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genes in breast cancer
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Guangmin Shi1 and Jiqing Hao2*

1Department of Oncology Ward 2, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China,
2Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China, 3Department of Pathology, Suzhou Hospital of Anhui Medical University, Suzhou,
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Background: The processes of absorption, distribution, metabolic action, and

elimination (ADME) affect the advancement of cancer and the development of

resistance to therapies. This study examined ADME-related genes in breast

cancer (BRCA) mechanisms and their associations with BRCA.

Methods: BRCA datasets were analyzed to identify genes with differential

expression in BRCA compared to normal tissues, focusing on ADME-related

genes (ADME-RGs). Stepwise regression analyses identified prognostic genes,

which were used to develop a risk assessment model. BRCA patients were scored

and classified into risk categories, with survival outcomes compared across

groups. A predictive model incorporating key prognostic indicators estimated

patient survival rates. Mechanisms were explored through enrichment analysis,

immune profiling, and drug sensitivity testing. Quantitative reverse transcription

polymerase chain reaction (qRT-PCR) and western blot (WB) methodologies

were employed to determine the transcription and translation levels of the six

genes, with immunohistochemistry (IHC) used to validate the variations in their

expression profiles.

Results: Findings indicated that six predictive genes were pinpointed which

established a risk stratification model, categorizing individuals into groups with

either high or low risk, whereas those in the low-risk category demonstrated

improved survival outcomes. A nomogram was created for precise prediction.

Analysis of enrichment pinpointed processes, including metabolism of

arachidonic and fatty acids, regulation of cellular division, proteasomal activity,

and breakdown of tyrosine. Immune infiltration analysis showed distinct profiles

for seven cell types between risk groups. Drug sensitivity analysis revealed

GW.441756, imatinib, and WH.4.023 were more effective in the low-risk group,

with varying sensitivities to other drugs in the high-risk group. The qRT-PCR, WB,

and IHC results matched the bioinformatics analysis, showing upregulated ATP7B

expression in BRCA, indicating the high prognostic potential of the

identified genes.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1568379/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1568379/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1568379/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1568379/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1568379&domain=pdf&date_stamp=2025-11-07
mailto:haojiqing@ahmu.edu.cn
https://doi.org/10.3389/fonc.2025.1568379
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1568379
https://www.frontiersin.org/journals/oncology


Abbreviations: BRCA, Breast cancer; ADME, The ab

metabolism, and excretion (ADME); DEGs, Differen

ADME-RGs, ADME-related genes; DCA, Decision

Kaplan-Meier; ROC, Receiver Operating Characteris

hazards; ICIs, Immune-checkpoint inhibitors; lncRNAs, L

Yang et al. 10.3389/fonc.2025.1568379

Frontiers in Oncology
Conclusions: ADME-related prognostic genes (GSTM2, ADHFE1, ALDH2, NOS1,

ATP7B, and ALDH3A1) are implicated in BRCA pathogenesis, suggesting new

therapeutic strategies for BRCA treatment.
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GRAPHICAL ABSTRACT
1 Introduction

Currently in 2022, the most common cancer affecting women

worldwide was breast cancer (BRCA), defined by the presence of

cancerous growths that develop from the epithelial cells of breast

tissue (1). Although there have been notable improvements in

treatment options, such as radiation therapy, drug-based cancer
sorption, distribution,

tially expressed genes;

curve analysis; K-M,

tic; PH, Proportional

ong non-coding RNAs.

02
treatments, hormone therapy, and precision medicine approaches,

many patients continue to experience poor outcomes due to distant

metastases, with low overall survival rates (2, 3). BRCA remains a

major cause of cancer deaths (1), underscoring the pressing need to

identify prognostic genes that can facilitate outcome prediction and

inform personalized treatment strategies.

Genes linked to absorption, distribution, metabolism, and

excretion processes (ADME) play a critical role in the handling of

pharmaceutical compounds (4). They govern metabolic pathways,

substance translocation, and purification mechanisms within the

body. Variations in ADME-RGs are linked to cancer development

and treatment responses. Moreover, their expression patterns in

tumors are believed to influence patient survival rates (5). In various
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cancer types, ADME-RGs have been identified as valuable

prognostic markers and therapeutic targets (6–8). Although

ADME-RGs are suspected to play a role in BRCA (9), their exact

functions and mechanisms remain unclear, necessitating further

investigation into their involvement.

This study employed bioinformatics approaches to identify

ADME-related prognostic genes in BRCA and constructed a risk

model based on these genes to evaluate survival differences among

BRCA patients in various risk cohorts. Additionally, functional

enrichment, immune infiltration, regulatory network, and drug

sensitivity analyses were conducted to explore the mechanisms of

action of these prognostic genes in BRCA patients.
2 Materials and methods

2.1 Data collection

BRCA-related data were obtained from the UCSC-Xena

database, comprising 1,217 tissue samples, including 1,104 BRCA

(tumor) and 113 normal samples, which were used as the training

set. From this group, 1,082 BRCA patients with comprehensive

survival and gene expression data were selected for survival analysis.

The dataset labeled GSE42568, utilizing platform GPL570, contains

a total of 104 BRCA specimens, which include 82 cases of invasive

ductal carcinoma, 17 of invasive lobular carcinoma, and 5 samples

classified under different tumor categories, alongside 17 samples

from healthy breast tissues. To confirm these findings, additional

datasets from the GEO repository, GSE20685 with 327 samples

of breast cancer, and GSE21653 encompassing 265 BRCA

specimens, 245 of which have comprehensive survival data, were

acquired. Additionally, 298 ADME-RGs were identified from the

literature (8).
2.2 Differential expression analysis

In the course of this research, version 1.38 of the DESeq2

software suite was employed to identify differentially expressed

genes (DEGs) between BRCA and normal groups in the training set

(10). The selection criteria for DEGs included an adjusted P-value <

0.05 and a |log2fold change (FC)| > 1. Volcano plots were created

using ggplot2 (v. 3.4.4), and heatmaps were generated using

Complex Heatmap (v. 2.14.0) (11, 12).
2.3 Identification and functional analysis of
candidate genes

Candidate genes were obtained by intersecting DEGs and

ADME-RGs using the Venn Diagram package (v 1.7.3) (13).

