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of a prognostic risk model
based on ADME-related
genes in breast cancer
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Anhui, China, “Central Laboratory, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China

Background: The processes of absorption, distribution, metabolic action, and
elimination (ADME) affect the advancement of cancer and the development of
resistance to therapies. This study examined ADME-related genes in breast
cancer (BRCA) mechanisms and their associations with BRCA.

Methods: BRCA datasets were analyzed to identify genes with differential
expression in BRCA compared to normal tissues, focusing on ADME-related
genes (ADME-RGs). Stepwise regression analyses identified prognostic genes,
which were used to develop a risk assessment model. BRCA patients were scored
and classified into risk categories, with survival outcomes compared across
groups. A predictive model incorporating key prognostic indicators estimated
patient survival rates. Mechanisms were explored through enrichment analysis,
immune profiling, and drug sensitivity testing. Quantitative reverse transcription
polymerase chain reaction (QRT-PCR) and western blot (WB) methodologies
were employed to determine the transcription and translation levels of the six
genes, with immunohistochemistry (IHC) used to validate the variations in their
expression profiles.

Results: Findings indicated that six predictive genes were pinpointed which
established a risk stratification model, categorizing individuals into groups with
either high or low risk, whereas those in the low-risk category demonstrated
improved survival outcomes. A nomogram was created for precise prediction.
Analysis of enrichment pinpointed processes, including metabolism of
arachidonic and fatty acids, regulation of cellular division, proteasomal activity,
and breakdown of tyrosine. Immune infiltration analysis showed distinct profiles
for seven cell types between risk groups. Drug sensitivity analysis revealed
GW.441756, imatinib, and WH.4.023 were more effective in the low-risk group,
with varying sensitivities to other drugs in the high-risk group. The gRT-PCR, WB,
and IHC results matched the bioinformatics analysis, showing upregulated ATP7B
expression in BRCA, indicating the high prognostic potential of the
identified genes.
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Conclusions: ADME-related prognostic genes (GSTM2, ADHFE1, ALDH2, NOS1,
ATP7B, and ALDH3A1) are implicated in BRCA pathogenesis, suggesting new
therapeutic strategies for BRCA treatment.
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GRAPHICAL ABSTRACT

1 Introduction

Currently in 2022, the most common cancer affecting women
worldwide was breast cancer (BRCA), defined by the presence of
cancerous growths that develop from the epithelial cells of breast
tissue (1). Although there have been notable improvements in
treatment options, such as radiation therapy, drug-based cancer

Abbreviations: BRCA, Breast cancer; ADME, The absorption, distribution,
metabolism, and excretion (ADME); DEGs, Differentially expressed genes;
ADME-RGs, ADME-related genes; DCA, Decision curve analysis; K-M,
Kaplan-Meier; ROC, Receiver Operating Characteristic; PH, Proportional
hazards; ICIs, Immune-checkpoint inhibitors; IncRNAs, Long non-coding RNAs.
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treatments, hormone therapy, and precision medicine approaches,
many patients continue to experience poor outcomes due to distant
metastases, with low overall survival rates (2, 3). BRCA remains a
major cause of cancer deaths (1), underscoring the pressing need to
identify prognostic genes that can facilitate outcome prediction and
inform personalized treatment strategies.

Genes linked to absorption, distribution, metabolism, and
excretion processes (ADME) play a critical role in the handling of
pharmaceutical compounds (4). They govern metabolic pathways,
substance translocation, and purification mechanisms within the
body. Variations in ADME-RGs are linked to cancer development
and treatment responses. Moreover, their expression patterns in
tumors are believed to influence patient survival rates (5). In various
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cancer types, ADME-RGs have been identified as valuable
prognostic markers and therapeutic targets (6-8). Although
ADME-RGs are suspected to play a role in BRCA (9), their exact
functions and mechanisms remain unclear, necessitating further
investigation into their involvement.

This study employed bioinformatics approaches to identify
ADME-related prognostic genes in BRCA and constructed a risk
model based on these genes to evaluate survival differences among
BRCA patients in various risk cohorts. Additionally, functional
enrichment, immune infiltration, regulatory network, and drug
sensitivity analyses were conducted to explore the mechanisms of
action of these prognostic genes in BRCA patients.

2 Materials and methods
2.1 Data collection

BRCA-related data were obtained from the UCSC-Xena
database, comprising 1,217 tissue samples, including 1,104 BRCA
(tumor) and 113 normal samples, which were used as the training
set. From this group, 1,082 BRCA patients with comprehensive
survival and gene expression data were selected for survival analysis.
The dataset labeled GSE42568, utilizing platform GPL570, contains
a total of 104 BRCA specimens, which include 82 cases of invasive
ductal carcinoma, 17 of invasive lobular carcinoma, and 5 samples
classified under different tumor categories, alongside 17 samples
from healthy breast tissues. To confirm these findings, additional
datasets from the GEO repository, GSE20685 with 327 samples
of breast cancer, and GSE21653 encompassing 265 BRCA
specimens, 245 of which have comprehensive survival data, were
acquired. Additionally, 298 ADME-RGs were identified from the
literature (8).

2.2 Differential expression analysis

In the course of this research, version 1.38 of the DESeq2
software suite was employed to identify differentially expressed
genes (DEGs) between BRCA and normal groups in the training set
(10). The selection criteria for DEGs included an adjusted P-value <
0.05 and a [log2fold change (FC)| > 1. Volcano plots were created
using ggplot2 (v. 3.4.4), and heatmaps were generated using
Complex Heatmap (v. 2.14.0) (11, 12).

2.3 ldentification and functional analysis of
candidate genes

Candidate genes were obtained by intersecting DEGs and
ADME-RGs using the Venn Diagram package (v 1.7.3) (13).
Researchers investigated the functional importance and molecular
routes involved in the progression of BRCA by leveraging Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) to perform enrichment studies. These studies utilized
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clusterProfiler software (version 4.7.1.003), setting a significance
cutoff at a P-value of less than 0.05 (14). Furthermore, to shed light
on the interactions between proteins, the STRING resource
(available at https://string-db.org/, with an interaction score
threshold of over 0.4) was employed. The ensuing protein-protein
interaction (PPI) networks were then depicted with the aid of
Cytoscape application, version 3.9.1 (15).

