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Machine learning-based
analysis identifies glucose
metabolism-related genes
ADPGK as potential diagnostic
biomarkers for clear cell

renal cell carcinoma

Tie Li'", Shijin Wang', Guandu Li', Xiaochen Qi*, Guangzhen Wu*
and Xiangyu Che*

Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China

Introduction: Clear cell renal cell carcinoma, with its high morbidity and
mortality, is one of the more difficult diseases in the world and still lacks an
effective therapeutic target. The primary way they break down glucose is through
aerobic glycolysis, which leads to energy acquisition and synthesis of the material
base required for cell growth. Although targeting glucose metabolism has driven
the development of a variety of tumour therapies, the specific regulatory
mechanisms remain unclear. Therefore, based on machine learning analysis
algorithms, we analysed the correlation between glycometabolic pathways and
ccRCC in the REACTOME database and verified the impact of the key gene
ADPGK on the prognosis of ccRCC.

Methods: We utilised a total of 89 gene collections of glucose metabolism
pathways from the REACTOME (https://reactome.org/) database as the data base
for our study. To uncover potential therapeutic target genes, we adopt three
machine learning algorithms (LASSO, RF, and Boruta). We reassigned the 7
screened genes based on gene expression differences between cancer and
paracancerous tissues, and applied an unsupervised consensus clustering
algorithm to establish a typology based on the expression of glucose
metabolism-related genes (ADPGK). We then validated the link between
ADPGK and cancer cell invasion and metastasis by in vitro experiments on
ccRCC cell lines.

Results: We identified ADPGK as a key gene for the glucose metabolism pathway
and suggested that it may promote invasion and metastasis of ccRCC. In addition,
based on the results of immune infiltration, ADPGK was observed to significantly
affect the immune response in ccRCC. Our results suggest that the
implementation of therapeutic strategies based on key genes of glucose
metabolism may bring new hope for ccRCC patients.
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Discussion: Our results suggest that targeting the glucose metabolism pathway
can kill ccRCC cells. ADPGK, a gene related to glucose metabolism, may be an
important biomarker for the diagnosis and characterization of ccRCC. However,
whether ADPGK affects glycolysis in ccRCC, and the mechanism by which
glycolysis is regulated is not clear. This is the direction of further research in

the future.

glucose metabolism, clear cell renal cell carcinoma (ccRCC), machine learning, ADP-
dependent glucokinase (ADPGK), immune infiltration

1 Introduction

Renal cell carcinoma (RCC) is one of the common urological
malignancies in adults, accounting for 2-3% of all adult
malignancies, with clear cell renal cell carcinoma (ccRCC)
accounting for approximately 80% of RCC cases (1). Although
significant progress has been made in the systemic treatment of this
group of tumours, multiple challenges remain to reduce mortality,
such as the lack of clinically available biomarkers and insufficient
understanding of the molecular mechanisms of ccRCC (2, 3).
Therefore, in-depth exploration of potential therapeutic targets
and biomarkers for ccRCC is crucial, which will help improve
patient survival.

Studies have shown that glucose metabolism is strongly
associated to tumour development, migration and drug tolerance,
therefore, intervention regimens targeting tumour glucose
metabolism have become the focus of exploration (4). Even under
aerobic conditions, tumour cells are able to produce adenosine
triphosphate (ATP) via glycolysis. In the 1920s, Otto Warburg was
the first to notice this sight, which has since been named the
“Warburg effect” (5). The Warburg effect describes the shift in
energy provision from oxidative phosphorylation to glycolysis and
the production of large amounts of pyruvate and lactate by tumour
cells under aerobic conditions (6). RCC, particularly ccRCC, is often
considered a metabolic disease that is prominently marked by
alterations in key genetic loci in the metabolic pathway (7). These
mutations play a role in the regulation of processes like aerobic
glycolysis, fatty acid metabolism, and the utilization of tryptophan
and glutamine (8). Since Warburg’s discovery of this phenomenon,
the abnormal metabolism of cancer cells has been progressively
studied (9). In addition, in ccRCC, this effect is shown to be more

Abbreviations: RCC, renal cell carcinoma; ccRCC, clear cell renal cell carcinoma;
ADPGK, ADP-dependent glucokinase; REACTOM, Reactom pathway database;
TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection
operator,; RF, random forest; AAAS, achalasia; FBP1, fructose-1,6-
bisphosphatase 1; HK3, hexokinase 3; NUP85, nucleoporin 85kDa; NUP93,
nucleoporin 93kDa; SLC25A13, solute carrier family 25, member 13; PD-1,
Programmed cell death protein 1; CTLA-4, Cytotoxic T lymphocyte-associated

antigen-4.
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pronounced than in normal tissues, further highlighting its central
role in tumour metabolism (10).