Researchers investigated the functional importance and molecular

routes involved in the progression of BRCA by leveraging Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) to perform enrichment studies. These studies utilized
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clusterProfiler software (version 4.7.1.003), setting a significance

cutoff at a P-value of less than 0.05 (14). Furthermore, to shed light

on the interactions between proteins, the STRING resource

(available at https://string-db.org/, with an interaction score

threshold of over 0.4) was employed. The ensuing protein-protein

interaction (PPI) networks were then depicted with the aid of

Cytoscape application, version 3.9.1 (15).
2.4 Construction and validation of a risk
model

The survival package includes a function called coxph, version

3.5.3 (https://www.R-project.org/) and was employed to perform

univariate Cox regression analysis on the selected candidate genes,

aiming to identify those associated with prognosis (hazard ratio

[HR] ≠ 1, P < 0.05). The methodology persisted, employing the

glmnet package (version 4.1-4) to execute LASSO regression on the

predictive genes. This step focused on genes that met the

proportional hazards (PH) assumption test (P > 0.05) (16). Using

these prognostic genes as a foundation, a risk model was

subsequently developed. The model was constructed using the

following equation: Risk score = on
i=1x03B2;i� xi, where b

represents the LASSO coefficient for each gene and x denotes the

expression of prognostic genes. At the same time, due to the

significant difference in the number of patients between the

training and validation sets, in order to avoid the impact of

outliers and skewed data on the results (17), the median cutoff

value of the risk score was used as the measure for high- and low-

risk groups (18, 19). This provided a stable cutoff point for the

classification of high- and low-risk categories for patients in both

the training and validation sets. Survival differences between these

groups were examined using Kaplan-Meier (K-M) survival curves

generated using the Survminer package (v 0.4.9) (https://CRAN.R-

project.org/package=survminer). To evaluate the risk model’s

efficacy, Receiver Operating Characteristic (ROC) curves were

constructed using the survivalROC package (v 1.18.0) (https://

CRAN.R-project.org/package=survivalROC). The model’s

performance was further verified on a separate independent

dataset. To conclude, a heatmap was created to visually represent

and compare the expression patterns of the prognostic genes across

the identified risk groups.
2.5 Construction of nomogram

The training dataset underwent various statistical analyses to

determine independent prognostic factors encompassing both the

risk score and clinical parameters, including age and T/N/M stage

(P < 0.05). The study included single-variable Cox regression, tests

for proportional hazards (PH), and Cox regression involving

multiple variables. To predict the survival chances at 3, 5, and 7

years for patients with BRCA, a prediction tool was created by

applying the independent predictors discovered. The nomogram’s

performance was evaluated through decision curve analysis (DCA)
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and receiver operating characteristic (ROC) curve analysis. The

Survminer package was employed to create Kaplan-Meier survival

curves, enabling the comparison of outcomes across various clinical

characteristics and examination of survival disparities (P < 0.05).
2.6 Function analysis of prognostic genes

We utilized the clusterProfiler package to perform gene set

enrichment analysis (GSEA) on BRCA patients across varying risk

levels, aiming to uncover critical biological processes and pathways.

By employing the DESeq2 package, we pinpointed genes that

exhibit varying levels of expression between distinct risk groups.

Following this, the log2 fold-change (log2FC) scores of these

differentially expressed genes (DEGs) were calculated and

ordered. The analysis employed c2.cp.kegg. v2023.1 gene set,

while the Hs.symbols gene set from the Molecular Signatures

Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb)

served as the background set for GSEA. The enrichment plot

package (v1.18.0) was utilized to depict the five most prominent

pathways (P < 0.05). To create a gene-gene interaction (GGI)

network, GeneMANIA (https://genemania.org/) was utilized to

identify genes functionally related to prognostic genes.

Furthermore, the GOSemSim package (v. 2.24.0) was used to

assess the functional similarity of prognostic genes using GO

terms (https://guangchuangyu.github.io/software/GOSemSim).

For this analysis, semantic similarity scores were calculated using

the mgeneSim function.
2.7 Immune infiltration analysis

The CIBERSORT algorithm was employed to assess the

presence of 22 common immune cell types in the training set,

aiming to investigate immune cell infiltration differences between

risk groups. Samples with P values exceeding 0.05 were omitted

from the analysis. To identify statistically significant disparities in

the immune cell populations between the risk cohorts for the

remaining samples, we applied the Wilcoxon test. (P < 0.05). To

evaluate the relationships between differentially abundant immune

cells and prognostic genes, Spearman’s correlation analysis was

conducted, with significance defined as |cor| > 0.3 and P < 0.05.

In addition, the Wilcoxon test was employed to calculate and

contrast the immune, stromal, and ESTIMATE scores across the

different risk groups (P < 0.05). Subsequently, the results were visually

represented through graphs created with the ggplot2 package.
2.8 Examination of the efficacy of immune-
checkpoint blockers and their
responsiveness to medicinal compounds

To assess differences in the 14 ICIs previously reported in the

literature between risk groups (20), the Wilcoxon test was conducted,
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and significant ICIs were identified (P < 0.05). Correlations between

risk scores, prognostic genes, and differential ICIs were further

explored via Spearman analysis using the corrplot package (v. 0.92)

(https://github.com/taiyun/corrplot).

To examine variations in drug sensitivity among the risk

groups, the GDSC database (https://www.cancerrxgene.org/) was

used to obtain potential BRCA drugs and their corresponding half-

maximal inhibitory concentration (IC50) values. The pRRophetic

package (v 0.5) was employed to estimate IC50 values for each

tumor sample in the training set (21). The Wilcoxon test was then

employed to examine the disparities in IC50 values across the

various risk categories (P < 0.05). A boxplot was created to

display the top 10 drugs ranked according to their p-values.
2.9 Regulatory network and expression
validation of prognostic genes

To investigate the regulatory mechanisms of the prognostic

genes in BRCA, microRNAs (miRNAs) targeting these genes were

predicted using miRDB (https://www.mirdb.org) and miRWalk

(http://mirwalk.umm.uni-heidelberg.de). Crucial microRNAs were

pinpointed through the process of finding the common miRNAs

forecasted by the two databases. Long non-coding RNAs (lncRNAs)

targeting these key miRNAs were predicted using the ENCORI

database (http://starbase.sysu.edu.cn/). A regulatory network was

established and depicted using the Cytoscape software, highlighting

the interplay between crucial miRNAs, lncRNAs, and prognostic

genes. The expression levels of prognostic genes in the BRCA and

normal tissue groups within the training set (TCGA-BRCA) were

compared using the Wilcoxon test, with statistical significance set at

P < 0.05. This dataset encompassed 1217 samples, with 1104 disease

cases and 113 normal controls. Boxplot illustrations were generated

through the ggplot2 R package to depict the results.
2.10 Expression characteristics and
functional enrichment analysis of
prognostic genes in different subtypes of
BRCA

To clarify the role of prognostic genes in different molecular

subtypes of BRCA (human epidermal growth factor receptor

2-positive (HER2+) and triple-negative breast cancer (TNBC)),

the following analysis process was adopted: BRCA clinical case

information and gene expression data were extracted from the

TCGA database using the R package “TCGAbiolinks” (v2.30.4)

(22), and the samples were classified into HER2+ and TNBC

subtypes according to clinical standards. A baseline analysis of

the distribution characteristics of prognostic genes and clinical

indicators (gender, age at diagnosis, T/N/M stage, survival time,

and survival status) in the two subtypes was conducted using the R

package “tableone” (v0.13.2) (https://CRAN.R-project.org/

package=tableone) to test the statistical significance of the
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differences between the groups. The high- and low-expression

groups were divided based on the median value of the prognostic

gene expression within each subtype, and box plots were drawn to

analyze the differences in gene expression within the subtypes.