2.4 Construction and validation of a risk
model

The survival package includes a function called coxph, version
3.5.3 (https://www.R-project.org/) and was employed to perform
univariate Cox regression analysis on the selected candidate genes,
aiming to identify those associated with prognosis (hazard ratio
[HR] # 1, P < 0.05). The methodology persisted, employing the
glmnet package (version 4.1-4) to execute LASSO regression on the
predictive genes. This step focused on genes that met the
proportional hazards (PH) assumption test (P > 0.05) (16). Using
these prognostic genes as a foundation, a risk model was
subsequently developed. The model was constructed using the
following equation: Risk score = > x03B2;i x xi, where B
represents the LASSO coefficient for each gene and x denotes the
expression of prognostic genes. At the same time, due to the
significant difference in the number of patients between the
training and validation sets, in order to avoid the impact of
outliers and skewed data on the results (17), the median cutoff
value of the risk score was used as the measure for high- and low-
risk groups (18, 19). This provided a stable cutoff point for the
classification of high- and low-risk categories for patients in both
the training and validation sets. Survival differences between these
groups were examined using Kaplan-Meier (K-M) survival curves
generated using the Survminer package (v 0.4.9) (https://CRAN.R-
project.org/package=survminer). To evaluate the risk model’s
efficacy, Receiver Operating Characteristic (ROC) curves were
constructed using the survivalROC package (v 1.18.0) (https://
CRAN.R-project.org/package=survivalROC). The model’s
performance was further verified on a separate independent
dataset. To conclude, a heatmap was created to visually represent
and compare the expression patterns of the prognostic genes across
the identified risk groups.

2.5 Construction of nomogram

The training dataset underwent various statistical analyses to
determine independent prognostic factors encompassing both the
risk score and clinical parameters, including age and T/N/M stage
(P < 0.05). The study included single-variable Cox regression, tests
for proportional hazards (PH), and Cox regression involving
multiple variables. To predict the survival chances at 3, 5, and 7
years for patients with BRCA, a prediction tool was created by
applying the independent predictors discovered. The nomogram’s
performance was evaluated through decision curve analysis (DCA)
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and receiver operating characteristic (ROC) curve analysis. The
Survminer package was employed to create Kaplan-Meier survival
curves, enabling the comparison of outcomes across various clinical
characteristics and examination of survival disparities (P < 0.05).

2.6 Function analysis of prognostic genes

We utilized the clusterProfiler package to perform gene set
enrichment analysis (GSEA) on BRCA patients across varying risk
levels, aiming to uncover critical biological processes and pathways.
By employing the DESeq2 package, we pinpointed genes that
exhibit varying levels of expression between distinct risk groups.
Following this, the log2 fold-change (log2FC) scores of these
differentially expressed genes (DEGs) were calculated and
ordered. The analysis employed c2.cp.kegg. v2023.1 gene set,
while the Hs.symbols gene set from the Molecular Signatures
Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb)
served as the background set for GSEA. The enrichment plot
package (v1.18.0) was utilized to depict the five most prominent
pathways (P < 0.05). To create a gene-gene interaction (GGI)
network, GeneMANIA (https://genemania.org/) was utilized to
identify genes functionally related to prognostic genes.
Furthermore, the GOSemSim package (v. 2.24.0) was used to
assess the functional similarity of prognostic genes using GO
terms (https://guangchuangyu.github.io/software/GOSemSim).
For this analysis, semantic similarity scores were calculated using
the mgeneSim function.

2.7 Immune infiltration analysis

The CIBERSORT algorithm was employed to assess the
presence of 22 common immune cell types in the training set,
aiming to investigate immune cell infiltration differences between
risk groups. Samples with P values exceeding 0.05 were omitted
from the analysis. To identify statistically significant disparities in
the immune cell populations between the risk cohorts for the
remaining samples, we applied the Wilcoxon test. (P < 0.05). To
evaluate the relationships between differentially abundant immune
cells and prognostic genes, Spearman’s correlation analysis was
conducted, with significance defined as |cor| > 0.3 and P < 0.05.

In addition, the Wilcoxon test was employed to calculate and
contrast the immune, stromal, and ESTIMATE scores across the
different risk groups (P < 0.05). Subsequently, the results were visually
represented through graphs created with the ggplot2 package.

2.8 Examination of the efficacy of immune-
checkpoint blockers and their
responsiveness to medicinal compounds

To assess differences in the 14 ICIs previously reported in the
literature between risk groups (20), the Wilcoxon test was conducted,
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and significant ICIs were identified (P < 0.05). Correlations between
risk scores, prognostic genes, and differential ICIs were further
explored via Spearman analysis using the corrplot package (v. 0.92)
(https://github.com/taiyun/corrplot).

To examine variations in drug sensitivity among the risk
groups, the GDSC database (https://www.cancerrxgene.org/) was
used to obtain potential BRCA drugs and their corresponding half-
maximal inhibitory concentration (IC50) values. The pRRophetic
package (v 0.5) was employed to estimate IC50 values for each
tumor sample in the training set (21). The Wilcoxon test was then
employed to examine the disparities in IC50 values across the
various risk categories (P < 0.05). A boxplot was created to
display the top 10 drugs ranked according to their p-values.

2.9 Regulatory network and expression
validation of prognostic genes

To investigate the regulatory mechanisms of the prognostic
genes in BRCA, microRNAs (miRNAs) targeting these genes were
predicted using miRDB (https://www.mirdb.org) and miRWalk
(http://mirwalk.umm.uni-heidelberg.de). Crucial microRNAs were
pinpointed through the process of finding the common miRNAs
forecasted by the two databases. Long non-coding RNAs (IncRNAs)
targeting these key miRNAs were predicted using the ENCORI
database (http://starbase.sysu.edu.cn/). A regulatory network was
established and depicted using the Cytoscape software, highlighting
the interplay between crucial miRNAs, IncRNAs, and prognostic
genes. The expression levels of prognostic genes in the BRCA and
normal tissue groups within the training set (TCGA-BRCA) were
compared using the Wilcoxon test, with statistical significance set at
P < 0.05. This dataset encompassed 1217 samples, with 1104 disease
cases and 113 normal controls. Boxplot illustrations were generated
through the ggplot2 R package to depict the results.