Glycometabolism in tumours is gradually becoming a hot topic
of research, and higher levels of glycometabolism are one of the
characteristics of tumour cells. A number of oncogenic factors may
cause an increase in cellular glucose metabolism levels, leading to an
increase in overall cellular metabolism levels (11). However, studies
analysing the effects of glycometabolic genes on ccRCC based on the
REACTOME database are still lacking, indicating that the roles and
rationale of a large number of glycometabolic genes in the
pathogenic mechanism of ccRCC are still not fully understood.
Thus, we purpose to search the key sites of action of glucose
metabolism and supply an important theoretical basis for further
research. Through searching, we found as many as 89 genes
associated with glucose metabolism in renal cancer, and we plan
to identify the key genes associated with the prognosis of ccRCC
through bioinformatics analyses and basic experimental validation,
and to establish a prognostic prediction model.

In this study, we used ccRCC samples (n=539) and corresponding
paracancerous tissue samples (n=72) from the TCGA database to
explore the role of glucose metabolism in ccRCC. To this end, we
employed three machine learning algorithms: least absolute shrinkage
and selection operator (LASSO), Boruta, and random forest (RF) to
screen out the most robust targets, and ultimately discovered ADPGK, a
glycometabolic target that has never been mentioned before in ccRCC.
We further validated the effect of ADPGK on invasion and metastasis of
ccRCC by cellular experiments, thus further revealing the relationship
between glucose metabolism and ccRCC. A flowchart has been created
to more clearly illustrate the experimental approach (Figure 1).

2 Materials and methods

2.1 Gather and analysis of sugar
metabolism gene sets

A dataset related to glucose metabolism was obtained from the
REACTOME database (12) (https://reactome.org/) according to the
GSEA website and 89 genes closely related to glucose metabolism

frontiersin.org


https://reactome.org/
https://doi.org/10.3389/fonc.2025.1559887
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al.

10.3389/fonc.2025.1559887

—

Screening of 19 genes by
LASSO algorithm

\ —

L

(GSVA cluster analysis of
gene set variation analysis.
based on 7 genes

|

The samples were divided
nto three categories: C1
(low expression) , C2
(medium expression) , C3
(high expression)

Immune infiltration
analysis (single sample
gene set enrichment
analysis sSGSEA)

The correlation between 7
€2 and C3 were merged

for survival analysis

genes and 29 immune cells.
was analyzed

ADPGK is significantly
associated with most
immune cells.

Using the GDSC database
to predict the IC50 of 12
drugs.

was positively correlated
with immune checkpoint
genes (PDCD1, CTLA4)

High expression group had
poor prognosis

‘ Glucose metabolism score

& — almm‘ /

FIGURE 1
Flowchart of the entire article.

routes were chosen for deeply analyse. We retrieved the study data
from the TCGA database (https://tcga-data.nci.nih.gov/tcga/) and
screened the mRNA information of genes related to glucose
metabolism in more than 30 cancers (13). Correlations between
gene expression data were analysed using Perl.

2.2 Recognition of illness characterisation
genes

For the characterization of illness diagnostic elements, we
combined multiple machine learning methods, namely LASSO,
Boruta and RF, to recognize key genes of the glucose metabolic
pathway in ccRCC. LASSO and RF were used to regress survival
time and survival state and thus screen categorical variables, LASSO
regression model was built using “glmnet” package (14); RF model
was constructed using “ randomForestSRC ” package (15). Risk
score = Y Ni =1 (Expix Coei); N, Coei and Expi denote the quantity
of genes, regression correlation coefficients and gene expression
levels achieved from LASSO regression analyse, separately.
Screening of categorical variables based on best-supervised
classification was performed using the Boruta algorithm, which
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was used to accurately screen all the genes that were most relevant
for model prediction. Finally, the screened genes that performed
well in all three machine learning algorithms simultaneously were
selected (16).