Based on the data of the high- and low-risk groups of each subtype

in the TCGA–BRCA training set, gene screening differences were

identified and log2FC values were calculated using the DESeq2

package (v1.40.2) (10). The log2FC values were sorted, and the

clusterProfiler package (v4.8.1) (14) was used to conduct GSEA

enrichment analysis with reference to the “c2. Cp. Kegg. V7.1.

Symbols. GMT” gene sets in the MSigDB database. Pathways with

P < 0.05 were screened, and the top five enrichment pathways

are presented.
2.11 Quantitative reverse transcription
polymerase chain reaction, Western blot,
and immunohistochemical analysis of
prognostic genes

In the research presented here, the MCF-7 and T47D cell

lines served as models for an in-depth evaluation of gene

prognostication across different BRCA variants. The non-

tumorigenic mammary epithelial cell line MCF-10A was employed

as a control for comparative analysis. Quantitative reverse transcription

polymerase chain reaction (qRT-PCR) and western blot (WB) analyses

were employed to evaluate the mRNA and protein expression levels of

six prognostic genes in MCF-7, T47D, and MCF-10A cells. Total RNA

was extracted from the three cell lines and subsequently transcribed,

followed by PCR amplification using corresponding primers

(Supplementary Table S1). The primer sequence table is shown in

Table 1. The WB experiments were performed in triplicate, and the

most representative result was selected for presentation. The main

reagents used by WB are detailed in Supplementary Table S2 of

Supplementary Materials.

Tissue samples embedded in paraffin were collected from a

randomly chosen cohort of eight individuals diagnosed with BRCA

that required surgical intervention (Supplementary Table S3). Slides

exhibiting optimal staining were chosen for presentation along with

the same antibodies (Supplementary Table S2).

Each patient’s normal epithelial tissue adjacent to the neoplasm

served as a control sample. The criteria for choosing the samples

included the identification of cancerous tissue by standard

immunohistochemical (IHC) staining methods, while tissue

deemed normal and situated next to the cancerous area was

characterized as being situated at least 1 mm from the cancerous

cells and exhibiting no signs of cancer upon standard IHC staining

analysis. The determination of a positive outcome necessitates a

comprehensive assessment incorporating multiple variables. These

crucial factors include the magnitude of staining intensity, precise

localization of staining patterns, degree of non-specific background

interference, spatial arrangement of cellular components, and

reproducibility of findings across repeated experiments. This

multifaceted analytical approach is fundamental for ascertaining

whether the results can be definitively categorized as positive.
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2.12 Statistical analysis

The R programming environment (v 4.2.2) (https://www.R-

project.org/) was utilized to perform all statistical analyses. Group

differences were evaluated using the Wilcoxon test, with statistical

significance set at P < 0.05.
3 Results

3.1 Pinpointing potential genes and
associated biological routes

For the study, we utilized the DESeq2 tool within the R

framework to detect genes with significant expression differences

(DEGs) when contrasting afflicted individuals with those in good

health, focusing on the comparison of cancerous and non-

cancerous specimens from the TCGA-BRCA data collection. The

analysis revealed 5,064 DEGs, with 3,052 showing increased

expression and 2,012 exhibiting decreased expression (Figure 1A).

The top ten DEGs are shown in Figure 1B. By intersecting these

5,064 DEGs with 298 ADME-related genes (ADME-RGs),

103 candidate genes were identified for further investigation

(Figure 1C). Fol lowing this , the bioinformatics tool

“clusterProfiler” within the R programming environment was

utilized to investigate the roles and pathways associated with

these 103 potential genes in the progression of breast cancer via

enrichment analysis of GO and KEGG. GO enrichment analysis

identified 344 terms primarily linked to xenobiotic metabolic

processes , apical plasma membrane local izat ion, and

monooxygenase activity (Figure 1D). Simultaneously, analysis

revealed enrichment in 26 KEGG pathways, predominantly

associated with the metabolism of xenobiotics through the

cytochrome P450 system and the processing of drugs involving

the same cytochrome P450 pathway (Figure 1E). These routes

are linked to an elevated tumor mutation burden (TMB) and

less favorable outcomes for BRCA patients. A PPI network

was established, comprising 103 nodes and 625 connections

(average node degree = 12.1, average local clustering coefficient =

0.482, P < 1 × 10-16). In this interconnected system, ABCA1 was

connected to MPO, CYP46A1, and PPARG, while ADH1A was

linked to DHRS3, CYP3A4, and ADH4 (Figure 1F). This network

visualization allowed us to observe protein-level interactions among

the differentially expressed ADMERGs.
3.2 GSTM2, ADHFE1, ALDH2, NOS1, ATP7B,
and ALDH3A1 were selected as prognostic
genes

Eight ADME-related prognosis genes were confirmed using

univariate Cox regression analysis. The forest plot revealed that

SLC7A5 and NOS1 were risk genes (HR > 1), whereas GSTM2,

ADHFE1, ALDH2, ATP7B, ALDH3A1, and KCNJ11 were

protective genes (HR < 1) (Figure 2A). Among these, six genes,
frontiersin.org
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GSTM2, ADHFE1, ALDH2, NOS1, ATP7B, and ALDH3A1,

passed the PH assumption test (P > 0.05) (Table 2). LASSO

regression analysis further narrowed the selection to six

prognostic genes (GSTM2, ADHFE1, ALDH2, NOS1, ATP7B,

and ALDH3A1) at lambda(min) = 0.009640588 (log(lambda) =

-4.641773) (Figure 2B).

