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Machine learning-based
analysis identifies glucose
metabolism-related genes
ADPGK as potential diagnostic
biomarkers for clear cell
renal cell carcinoma
Tie Li †, Shijin Wang †, Guandu Li †, Xiaochen Qi*, Guangzhen Wu*

and Xiangyu Che*

Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
Introduction: Clear cell renal cell carcinoma, with its high morbidity and

mortality, is one of the more difficult diseases in the world and still lacks an

effective therapeutic target. The primary way they break down glucose is through

aerobic glycolysis, which leads to energy acquisition and synthesis of the material

base required for cell growth. Although targeting glucose metabolism has driven

the development of a variety of tumour therapies, the specific regulatory

mechanisms remain unclear. Therefore, based on machine learning analysis

algorithms, we analysed the correlation between glycometabolic pathways and

ccRCC in the REACTOME database and verified the impact of the key gene

ADPGK on the prognosis of ccRCC.

Methods: We utilised a total of 89 gene collections of glucose metabolism

pathways from the REACTOME (https://reactome.org/) database as the data base

for our study. To uncover potential therapeutic target genes, we adopt three

machine learning algorithms (LASSO, RF, and Boruta). We reassigned the 7

screened genes based on gene expression differences between cancer and

paracancerous tissues, and applied an unsupervised consensus clustering

algorithm to establish a typology based on the expression of glucose

metabolism-related genes (ADPGK). We then validated the link between

ADPGK and cancer cell invasion and metastasis by in vitro experiments on

ccRCC cell lines.

Results:We identified ADPGK as a key gene for the glucose metabolism pathway

and suggested that it may promote invasion andmetastasis of ccRCC. In addition,

based on the results of immune infiltration, ADPGK was observed to significantly

affect the immune response in ccRCC. Our results suggest that the

implementation of therapeutic strategies based on key genes of glucose

metabolism may bring new hope for ccRCC patients.
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Abbreviations: RCC, renal cell carcinoma; ccRCC, clear c

ADPGK, ADP-dependent glucokinase; REACTOM, Reac

TCGA, The Cancer Genome Atlas; LASSO, least absolute

operator,; RF, random forest; AAAS, achalasia;

bisphosphatase 1; HK3, hexokinase 3; NUP85, nucleo

nucleoporin 93kDa; SLC25A13, solute carrier family

Programmed cell death protein 1; CTLA-4, Cytotoxic T

antigen-4.
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Discussion: Our results suggest that targeting the glucose metabolism pathway

can kill ccRCC cells. ADPGK, a gene related to glucose metabolism, may be an

important biomarker for the diagnosis and characterization of ccRCC. However,

whether ADPGK affects glycolysis in ccRCC, and the mechanism by which

glycolysis is regulated is not clear. This is the direction of further research in

the future.
KEYWORDS

glucose metabolism, clear cell renal cell carcinoma (ccRCC), machine learning, ADP-
dependent glucokinase (ADPGK), immune infiltration
1 Introduction

Renal cell carcinoma (RCC) is one of the common urological

malignancies in adults, accounting for 2-3% of all adult

malignancies, with clear cell renal cell carcinoma (ccRCC)

accounting for approximately 80% of RCC cases (1). Although

significant progress has been made in the systemic treatment of this

group of tumours, multiple challenges remain to reduce mortality,

such as the lack of clinically available biomarkers and insufficient

understanding of the molecular mechanisms of ccRCC (2, 3).

Therefore, in-depth exploration of potential therapeutic targets

and biomarkers for ccRCC is crucial, which will help improve

patient survival.

Studies have shown that glucose metabolism is strongly

associated to tumour development, migration and drug tolerance,

therefore, intervention regimens targeting tumour glucose

metabolism have become the focus of exploration (4). Even under

aerobic conditions, tumour cells are able to produce adenosine

triphosphate (ATP) via glycolysis. In the 1920s, Otto Warburg was

the first to notice this sight, which has since been named the

“Warburg effect” (5). The Warburg effect describes the shift in

energy provision from oxidative phosphorylation to glycolysis and

the production of large amounts of pyruvate and lactate by tumour

cells under aerobic conditions (6). RCC, particularly ccRCC, is often

considered a metabolic disease that is prominently marked by

alterations in key genetic loci in the metabolic pathway (7). These

mutations play a role in the regulation of processes like aerobic

glycolysis, fatty acid metabolism, and the utilization of tryptophan

and glutamine (8). Since Warburg’s discovery of this phenomenon,

the abnormal metabolism of cancer cells has been progressively

studied (9). In addition, in ccRCC, this effect is shown to be more
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pronounced than in normal tissues, further highlighting its central

role in tumour metabolism (10).