2.3 Glucose metabolism score constructed
by GSVA algorithm

GSVA is an analytical technique that determines the number
and membership of possible clusters (microarray gene expression)
between samples. Based on differences in characteristic gene
expression (17). We employed the GSVA algorithm to estimate
the glycometabolic pathway score in each TCGA sample, which
reflects the level of enrichment of glycometabolic pathways in each
sample and was used to determine whether they were highly, non-
differently, or lowly expressed (halfwidth = 0.025), and which was
used for subsequent immunoassays and drug sensitivity analyses of
the targeted drugs. These samples were clustered using the Ward.D
algorithm, with 1, 0, and -1 corresponding to C1 (low expression),
C2 (non-differentiated), and C3 (high expression), respectively.
Then, we created violin plots of characteristic gene accumulation
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scores in C1, C2, and C3 as well as survival curves after combining
C2 and C3 to confirm the precision of the three clusters.

2.4 Estimation of immune cell infiltration

We employed ssGSEA analysis in conjunction with the TCGA
database to measure the level of immune cell infiltration; their
correlation outcomes are visualized as heatmaps. According to the
ssGSEA outcomes, we show the interrelationships between 7 key
genes for glucose metabolism and 29 immune cells, where the size of
the sphere indicates the level of association. The R packages

“ggStatsplot”, “data.table”, “ Tidyr”,
employed for statistical analyse of the data as well as for plotting

GGplot2” and “dplyr” were

heatmaps (18, 19). We then used the “ggdisterstats” package to
generate scatter plots of the three most highly correlated immune
factors: T cell co-inhibition, MHC class I and Type II IFN Reponse
to show their correlation with glucose metabolism scores.

2.5 Prediction of targeted therapy and
immunotherapy

We evaluated the efficacy of chemotherapy, including
conventional ccRCC-targeted therapies and immunotherapies, in a
patient population. To assess the response to chemotherapy in each
individual, a ridge regression model was built based on TCGA gene
expression profiles in the GDSC (https://www.cancerrxgene.org/)
and using the R package “pRRohetic” to predict the IC50 of the
drugs (20). The therapeutic correspondence of glycometabolically
active subtypes with PD-1/CTLA-4 was revealed using “SubMap”, a
dataset used to assess the effect of immunotherapy on different
subtypes. The CMap algorithm provides us with several potential
drugs that can reverse the molecular signature of glycometabolism,
which are expected to be the reverse drugs for ccRCC (21).

2.6 Glucose metabolism mRNA screening
reveals prognosis

Combining patients’ clinical information, glucose metabolism
score subgroup information, and risk scores, we constructed both a
random forest prognostic model and a COX regression prognostic
model. With the help of the SURVEX software package, we
compared the advantages and disadvantages of the two prognostic
models and assessed the importance of each feature.

2.7 Statistical analyses

The statistical tasks of bioinformatics are performed by using R
software (https://www.r-project.org/, version 4.4.1). For
experiments, Image] and Graphpad Prism were chosen as the
analysis and statistical software, which play a vital role in data
processing and analysis.
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2.8 Cell culture

The human renal cancer cell lines 786-O and ACHN and the
normal renal proximal tubular epithelial cell line HK-2 were
purchased from the Wuhan Pricella Biotechnology Co. ACHN
cells were cultured in Dulbecco’s Modified Eagle’s/Eagle Medium
(DMEM; Wuhan Pricella Biotechnology Co., Ltd.). 786-O cells were
cultured in Roswell Park Memorial Institute medium (RPMI-1640;
Wuhan Pricella Biotechnology Co., Ltd.).HK-2 cells were cultured
in Minimum Essential Medium (MEM; Wuhan Pricella
Biotechnology Co., Ltd.). All these cell lines were cultured in a
medium containing 10% foetal bovine serum (FBS; Wuhan Pricella
Biotechnology Co., Ltd.), 1% streptomycin-penicillin (Wuhan
Pricella Biotechnology Co., Ltd.), and at 37 °C and 5% CO,.