A risk model was constructed using these ADME-related

prognostic genes and the risk scores for patients with BRCA were

calculated. The study participants were categorized into two groups,

high- and low-risk, using the median value of -0.5596584 as the
Frontiers in Oncology 06
threshold. The K-M survival analysis demonstrated longer survival

times for patients in the low-risk group, while the ROC analysis

showed area under the curve (AUC) values consistently above 0.6

(Figures 2C, D). For the validation dataset, -0.8065118 was

identified as the optimal risk score threshold, which effectively

divided BRCA patients into two distinct groups. The K-M

analysis results obtained from the validation set were aligned with

those observed in the training set (Figures 2E, F; Supplementary

Figures S1A, S2A). Figure 2F shows ROC curves for 3, 5, and 7

years, although our external validation set GSE20685 was for 7, 9,
FIGURE 1

Procedure for identifying candidate genes and their associated biological functions. (A) The volcano plot illustrates 3,052 up-regulated (yellow) and
2,012 down-regulated (blue) genes. (B) Heatmap displays the distribution of DEGs, highlighting the top 10. (C) A total of 103 candidate genes were
identified by intersecting 5,064 DEGs with 298 ADME-RGs. (D, E) GO and KEGG enrichment analyses of the candidate genes. (F) PPI network of 103
candidate genes. The nodes in the graph represent candidate genes, the edges represent interactions between genes.
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and 11 years (Supplementary Figure S1B), and GSE21653 was for

1, 3, and 5 years (Supplementary Figure S2B), their AUC value

was greater than 0.7, which proved that our model was valid.

We lengthened the prediction timeframe after reviewing the

validation outcomes.

Moreover, the mortality risk curve and survival status charts

indicated that higher risk scores were correlated with increased

death rates (Supplementary Figures S1C, D, S2C, D). Analysis of

prognostic gene expression between risk groups showed that

GSTM2 and ADHFE1 were more highly expressed in the low-risk

cohort (Supplementary Figures S1E, S2E, S3, S4).
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3.3 Nomogram had excellent predictive
efficacy

The results of the univariate Cox regression analysis indicated that

the prognosis of BRCA could be significantly predicted by the risk

score, patient age, and T/N/M stage, as evidenced by p-values less than

0.05 (Figure 3A). Among these, all factors except T stage passed the PH

assumption test and were included in further analysis (P > 0.05).

Further analysis employing the multivariate Cox model indicated that

the prognostic risk score, patient age, and N/M stage were shown to be

independent prognostic determinants (P < 0.05) (Figure 3B).
FIGURE 2

A risk model incorporating six genes was developed and validated for predicting BRCA prognosis, with the risk score calculated as follows: Risk
score = on

i=1x03B2;i� xi. (A) The forest plot highlights two risk genes and six protective genes. (B) LASSO regression analysis identified six prognostic

genes based on the optimal lambda value. (C, D) In the training set, the K-M survival curve demonstrated significant differences in prognosis
between high- and low-risk cohorts, with corresponding ROC curves for 3, 5, and 7 years. (E, F) In the validation set, the K-M survival curve similarly
reflected divergent prognoses between the two cohorts, accompanied by ROC curves for 3, 5, and 7 years.
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A predictive model was developed to calculate the survival

likelihood for individuals diagnosed with BRCA. (Figure 3C). The

calibration curve demonstrated strong alignment with the ideal

curve (Figure 3D), while the DCA curve indicated that the overall

predictive performance of the nomogram surpassed that of the

individual factors (Figure 3E). The nomogram demonstrated strong

clinical predictive accuracy, as evidenced by AUC scores of 0.73,

0.72, and 0.67 at 3, 5, and 7 years, respectively (Figure 3F).

Additionally, K-M survival analysis showed that when high- and

low-risk categories were compared across various clinical indicators,

individuals within the low-risk classification demonstrated markedly

improved longevity in both the above 60 and at or below 60 years age

cohorts, as depicted in Supplementary Figure S5.
3.4 Enriched pathways and function-
related genes of prognostic genes

GSEA was conducted to investigate biological functions and

pathways associated with BRCA. P-values indicate that the most
Frontiers in Oncology 08
statistically significant pathways were arachidonic acid metabolism,

cell cycle regulation, fatty acid metabolism, proteasome function,

and tyrosine metabolism, ranking as the top five most important

(Figure 4A). GeneMANIA analysis identified 20 genes functionally

linked to ADME-related prognostic genes, and a GGI network was

constructed, highlighting interactions such as AC009879.2-

ADHFE1, ALDH2-ALDH3B1, and NOS1-CCS. The results of this

examination suggest that ADHFE1 plays a role in various essential

biological functions, including the breakdown and metabolism of

cellular amino acids, as well as the metabolism of alpha-amino acids

(Figure 4B). Moreover, ALDH3A1 demonstrated the highest

functional similarity among the prognostic genes, as shown by

the Friends analysis (Figure 4C).
3.5 Diverse immune microenvironment
between high and low risk cohorts

The infiltration abundance of the 22 immune cell types in the

different risk cohorts is illustrated in Figure 5A. Following the

elimination of samples with P > 0.05, a Wilcoxon test was

conducted to evaluate immune cell disparities between the two

groups. Considerable divergence was noted among the seven types

of immune cells when comparing groups at various levels of risk,

including naive B cells, plasma B cells, and M0macrophages. Except

for M0 macrophages, all immune cells exhibited elevated expression

levels in the low-risk group (Figure 5B). A significant inverse

relationship between resting memory CD4+ T cells and M0

macrophages was identified through Spearman’s correlation

analysis (cor = -0.38, P < 0.05) (Figure 5C). Furthermore, a

correlation study examining the relationship between different

immune cell types and ADME-related prognostic genes revealed

that ATP7B exhibited a positive correlation with activated mast

cells (cor = 0.38, P < 0.05). In contrast, activated mast cells

demonstrated a negative correlation with the risk score (cor =

-0.33, P < 0.05) (Figure 5D).

Additional examination revealed that the low-risk group

exhibited significantly elevated stromal and ESTIMATE scores

compared to other groups (Figure 5E). Moreover, nine types of

ICIs, including ASXL1, BCL2, CD33, CHEK1, FLT3, IDH2, MCL1,

MDM2, and PLK1, showed significant differences between the risk

groups. Among these, only CHEK1, IDH2, and PLK1 were elevated

in the high-risk group, whereas the remaining ICIs were higher in

the low-risk group (Figure 5F). Additionally, most ADME-related

prognostic genes were positively correlated with ICIs (cor > 0, P <

0.05), except for CHEK1 and PLK1, which showed negative

correlations (cor < 0, P < 0.05). The risk score also exhibited

strong associations with ICIs (Figures 5G, S6).
3.6 Prospective medications and regulatory
network of prognostic genes

To identify potential therapeutic drugs for patients with BRCA,

the IC50 values of various drugs were calculated and compared
TABLE 1 Primers of the real-time reverse transcription-polymerase
chain reaction.