Glycometabolism in tumours is gradually becoming a hot topic

of research, and higher levels of glycometabolism are one of the

characteristics of tumour cells. A number of oncogenic factors may

cause an increase in cellular glucose metabolism levels, leading to an

increase in overall cellular metabolism levels (11). However, studies

analysing the effects of glycometabolic genes on ccRCC based on the

REACTOME database are still lacking, indicating that the roles and

rationale of a large number of glycometabolic genes in the

pathogenic mechanism of ccRCC are still not fully understood.

Thus, we purpose to search the key sites of action of glucose

metabolism and supply an important theoretical basis for further

research. Through searching, we found as many as 89 genes

associated with glucose metabolism in renal cancer, and we plan

to identify the key genes associated with the prognosis of ccRCC

through bioinformatics analyses and basic experimental validation,

and to establish a prognostic prediction model.

In this study, we used ccRCC samples (n=539) and corresponding

paracancerous tissue samples (n=72) from the TCGA database to

explore the role of glucose metabolism in ccRCC. To this end, we

employed three machine learning algorithms: least absolute shrinkage

and selection operator (LASSO), Boruta, and random forest (RF) to

screen out the most robust targets, and ultimately discovered ADPGK, a

glycometabolic target that has never been mentioned before in ccRCC.

We further validated the effect of ADPGK on invasion and metastasis of

ccRCC by cellular experiments, thus further revealing the relationship

between glucose metabolism and ccRCC. A flowchart has been created

to more clearly illustrate the experimental approach (Figure 1).
2 Materials and methods

2.1 Gather and analysis of sugar
metabolism gene sets

A dataset related to glucose metabolism was obtained from the

REACTOME database (12) (https://reactome.org/) according to the

GSEA website and 89 genes closely related to glucose metabolism
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routes were chosen for deeply analyse. We retrieved the study data

from the TCGA database (https://tcga-data.nci.nih.gov/tcga/) and

screened the mRNA information of genes related to glucose

metabolism in more than 30 cancers (13). Correlations between

gene expression data were analysed using Perl.
2.2 Recognition of illness characterisation
genes

For the characterization of illness diagnostic elements, we

combined multiple machine learning methods, namely LASSO,

Boruta and RF, to recognize key genes of the glucose metabolic

pathway in ccRCC. LASSO and RF were used to regress survival

time and survival state and thus screen categorical variables, LASSO

regression model was built using “glmnet” package (14); RF model

was constructed using “ randomForestSRC ” package (15). Risk

score = ∑ Ni =1 (Expi∗ Coei); N, Coei and Expi denote the quantity

of genes, regression correlation coefficients and gene expression

levels achieved from LASSO regression analyse, separately.

Screening of categorical variables based on best-supervised

classification was performed using the Boruta algorithm, which
Frontiers in Oncology 03
was used to accurately screen all the genes that were most relevant

for model prediction. Finally, the screened genes that performed

well in all three machine learning algorithms simultaneously were

selected (16).
2.3 Glucose metabolism score constructed
by GSVA algorithm

GSVA is an analytical technique that determines the number

and membership of possible clusters (microarray gene expression)

between samples. Based on differences in characteristic gene

expression (17). We employed the GSVA algorithm to estimate

the glycometabolic pathway score in each TCGA sample, which

reflects the level of enrichment of glycometabolic pathways in each

sample and was used to determine whether they were highly, non-

differently, or lowly expressed (halfwidth = 0.025), and which was

used for subsequent immunoassays and drug sensitivity analyses of

the targeted drugs. These samples were clustered using the Ward.D

algorithm, with 1, 0, and -1 corresponding to C1 (low expression),

C2 (non-differentiated), and C3 (high expression), respectively.