2.10 Expression characteristics and
functional enrichment analysis of
prognostic genes in different subtypes of
BRCA

To clarify the role of prognostic genes in different molecular
subtypes of BRCA (human epidermal growth factor receptor
2-positive (HER2") and triple-negative breast cancer (TNBC)),
the following analysis process was adopted: BRCA clinical case
information and gene expression data were extracted from the
TCGA database using the R package “TCGAbiolinks” (v2.30.4)
(22), and the samples were classified into HER2" and TNBC
subtypes according to clinical standards. A baseline analysis of
the distribution characteristics of prognostic genes and clinical
indicators (gender, age at diagnosis, T/N/M stage, survival time,
and survival status) in the two subtypes was conducted using the R
package “tableone” (v0.13.2) (https://CRAN.R-project.org/
package=tableone) to test the statistical significance of the
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differences between the groups. The high- and low-expression
groups were divided based on the median value of the prognostic
gene expression within each subtype, and box plots were drawn to
analyze the differences in gene expression within the subtypes.
Based on the data of the high- and low-risk groups of each subtype
in the TCGA-BRCA training set, gene screening differences were
identified and log2FC values were calculated using the DESeq2
package (v1.40.2) (10). The log2FC values were sorted, and the
clusterProfiler package (v4.8.1) (14) was used to conduct GSEA
enrichment analysis with reference to the “c2. Cp. Kegg. V7.1.
Symbols. GMT” gene sets in the MSigDB database. Pathways with
P < 0.05 were screened, and the top five enrichment pathways
are presented.

2.11 Quantitative reverse transcription
polymerase chain reaction, Western blot,
and immunohistochemical analysis of
prognostic genes

In the research presented here, the MCF-7 and T47D cell
lines served as models for an in-depth evaluation of gene
prognostication across different BRCA variants. The non-
tumorigenic mammary epithelial cell line MCF-10A was employed
as a control for comparative analysis. Quantitative reverse transcription
polymerase chain reaction (QRT-PCR) and western blot (WB) analyses
were employed to evaluate the mRNA and protein expression levels of
six prognostic genes in MCF-7, T47D, and MCEF-10A cells. Total RNA
was extracted from the three cell lines and subsequently transcribed,
followed by PCR amplification using corresponding primers
(Supplementary Table S1). The primer sequence table is shown in
Table 1. The WB experiments were performed in triplicate, and the
most representative result was selected for presentation. The main
reagents used by WB are detailed in Supplementary Table S2 of
Supplementary Materials.

Tissue samples embedded in paraffin were collected from a
randomly chosen cohort of eight individuals diagnosed with BRCA
that required surgical intervention (Supplementary Table S3). Slides
exhibiting optimal staining were chosen for presentation along with
the same antibodies (Supplementary Table S2).

Each patient’s normal epithelial tissue adjacent to the neoplasm
served as a control sample. The criteria for choosing the samples
included the identification of cancerous tissue by standard
immunohistochemical (IHC) staining methods, while tissue
deemed normal and situated next to the cancerous area was
characterized as being situated at least 1 mm from the cancerous
cells and exhibiting no signs of cancer upon standard IHC staining
analysis. The determination of a positive outcome necessitates a
comprehensive assessment incorporating multiple variables. These
crucial factors include the magnitude of staining intensity, precise
localization of staining patterns, degree of non-specific background
interference, spatial arrangement of cellular components, and
reproducibility of findings across repeated experiments. This
multifaceted analytical approach is fundamental for ascertaining
whether the results can be definitively categorized as positive.
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2.12 Statistical analysis

The R programming environment (v 4.2.2) (https://www.R-
project.org/) was utilized to perform all statistical analyses. Group
differences were evaluated using the Wilcoxon test, with statistical
significance set at P < 0.05.

3 Results

3.1 Pinpointing potential genes and
associated biological routes

For the study, we utilized the DESeq2 tool within the R
framework to detect genes with significant expression differences
(DEGs) when contrasting afflicted individuals with those in good
health, focusing on the comparison of cancerous and non-
cancerous specimens from the TCGA-BRCA data collection. The
analysis revealed 5,064 DEGs, with 3,052 showing increased
expression and 2,012 exhibiting decreased expression (Figure 1A).
The top ten DEGs are shown in Figure 1B. By intersecting these
5,064 DEGs with 298 ADME-related genes (ADME-RGs),
103 candidate genes were identified for further investigation
(Figure 1C). Following this, the bioinformatics tool
“clusterProfiler” within the R programming environment was
utilized to investigate the roles and pathways associated with
these 103 potential genes in the progression of breast cancer via
enrichment analysis of GO and KEGG. GO enrichment analysis
identified 344 terms primarily linked to xenobiotic metabolic
processes, apical plasma membrane localization, and
monooxygenase activity (Figure 1D). Simultaneously, analysis
revealed enrichment in 26 KEGG pathways, predominantly
associated with the metabolism of xenobiotics through the
cytochrome P450 system and the processing of drugs involving
the same cytochrome P450 pathway (Figure 1E). These routes
are linked to an elevated tumor mutation burden (TMB) and
less favorable outcomes for BRCA patients. A PPI network
was established, comprising 103 nodes and 625 connections
(average node degree = 12.1, average local clustering coefficient =
0.482, P < 1 x 107°). In this interconnected system, ABCA1 was
connected to MPO, CYP46A1, and PPARG, while ADHIA was
linked to DHRS3, CYP3A4, and ADH4 (Figure 1F). This network
visualization allowed us to observe protein-level interactions among
the differentially expressed ADMERGs.

3.2 GSTM2, ADHFE1, ALDH2, NOS1, ATP7B,
and ALDH3A1 were selected as prognostic
genes

Eight ADME-related prognosis genes were confirmed using
univariate Cox regression analysis. The forest plot revealed that
SLC7A5 and NOS1 were risk genes (HR > 1), whereas GSTM2,
ADHFE1, ALDH2, ATP7B, ALDH3AIl, and KCNJ11 were
protective genes (HR < 1) (Figure 2A). Among these, six genes,
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FIGURE 1
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times for patients in the low-risk group, while the ROC analysis

GSTM2, ADHFEI, ALDH2, NOS1, ATP7B, and ALDH3Al,

passed the PH assumption test (P > 0.05) (Table 2). LASSO

regression analysis further narrowed the selection to six
prognostic genes (GSTM2, ADHFE1, ALDH2, NOS1, ATP7B,

and ALDH3A1) at lambda(min) = 0.009640588 (log(lambda) =

-4.641773) (Figure 2B).