Gene
Forward primer
sequence (5’-3’)

Reverse primer
sequence (5’-3’)

GSTM2
TGTGCGGGGAATCAGA
AAAGG

CTGGGTCATAGCAGAG
TTTGG

ADHFE1
TGGACTTTCACCTTCT
GGGAA

GGAGAGGTTCTTGTCTGT
CATCA

ALDH2
ATGGCAAGCCCTATGT
CATCT

CCGTGGTACTTATCAGCCCA

NOS1
TTCCCTCTCGCCAAAG
AGTTT

AAGTGCTAGTGGTGTCGATCT

ATP7B
GCCAGCATTGCAGAAG
GAAAG

TGATAAGTGATGACGGCCTCT

ALDH3A1
TGGAACGCCTACTATG
AGGAG

GGGCTTGAGGACCACTGAG
TABLE 2 This table presents the gene names, Chi-square test results
(chisq), degrees of freedom (df), and P-values for the eight genes.

Genes chisq df P-value

GSTM2 1.423047003 1 0.232902532

ADHFE1 2.987880219 1 0.083889918

KCNJ11 8.444923291 1 0.003660639

ALDH2 0.937661259 1 0.332880033

NOS1 2.194863889 1 0.13847144

ATP7B 2.428128624 1 0.119175094

SLC7A5 4.620243563 1 0.031596751

ALDH3A1 0.061019045 1 0.804892488
The findings indicate that GSTM2, ADHFE1, ALDH2, NOS1, ATP7B, and ALDH3A1 passed
the PH assumption test.
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between risk groups. Among the top 10 drugs with significant

differences, GW.441756, imatinib, and WH.4.023 were more

effective in the low-risk group, whereas the remaining seven

drugs (ABT.263, AZD.2281, BI. D1870, IPA.3, NU.7441, TW.37,

and X681640) showed higher sensitivity in the high-risk

group (Figure 6A). In terms of regulatory mechanisms, a

lncRNA-miRNA-mRNA regulatory network was constructed,

incorporating four ADME-related prognostic genes, 10 miRNAs,

and 12 lncRNAs. Within this network, MALAT1, SNHG16, and

NEAT1 were found to regulate NOS1 via hsa-miR-146a-5p,

whereas NORAD, SNHG14, and XIST regulated ALDH2 via hsa-

miR-30b-5p (Figure 6B).
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3.7 Analysis results of prognostic genes
and related characteristics in HER2+ and
TNBC subtypes

A total of 178 HER2+ and 122 TNBC samples were included in

this study for analysis. The results of the baseline characteristic

analysis (Table 3) showed that among the prognostic genes, there

were significant differences in the expression levels of ALDH2,

NOS1, ATP7B, and ALDH3A1 between the two subtypes (P < 0.05).

Among the clinical indicators, there was a significant difference in

age at diagnosis between the HER2+ and TNBC subtypes

(p = 0.002).
FIGURE 3

The abilities of nomograms to predict prognosis of BRCA. (A) Univariate Cox analysis showed risk score, age, and T/N/M stage as prognosis-related
factors. (B) Multivariate Cox analysis showed risk score, age, and N/M stage as independent prognostic factors. (C, D) The nomogram showed good
predictive performance for survival probability, calibration curve had higher coincidence with ideal curve. (E) DCA curve indicated that nomogram
has higher overall prediction effect. (F) AUC value demonstrated that nomogram has an effective clinical predictive capability in 3, 5, and 7 years.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1568379
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1568379
Analysis of gene expression differences showed that for all

prognostic genes, there were significant differences between the

high- and low-expression groups within the HER2+ and TNBC

subtypes (P < 0.05) (Figure 7).

The GSEA enrichment analysis results showed that a total of 21

significant pathways were enriched in the high - risk and low - risk

groups of the HER2+ subtype. The TOP5 pathways were

Proteasome, Tyrosine Metabolism, Adipocytokine Signaling

Pathway, Type II Diabetes Mellitus, and Metabolism of

Xenobiotics by Cytochrome P450. A total of 30 significant

pathways were enriched in the high - risk and low - risk groups

of the TNBC subtype. The TOP5 pathways included heterobiomass

Metabolism mediated by Cytochrome P450, Drug Metabolism of

cytochrome P450, tyrosine metabolism, Retinol Metabolism, and

Butanoate Metabolism (Figure 8). The above results indicated that

prognostic genes showed consistent expression difference patterns

and similar functional pathway associations in the HER2+ and

TNBC subtypes, once again demonstrating the prognostic value of

these genes.
3.8 Expression analysis of prognostic genes
at different levels

The expression levels of ADME-related prognostic genes were

analyzed. The boxplot results indicated that ATP7B exhibited

significantly higher expression in the BRCA group, while the
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remaining ADME-related prognostic genes were expressed at

lower levels in the BRCA group (P < 0.001) (Supplementary

Figure S7).

We identified six ADME-related mRNA expression levels in

three cell lines by qRT-PCR, the results of Figures 9A, B showed that

compared to MCF-10A cells, high expression of ATP7B in MCF-7

and T47D respectively (P < 0.05), while low expression of other five

genes separately (P < 0.05), which high similarity to TCGA-BRCA.

In addition, the same trends of six proteins expression levels in

MCF-7, T47D and MCF-10A cells were observed by electrophoretic

results (Figures 9C, D). The boxplot results also showed that ATP7B

in MCF-7 and T47D cells were higher than MCF-10A (P < 0.05), at

the meanwhile, the other five proteins (GSTM2, ADHFE1, ALDH2,

NOS1 and ALDH3A1) were significantly lower in BRCA cells than

normal cells (Figures 9E, F) (P < 0.05).

In summary, we further verified the gene and protein expression

levels of GSTM2, ADHFE1, ALDH2, NOS1, ATP7B, and

ALDH3A1 through independent external experiments using qRT-

PCR and WB blot.

Finally, the expressions of GSTM2, ADHFE1, ALDH2, NOS1,

ATP7B, and ALDH3A1 were visualized by IHC. Positive results are

indicated by a blue coloration in the nucleus and a brownish-yellow

or brown hue for the target proteins. Additionally, the results

revealed that GSTM2, ALDH2, ADHFE1, and ATP7B were

especially elevated in the BRCA group (Figures 10A-F). This

suggested that these genes might have been associated with the

occurrence or progression of breast cancer.
FIGURE 4

Biological functions and pathways associated with the six prognostic genes. (A) KEGG GSEA enrichment analysis identified the top 5 pathways
related to prognostic genes. (B) GGI networks demonstrated interactions among these prognostic genes, involving multiple essential biological
processes. (C) Friends analysis confirmed that ALDH3A1 exhibited higher functional similarity compared to the other five prognostic genes.
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4 Discussion

Research has demonstrated that variations in ADME-related genes

are strongly linked to the onset, progression, and treatment of BRCA.