2.9 siRNA transfection

Specifically targeting ADPGK (si-ADPGK) and negative control
siRNA (si-NC) were obtained from Huzhou Hippo Biotechnology Co.
In this research, the arrangement of ADPGK siRNA is presented below:
5-GCUGAAUGAACAGGAGCUGUUTT-3. For transfection, 786-O
and ACHN cells were inoculated in 6-well plates at 50-60% confluency;
150 pmol of siRNA was confluent in 6ul in 6-well plates using GP-
transfect-Mate transfection reagent (GenePharma, Inc.). 48 h after
transfection, subsequent assays were performed.

2.10 RT-gPCR assay

cDNA was synthesised using the TRIGene Plus Total RNA
Extraction Reagent and Auxiliary Kit (GenStar, Inc.) and StarScript
ProAll-in-one RT Mix with gDNA Remover (GenStar, Inc.). Gene
mRNA levels were analysed using the 2x RealStar Universal SYBR
qPCR Mix Kit (GenStar, Inc.) following the manufacturer’s
indications. The primer sequences are presented below: ADPGK,
forward 5°-CCTAGAGCTGGGCCAGTATGACTA-3’, reverse 5'-
GACTGGGGTGAGAAATAACAGCTC-3". Calculated using the
2 A -AACt method.

2.11 Cell proliferation determination

Cell Counting Kit-8 (CCK-8; APEXBIO Technology LLC) was
used. Cells were inoculated into 96-well plates at a cell density of 2 x
10° cells/well and cultured in 100 uL of cell culture medium
containing 10% foetal bovine serum. Before measuring absorbance,
10 puL of CCK-8 Reagent and 100 UL of serum-free medium were
added to each well to remove the effect of serum on the CCK-8
Reagent. After incubating the 96-well plate with CCK-8 Reagent for 2
hours at 37 °C and 5% CQO2, the number of viable cells was evaluated
by surveying the absorbance at 450 nm using a microplate reader. This
was done every 24 hours for a total of 72 hours. Finally, cell numbers
were plotted over a 3-day period using GraphPad Prism 9.1
(GraphPad Software, Inc.) to reflect the rate of cell proliferation.
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2.12 Wound healing tests

For wound healing assays, cells were cultured in 6-well plates
until they grow to complete confluence. Cell monolayers were
scraped with a 200 pL pipette tip to form wounds. A light
microscope equipment was used to acquire typical images of

cell migration.

2.13 Cell migration and invasion assays

We used the Transwell assay to detect cell migration and
invasion as described previously (22). A Transwell chamber
containing an 8 wm membrane filter was used (Labselect, Inc.).
Serum-free medium with 2 x 10* cells/well was inoculated into the
upper chamber, while the lower chamber was filled with medium
containing 10% foetal bovine serum. After 48 hours of incubation at
37 °C, cells in the lower chamber were fixed with 4%
paraformaldehyde fixative for 20 minutes at room temperature
and then placed in crystal violet stain (Beyotime; C0121) for 30
minutes at room temperature. Finally, 3 random fields of view were
counted under a light microscope at 100x magnification. For the
invasion assay, Matrigel (Abwbio, Inc.) was pre-coated into the
upper chamber for 3 hours. Cells (5x10%) were then inoculated into
the upper chamber in serum-free medium. The remaining
experimental steps were the same as for the migration assay.

2.14 Western blot assay

Western blot analysis was performed to evaluate the differential
expression of ADPGK proteins in tumour and paracancerous
tissues. Protein samples are separated using sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred to a
polyvinylidene difluoride (PVDF) membrane. PVDF membranes
were closed with 5% skimmed milk in a shaker for 2 hours at 37 °C
and incubated with ADPGK antibody, (#15639-1-AP, working
dilution 1:1000, proteintech) incubated overnight at 4 °C. After 3
washes in TBST buffer solution for 30 minutes, the membrane was
incubated with HRP-coupled goat anti-rabbit IgG H&L secondary
antibody (#AS014, working dilution 1:10000, ABclonal) for 1.5
hours. Then wash with TBST buffer solution 3 times for 30
minutes each time. Results were analysed using the Ultra
Sensitive ECL Chemiluminescence Kit (SW134-01; Sevenbio).
Immunoblotting was quantified using Image J software.