Then, we created violin plots of characteristic gene accumulation
FIGURE 1

Flowchart of the entire article.
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scores in C1, C2, and C3 as well as survival curves after combining

C2 and C3 to confirm the precision of the three clusters.
2.4 Estimation of immune cell infiltration

We employed ssGSEA analysis in conjunction with the TCGA

database to measure the level of immune cell infiltration; their

correlation outcomes are visualized as heatmaps. According to the

ssGSEA outcomes, we show the interrelationships between 7 key

genes for glucose metabolism and 29 immune cells, where the size of

the sphere indicates the level of association. The R packages

“ggStatsplot”, “data.table”, “ Tidyr”, “GGplot2” and “dplyr” were

employed for statistical analyse of the data as well as for plotting

heatmaps (18, 19). We then used the “ggdisterstats” package to

generate scatter plots of the three most highly correlated immune

factors: T cell co-inhibition, MHC class I and Type II IFN Reponse

to show their correlation with glucose metabolism scores.
2.5 Prediction of targeted therapy and
immunotherapy

We evaluated the efficacy of chemotherapy, including

conventional ccRCC-targeted therapies and immunotherapies, in a

patient population. To assess the response to chemotherapy in each

individual, a ridge regression model was built based on TCGA gene

expression profiles in the GDSC (https://www.cancerrxgene.org/)

and using the R package “pRRohetic” to predict the IC50 of the

drugs (20). The therapeutic correspondence of glycometabolically

active subtypes with PD-1/CTLA-4 was revealed using “SubMap”, a

dataset used to assess the effect of immunotherapy on different

subtypes. The CMap algorithm provides us with several potential

drugs that can reverse the molecular signature of glycometabolism,

which are expected to be the reverse drugs for ccRCC (21).
2.6 Glucose metabolism mRNA screening
reveals prognosis

Combining patients’ clinical information, glucose metabolism

score subgroup information, and risk scores, we constructed both a

random forest prognostic model and a COX regression prognostic

model. With the help of the SURVEX software package, we

compared the advantages and disadvantages of the two prognostic

models and assessed the importance of each feature.
2.7 Statistical analyses

The statistical tasks of bioinformatics are performed by using R

software (https://www.r-project.org/, version 4.4.1). For

experiments, ImageJ and Graphpad Prism were chosen as the

analysis and statistical software, which play a vital role in data

processing and analysis.
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2.8 Cell culture

The human renal cancer cell lines 786-O and ACHN and the

normal renal proximal tubular epithelial cell line HK-2 were

purchased from the Wuhan Pricella Biotechnology Co. ACHN

cells were cultured in Dulbecco’s Modified Eagle’s/Eagle Medium

(DMEM;Wuhan Pricella Biotechnology Co., Ltd.). 786-O cells were

cultured in Roswell Park Memorial Institute medium (RPMI-1640;

Wuhan Pricella Biotechnology Co., Ltd.).HK-2 cells were cultured

in Minimum Essential Medium (MEM; Wuhan Pricella

Biotechnology Co., Ltd.). All these cell lines were cultured in a

medium containing 10% foetal bovine serum (FBS; Wuhan Pricella

Biotechnology Co., Ltd.), 1% streptomycin-penicillin (Wuhan

Pricella Biotechnology Co., Ltd.), and at 37 °C and 5% CO2.
2.9 siRNA transfection

Specifically targeting ADPGK (si-ADPGK) and negative control

siRNA (si-NC) were obtained from Huzhou Hippo Biotechnology Co.

In this research, the arrangement ofADPGK siRNA is presented below:

5’-GCUGAAUGAACAGGAGCUGUUTT-3’. For transfection, 786-O

and ACHN cells were inoculated in 6-well plates at 50-60% confluency;

