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People’s Hospital, Shenzhen, Guangdong, China, 2Department of Radiology, Shenzhen People’s
Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second
Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
Objective: To develop and validate a comprehensive model integrating

multiparametric magnetic resonance imaging (MRI) radiomics and deep

learning features for preoperative prediction of LVSI in early-stage

cervical cancer.

Methods: 155 patients from January 2019 to December 2023 were enrolled in

this study and divided into the training and validation cohorts randomly at a ratio

of 7:3. Radiomics and deep learning features were extracted from T2-weighted

images (T2WI), apparent diffusion coefficient (ADC) maps, and late contrast-

enhanced T1-weighted images (CE-T1WI). Mann–Whitney U test, the least

absolute shrinkage and selection operator regression (LASSO) were used to

select radiomics and deep learning features. Radiomics model (Rad model),

deep learning model (DL model), and radiomics-deep learning model (RDL

model) were derived from the training cohort using support vector machines

(SVM) classifier. The prediction performances of the threemodels were evaluated

with the area under the curve (AUC), calibration curve, decision curve analysis

(DCA) and tested in the validation cohort.

Results: The RDL model achieved predictive performance for LVSI in cervical

cancer with an AUC of 0.968 (95% confidence interval (CI): 0.938-0.999) in the

training cohort, higher than 0.801(95% CI: 0.712-0.891) of Rad model and 0.902

(95 CI: 0.845-0.959) of DL model with statistical significance after Bonferroni

correction. In the validation cohort, the predictive performance of the fusion

model (RDL)(AUC = 0.859, 95% CI 0.751-0.967) was significantly superior to that

of the single model (AUC of DL Model = 0.745 95% CI 0.595-0.894; AUC of Rad

Model = 0.686 95% CI 0.525-0.847, P < 0.001), however, the DL and radiomics

models did not demonstrate statistically significant differences in performance

within the validation cohort (Delong test, P>0.05). Analysis of the calibration and

decision curves indicated superior predictive precision and net clinical benefit for

the RDL model relative to the others.
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Conclusions: The advanced RDL model demonstrated strong predictive

accuracy for LVSI in cervical cancer, suggesting its promising role as a

noninvasive imaging biomarker. This tool could significantly enhance

preoperative treatment planning by providing reliable insights without

invasive procedures.
KEYWORDS

cervical cancer, lymph vascular space invasion, radiomics, deep learning, magnetic
resonance imaging, machine learning
1 Introduction

Cervical cancer remains one of the most significant cancer

threats to women’s health globally, maintaining its position as the

gynecological malignancy with both the highest incidence and

mortality rates worldwide. According to 2022 global statistics, it is

estimated that there were 111,820 new diagnoses and 61,579 deaths

in China and 13,740 new diagnoses and 5,830 deaths in the United

States in 2022 (1, 2). Furthermore, the incidence and mortality rates

of cervical cancer in China have witnessed a significant increase

since 2000 (2). Lymph-vascular space invasion (LVSI) is defined as

the dissemination of neoplastic cells within lymphatic and/or blood

vessels (3, 4), and has been reported to be strongly correlated with

lymph node metastasis and poor prognosis (5–9). While

lymphovascular space invasion (LVSI) doesn’t substantially

influence the clinical staging of cervical cancer, treatment

strategies diverge significantly between LVSI-positive and LVSI-

negative patients, as outlined by the National Comprehensive

Cancer Network (NCCN) protocols. Surgeons often tailor their

approach based on this histological feature, even though it doesn’t

alter the disease’s formal classification. Specifically, patients without

LVSI have the option to choose a fertility-sparing treatment

strategy, thereby avoiding the need for radical hysterectomy (10,

11). Therefore, preoperative acknowledge of LVSI status is

significant for treatment plan decision. However, accurate

identification of LVSI can only be achieved through a detailed

pathological examination conducted after hysterectomy.

Magnetic resonance imaging, with high soft-tissue resolution, is

an important component in the diagnosis and staging of cervical

cancer, but it still cannot provide intuitive information to identify

LVSI status. As a result, an increasing number of researchers are

employing MRI-based radiomics models to predict LVSI status in

CC, and a large number of original studies have been published,

many results are encouraging (12–18). However, the low-order

nature of radiomics features may limit their ability to characterize

the heterogeneity of medical images. Recently, deep learning has

become an emerging field on medical image processing problems.