These genes encode enzymes and transporters that play a role in

metabolism and movement of foreign substances, including

medications and cancer-causing agents. Additionally, variations in

ADME genes contribute to differences in ADME function among

individuals, which in turn affect BRCA susceptibility and the body’s
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response to drugs (23–25). Polymorphisms in the CYP2D6 gene impact

the metabolism and activation of tamoxifen, consequently influencing

its therapeutic efficacy and side effect profile during the treatment of

BRCA-related cancers (26). Moreover, abnormal expression of ADME

genes can promote BRCA advancement by modifying the processing

and elimination of medications and cancer-causing substances (27–29).

Therefore, a comprehensive investigation of the relationship between

ADME-RGs and BRCA is critical. Such research will not only illuminate

the pathogenic mechanisms of BRCA but will also assist in optimizing
FIGURE 5

Immune microenvironment landscape differences between high- and low-risk groups. (A) Infiltration abundance of 22 immune cell types across the
two risk cohorts. (B) Seven immune cell types showing significant differences between the two groups. (C) Spearman correlation analysis illustrates
the relationships among the seven immune cell types. (D) Correlation analysis between differentially expressed immune cells, prognostic genes, and
the risk score. (E) Stromal and ESTIMATE scores were significantly higher in the low-risk group. (F) Nine types of ICIs exhibited significant differences
between the risk groups. (G) Correlations between the six prognostic genes and ICI efficacy. Asterisks represent statistical significance (*P < 0.05;
**P < 0.01; ***P < 0.001; ns: no significance).
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current treatment strategies and potentially uncovering novel

therapeutic approaches.

After identifying genes associated with both ADME-RGs and

BRCA, subsequent enrichment analysis demonstrated their

participation in pathways related to xenobiotic and drug
Frontiers in Oncology 12
metabolism involving cytochrome P450 (Figure 1). This case-

control investigation sheds light on the intricate dynamics

between genetic susceptibility and environmental influences,

providing a considerable understanding of the alterable elements

of risk (30). Studies have shown that ATP-binding cassette
FIGURE 6

Prospective therapeutic agents and a competing endogenous RNA (ceRNA) regulatory network of the ADME-related prognostic genes.
(A) Comparison of the half-maximal inhibitory concentration (IC50) values for the top 10 candidate drugs between the high- and low-risk groups.
Drugs such as GW.441756, imatinib, and WH.4.023 exhibited lower IC50 values (higher efficacy) in the low-risk group. In contrast, the high-risk
group showed increased sensitivity to the remaining seven drugs (ABT.263, AZD.2281, BI.D1870, IPA.3, NU.7441, TW.37, and X681640). (B) ceRNA
network illustrating the potential regulatory mechanisms of the prognostic genes. The network comprises 4 prognostic genes, 10 miRNAs and 12
lncRNAs. Key regulatory axes include the regulation of NOS1 by MALAT1/SNHG16/NEAT1 via hsa-miR-146a-5p, and the regulation of ALDH2 by
NORAD/SNHG14/XIST via hsa-miR-30b-5p.
TABLE 3 Baseline table of prognostic genes and clinical information characteristics among molecular subtypes.

n level
Overall HER2+ TNBC

p
300 178 122

GSTM2 (mean (SD)) 1.12(0.81) 1.17(0.84) 1.04(0.75) 0.187

ADHFE1 (mean (SD)) 1.02(0.73) 1.02(0.74) 1.02(0.73) 0.976

ALDH2 (mean (SD)) 3.28(1.09) 3.46(1.03) 3.03(1.13) 0.001

NOS1 (mean (SD)) 0.05(0.26) 0.03(0.06) 0.09(0.40) 0.028

ATP7B (mean (SD)) 1.65(0.92) 2.06(0.89) 1.05(0.58) <0.001

ALDH3A1(mean (SD)) 0.28(0.66) 0.20(0.45) 0.39(0.87) 0.015

gender (%) Male 4(1.3) 4(2.2) 0(0.0) 0.248

Female 296(98.7) 174(97.8) 122(100.0)

age (mean (SD)) 56.87(12.91) 58.76(13.43) 54.11(11.63) 0.002

TNM.stage (%) Stage I 41(13.7) 20(11.2) 21(17.2) 0.168

Stage II 185(61.7) 107(60.1) 78(63.9)

Stage III 69(23.0) 48(27.0) 21(17.2)

Stage IV 5(1.7) 3(1.7) 2(1.6)

OS.time (mean (SD)) 682.48(781.97) 627.03(727.15) 763.39(852.29) 0.138

OS (%) 0 259(86.3) 153(86.0) 106(86.9) 0.953

1 41(13.7) 25(14.0) 16(13.1)
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subfamily G member 2 (Abcg2) facilitates tolfenamic acid transport,

affecting its plasma concentration and tissue distribution, which

may alter its pharmacological effects and toxicity (31). Moreover, a

mutation in Mitochondrial Dysfunctional 1 (MDN1) was enriched

in drug metabolism cytochrome P450 pathways and associated with

a high tumor mutational burden (TMB) and poorer prognosis in

patients with BRCA. This suggests that MDN1 mutation could

serve as a prognostic biomarker and inform immunotherapy

decisions for patients with BRCA (32). Given the findings of
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previous studies on ADME-RGs mutations in BRCA, it is

hypothesized that variations in ADME genes, particularly those

involved in these critical biological processes and pathways, may

increase BRCA susceptibility. However, further research is required

to validate these results and elucidate the underlying mechanisms.

The prognostic significance of six genes (GSTM2, ADHFE1,

ALDH2, NOS1, ATP7B, and ALDH3A1) was confirmed (Table 2;

Figure 2). Based on these findings, a risk model was developed that

demonstrated that high-risk patients experienced significantly
FIGURE 7

Expression of prognostic genes in different subtypes of breast cancer. (A) HER2+, (B) TNBC.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1568379
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1568379
reduced survival durations. (P < 0.05). The AUC values further

demonstrated strong predictive performance (Figures 2C, D–F). It

is worth noting that six prognostic genes showed highly consistent

results with transcriptome analysis in qRT-PCR and WB analysis,

indicating that the expression trend of these genes was consistent at

the mRNA level and protein level, further verifying the accuracy

and reliability of transcriptome analysis. These genes exhibited a

strong correlation with prognosis, indicating their potential as

BRCA biomarkers, which is consistent with the results of

previous studies. Hypermethylation of the glutathione

S-transferase mu 2 (GSTM2) promoter has been identified as

a potential biomarker for aggressive tumor behavior and

may contribute to the progression of estrogen receptor (ER)-

and progesterone receptor (PR)-negative BRCA (9). Alcohol

dehydrogenase iron-containing 1 (ADHFE1), an oncogene,

induces metabolic reprogramming, promoting both tumor growth
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and metastasis in BRCA (33). Aldehyde dehydrogenase 2 family

member (ALDH2) and nitric oxide synthase 1 (NOS1) have been

linked to lymph node metastasis and bone metastasis in BRCA,

respectively (20, 21). A pan-cancer analysis revealed that ATPase

copper transporting beta (ATP7B) negatively correlates with

macrophage infiltration in BRCA and is strongly associated with

prognosis, immunotherapy response, and disease progression (34).