150 pmol of siRNA was confluent in 6ul in 6-well plates using GP-

transfect-Mate transfection reagent (GenePharma, Inc.). 48 h after

transfection, subsequent assays were performed.
2.10 RT-qPCR assay

cDNA was synthesised using the TRIGene Plus Total RNA

Extraction Reagent and Auxiliary Kit (GenStar, Inc.) and StarScript

ProAll-in-one RT Mix with gDNA Remover (GenStar, Inc.). Gene

mRNA levels were analysed using the 2× RealStar Universal SYBR

qPCR Mix Kit (GenStar, Inc.) following the manufacturer’s

indications. The primer sequences are presented below: ADPGK,

forward 5’-CCTAGAGCTGGGCCAGTATGACTA-3’, reverse 5’-

GACTGGGGTGAGAAATAACAGCTC-3’. Calculated using the

2 ^ -DDCt method.
2.11 Cell proliferation determination

Cell Counting Kit-8 (CCK-8; APExBIO Technology LLC) was

used. Cells were inoculated into 96-well plates at a cell density of 2 x

103 cells/well and cultured in 100 mL of cell culture medium

containing 10% foetal bovine serum. Before measuring absorbance,

10 mL of CCK-8 Reagent and 100 mL of serum-free medium were

added to each well to remove the effect of serum on the CCK-8

Reagent. After incubating the 96-well plate with CCK-8 Reagent for 2

hours at 37 °C and 5% CO2, the number of viable cells was evaluated

by surveying the absorbance at 450 nm using a microplate reader. This

was done every 24 hours for a total of 72 hours. Finally, cell numbers

were plotted over a 3-day period using GraphPad Prism 9.1

(GraphPad Software, Inc.) to reflect the rate of cell proliferation.
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2.12 Wound healing tests

For wound healing assays, cells were cultured in 6-well plates

until they grow to complete confluence. Cell monolayers were

scraped with a 200 mL pipette tip to form wounds. A light

microscope equipment was used to acquire typical images of

cell migration.
2.13 Cell migration and invasion assays

We used the Transwell assay to detect cell migration and

invasion as described previously (22). A Transwell chamber

containing an 8 mm membrane filter was used (Labselect, Inc.).

Serum-free medium with 2 × 104 cells/well was inoculated into the

upper chamber, while the lower chamber was filled with medium

containing 10% foetal bovine serum. After 48 hours of incubation at

37 °C, cells in the lower chamber were fixed with 4%

paraformaldehyde fixative for 20 minutes at room temperature

and then placed in crystal violet stain (Beyotime; C0121) for 30

minutes at room temperature. Finally, 3 random fields of view were

counted under a light microscope at 100× magnification. For the

invasion assay, Matrigel (Abwbio, Inc.) was pre-coated into the

upper chamber for 3 hours. Cells (5×104) were then inoculated into

the upper chamber in serum-free medium. The remaining

experimental steps were the same as for the migration assay.
2.14 Western blot assay

Western blot analysis was performed to evaluate the differential

expression of ADPGK proteins in tumour and paracancerous

tissues. Protein samples are separated using sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and transferred to a

polyvinylidene difluoride (PVDF) membrane. PVDF membranes

were closed with 5% skimmed milk in a shaker for 2 hours at 37 °C

and incubated with ADPGK antibody, (#15639-1-AP, working

dilution 1:1000, proteintech) incubated overnight at 4 °C. After 3

washes in TBST buffer solution for 30 minutes, the membrane was

incubated with HRP-coupled goat anti-rabbit IgG H&L secondary

antibody (#AS014, working dilution 1:10000, ABclonal) for 1.5

hours. Then wash with TBST buffer solution 3 times for 30

minutes each time. Results were analysed using the Ultra

Sensitive ECL Chemiluminescence Kit (SW134-01; Sevenbio).

Immunoblotting was quantified using Image J software.
3 Results

3.1 Machine learning algorithm to identify
target gene ADPGK

The 89 glucose metabolism-related genes contained in

REACTOME of the GSEA database were used for gene screening.

A combination of three machine learning methods, LASSO
Frontiers in Oncology 05
algorithm, Boruta algorithm, and RF algorithm, was used to

locate the genes at the kernel of the research. By using LASSO

algorithm to screen for the correlation between glucose metabolism

bases and CCRCC, 19 genes that could serve as potential markers

were identified (Figure 2A). A 10-fold cross-validation method was

applied to iterative analysis, and when l was 0.03 (Log2 l = -5.058),

19 genes were screened to obtain a model with excellent

performance but the lowest number of variables (Figure 2B). The

Boruta algorithm analysis screened 27 significant genes, which

showed significantly elevated AUCs in the model, suggesting that

they had a strong influence on the outcome variable (Figure 2C).