Convolutional Neural Networks, or CNNs, are particularly adept at

identifying more advanced features in medical images while

preserving essential spatial data–crucial factor for enhancing
02
medical diagnosis when stacked up against radiomics approaches

(19, 20). However, the main current constraint on the performance

of deep learning models is limited training data. A previous study

indicated that the combination of radiomics and deep learning

features has great potential on using limited data to predict LVSI

status in CC (21), yet the results were not satisfactory.

Lymphovascular space invasion (LVSI) serves as a key

prognostic marker for cervical cancer progression. Yet, the

diagnostic potential of deep learning-derived features in assessing

LVSI remains underexplored. This study aims to bridge that gap by

systematically comparing radiomic and deep learning feature

extraction techniques. We developed and validated an integrated

predictive model leveraging multiparametric MRI data to

noninvasively determine LVSI status in early-stage cervical cancer

patients, incorporating cross-modal imaging features for enhanced

diagnostic accuracy.
2 Materials and methods

2.1 Patient population

This retrospective study received approval from the

institutional ethics review board, which waived the need for

patient consent or written authorization. The research cohort

comprised 155 individuals diagnosed with cervical cancer through

pathological confirmation, with cases drawn from January 2019

through December 2023. The inclusion criteria of this study were as

follows: (1) patients who underwent a pelvic MRI examination

within one week before operation, (2) no history of preoperative

treatment, (3) diagnosed by postoperative pathology with complete

clinical data. Exclusion criteria were as follows: (1) images with

severe motion artifacts or evident noise; (2) tumors were invisible,

(3) combination with other tumor diseases. Participants were

assigned to either training or validation cohorts (7:3 stratified

ratio, random assignment). Process depicted in Figure 1.

We collected these patients’ images and clinical data from our

hospital’s regular clinical records and picture archiving and

communication systems (PACS). We retrospectively analyzed

their clinical information including age, maximum tumor
frontiersin.org
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diameter, menopausal status, HPV infection status, reproductive

history and various serum markers including squamous cell

carcinoma antigen (SCC-Ag).
2.2 MRI protocol

The MRI scans were conducted using either a 3.0T or 1.5T

scanner in the supine posture with an 18-channel abdominal-

phased array coil. For contrast-enhanced imaging, gadolinium

diethylenetriamine penta-acetic acid was administered

intravenously at a standard dose of 0.1 mmol/kg, injected at a

rate of 3 milliliters per second. The imaging protocol included axial

T2WI, axial diffusion-weighted imaging (DWI), sagittal contrast

enhanced T1WI. The parameters are as follows: (1) Axial T2-

weighred images: repetition time(TR), 4000ms; echo time (TE),

109ms; slice thickness, 5mm; fields of view (FOV), 549×250mm;

pixels size, 0.5×0.5 mm; spacing between slices, 6.75mm; acquisition

matrix, 256×256. (2) Axial diffusion-weighted images:TR, 3000ms;

TE, 84ms; slice thickness, 5mm; FOV, 549×250mm; pixels size,

2.34×2.34mm; spacing between slices, 6.75mm; acquisition matrix,

128×104. (3) Sagittal contrast-enhanced T1- weighted images: TR,

5.77ms; TE, 2.66ms; slice thickness, 2.5mm; FOV, 703×320mm;

pixels spacing, 1.25×1.25mm; spacing between slices, 2.5mm;

acquisition matrix, 256×146.
2.3 Image preprocessing and segmentation

All images were stored in Digital Imaging and Communications

in Medicine (DICOM) format. Prior to analysis, all images
Frontiers in Oncology 03
underwent a process of resampling and standardization to ensure

the reliability and repeatability of the results finally obtained.