3 Results

3.1 Machine learning algorithm to identify
target gene ADPGK

The 89 glucose metabolism-related genes contained in
REACTOME of the GSEA database were used for gene screening.
A combination of three machine learning methods, LASSO
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algorithm, Boruta algorithm, and RF algorithm, was used to
locate the genes at the kernel of the research. By using LASSO
algorithm to screen for the correlation between glucose metabolism
bases and CCRCC, 19 genes that could serve as potential markers
were identified (Figure 2A). A 10-fold cross-validation method was
applied to iterative analysis, and when A was 0.03 (Log2 A = -5.058),
19 genes were screened to obtain a model with excellent
performance but the lowest number of variables (Figure 2B). The
Boruta algorithm analysis screened 27 significant genes, which
showed significantly elevated AUCs in the model, suggesting that
they had a strong influence on the outcome variable (Figure 2C).
The line graph demonstrates the screening process based on
parameter variations (Figure 2D). To further identify the core
genes in glucose metabolism genes that affect the prognosis of
CCRCC, we performed RF analysis on these 89 genes, and we
ranked the genes according to their importance in the RF model,
identified the genes with relative importance as the final markers,
and finally screened out 18 key genes (Figure 2F). The intersection
of the results of the three machine learning methods was taken, and
7 key genes achalasia (AAAS), ADPGK, fructose-1,6-bisphosphatase
1(FBP1), hexokinase 3(HK3), nucleoporin 85kDa (NUPS5),
nucleoporin 93kDa (NUP93), and solute carrier family 25,
member 13 (SLC25A13) were finally screened (Figure 2G).
Among them AAAS, HK3, and ADPGK the expression of three
genes was obviously raised in cancer samples and was significantly
correlated with prognosis. Our research is also the first to study the
characterization of glucose metabolism-related genes in
REACTOME in ccRCC by machine learning.

3.2 These three clusters correspond to the
expression of genes related to sugar
metabolism

Based on the mRNA expression of 7 key genes for glucose
metabolism combined with the GSVA algorithm, unsupervised
cluster analyses was applied to acquire three clusters of TCGA
data from ccRCC: low expression cluster (Cl), high expression
cluster (C2), and medium expression cluster (C3) (Figure 3A). The
heatmap showed that the mRNA expression level of CI,
symbolizing low expression of gluconeogenesis, was universally
downregulated, and the mRNA expression of C2, symbolizing
high expression of gluconeogenesis, was significantly upregulated.
The accumulation scores of glucose metabolism-related genes in the
three clusters confirmed that the levels of glucose metabolism-
related genes were low in C1 and obviously upper in C2 than in C1
(Figure 3B). Afterwards, we merged C2 and C3 and performed
survival prognosis analysis and plotted survival curves for the
merged C2 versus the original C1. The survival curves showed
that C2 with higher glucose metabolism expression levels had a
significantly worse prognosis, while C1 with low glucose
metabolism expression levels had a good prognosis, and there was
also a large difference between the survival curves of the two clusters
of merged C2 and the original C1, which proved the significance of
our merger (Figure 3C).
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3.3 Analysis of immune infiltration and
immune checkpoint blockade

In recent years, apart from studying the role of targeted drugs in
cancer treatment, there has been an increasing number of studies on
immunotherapy (23). We investigated the quantitative correlation
between immune cell infiltration and 7 key genes of glucose
metabolism, which can reflect the regulatory role of glucose
metabolism pathway in ¢ccRCC immunotherapy. The heatmap
showed the quantitative correlation between immune cell
infiltration and the 7 key genes of glucose metabolism (Figure 4A),
from which the results showed that majority of the immune cells were
actively related with ADPGK with a statistically significant difference.
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Bubble plots indicated an association between immune infiltration-
related cells or features and the 7 glucose metabolism key genes
(Figure 4B). Subsequently, we verified the correlation between
glucose metabolism scores and immune checkpoint-related genes,
and the results showed that the glucose metabolism scores were
positively correlated with the levels of PDCD1 and CTLA4, which
indicated that immunotherapy was feasible on the glucose
metabolism pathway (Figure 4C). In addition, we selected the first
two immune factors with positive correlation, T cell co-inhibition,
MHC class I, and one negative correlation, immune function Type II
IFN Reponse, for association analyses, and the outcomes showed that
their correlation with glucose metabolism and bubble plots showed

the same trend (Figures 4D-F).
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3.4 Predictive model analysis and validation