A risk model was constructed using these ADME-related
prognostic genes and the risk scores for patients with BRCA were

calculated. The study participants were categorized into two groups,
high- and low-risk, using the median value of -0.5596584 as the
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th
showed area under the curve (AUC) values consistently above 0.6

(Figures 2C, D). For the validation dataset, -0.8065118 was
identified as the optimal risk score threshold, which effectively
divided BRCA patients into two distinct groups. The K-M
analysis results obtained from the validation set were aligned with
those observed in the training set (Figures 2E, F; Supplementary
Figures S1A, S2A). Figure 2F shows ROC curves for 3, 5, and 7
years, although our external validation set GSE20685 was for 7, 9,
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FIGURE 2

A risk model incorporating six genes was developed and validated for predicting BRCA prognosis, with the risk score calculated as follows: Risk
score = Zf’zleSBZ;i x xi. (A) The forest plot highlights two risk genes and six protective genes. (B) LASSO regression analysis identified six prognostic
genes based on the optimal lambda value. (C, D) In the training set, the K-M survival curve demonstrated significant differences in prognosis
between high- and low-risk cohorts, with corresponding ROC curves for 3, 5, and 7 years. (E, F) In the validation set, the K-M survival curve similarly
reflected divergent prognoses between the two cohorts, accompanied by ROC curves for 3, 5, and 7 years.

and 11 years (Supplementary Figure S1B), and GSE21653 was for
1, 3, and 5 years (Supplementary Figure S2B), their AUC value
was greater than 0.7, which proved that our model was valid.
We lengthened the prediction timeframe after reviewing the
validation outcomes.

Moreover, the mortality risk curve and survival status charts
indicated that higher risk scores were correlated with increased
death rates (Supplementary Figures S1C, D, S2C, D). Analysis of
prognostic gene expression between risk groups showed that
GSTM2 and ADHFEI were more highly expressed in the low-risk
cohort (Supplementary Figures S1E, S2E, S3, S4).
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3.3 Nomogram had excellent predictive
efficacy

The results of the univariate Cox regression analysis indicated that
the prognosis of BRCA could be significantly predicted by the risk
score, patient age, and T/N/M stage, as evidenced by p-values less than
0.05 (Figure 3A). Among these, all factors except T stage passed the PH
assumption test and were included in further analysis (P > 0.05).
Further analysis employing the multivariate Cox model indicated that
the prognostic risk score, patient age, and N/M stage were shown to be
independent prognostic determinants (P < 0.05) (Figure 3B).
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TABLE 1 Primers of the real-time reverse transcription-polymerase
chain reaction.

Forward primer Reverse primer

sequence (5°-3')

sequence (5-3')

GSTM2 TGTGCGGGGAATCAGA CTGGGTCATAGCAGAG
AAAGG TTTGG

ADHEEL TGGACTTTCACCTTCT GGAGAGGTTCTTGTCTGT
GGGAA CATCA

ALDH2 ATGGCAAGCCCTATGT CCGTGGTACTTATCAGCCCA
CATCT

NOS1 TTCCCTCTCGCCAAAG AAGTGCTAGTGGTGTCGATCT
AGTTT

ATP7B GCCAGCATTGCAGAAG TGATAAGTGATGACGGCCTCT
GAAAG

ALDH3A1 Zg(éiéCGCCTACTATG GGGCTTGAGGACCACTGAG

A predictive model was developed to calculate the survival
likelihood for individuals diagnosed with BRCA. (Figure 3C). The
calibration curve demonstrated strong alignment with the ideal
curve (Figure 3D), while the DCA curve indicated that the overall
predictive performance of the nomogram surpassed that of the
individual factors (Figure 3E). The nomogram demonstrated strong
clinical predictive accuracy, as evidenced by AUC scores of 0.73,
0.72, and 0.67 at 3, 5, and 7 years, respectively (Figure 3F).

Additionally, K-M survival analysis showed that when high- and
low-risk categories were compared across various clinical indicators,
individuals within the low-risk classification demonstrated markedly
improved longevity in both the above 60 and at or below 60 years age
cohorts, as depicted in Supplementary Figure S5.

3.4 Enriched pathways and function-
related genes of prognostic genes

GSEA was conducted to investigate biological functions and
pathways associated with BRCA. P-values indicate that the most

TABLE 2 This table presents the gene names, Chi-square test results
(chisq), degrees of freedom (df), and P-values for the eight genes.

Genes chisq df P-value

GSTM2 1.423047003 1 0.232902532
ADHFE1 2987880219 1 0.083889918
KCNJ11 8.444923291 1 0.003660639
ALDH2 0.937661259 1 0.332880033
NOS1 2.194863889 1 0.13847144

ATP7B 2428128624 1 0.119175094
SLC7AS5 4.620243563 1 0.031596751
ALDH3A1 0061019045 1 0.804892488

The findings indicate that GSTM2, ADHFE1, ALDH2, NOS1, ATP7B, and ALDH3A1 passed
the PH assumption test.
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statistically significant pathways were arachidonic acid metabolism,
cell cycle regulation, fatty acid metabolism, proteasome function,
and tyrosine metabolism, ranking as the top five most important
(Figure 4A). GeneMANIA analysis identified 20 genes functionally
linked to ADME-related prognostic genes, and a GGI network was
constructed, highlighting interactions such as AC009879.2-
ADHFE1, ALDH2-ALDH3BI, and NOS1-CCS. The results of this
examination suggest that ADHFEI plays a role in various essential
biological functions, including the breakdown and metabolism of
cellular amino acids, as well as the metabolism of alpha-amino acids
(Figure 4B). Moreover, ALDH3A1 demonstrated the highest
functional similarity among the prognostic genes, as shown by
the Friends analysis (Figure 4C).

3.5 Diverse immune microenvironment
between high and low risk cohorts

The infiltration abundance of the 22 immune cell types in the
different risk cohorts is illustrated in Figure 5A. Following the
elimination of samples with P > 0.05, a Wilcoxon test was
conducted to evaluate immune cell disparities between the two
groups. Considerable divergence was noted among the seven types
of immune cells when comparing groups at various levels of risk,
including naive B cells, plasma B cells, and M0 macrophages. Except
for M0 macrophages, all immune cells exhibited elevated expression
levels in the low-risk group (Figure 5B). A significant inverse
relationship between resting memory CD4+ T cells and MO
macrophages was identified through Spearman’s correlation
analysis (cor = -0.38, P < 0.05) (Figure 5C). Furthermore, a
correlation study examining the relationship between different
immune cell types and ADME-related prognostic genes revealed
that ATP7B exhibited a positive correlation with activated mast
cells (cor = 0.38, P < 0.05). In contrast, activated mast cells
demonstrated a negative correlation with the risk score (cor =
-0.33, P < 0.05) (Figure 5D).