Without access to patients ’ histopathological data, two

radiologist-each boasting a minimum of five years’ experience in

medical imaging diagnosis -independently performed manual

segmentation of the regions of interest. They utilized ITK-SNAP

software (Version 3.8.0, available at http://www.itksnap.org) to

meticulously outline the target areas slice by slice. Both specialists

remained unaware of pathological findings throughout the

segmentation process to maintain objectivity. A radiologist with

over 15 years of experience in radiological diagnosis validated the

manual delineations. The delineations of ROIs were stored in the

NIfTI (Neuroimaging Informatics Technology Initiative) format as

a mask for subsequent analysis. thirty patients were randomly

selected for ROI resegmentation by the radiologists 1 after one

month to investigate the stability and reproducibility of

extracted features.
2.4 Radiomics handcrafted feature
extraction

Using the pyradiomics toolkit, we generated a total of 4,227

manually engineered radiomic features across three imaging

modalities for each tumor region. These features fall into three

distinct categories: (1) geometric, (2) intensity-based, and (3)

textural characteristics. Geometric features capture the tumor’s

three-dimensional morphological properties, while intensity

features quantify the first-order statistical patterns of voxel values

within the lesion. Textural features, derived through multiple

computational approaches, reveal higher-order spatial relationships
FIGURE 1

The flowchart of patient selection.
frontiersin.org

http://www.itksnap.org
https://doi.org/10.3389/fonc.2025.1578119
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1578119
between intensity values. Specifically, we employed four established

texture analysis techniques: gray-level co-occurrence matrix (GLCM),

gray-level run length matrix (GLRLM), gray-level size zone matrix

(GLSZM), and neighborhood gray-tone difference matrix

(NGTDM) methodologies.
2.5 Deep learning-based feature extraction

We implemented ResNet-50 network which consist of 49

convolutional layers and one fully connected layer with 2048

neurons as the core convolutional neural network architecture to

extract deep learning-based features. To optimize training efficiency

despite limited data availability, transfer learning strategy was

employed. Model weights were initialized using ImageNet

pretraining. This study utilized the maximum ROI of the whole

tumor originated from T2WI, DWI and CE-T1WI as inputs for

CNN model training. Real-time augmentation techniques (random

horizontal flipping/cropping) were incorporated during training. A

total of 6144 deep learning-based features were finally obtained for

further analysis. To improve model interpretability, Gradient-weighted

Class Activation Mapping (Grad-CAM) was implemented for visual

analysis. These class activation mappings were generated by leveraging
Frontiers in Oncology 04
gradient data derived from the CNN’s terminal convolutional layer

which highlight the most important regions associated with the LVSI

status in the images during the deep learning decision-making process.
2.6 Feature selection

Three sets of fusion features were generated based on the fusion

strategy at the feature level across modalities (T2WI, ADC and CE-

T1WI) or across feature types (traditional radiomics methods and

deep learning methods). Feature selection process was as follows:

first, features with Intraclass correlation coefficient(ICC) <0.75 and

zero variance were screened, and all continuous features were

subjected to Z-score standardization, scaled to a range of 0-1.

Afterwards, Mann–Whitney U test was performed to select

statistically significant features (P < 0.05). At last, the least

absolute shrinkage and selection operator (LASSO) regression was

performed utilizing 10-fold cross-validation to select the l value,

adhering to the one standard error (1SE) criterion to eliminate

redundant and irrelevant features. The same feature selection

process was applied to the three independent feature sets to select

the most predictive features. The detailed procedure is presented

in Figure 2.
FIGURE 2

The flowchart of model construction and assessment.
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2.7 Development of the radiomics models

Following feature selection, a Support Vector Machine (SVM)

prediction model was constructed. Hyperparameter optimization

was performed via grid search, focusing on the penalty parameter C

(explored over the logarithmic range 10−³ to 10³). The kernel

function types evaluated was radial basis function (RBF). ROC

curve analysis assessed model performance, with the Youden Index

determining the optimal cutoff. The area under the curve (AUC),

accuracy, sensitivity, specificity, positive prediction value (PPV),

and negative prediction value (NPV) were also calculated to further

evaluate the performance of the model. DeLong’s test was employed

to assess statistically significant differences between support vector

machine (SVM) prediction models constructed using distinct

feature types. The calibration curves were plotted using the

Hosmer–Lemeshow (H–L) test, which measured how close the

prediction outcome generated by the predictive model was to the

observation value. Decision curve analysis (DCA) was also

employed to quantify the net benefits associated with different

threshold probabilities to evaluate the model’s clinical efficiency.