Based on the 7 previously selected key genes for glucose
metabolism, AAAS, ADPGK, FBP1, HK3, NUP85, NUP93, and
SLC25A13, we computed risk scores for the data. Based on the
risk score values acquired, the data were separated into two groups,
high-risk score and low-risk score, and their correlation with the
extent of immune cell infiltration was compared employing diverse
immune infiltration algorithms, like the XCELL algorithm and the
TIMER algorithm for the low expression of CD8+ T-cells in the
high-risk score (Figure 5). These outcomes can be employed to
study the differences in the immune microenvironment between
patients with different ccRCC and to explore the therapeutic effect
of immunotherapy in practical applications.

3.5 Predictive analysis of immunotherapy

For the anticipation of pharmacological experimental outcomes
in patients with ccRCC, the Genomics of Drug Sensitivity in Cancer
(GDSC) database is critical. Depending on the expression of genes
in different cell lines in the GDSC database and supported by the
pRRophetic algorithm, we anticipated the pharmacological
influences of ccRCC cells on 12 common first- or second-line
oncological chemotherapeutic and targeted agents used in the
clinic: pazopanib, sorafenib, sunitinib, nilotinib, vorinostat,
acitretinib, gefitinib, ticlosimabe, lapatinib, metformin, bosutinib
and tipifarnib. The outcomes of the drug IC50 anticipation analyses
indicated that the anticipated IC50 values of most of the targeted
drugs for combined C2 were obviously less than that of CI,
suggesting that patients with ccRCC who have high expression of
glucose metabolism-related genes would be more susceptible to
these conventionally targeted drugs (Figure 6A). Therefore, these
targeted drugs are of particular importance for the therapy of
patients with high expression of glucose metabolism-related genes
in ¢ccRCC. From the outcomes, we noticed that currently common
cancer-targeted drugs in the clinic: axitinib (24), gefitinib (25)and
lapatinib (26)are highly sensitive to ccRCC patients with high
expression of glucose metabolism-related genes, which also
suggests that the glucose metabolism pathway may be instructive
for the development of ccRCC-targeted drugs. In addition, we used
the CMap algorithm to predict small-molecule drugs that may have
an effect on the glucose metabolism pathway. The results showed
that STOCKIN.35696, butein, and TTNPB were the top three
potential drugs for treating ccRCC patients with high expression
of glucose metabolism genes (Figure 6B). The heatmap indicated
that the reaction to immune checkpoint Programmed cell death
protein 1(PD-1) treatment was statistically significant in both the
pre-calibration (p = 0.000999001) as well as the post-calibration (p
= 0.007992008) glucose metabolism activity groups (Figure 6C).
This suggests that patients with high expression of glucose
metabolism-related genes in ccRCC may be responsive to
immune checkpoint inhibitors and that PD-1 therapy holds
promise for development in these patients.
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3.6 Silencing of the ADPGK gene
attenuates glycolysis and promotes cell
death in 786-0O and ACHN cells