Additional examination revealed that the low-risk group
exhibited significantly elevated stromal and ESTIMATE scores
compared to other groups (Figure 5E). Moreover, nine types of
ICIs, including ASXL1, BCL2, CD33, CHEK1, FLT3, IDH2, MCL1,
MDM2, and PLK1, showed significant differences between the risk
groups. Among these, only CHEK1, IDH2, and PLK1 were elevated
in the high-risk group, whereas the remaining ICIs were higher in
the low-risk group (Figure 5F). Additionally, most ADME-related
prognostic genes were positively correlated with ICIs (cor > 0, P <
0.05), except for CHEKI1 and PLKI1, which showed negative
correlations (cor < 0, P < 0.05). The risk score also exhibited
strong associations with ICIs (Figures 5G, S6).

3.6 Prospective medications and regulatory
network of prognostic genes

To identify potential therapeutic drugs for patients with BRCA,
the IC50 values of various drugs were calculated and compared
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FIGURE 3

False positive fraction

The abilities of nomograms to predict prognosis of BRCA. (A) Univariate Cox analysis showed risk score, age, and T/N/M stage as prognosis-related
factors. (B) Multivariate Cox analysis showed risk score, age, and N/M stage as independent prognostic factors. (C, D) The nomogram showed good
predictive performance for survival probability, calibration curve had higher coincidence with ideal curve. (E) DCA curve indicated that nomogram
has higher overall prediction effect. (F) AUC value demonstrated that nomogram has an effective clinical predictive capability in 3, 5, and 7 years.

between risk groups. Among the top 10 drugs with significant
differences, GW.441756, imatinib, and WH.4.023 were more
effective in the low-risk group, whereas the remaining seven
drugs (ABT.263, AZD.2281, BI. D1870, IPA.3, NU.7441, TW.37,
and X681640) showed higher sensitivity in the high-risk
group (Figure 6A). In terms of regulatory mechanisms, a
IncRNA-miRNA-mRNA regulatory network was constructed,
incorporating four ADME-related prognostic genes, 10 miRNAs,
and 12 IncRNAs. Within this network, MALAT1, SNHG16, and
NEAT1 were found to regulate NOS1 via hsa-miR-146a-5p,
whereas NORAD, SNHG14, and XIST regulated ALDH2 via hsa-
miR-30b-5p (Figure 6B).
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3.7 Analysis results of prognostic genes
and related characteristics in HER2* and
TNBC subtypes

A total of 178 HER2+ and 122 TNBC samples were included in
this study for analysis. The results of the baseline characteristic
analysis (Table 3) showed that among the prognostic genes, there
were significant differences in the expression levels of ALDH2,
NOS1, ATP7B, and ALDH3A1 between the two subtypes (P < 0.05).
Among the clinical indicators, there was a significant difference in
age at diagnosis between the HER2+ and TNBC subtypes
(p = 0.002).
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Biological functions and pathways associated with the six prognostic genes. (A) KEGG GSEA enrichment analysis identified the top 5 pathways
related to prognostic genes. (B) GGI networks demonstrated interactions among these prognostic genes, involving multiple essential biological
processes. (C) Friends analysis confirmed that ALDH3A1 exhibited higher functional similarity compared to the other five prognostic genes.

Analysis of gene expression differences showed that for all
prognostic genes, there were significant differences between the
high- and low-expression groups within the HER2+ and TNBC
subtypes (P < 0.05) (Figure 7).

The GSEA enrichment analysis results showed that a total of 21
significant pathways were enriched in the high - risk and low - risk
groups of the HER2" subtype. The TOP5 pathways were
Proteasome, Tyrosine Metabolism, Adipocytokine Signaling
Pathway, Type II Diabetes Mellitus, and Metabolism of
Xenobiotics by Cytochrome P450. A total of 30 significant
pathways were enriched in the high - risk and low - risk groups
of the TNBC subtype. The TOP5 pathways included heterobiomass
Metabolism mediated by Cytochrome P450, Drug Metabolism of
cytochrome P450, tyrosine metabolism, Retinol Metabolism, and
Butanoate Metabolism (Figure 8). The above results indicated that
prognostic genes showed consistent expression difference patterns
and similar functional pathway associations in the HER2+ and
TNBC subtypes, once again demonstrating the prognostic value of
these genes.

3.8 Expression analysis of prognostic genes
at different levels

The expression levels of ADME-related prognostic genes were

analyzed. The boxplot results indicated that ATP7B exhibited
significantly higher expression in the BRCA group, while the
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remaining ADME-related prognostic genes were expressed at
lower levels in the BRCA group (P < 0.001) (Supplementary
Figure S7).

We identified six ADME-related mRNA expression levels in
three cell lines by qRT-PCR, the results of Figures 9A, B showed that
compared to MCF-10A cells, high expression of ATP7B in MCF-7
and T47D respectively (P < 0.05), while low expression of other five
genes separately (P < 0.05), which high similarity to TCGA-BRCA.
In addition, the same trends of six proteins expression levels in
MCF-7, T47D and MCF-10A cells were observed by electrophoretic
results (Figures 9C, D). The boxplot results also showed that ATP7B
in MCF-7 and T47D cells were higher than MCF-10A (P < 0.05), at
the meanwhile, the other five proteins (GSTM2, ADHFE1, ALDH2,
NOS1 and ALDH3A1) were significantly lower in BRCA cells than
normal cells (Figures 9E, F) (P < 0.05).

In summary, we further verified the gene and protein expression
levels of GSTM2, ADHFE1, ALDH2, NOS1, ATP7B, and
ALDH3A1 through independent external experiments using qRT-
PCR and WB blot.

Finally, the expressions of GSTM2, ADHFE1, ALDH2, NOSI,
ATP7B, and ALDH3A1 were visualized by IHC. Positive results are
indicated by a blue coloration in the nucleus and a brownish-yellow
or brown hue for the target proteins. Additionally, the results
revealed that GSTM2, ALDH2, ADHFE1, and ATP7B were
especially elevated in the BRCA group (Figures 10A-F). This
suggested that these genes might have been associated with the
occurrence or progression of breast cancer.
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FIGURE 5
Immune microenvironment landscape differences between high- and low-risk groups. (A) Infiltration abundance of 22 immune cell types across the
two risk cohorts. (B) Seven immune cell types showing significant differences between the two groups. (C) Spearman correlation analysis illustrates
the relationships among the seven immune cell types. (D) Correlation analysis between differentially expressed immune cells, prognostic genes, and
the risk score. (E) Stromal and ESTIMATE scores were significantly higher in the low-risk group. (F) Nine types of ICls exhibited significant differences
between the risk groups. (G) Correlations between the six prognostic genes and ICI efficacy. Asterisks represent statistical significance (*P < 0.05;
**P < 0.01; ***P < 0.001; ns: no significance).