Feature selection and model construction were performed on the

training set and then validated on the test set.
2.8 Statistical analysis

For this study, all statistical analyses were performed using R

(v4.2.3). Continuous variables, reported as mean ± standard deviation,

were analyzed using either Student’s t-test or the Mann-Whitney U

test, depending on data distribution. Categorical variables, expressed as

proportions, were evaluated with either chi-square or Fisher’s exact

tests. A 95% confidence interval was used throughout, with statistical

significance set at p < 0.05 for all two-tailed tests.
3 Results

3.1 Clinical characteristics

Table 1 outlines the clinical profiles of the patients studied.

While most traits showed no notable variation between the LVSI-

positive and LVSI-negative groups, tumor size and invasion depth

stood out as exceptions in the training cohort. The validation

cohort, however, revealed statistically significant disparities in

invasion depth, lymph node involvement, and SCC levels. Across

both the training and validation cohorts, all other characteristics

remained comparable between patients with and without LVSI.
3.2 Feature extraction and selection

For each patient, a total of 4227 hand-crafted features and 6144

deep learning-based features were extracted from the maximum
Frontiers in Oncology 05
ROIs of T2WI, ADC and CE-T1WI. Figure 3A-C shows the input

image and its corresponding Grad-CAM heatmap from the same

patient, highlighting the areas of interest which the deep learning

model pays most attention to when extracting deep learning

features related to LVSI. The Grad-CAM map for T2WI

demonstrates the deep learning model focused on regions of

cervical stromal ring disruption which indicated structural

compromise, it potentially associated with tumor invasion

patterns. For ADC, salient activation localizes to diffusion-

restricted zones along vascular courses at the tumor periphery

which may highlight areas correlating with tumor thrombus

location. For CE-T1WI, the map prioritizes spiculated

enhancement at the tumor margin which may reflect heightened

neovascular activity. Notably, the ADC sequence contributed

highest weight to LVSI prediction, consistent with the

pathological mechanism of diffusion restriction secondary to

tumor thrombi. Table 2 delineates the range of features chosen

(from 4 to 14) across various feature sets, which are subsequently

employed in the SVM models’ training process.
3.3 Performance comparison of model

Table 2 presents the receiver operating characteristic (ROC)

analysis outcomes across the three models. For LVSI prediction, the

Rad model demonstrated AUCs of 0.801 (95%CI: 0.712-0.891) in

training cohort and 0.686 (95%CI: 0.525-0.847) in validation

cohort. Meanwhile, the DL model yielded stronger performance,

with AUCs of 0.902 (95%CI: 0.845-0.959) and 0.745 (95%CI: 0.595-

0.894) in the training and validation cohorts, respectively. The RDL

model outperformed both, achieving exceptional discrimination

with an AUC of 0.968 (95% CI: 0.938-0.999) in training cohort

and 0.859 (95% CI: 0.751-0.967) in validation cohort.

Statistical comparisons revealed the RDL model’s superiority

over both the Rad and DL models in training cohort (Bonferroni-

adjusted p=0.000158 and p = 0.001093, respectively), though this

advantage did not hold in the validation cohort (p > 0.05). ROC

curves for all models in both cohorts are illustrated in Figures 4A, D.

In terms of diagnostic metrics, the RDL model boasts accuracy

of 0.908, sensitivity of 0.866, specificity of 0.976, NPV of 0.820, and

PPV of 0.983 in training cohort, and corresponding values of 0.826,

0.760, 0.905, 0.760, and 0.905 in validation cohort.

The calibration curves for RDL model demonstrated good

agreement between actual results and the probabilities estimated

(Figures 4B, E), and the Hosmer-Lemeshow test showed

nonsignificant statistical difference in the training cohort (P =

0.935) and validation cohort (P = 0.504). The decision curve

analysis (DCA) results for the RDL model demonstrated

consistent clinical value, with a positive net benefit spanning a

broad spectrum of probability thresholds in both training and

validation groups (Figures 4C, F). This robust performance

underscores the model’s practical usefulness in assessing LVSI

risk for patients with early-stage cervical cancer.
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TABLE 1 Characteristics of cervical cancer patients in training and validation cohorts.