To assess the biological role of ADPGK in c¢cRCC, small
interfering RNAs (siRNAs) specifically targeting ADPGK binding
were designed. ADPGK RNA expression was validated in several
ccRCC cell lines. qPCR results showed that ADPGK expression was
relatively high in 786-O and ACHN cells compared to the normal
renal proximal tubular epithelial cell line HK-2, consistent with the
above (Figure 7A). Transfection of 786-O and ACHN cells with
ADPGK siRNA for 48 h showed that ADPGK was successfully
knocked down (Figures 7B, C). CCK-8, colony formation
(Supplementary Figure S1) assay showed that down-regulation of
ADPGK inhibited the proliferative activity of 786-O and ACHN
cells as compared to the si-NC group (Figure 7D). In addition, we
verified the protein expression and knockdown efficiency of
ADPGK through WB experiments. The results showed that the
expression of ADPGK in 786-O and ACHN cells was relatively
higher compared with that in normal human proximal tubular
epithelial cell line HK-2, which was consistent with the above
(Figure 7E). The WB results indicated that ADPGK was
successfully knocked down (Figure 7F). Transwell migration assay
and wound healing assay showed that silencing of ADPGK
significantly inhibited the migration of 786-O and ACHN cells
(Figures 7G-]). Transwell invasion assay showed that the invasive
ability of 786-O and ACHN cells was significantly reduced after
knockdown of ADPGK (Figures 7K, L). These results suggest that
the ADPGK gene is a key therapeutic target located on the ccRCC
glucose metabolism pathway.

3.7 Machine learning-based prognostic
judgement for ccRCC patients

According to the Brier score and the C/D AUC index based on
survival time, it can be found that the Brier score value of random
survival forest (rfsrc) is always lower than that of Cox proportional
hazards (coxph), while the C/D AUC value is always higher than
that of coxph, which indicates that rfsrc’s predictive power is better
than coxph, and the C-index results are consistent with the previous
two results (Figures 8A, B). The line graph of time-dependent
feature importance shows that in coxph, the importance of Stage
increases with time, while in rfsrc, GlucoseMetabolism Score shows
an increase in importance with time, which is consistent with our

previous findings (Figures 8C, D).

4 Discussion

Glucose metabolism, including glycolysis, glycogen synthesis,
glycogenolysis and gluconeogenesis, is an important physiological
process in the maintenance of metabolic homeostasis in organisms,
and plays a key role in the growth of tumour cells (4). Among them,
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1
0
=1
-2

1
0
=1
4

based on different algorithms. Pink and yellow indicate high and low

penetration levels, respectively, and different algorithms are indicated by different coloured area bars.

glycolysis is the main way to break down glucose into pyruvate and
generate ATP. In tumour cells, this phenomenon is known as the
“Warburg effect’ (27). However, even under well-oxygenated
conditions, the source of ATP production in tumour cells is not
aerobic oxidation, but rather glycolysis (28). Lactate, a metabolite of
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aerobic glycolysis, promotes tumour cell growth and metastasis
through several pathways (29). Glycogen synthesis is the process by
which excess carbohydrates are converted to glycogen or fatty acids
under high-sugar dietary conditions and stored in the liver (30). In
contrast, glycogenolysis is activated under conditions of energy
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deficiency to release glucose to meet the energy needs of tissues such
as the brain (31). However, when hepatic glycogen reserves are
depleted during prolonged energy deprivation, glucose is rapidly
synthesised via gluconeogenesis, a process that typically utilises
substances such as lactate, glycerol and amino acids as substrates
(32). Glucose metabolism not only plays a key role in maintaining
normal renal cell survival, but is also critical for ccRCC survival
(33). Therefore, targeting glucose metabolism to kill ccRCC cells
may be a potential therapeutic option.