Aldehyde dehydrogenase 3 family member A1 (ALDH3A1), an

enzyme involved in drug metabolism, is negatively correlated with

peroxisome proliferator-activated receptor g (PPARg) and is

implicated in cancer cell resistance to anticancer drugs (35).

However, it is noteworthy that the expression of ADME-related

genes may vary among different BRCA subtypes. Research findings

indicated that basal-like subtype patients exhibited reduced ATP7B

expression, implying that copper concentrations in the tumor tissue

of individuals with basal-like breast cancer may vary from those
FIGURE 8

GSEA analysis revealed multiple significantly enriched pathways in the high- and low-risk groups of both HER2+ and TNBC subtypes, showing similar
functional association patterns. (A) HER2+ subtype (B) TNBC subtype.
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observed in other breast cancer subtypes (36). However, this should

be further researched. A nomogram was developed to assess the

survival likelihood of BRCA patients, aiming to further test the risk

model’s predictive capabilities. The calibration curve, DCA curve,

and AUC values confirmed the high predictive accuracy of the

nomogram (Figure 3). These findings suggest that the constructed

nomogram may serve as a potential reference tool for risk

assessment in patients with BRCA and could provide supportive

value for predicting treatment outcomes. The robustness of the

model was further confirmed using an independent external

dataset. Previous studies have indicated that internal validation
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approaches alone cannot guarantee the quality of machine learning

models, as the training data may be biased, and the validation

process is inherently complex. Therefore, external validation is

essential for evaluating the generalizability of predictive models

(37), which highlights the rationality of the validation strategy

employed in this study. To further investigate the role of

prognostic genes in the different BRCA subtypes (Table 3), we

performed expression validation and enrichment analyses. The

results showed that the six ADME-related prognostic genes

exhibited stable expression difference patterns in both the HER2+

and TNBC subtypes. In addition, the core-enriched pathways in the
FIGURE 9

Independent verification by three cell lines. GROUP A represented MCF-7 (Tumor) and MCF-10A (Normal); GROUP B represented T47D (Tumor) and
MCF-10A (Normal). (A, B) The qRT-PCR results of MCF-7, T47D and MCF-10A. (C, D) Electrophoretic maps and molecular weights of six proteins in
three cell lines, MCF-7, T47D and MCF-10A. (E, F) The WB results of MCF-7, T47D and MCF-10A. (*P < 0.05; **P < 0.01; ***P < 0.001).
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high- and low-risk groups of both subtypes were highly associated

with the metabolic regulation and drug-processing functions of

ADME genes. This not only confirms the universal prognostic value

of these genes across subtypes but also addresses the limitations of

previous prognostic models that lacked subtype-specific analyses.

Given that HER2+ and TNBC subtypes differ markedly in clinical

treatment strategies, our results imply that an ADME gene-based

prognostic model could be applicable for risk stratification in

patients with different subtypes of breast cancer. Furthermore, the

subtle differences in core pathways between subtypes suggest that

ADME genes may influence BRCA progression via subtype-specific

molecular mechanisms, providing direction for future investigations

into subtype-exclusive ADME-related therapeutic targets.

Further investigations showed that genes with prognostic value

were predominantly associated with pathways involving tetraenoic

acid metabolism, regulation of the cell cycle, fatty acid metabolism,

degradation via the proteasome, and metabolism of tyrosine

(Figure 4A). Li et al. suggested that heightened arachidonic

acid metabolism could serve as a favorable prognostic marker in

BRCA, potentially explaining the limited efficacy of cyclooxygenase

inhibitors in cancer therapy. This insight offers a novel perspective

on management (38). In cell cycle regulation, research

demonstrated that Keratin 19 (K19) deficiency disrupts normal
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cell cycle progression, highlighting K19’s critical role in cell cycle

control and its potential as a predictive marker for cyclin-dependent

kinase (CDK) inhibitor efficacy in BRCA treatment (39). The

production of fatty acids, primarily orchestrated by fatty acid

synthase (FASN), is frequently upregulated and excessively active

in malignant tumors, contributing to their growth and spread (40).

Recent studies on fatty acid metabolism have linked its

dysregulation to cancer cell invasion and diminished immune cell

infiltration in male breast cancer (MBC), suggesting a poor

prognosis for affected patients (41). Increasing evidence points to

proteasomes as potential therapeutic targets for BRCA. For

example, one study emphasized the protective role of Nuclear

Respiratory Factor 1 (NRF1), which enhances proteasome gene

expression in response to proteasome inhibition, indicating a

possible treatment avenue for BRCA (42). A recent study found

that the tyrosine-phosphorylation-facilitated interaction between

Yes-associated protein 1 (YAP1) and Transcription Factor AP-2

Alpha (TFAP2A) is essential for regulating gene expression and

contributes to trastuzumab resistance in HER2+ BRCA. Combining

HER2 inhibition with targeting YAP1 transcriptional activity could

effectively counteract trastuzumab resistance caused by non-

receptor tyrosine kinase (SRC) activation (43). Few studies have

examined how prognostic genes regulating these signaling pathways
FIGURE 10

IHC staining (× 200) of prognostic gene expression. (A–F) Protein expression levels of GSTM2, ADHFE1, ALDH2, NOS1, ATP7B, and ALDH3A1 in
BRCA and normal tissues.
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affect BRCA outcomes. Further research is required to understand

the physiological roles and interactions of these genes in

these pathways.

The observed associations among immune cell infiltration, ADME-

related prognostic genes, and immune checkpoint inhibitors (ICIs) in

this study provide valuable insights into the potential immune–

molecular mechanisms underlying prognostic differences in BRCA.

Seven immune cell types, including naïve B cells and plasma cells, were

significantly enriched in the low-risk group, whereas M0 macrophages

were upregulated in the high-risk group. This pattern suggests that the

low-risk group may exhibit a more active adaptive immune response

and a lower pro-inflammatory state, whereas the high-risk group may

be characterized by aberrant macrophage polarization or the

establishment of an immunosuppressive microenvironment,

phenomena that are highly consistent with established antitumor

immune mechanisms. Naïve B cells, for example, can differentiate

into plasma cells to secrete antigen-specific antibodies and participate

in humoral immunity (44), and high plasma cell infiltration is

frequently associated with favorable clinical outcomes in patients

with cancer (45). In contrast, M0 macrophages, as unpolarized

precursors, are prone to shift toward a tumor-promoting M2

phenotype in the tumor microenvironment (46), providing a

plausible explanation for the more favorable baseline prognosis

observed in the low-risk group.