Characteristics
Training cohort (N = 109) Validation cohort (N = 46)

LVSI- (N = 42) LVSI+ (N = 67) P LVSI- (N = 21) LVSI+ (N = 25) P

Maximum tumor diameter (mm), mean ± SD 25.79 ± 10.50 36.10 ± 13.74 <.001 25.43 ± 23.22 32.92 ± 10.33 .153

Age (years), mean ± SD 51.10 ± 11.7 52.88 ± 10.69 .415 49.24 ± 9.74 51.36 ± 9.05 .448

PLR, n, mean ± SD 151.16 ± 76.39 183.00 ± 93.07 .066 140.85 ± 44.89 154.23 ± 38.51 .282

NLR, n, mean ± SD 3.09 ± 2.62 3.24 ± 3.31 .807 2.35 ± 1.43 3.09 ± 3.49 .364

Gestation, n, mean ± SD 3.74 ± 1.56 3.97 ± 1.69 .474 3.24 ± 1.70 3.80 ± 1.44 .232

Parturition, n, mean ± SD 2.40 ± 1.33 2.64 ± 1.55 .415 1.76 ± 1.26 2.28 ± 1.02 .131

Abortion, n, mean ± SD 1.31 ± 1.24 1.31 ± 1.29 .988 1.24 ± 1.18 1.32 ± 1.44 .836

FIGO Stage .173 .150

stage I 24 (57.1%) 26 (38.8%) 14 (66.7%) 15 (60%)

stage II 13 (31%) 29 (43.3%) 7 (33.3%) 6 (24%)

stage III 5 (11.9%) 12 (17.9%) 0 (0%) 4 (16%)

Histological type .264 1.000

Squamous cell carcinoma 35 (83.3%) 57 (85.1%) 12 (57.1%) 22 (88%)

Adenocarcinoma 7 (16.7%) 7 (10.4%) 9 (42.9%) 3 (12%)

Adenosquamous carcinoma 0 (0%) 3 (4.5%) 0 (0%) 0 (0%)

Degree of cellular differentiation .361 1.000

High 2 (4.8%) 1 (1.5%) 0 (0%) 0 (0%)

Middle 32 (76.2%) 47 (70.1%) 18 (85.7%) 21 (84%)

Low 8 (19%) 19 (28.4%) 3 (14.3%) 4 (16%)

Depth of invasion <.001 .022

< 1/3 20 (47.6%) 8 (11.9%) 12 (57.1%) 5 (20%)

> 1/3 22 (52.4%) 59 (88.1%) 9 (42.9%) 20 (80%)

Parametrial Involvement 1.000 1.000

No 42 (100%) 66 (98.5%) 21 (100%) 25 (100%)

Yes 0 (0%) 1 (1.5%) 0 (0%) 0 (0%)

Lymph node involvement .266 .049

No 38 (90.5%) 54 (80.6%) 21 (100%) 19 (76%)

Yes 4 (9.5%) 13 (19.4%) 0 (0%) 6 (24%)

SCC .535 .003

Not Elevated 19 (45.2%) 25 (37.3%) 12 (57.1%) 3 (12%)

Elevated 23 (54.8%) 42 (62.7%) 9 (42.9%) 22 (88%)

Menopausal_status .690 .587

Menstruation 20 (47.6%) 28 (41.8%) 11 (52.4%) 10 (40%)

Menopause 22 (52.4%) 39 (58.2%) 10 (47.6%) 15 (60%)

HPV Infection .229 1.000

No 11 (26.2%) 10 (14.9%) 5 (23.8%) 6 (24%)

Yes 31 (73.8%) 57 (85.1%) 16 (76.2%) 19 (76%)
F
rontiers in Oncology
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LVSI, lymph-vascular space invasion; SD, standard deviation; FIGO, Federation International of Gynecology and Obstetrics; SCC, squamous cell carcinoma antigen; HPV, Human
Papillomavirus. PLR, Platelet-to-Lymphocyte Ratio; NLR, Neutrophil-to-Lymphocyte Ratio.
rsin.org

https://doi.org/10.3389/fonc.2025.1578119
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1578119
4 Discussion

This research introduces a hybrid RDL model that integrates

traditional radiomics features with deep learning-derived features to

predict lymph-vascular space invasion (LVSI) in cervical cancer
Frontiers in Oncology 07
patients. The model showed strong predictive capabilities, achieving

an area under the curve (AUC) of 0.968 (95% CI, 0.938-0.999) in

the training cohort and 0.859 (95% CI, 0.751-0.967) in the

validation cohort. Our approach uses a three-step decision

process: first, locating structural damage using T2-weighted
FIGURE 3

Grad-CAM heatmap. (A-C) shows the input image and its corresponding Grad-CAM heatmap for the T2WI, ADC maps and CE-T1WI respectively for
the same patient.
TABLE 2 Prediction performance of SVM-based models.