4 Discussion

Research has demonstrated that variations in ADME-related genes
are strongly linked to the onset, progression, and treatment of BRCA.
These genes encode enzymes and transporters that play a role in
metabolism and movement of foreign substances, including
medications and cancer-causing agents. Additionally, variations in
ADME genes contribute to differences in ADME function among
individuals, which in turn affect BRCA susceptibility and the body’s
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response to drugs (23-25). Polymorphisms in the CYP2D6 gene impact
the metabolism and activation of tamoxifen, consequently influencing
its therapeutic efficacy and side effect profile during the treatment of
BRCA-related cancers (26). Moreover, abnormal expression of ADME
genes can promote BRCA advancement by modifying the processing
and elimination of medications and cancer-causing substances (27-29).
Therefore, a comprehensive investigation of the relationship between
ADME-RGs and BRCA is critical. Such research will not only illuminate
the pathogenic mechanisms of BRCA but will also assist in optimizing
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Prospective therapeutic agents and a competing endogenous RNA (ceRNA) regulatory network of the ADME-related prognostic genes.

(A) Comparison of the half-maximal inhibitory concentration (IC50) values for the top 10 candidate drugs between the high- and low-risk groups.
Drugs such as GW.441756, imatinib, and WH.4.023 exhibited lower IC50 values (higher efficacy) in the low-risk group. In contrast, the high-risk
group showed increased sensitivity to the remaining seven drugs (ABT.263, AZD.2281, BI.D1870, IPA.3, NU.7441, TW.37, and X681640). (B) ceRNA
network illustrating the potential regulatory mechanisms of the prognostic genes. The network comprises 4 prognostic genes, 10 miRNAs and 12
IncRNAs. Key regulatory axes include the regulation of NOS1 by MALAT1/SNHG16/NEAT1 via hsa-miR-146a-5p, and the regulation of ALDH2 by

NORAD/SNHG14/XIST via hsa-miR-30b-5p.

current treatment strategies and potentially uncovering novel
therapeutic approaches.

After identifying genes associated with both ADME-RGs and
BRCA, subsequent enrichment analysis demonstrated their
participation in pathways related to xenobiotic and drug

metabolism involving cytochrome P450 (Figure 1). This case-
control investigation sheds light on the intricate dynamics
between genetic susceptibility and environmental influences,
providing a considerable understanding of the alterable elements
of risk (30). Studies have shown that ATP-binding cassette

TABLE 3 Baseline table of prognostic genes and clinical information characteristics among molecular subtypes.

Overall
300
GSTM2 (mean (SD)) 1.12(0.81) 1.17(0.84) 1.04(0.75) 0.187
ADHFEI (mean (SD)) 1.02(0.73) 1.02(0.74) 1.02(0.73) 0.976
ALDH2 (mean (SD)) 3.28(1.09) 3.46(1.03) 3.03(1.13) 0.001
NOS1 (mean (SD)) 0.05(0.26) 0.03(0.06) 0.09(0.40) 0.028
ATP7B (mean (SD)) 1.65(0.92) 2.06(0.89) 1.05(0.58) <0.001
ALDH3A1(mean (SD)) 0.28(0.66) 0.20(0.45) 0.39(0.87) 0.015
gender (%) Male 4(1.3) 4(2.2) 0(0.0) 0.248
Female 296(98.7) 174(97.8) 122(100.0)
age (mean (SD)) 56.87(12.91) 58.76(13.43) 54.11(11.63) 0.002
TNM.stage (%) Stage I 41(13.7) 20(11.2) 21(17.2) 0.168
Stage II 185(61.7) 107(60.1) 78(63.9)
Stage 111 69(23.0) 48(27.0) 21(17.2)
Stage IV 5(1.7) 3(1.7) 2(1.6)
0S.time (mean (SD)) 682.48(781.97) 627.03(727.15) 763.39(852.29) 0.138
OS (%) 0 259(86.3) 153(86.0) 106(86.9) 0.953
1 41(13.7) 25(14.0) 16(13.1)
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FIGURE 7

Expression of prognostic genes in different subtypes of breast cancer. (A) HER2+, (B) TNBC.

subfamily G member 2 (Abcg2) facilitates tolfenamic acid transport,
affecting its plasma concentration and tissue distribution, which
may alter its pharmacological effects and toxicity (31). Moreover, a
mutation in Mitochondrial Dysfunctional 1 (MDN1) was enriched
in drug metabolism cytochrome P450 pathways and associated with
a high tumor mutational burden (TMB) and poorer prognosis in
patients with BRCA. This suggests that MDN1 mutation could
serve as a prognostic biomarker and inform immunotherapy
decisions for patients with BRCA (32). Given the findings of
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previous studies on ADME-RGs mutations in BRCA, it is
hypothesized that variations in ADME genes, particularly those
involved in these critical biological processes and pathways, may
increase BRCA susceptibility. However, further research is required
to validate these results and elucidate the underlying mechanisms.

The prognostic significance of six genes (GSTM2, ADHFEI,
ALDH2, NOS1, ATP7B, and ALDH3A1) was confirmed (Table 2;
Figure 2). Based on these findings, a risk model was developed that
demonstrated that high-risk patients experienced significantly
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GSEA analysis revealed multiple significantly enriched pathways in the high- and low-risk groups of both HER2+ and TNBC subtypes, showing similar

functional association patterns. (A) HER2+ subtype (B) TNBC subtype.