Furthermore, our results revealed a significant negative

correlation between resting memory CD4+ T cells and M0

macrophages (Figure 5). Combined with prior evidence that

CD4+ T cells can modulate macrophage polarization toward

antitumor phenotypes via IFN-g secretion (47, 48), we speculate

that the activation of resting memory CD4+ T cells in the low-risk

group may inhibit the M0/M2 transition, thereby reducing the

formation of an immunosuppressive microenvironment. This

provides new mechanistic support for the coordinated regulation

of immune cell populations. In addition, activated mast cells have

been reported to release histamine and leukotrienes, which recruit

dendritic cells, T cells, and other immune cells to enhance local

antitumor immunity (49). The positive correlation between ATP7B

and activated mast cells (cor = 0.38), along with the negative

correlation between activated mast cells and risk score, suggests

that ATP7B may influence the tumor immune microenvironment

by modulating mast cell activation.

Importantly, expression levels of nine ICIs differed significantly

between risk groups and showed strong correlations with ADME genes

and risk scores, providing clinically relevant clues for immunotherapy

strategies. Most ICIs, including BCL2 and CD33, were upregulated in

the low-risk group, whereas only CHEK1, IDH2, and PLK1 were

elevated in the high-risk group. Literature evidence indicates that

BCL2, an anti-apoptotic molecule, can reduce T-cell exhaustion and

sustain immune responsiveness (50). In contrast, CHEK1 and PLK1

are cell cycle regulators (51, 52), whose high expression is associated

with enhanced tumor cell proliferation (52), offering a molecular

explanation for the poorer prognosis and potentially reduced

responsiveness to conventional immunotherapies in the high-risk

group. Furthermore, the finding that most ADME genes were

positively correlated with ICIs suggests that these genes may
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modulate ICI expression or function, thereby influencing the efficacy

of immunotherapy.

Collectively, by integrating analyses of immune infiltration,

ADME genes, and ICI expression, this study uncovered potential

tumor microenvironment–mediated mechanisms driving

prognostic disparities in BRCA. These results warrant further

validation and may provide both theoretical and experimental

foundations for future combination strategies, such as the use of

ADME gene modulators in conjunction with ICIs.

To identify potential therapeutic drugs, the variance in IC50 values

was calculated across different drugs within the high- and low-risk

cohorts, focusing on those with the top 10 P-values for differential

impact in patients with BRCA (Figure 6A). It is worth mentioning that

imatinib, which inhibits CYP3A4, has been documented as a combined

treatment for individuals with CML and BRCA, without causing

additional side effects (53). ABT.263 (navitoclax) synergizes with a

novel myeloid cell leukemia sequence 1 (MCL−1) downregulation,

significantly inducing intrinsic apoptosis in TNBC cells (54). Future

studies on drugs such as AZD.2281, BI.D1870, and IPA.3, are expected

to yield improved clinical outcomes in patients with BRCA. A

regulatory network encompassing lncRNAs, miRNAs, and mRNAs

was constructed and the protein expression of prognostically significant

genes was validated (Figure 6B). An examination of the expression

levels for the six genes associated with prognosis was conducted. The

results, displayed in a boxplot format, revealed variations in expression

among these genes (Supplementary Figure S7). Independent expression

analyses at different levels were used to validate our conclusion; qRT-

PCR and WB results were consistent with those obtained from TCGA

database (Figure 9). Specifically, at the level of gene and protein

expression, ATP7B showed high expression in BRCA samples, while

the other five genes (GSTM2, ADHFE1, ALDH2, NOS1, and

ALDH3A1) showed lower expression levels, which was consistent

with gene expression results in transcriptome analysis. Interestingly,

in a study on drug resistance in BRCA cells also pointed out that the

expression level of ATP7B in BRCA tissues was slightly higher than

that in normal tissues. In addition, ATP7B is often closely related to

adverse reactions such as cisplatin resistance in cancer treatment (55).

These results suggest that the prognostic genes verified by experiments

have potential value as new therapeutic targets for BRCA and provide a

new perspective and idea for the development of BRCA treatment

strategies and personalized treatment programs. Moreover, their

distinct expression patterns and varying protein contents in BRCA

indicated that these six genes had the potential to serve as biomarkers,

warranting further investigation. On the other hand, combined with

bioinformatics results from public databases and experimental

validation, these results suggested that these six genes played different

roles in regulating physiological function and prognosis. Although the

IHC results were unsatisfactory, fluctuations in protein abundance may

be attributed to post-transcriptional mechanisms or additional

variables, which may account for discrepancies in gene and protein

expression levels (Figure 10). Thus, these dates support a deeper

exploration of the implicated genes and the intricate controls

governing them.

This study utilized bioinformatic techniques to identify ADME-

related prognostic genes in BRCA and explored their potential
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mechanisms of action. Specifically, GSTM2, ADHFE1, ALDH2,

NOS1, ATP7B, and ALDH3A1 were linked to BRCA prognosis.

Investigating these genes provides new insights and valuable

information for BRCA treatment. While our study provides a

comprehensive bioinformatic framework and preliminary

experimental validation, its immediate clinical translation is limited

by the absence of large-scale prospective patient cohorts and

functional in vivo studies. Therefore, these findings should be

interpreted as hypothesis-generating, and further multi-center

validation and mechanistic investigations are warranted before

clinical implementation. First, prospective clinical validation was

insufficient, as no forward-looking validation using breast cancer

patient samples was performed, and differences among molecular

subtypes were not considered. These factors may partially weaken the

model’s translational applicability. Moreover, the clinical sample

validation results were not fully consistent with the findings from

the WB and IHC assays. Second, drug validation remains in the in-

silico stage. Although drug sensitivity prediction was performed

based on the GDSC database, no in vitro or in vivo functional

assays were conducted on the candidate compounds. Third, the

mechanistic investigation lacked depth, focusing primarily on gene

expression confirmation without incorporating functional

experiments, such as gene knockdown or drug response assays. In

particular, the molecular mechanism underlying the association

between elevated ATP7B expression and breast cancer drug

resistance has not been explored in detail, thereby limiting the

mechanistic persuasiveness of the study. To address these

limitations, future studies should involve the prospective collection

of clinical samples, considering molecular subtype differences to

enhance the model’s clinical applicability. Key predictive

compounds will be selected for in vitro drug response assays in

breast cancer cell lines, and vivo validation will be performed using

animal models, if possible. Additionally, with adequate funding

support gene knockdown experiments will be designed to

investigate the influence of target genes, such as GSTM2 and

ATP7B, on the biological behavior of breast cancer cells, thereby

improving the functional depth and clinical relevance of the study.
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