Model Name Feature size Cohort AUC (95%CI) ACC SEN SPE NPV PPV

RDL Model 14 training cohort 0.968(0.938-0.999) 0.908 0.866 0.976 0.820 0.983

test cohort 0.859(0.751-0.967) 0.826 0.760 0.905 0.760 0.905

DL Model 5 training cohort 0.902(0.845-0.959) 0.817 0.716 0.976 0.683 0.980

test cohort 0.745(0.595-0.894) 0.717 0.840 0.571 0.750 0.700

Rad Model 4 training cohort 0.801(0.712-0.891) 0.771 0.821 0.691 0.707 0.809

test cohort 0.686(0.525-0.847) 0.739 0.960 0.476 0.686 0.909
fr
AUC, area under receiver operating characteristic curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value;
Rad, radiomics; DL, deep learning; RDL, radiomics and deep learning.
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imaging; second, identifying restricted diffusion via ADC mapping;

and third, evaluating new blood vessel formation with contrast-

enhanced T1-weighted imaging. This mirrors the actual

pathological progression of LVSI, allowing us to predict its

presence. Notably, the ADC mapping may be able to pick up on

micrometastatic deposits that were too small to find with the naked

eye. In short, our findings suggest that the RDL model offers a

promising imaging biomarker for predicting LVSI in cervical

cancer, which could ultimately lead to better treatment decisions

for patients.

Both in the worldwide and China, cervical cancer is still the

biggest threat to women’s health, its incidence is still rising, and the

age of onset is decreasing. With the increasing childbearing age of

women in modern society, the clinical demand for early fertility

preservation surgery has not been fully met. Therefore, it is a long-

term and arduous task to improve the rate of fertility preservation

surgery for patients with early cervical cancer. Although LVSI does

not affect the clinical stage of cervical cancer, it can affect the

prognosis of early stage CC and have an impact on surgical strategy

selection (22). According to the NCCN guidelines, surgery is the

mainstay of treatment for early-stage cervical cancer, and for

patients without LVSI at clinical stage IA, only cervical conization
Frontiers in Oncology 08
is required, which avoids radical hysterectomy and allows for

fertility preservation. The presence of lymphovascular space

invasion (LVSI) has been linked to a higher risk of lymph node

metastasis, which unfortunately bodes poor for patient outcomes.

As a result, patients diagnosed with early-stage cervical cancer who

test positive for LVSI typically require lymph node dissection to

determine the extent of lymph node involvement. Consequently,

being able to accurately predict LVSI before surgery could be a real

game-changer, paving the way for more targeted and effective

treatment strategies and a more precise prediction of how the

patient will ultimately fare.

Detecting lymphovascular space invasion (LVSI) through

standard imaging methods remains difficult since it’s a

microscopic histopathological feature. Although research has

linked LVSI to tumor size, parametrial involvement, stromal

invasion depth, and FIGO stage, the rise of radiomics—fueled by

breakthroughs in AI and computational technology—now provides

a more sophisticated way to predict these subtle pathological

markers (13, 23–25). Prior work has used radiomics to forecast

LVSI in cervical tumors (12–17, 26). Li et al. created an MR

radiomics nomogram using 1.5T axial T1 CE-MRI scans from

105 patients to preoperatively predict LVSI, showing AUCs of
FIGURE 4

Performance Comparison of the Rad Model, DL Model, and RDL Model. (A, B) shows the ROC curves, calibration curves and DCA curves of the Rad
Model, DL Model, and RDL Model on the training cohort; (D-F) shows the ROC curves, calibration curves and DCA curves of the Rad Model, DL
Model, and RDL Model on the validation cohort.
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0.754 (training) and 0.727 (validation) (26). Wu et al. created and