reduced survival durations. (P < 0.05). The AUC values further
demonstrated strong predictive performance (Figures 2C, D-F). It
is worth noting that six prognostic genes showed highly consistent
results with transcriptome analysis in qRT-PCR and WB analysis,
indicating that the expression trend of these genes was consistent at
the mRNA level and protein level, further verifying the accuracy
and reliability of transcriptome analysis. These genes exhibited a
strong correlation with prognosis, indicating their potential as
BRCA biomarkers, which is consistent with the results of
previous studies. Hypermethylation of the glutathione
S-transferase mu 2 (GSTM2) promoter has been identified as
a potential biomarker for aggressive tumor behavior and
may contribute to the progression of estrogen receptor (ER)-
and progesterone receptor (PR)-negative BRCA (9). Alcohol
dehydrogenase iron-containing 1 (ADHFEL), an oncogene,
induces metabolic reprogramming, promoting both tumor growth
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and metastasis in BRCA (33). Aldehyde dehydrogenase 2 family
member (ALDH2) and nitric oxide synthase 1 (NOS1) have been
linked to lymph node metastasis and bone metastasis in BRCA,
respectively (20, 21). A pan-cancer analysis revealed that ATPase
copper transporting beta (ATP7B) negatively correlates with
macrophage infiltration in BRCA and is strongly associated with
prognosis, immunotherapy response, and disease progression (34).
Aldehyde dehydrogenase 3 family member Al (ALDH3A1), an
enzyme involved in drug metabolism, is negatively correlated with
peroxisome proliferator-activated receptor y (PPARY) and is
implicated in cancer cell resistance to anticancer drugs (35).
However, it is noteworthy that the expression of ADME-related
genes may vary among different BRCA subtypes. Research findings
indicated that basal-like subtype patients exhibited reduced ATP7B
expression, implying that copper concentrations in the tumor tissue
of individuals with basal-like breast cancer may vary from those
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Independent verification by three cell lines. GROUP A represented MCF-7 (Tumor) and MCF-10A (Normal); GROUP B represented T47D (Tumor) and
MCF-10A (Normal). (A, B) The gRT-PCR results of MCF-7, T47D and MCF-10A. (C, D) Electrophoretic maps and molecular weights of six proteins in
three cell lines, MCF-7, T47D and MCF-10A. (E, F) The WB results of MCF-7, T47D and MCF-10A. (*P < 0.05; **P < 0.01; ***P < 0.001).

observed in other breast cancer subtypes (36). However, this should
be further researched. A nomogram was developed to assess the
survival likelihood of BRCA patients, aiming to further test the risk
model’s predictive capabilities. The calibration curve, DCA curve,
and AUC values confirmed the high predictive accuracy of the
nomogram (Figure 3). These findings suggest that the constructed
nomogram may serve as a potential reference tool for risk
assessment in patients with BRCA and could provide supportive
value for predicting treatment outcomes. The robustness of the
model was further confirmed using an independent external
dataset. Previous studies have indicated that internal validation
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approaches alone cannot guarantee the quality of machine learning
models, as the training data may be biased, and the validation
process is inherently complex. Therefore, external validation is
essential for evaluating the generalizability of predictive models
(37), which highlights the rationality of the validation strategy
employed in this study. To further investigate the role of
prognostic genes in the different BRCA subtypes (Table 3), we
performed expression validation and enrichment analyses. The
results showed that the six ADME-related prognostic genes
exhibited stable expression difference patterns in both the HER2+
and TNBC subtypes. In addition, the core-enriched pathways in the
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high- and low-risk groups of both subtypes were highly associated
with the metabolic regulation and drug-processing functions of
ADME genes. This not only confirms the universal prognostic value
of these genes across subtypes but also addresses the limitations of
previous prognostic models that lacked subtype-specific analyses.
Given that HER2+ and TNBC subtypes differ markedly in clinical
treatment strategies, our results imply that an ADME gene-based
prognostic model could be applicable for risk stratification in
patients with different subtypes of breast cancer. Furthermore, the
subtle differences in core pathways between subtypes suggest that
ADME genes may influence BRCA progression via subtype-specific
molecular mechanisms, providing direction for future investigations
into subtype-exclusive ADME-related therapeutic targets.

Further investigations showed that genes with prognostic value
were predominantly associated with pathways involving tetraenoic
acid metabolism, regulation of the cell cycle, fatty acid metabolism,
degradation via the proteasome, and metabolism of tyrosine
(Figure 4A). Li et al. suggested that heightened arachidonic
acid metabolism could serve as a favorable prognostic marker in
BRCA, potentially explaining the limited efficacy of cyclooxygenase
inhibitors in cancer therapy. This insight offers a novel perspective
on management (38). In cell cycle regulation, research
demonstrated that Keratin 19 (K19) deficiency disrupts normal
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cell cycle progression, highlighting K19’s critical role in cell cycle
control and its potential as a predictive marker for cyclin-dependent
kinase (CDK) inhibitor efficacy in BRCA treatment (39). The
production of fatty acids, primarily orchestrated by fatty acid
synthase (FASN), is frequently upregulated and excessively active
in malignant tumors, contributing to their growth and spread (40).
Recent studies on fatty acid metabolism have linked its
dysregulation to cancer cell invasion and diminished immune cell
infiltration in male breast cancer (MBC), suggesting a poor
prognosis for affected patients (41). Increasing evidence points to
proteasomes as potential therapeutic targets for BRCA. For
example, one study emphasized the protective role of Nuclear
Respiratory Factor 1 (NRF1), which enhances proteasome gene
expression in response to proteasome inhibition, indicating a
possible treatment avenue for BRCA (42). A recent study found
that the tyrosine-phosphorylation-facilitated interaction between
Yes-associated protein 1 (YAP1) and Transcription Factor AP-2
Alpha (TFAP2A) is essential for regulating gene expression and
contributes to trastuzumab resistance in HER2+ BRCA. Combining
HER?2 inhibition with targeting YAP1 transcriptional activity could
effectively counteract trastuzumab resistance caused by non-
receptor tyrosine kinase (SRC) activation (43). Few studies have
examined how prognostic genes regulating these signaling pathways
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affect BRCA outcomes. Further research is required to understand
the physiological roles and interactions of these genes in
these pathways.

The observed associations among immune cell infiltration, ADME-
related prognostic genes, and immune checkpoint inhibitors (ICIs) in
this study provide valuable insights into the potential immune-
molecular mechanisms underlying prognostic differences in BRCA.
Seven immune cell types, including naive B cells and plasma cells, were
significantly enriched in the low-risk group, whereas MO macrophages
were upregulated in the high-risk group. This pattern suggests that the
low-risk group may exhibit a more active adaptive immune response
and a lower pro-inflammatory state, whereas the high-risk group may
be characterized by aberrant macrophage polarization or the
establishment of an immunosuppressive microenvironment,
phenomena that are highly consistent with established antitumor
immune mechanisms. Naive B cells, for example, can differentiate
into plasma cells to secrete antigen-specific antibodies and participate
in humoral immunity (44), and high plasma cell infiltration is
frequently associated with favorable clinical outcomes in patients
with cancer (45). In contrast, MO macrophages, as unpolarized
precursors, are prone to shift toward a tumor-promoting M2
phenotype in the tumor microenvironment (46), providing a
plausible explanation for the more favorable baseline prognosis
observed in the low-risk group.