In our study, we first used a combination of three machine
learning algorithms, LASSO algorithm, Boruta algorithm, and RF
algorithm, to screen the 7 core glucose metabolism genes of the
study, AAAS, ADPGK, FBPI, HK3, NUP85, NUP93, and SLC25A13.
Among them, LASSO is one of the first machine learning
algorithms used and is suitable for handling data with multiple
covariates, but may not handle some nonlinear features completely
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(34). The RF model allows random sampling of the original features
thus generating random features and calculating feature importance
(35). The Boruta algorithm is based on the RF model and filters out
more significant nonlinear features by comparing the importance of
raw and random features (16). The combination of these three
algorithms helps to improve the accuracy of feature screening, more
comprehensively identifies key genes for glucose metabolism
associated with ccRCC, and reduces the bias that may result from
a single approach. Then, based on the mRNA expression of the 7
glucose metabolism-related genes in combination with the GSVA
algorithm to obtain three clusters of ccRCC samples. Based on the
two clusters, C1, which is the low expression of glycometabolic
genes, and C2, which is the combination of medium and high
expression of glycometabolic genes, we constructed the survival
curves of glycometabolism-related genes. In the survival curves, we
noted that upregulation of glycometabolic genes had the lowest
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(A-C) gPCR showing the comparison of mRNA expression of ADPGK between 786-O and ACHN cells and HK-2 cells and the efficiency of knocking
down ADPGK on 786-0 and ACHN cell lines. (D) CCK-8 assay showing the viability of cell proliferation after knocking down ADPGK compared to the
non-knockdown group. (E) WB displays a comparison of ADPGK protein expression between 786-O and ACHN cells and HK-2 cells. (F) WB showed the
protein expression changes after knocking down ADPGK in the 786-O cell line. (G-J) Wound healing assay and Transwell migration assay showed the
migration ability of 786-O and ACHN cells treated with si-NC or si-ADPGK. (K, L) Transwell invasion assays showing the invasion ability of 786-O and
ACHN cells treated with si-NC or si-ADPGK. Data are expressed as SD + mean. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FIGURE 8

(A-D) Glucose metabolism scores obtained based on the SURVEX package, constructing both the random forest model and the COX regression

model of the MOMC-VM and combining it with machine learning.

survival values, suggesting that most glycometabolism-related genes
are risk genes in ccRCC that promote tumour cell growth. To
explore the role of targeted therapy as well as immunotherapy in
ccRCC, we further analysed the targeted drug and immunotherapy
predictions, and from the results, we observed that targeted drug
therapy in ccRCC was closely associated with changes in gene
expression levels in the glucose metabolism pathway. After
clarifying the correlation between immune cells and glucose
metabolism genes, we verified the correlation of glucose
metabolism scores with the immune checkpoint genes PDCD1
and CTLA4 and compared the p-value predictions of two clusters
of glucose metabolism scores after treatment with PD-1 and
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). The
results suggest that glucose metabolism is important in tumour
immunotherapy, which is uniform with former findings (36). These
findings provide new ideas for the development of
immunotherapies as well as drugs targeted for the treatment
of ccRCC.

Subsequently, we chose ADPGK as a follow-up study gene. The
results of in vitro experiments showed that ADPGK is significantly
important for ccRCC cell proliferation and migration, and it would
promote the proliferation and migration of ccRCC cells. ccRCC
CPTAC database samples results further demonstrated that
ADPGK was obviously extremely expressed and the upper the
expression of ADPGK, the inferior the prognosis of ccRCC.
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ADPGK, also known as ADP-dependent glucose kinase, is an
enzyme involved in the glycolytic pathway. Unlike typical ATP-
dependent hexokinases (HKs), it catalyses the phosphorylation of
glucose to glucose 6-phosphate using ADP rather than ATP as the
phosphate donor (37). The role of ADPGK on the growth of ccRCC
is unclear and few studies have been conducted. 2012, Richter et al.
showed that silencing or overexpression of ADPGK in lung cancer
cells did not affect anaerobic glycolysis but reduced clone formation
in lung cancer cells (38). 2023, Xu et al. studied the expression and
role of ADPGK in prostate cancer cells in in vitro and in vivo
experiments, and their results proved that overexpression of
ADPGK promotes a malignant phenotype, and inhibition of
ADPGK suppresses the proliferation and migration of prostate
cancer cells. In addition, their experiments demonstrated that
ADPGK could promote glycolysis in prostate cancer cells through
activation of the ALDOC-AMPK pathway (39). Due to the high
degree of heterogeneity between different tumours, it is uncertain
whether these two contradictory conclusions apply to ccRCC and
whether ADPGK can adjust glycolysis in ccRCC cells. Our research
affords preliminary proof that ADPGK is a driver of ccRCC
progression and that its high expression leads to a poor prognosis
in ccRCC patients.

In order to explore better prognostic models, this study
constructed the rfsrc model, which outperformed the previously
routinely used coxph in terms of predictive power and had
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more favourable predictive power for external data. In addition, the
rfsrc predictions showed that the importance of glucose metabolism
scores increased with time, which is consistent with our findings.
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