tested a multimodal MRI radiomics nomogram using 1.5T and 3.0T

scans (T1WI, FS-T2WI, CE) from 168 cervical cancer patients

across two centers to evaluate LVSI status. The model

demonstrated strong predictive accuracy in both training and test

groups (AUCs: 0.883 and 0.830) (13). Liu et al. created and

validated a multiparametric MRI radiomics nomogram using

sFOV HR-T2WI, DWI, and DCE-T1WI from 177 patients (3.0T

MRI) to preoperatively predict LVSI, achieving AUCs of 0.838

(training) and 0.837 (testing) (16). Ma et al. developed and validated

an MRI radiomics model using ADC, T2WI SPAIR, and T2WI

sequences from 124 patients’ 1.5T MRI images to predict

lymphovascular space invasion (LVSI) in resectable cervical

cancer (CC). The nomogram achieved AUCs of 0.897 and 0.833

in the training and test cohorts, respectively (15). Xiao et al. created

a radiomics nomogram using 1.5T multiparametric MRI from 233

stage IB–IIB cervical cancer patients (T1WI, FS-T2WI, DWI, ADC,

CE) to predict lymph-vascular space invasion (LVSI). The model

achieved AUCs of 0.78 and 0.82 in training and test cohorts,

respectively (12). Huang et al. developed a multi-parametric MRI

radiomics model using 3.0 T MRI, incorporating sFOV HR-T2WI,

ADC, T2WI, FS-T2WI, and axial/sagittal T1c images to predict

LVSI in 125 cervical cancer patients, achieving an AUC of 0.94 (17).

Tumor heterogeneity significantly impacts treatment efficacy and

prognosis. Wang et al. found that a radiomics model using tumor

sub-regional habitats outperformed whole-tumor analysis in

predicting LVSI among 300 cervical cancer patients across two

institutions, achieving an AUC of 0.873 (14).

Despite radiomic research on multi-parametric MRI for

Lymph-Vascular Space Invasion (LVSI) prediction in Cervical

Cancer (CC), deep learning applications for LVSI prediction

remain scarce. Shi et al. developed a radiomics model using both

handcrafted and deep-learning features from 3.0T MRI T2WI scans

of 160 patients. This intratumoral-peritumoral approach achieved

AUCs of 0.859 (training) and 0.832 (testing) for improved

predictive performance (27). Hua et al. applied a multiparametric

MRI-based radiomics and deep learning approach to predict LVSI

(21). The method, utilizing VGG-19, achieved AUCs of 0.842 in the

training and 0.775 in the validation cohorts. It combined radiomics

and deep features from tumor and peri-tumor tissues at varying

radial distances (21). In another study, Jiang et al. employed a

customized, end-to-end VGG19 network to distinguish lymph-

vascular space invasion (LVSI) in 167 cervical cancer patients.

Using both dynamic contrast-enhanced T1-weighted (DCE-T1)

and T2-weighted (T2WI) MRI images, their model achieved an

area under the curve (AUC) of 0.911, boasting a sensitivity of 0.881

and a specificity of 0.752 (19). Our predictive model, developed

using multiparametric MRI sequences—including T2-weighted

imaging (T2WI), apparent diffusion coefficient (ADC), and

contrast-enhanced T1-weighted imaging (CE-T1WI)—

demonstrated outstanding performance. Analyzing data from 155

patients scanned at both 1.5 T and 3.0 T, the model achieved an

impressive AUC of 0.968 (95% CI: 0.938–0.999) in the training

cohort and 0.859 (95% CI: 0.751–0.967) in the validation cohort.

These results significantly outperformed prior studies, showcasing
Frontiers in Oncology 09
its superior predictive accuracy. The superior performance of our

study is primarily attributed to two methodological innovations.

First, the prediction model synergistically incorporates multi-

parametric MRI sequences (including T2-weighted imaging,

apparent diffusion coefficient mapping, and contrast-enhanced

T1-weighted imaging), enabling holistic assessment of structural

abnormalities, functional alterations, and tumor angiogenesis in

relation to lymphovascular space invasion (LVSI). Secondly, the

utilization of ResNet50 for deep feature extraction—contrasted with

conventional VGG19—demonstrates enhanced capability in

capturing LVSI-associated pathological patterns, likely attributable

to its superior hierarchical feature representation and residual

learning mechanisms.