Furthermore, our results revealed a significant negative
correlation between resting memory CD4" T cells and MO
macrophages (Figure 5). Combined with prior evidence that
CD4" T cells can modulate macrophage polarization toward
antitumor phenotypes via IFN-y secretion (47, 48), we speculate
that the activation of resting memory CD4" T cells in the low-risk
group may inhibit the MO/M2 transition, thereby reducing the
formation of an immunosuppressive microenvironment. This
provides new mechanistic support for the coordinated regulation
of immune cell populations. In addition, activated mast cells have
been reported to release histamine and leukotrienes, which recruit
dendritic cells, T cells, and other immune cells to enhance local
antitumor immunity (49). The positive correlation between ATP7B

and activated mast cells (cor

= 0.38), along with the negative
correlation between activated mast cells and risk score, suggests
that ATP7B may influence the tumor immune microenvironment
by modulating mast cell activation.

Importantly, expression levels of nine ICIs differed significantly
between risk groups and showed strong correlations with ADME genes
and risk scores, providing clinically relevant clues for immunotherapy
strategies. Most ICIs, including BCL2 and CD33, were upregulated in
the low-risk group, whereas only CHEK1, IDH2, and PLK1 were
elevated in the high-risk group. Literature evidence indicates that
BCL2, an anti-apoptotic molecule, can reduce T-cell exhaustion and
sustain immune responsiveness (50). In contrast, CHEK1 and PLK1
are cell cycle regulators (51, 52), whose high expression is associated
with enhanced tumor cell proliferation (52), offering a molecular
explanation for the poorer prognosis and potentially reduced
responsiveness to conventional immunotherapies in the high-risk
group. Furthermore, the finding that most ADME genes were
positively correlated with ICIs suggests that these genes may
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modulate ICI expression or function, thereby influencing the efficacy
of immunotherapy.

Collectively, by integrating analyses of immune infiltration,
ADME genes, and ICI expression, this study uncovered potential
tumor microenvironment-mediated mechanisms driving
prognostic disparities in BRCA. These results warrant further
validation and may provide both theoretical and experimental
foundations for future combination strategies, such as the use of
ADME gene modulators in conjunction with ICIs.

To identify potential therapeutic drugs, the variance in IC50 values
was calculated across different drugs within the high- and low-risk
cohorts, focusing on those with the top 10 P-values for differential
impact in patients with BRCA (Figure 6A). It is worth mentioning that
imatinib, which inhibits CYP3A4, has been documented as a combined
treatment for individuals with CML and BRCA, without causing
additional side effects (53). ABT.263 (navitoclax) synergizes with a
novel myeloid cell leukemia sequence 1 (MCL-1) downregulation,
significantly inducing intrinsic apoptosis in TNBC cells (54). Future
studies on drugs such as AZD.2281, BL.D1870, and IPA.3, are expected
to yield improved clinical outcomes in patients with BRCA. A
regulatory network encompassing IncRNAs, miRNAs, and mRNAs
was constructed and the protein expression of prognostically significant
genes was validated (Figure 6B). An examination of the expression
levels for the six genes associated with prognosis was conducted. The
results, displayed in a boxplot format, revealed variations in expression
among these genes (Supplementary Figure S7). Independent expression
analyses at different levels were used to validate our conclusion; qRT-
PCR and WB results were consistent with those obtained from TCGA
database (Figure 9). Specifically, at the level of gene and protein
expression, ATP7B showed high expression in BRCA samples, while
the other five genes (GSTM2, ADHFEIL, ALDH2, NOSI, and
ALDH3A1) showed lower expression levels, which was consistent
with gene expression results in transcriptome analysis. Interestingly,
in a study on drug resistance in BRCA cells also pointed out that the
expression level of ATP7B in BRCA tissues was slightly higher than
that in normal tissues. In addition, ATP7B is often closely related to
adverse reactions such as cisplatin resistance in cancer treatment (55).
These results suggest that the prognostic genes verified by experiments
have potential value as new therapeutic targets for BRCA and provide a
new perspective and idea for the development of BRCA treatment
strategies and personalized treatment programs. Moreover, their
distinct expression patterns and varying protein contents in BRCA
indicated that these six genes had the potential to serve as biomarkers,
warranting further investigation. On the other hand, combined with
bioinformatics results from public databases and experimental
validation, these results suggested that these six genes played different
roles in regulating physiological function and prognosis. Although the
THC results were unsatisfactory, fluctuations in protein abundance may
be attributed to post-transcriptional mechanisms or additional
variables, which may account for discrepancies in gene and protein
expression levels (Figure 10). Thus, these dates support a deeper
exploration of the implicated genes and the intricate controls
governing them.

This study utilized bioinformatic techniques to identify ADME-
related prognostic genes in BRCA and explored their potential
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mechanisms of action. Specifically, GSTM2, ADHFE1, ALDH2,
NOS1, ATP7B, and ALDH3A1 were linked to BRCA prognosis.
Investigating these genes provides new insights and valuable
information for BRCA treatment. While our study provides a
comprehensive bioinformatic framework and preliminary
experimental validation, its immediate clinical translation is limited
by the absence of large-scale prospective patient cohorts and
functional in vivo studies. Therefore, these findings should be
interpreted as hypothesis-generating, and further multi-center
validation and mechanistic investigations are warranted before
clinical implementation. First, prospective clinical validation was
insufficient, as no forward-looking validation using breast cancer
patient samples was performed, and differences among molecular
subtypes were not considered. These factors may partially weaken the
model’s translational applicability. Moreover, the clinical sample
validation results were not fully consistent with the findings from
the WB and THC assays. Second, drug validation remains in the in-
silico stage. Although drug sensitivity prediction was performed
based on the GDSC database, no in vitro or in vivo functional
assays were conducted on the candidate compounds. Third, the
mechanistic investigation lacked depth, focusing primarily on gene
expression confirmation without incorporating functional
experiments, such as gene knockdown or drug response assays. In
particular, the molecular mechanism underlying the association
between elevated ATP7B expression and breast cancer drug
resistance has not been explored in detail, thereby limiting the
mechanistic persuasiveness of the study. To address these
limitations, future studies should involve the prospective collection
of clinical samples, considering molecular subtype differences to
enhance the model’s clinical applicability. Key predictive
compounds will be selected for in vitro drug response assays in
breast cancer cell lines, and vivo validation will be performed using
animal models, if possible. Additionally, with adequate funding
support gene knockdown experiments will be designed to
investigate the influence of target genes, such as GSTM2 and
ATP7B, on the biological behavior of breast cancer cells, thereby
improving the functional depth and clinical relevance of the study.
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