advance the domain of personalized medicine (31).
This integration of our model into clinical practice enables automated
LVSI (lymphovascular space invasion) risk stratification following
preoperative MRI examinations. These objective risk assessments, in
conjunction with FIGO staging, can direct surgical decision-making—
particularly by recommending fertility-preserving procedures for
LVSI-low-risk patients—thereby minimizing overtreatment.

This research is not without its shortcomings. To begin with,
the study was conducted as a retrospective single-center
observational analysis, which raises concerns about potential
selection bias in the data. The absence of multi-center
collaboration limits the generalizability of the findings.
Incorporating data from multiple institutions will be essential to
verify the model’s accuracy and strengthen its validity; Additionally,
although the deep learning features incorporated in this study show
some predictive potential, the sample size is relatively small and the
interpretability of the extracted deep learning features is limited,
and subsequent studies need to incorporate more sample sizes to
further improve the model fit and optimize the model efficacy.

In conclusion, the MRI-driven RDL model proves highly effective
in predicting LVSI preoperatively for cervical cancer patients.
Outperforming conventional methods, this model demonstrates
significant clinical value through decision curve analysis,
positioning itself as a promising non-invasive imaging biomarker.
Its ability to enhance surgical planning could revolutionize treatment
strategies while avoiding invasive procedures.
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