Deep learning can autonomously extract features from medical

images and construct models for classification tasks without human

intervention. Yet this automated process presents a fundamental

challenge–radiologists can’t easily decipher the logical reasoning

behind the algorithm’s conclusions, creating what’s known as the

“black box” dilemma in AI diagnostics (28, 29). This lack of

interpretability is receiving increasing attention within clinical

contexts, sparking growing demand for more transparent deep

learning systems. While the “black box” of convolutional neural

networks (CNNs) impedes traceability of decision rationales,

Gradient-weighted Class Activation Mapping (Grad-CAM) (30)

mitigates this limitation by generating visual saliency maps that

localize prediction-critical regions. This visualization elucidates

model attention mechanisms, aligning computational focus with

clinically relevant image features. In medical imaging contexts,

where precise lesion localization underpins diagnostic and

therapeutic planning, Grad-CAM serves as a validation tool for

highlighting pathognomonic abnormalities and morphometric

alterations. In this study, we employed the Gradient-weighted

Class Activation Mapping (Grad-CAM) algorithm to enhance

model transparency and facilitate clinician understanding. In our

ResNet50-based model, Grad-CAM mappings revealed modality-

specific attention patterns: T2-weighted imaging (T2WI) heatmaps

were predominantly localized to zones of cervical stromal

disruption (indicating structural compromise); Apparent

Diffusion Coefficient (ADC) mappings concentrated on functional

impairment foci exhibiting diffusion restriction; Contrast-enhanced

T1WI (CE-T1WI) activations highlighted regions with heightened

tumor neovascularization at the lesion periphery. This tripartite

attention alignment corresponds with the pathophysiological

alterations implicated in lymphovascular space invasion (LVSI) of

cervical carcinoma, where: Stromal ring rupture on T2WI may

reflect tumor-induced matrix degradation; ADC restriction may

signature correlate with intravascular tumor thrombus formation;

Peritumoral neovascularization on CE-T1WI may indicate

angiogenic switch activation.

In addition, this study explored the integration of the handcrafted

radiomics and deep learning methods, and found that the fusion

model demonstrated superior efficacy to single feature type models for

the preoperative prediction of LVSI. This might be attributed to the

restricted amount of information that can be offered by a single

modality. The features extracted from diverse MRI sequences as well
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as different feature types might contain information that can reflect the

tumor heterogeneity from various aspects. Moreover, by integrating

the information from multiple modalities or even multiple feature

types, the information on tumor heterogeneity can be mutually

complementary, and finally improve the performance of the model.

These findings suggest that radiomics and DL can be used as an

important adjunct to significantly improve the accuracy of

preoperative clinical decisions. The integration of deep learning with

radiomics serves to advance the domain of personalizedmedicine (31).

This integration of our model into clinical practice enables automated

LVSI (lymphovascular space invasion) risk stratification following

preoperative MRI examinations. These objective risk assessments, in

conjunction with FIGO staging, can direct surgical decision-making—

particularly by recommending fertility-preserving procedures for

LVSI-low-risk patients—thereby minimizing overtreatment.

This research is not without its shortcomings. To begin with,

the study was conducted as a retrospective single-center

observational analysis, which raises concerns about potential

selection bias in the data. The absence of multi-center

collaboration limits the generalizability of the findings.

Incorporating data from multiple institutions will be essential to

verify the model’s accuracy and strengthen its validity; Additionally,

although the deep learning features incorporated in this study show

some predictive potential, the sample size is relatively small and the

interpretability of the extracted deep learning features is limited,

and subsequent studies need to incorporate more sample sizes to

further improve the model fit and optimize the model efficacy.

In conclusion, the MRI-driven RDLmodel proves highly effective

in predicting LVSI preoperatively for cervical cancer patients.

Outperforming conventional methods, this model demonstrates

significant clinical value through decision curve analysis,

positioning itself as a promising non-invasive imaging biomarker.

Its ability to enhance surgical planning could revolutionize treatment

strategies while avoiding invasive procedures.
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