The line graph demonstrates the screening process based on

parameter variations (Figure 2D). To further identify the core

genes in glucose metabolism genes that affect the prognosis of

CCRCC, we performed RF analysis on these 89 genes, and we

ranked the genes according to their importance in the RF model,

identified the genes with relative importance as the final markers,

and finally screened out 18 key genes (Figure 2F). The intersection

of the results of the three machine learning methods was taken, and

7 key genes achalasia (AAAS), ADPGK, fructose-1,6-bisphosphatase

1(FBP1), hexokinase 3(HK3), nucleoporin 85kDa (NUP85),

nucleoporin 93kDa (NUP93), and solute carrier family 25,

member 13 (SLC25A13) were finally screened (Figure 2G).

Among them AAAS, HK3, and ADPGK the expression of three

genes was obviously raised in cancer samples and was significantly

correlated with prognosis. Our research is also the first to study the

characterization of glucose metabolism-related genes in

REACTOME in ccRCC by machine learning.
3.2 These three clusters correspond to the
expression of genes related to sugar
metabolism

Based on the mRNA expression of 7 key genes for glucose

metabolism combined with the GSVA algorithm, unsupervised

cluster analyses was applied to acquire three clusters of TCGA

data from ccRCC: low expression cluster (C1), high expression

cluster (C2), and medium expression cluster (C3) (Figure 3A). The

heatmap showed that the mRNA expression level of C1,

symbolizing low expression of gluconeogenesis, was universally

downregulated, and the mRNA expression of C2, symbolizing

high expression of gluconeogenesis, was significantly upregulated.

The accumulation scores of glucose metabolism-related genes in the

three clusters confirmed that the levels of glucose metabolism-

related genes were low in C1 and obviously upper in C2 than in C1

(Figure 3B). Afterwards, we merged C2 and C3 and performed

survival prognosis analysis and plotted survival curves for the

merged C2 versus the original C1. The survival curves showed

that C2 with higher glucose metabolism expression levels had a

significantly worse prognosis, while C1 with low glucose

metabolism expression levels had a good prognosis, and there was

also a large difference between the survival curves of the two clusters

of merged C2 and the original C1, which proved the significance of

our merger (Figure 3C).
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3.3 Analysis of immune infiltration and
immune checkpoint blockade

In recent years, apart from studying the role of targeted drugs in

cancer treatment, there has been an increasing number of studies on

immunotherapy (23). We investigated the quantitative correlation

between immune cell infiltration and 7 key genes of glucose

metabolism, which can reflect the regulatory role of glucose

metabolism pathway in ccRCC immunotherapy. The heatmap

showed the quantitative correlation between immune cell

infiltration and the 7 key genes of glucose metabolism (Figure 4A),

from which the results showed that majority of the immune cells were

actively related with ADPGK with a statistically significant difference.
Frontiers in Oncology 06
Bubble plots indicated an association between immune infiltration-

related cells or features and the 7 glucose metabolism key genes

(Figure 4B). Subsequently, we verified the correlation between

glucose metabolism scores and immune checkpoint-related genes,

and the results showed that the glucose metabolism scores were

positively correlated with the levels of PDCD1 and CTLA4, which

indicated that immunotherapy was feasible on the glucose

metabolism pathway (Figure 4C). In addition, we selected the first

two immune factors with positive correlation, T cell co-inhibition,

MHC class I, and one negative correlation, immune function Type II

IFN Reponse, for association analyses, and the outcomes showed that

their correlation with glucose metabolism and bubble plots showed

the same trend (Figures 4D-F).
FIGURE 2

Variable screening based on LASSO algorithm, Boruta algorithm, RF algorithm. (A) Characteristics of variation of variable coefficients. (B) Selection
process of optimal value of parameter l in LASSO regression model by cross-validation method. (C) Boruta selected 27 typical genes with
importance ranking. (D) Plot of the variation of Z-scores. (E) Error rate of data as a function of classification tree. (F) Random survival forest analysis
identified 18 core genes. (G) upset plot showing that 7 candidate feature genes AAAS, ADPGK, FBP1, HK3, NUP85, NUP93, SLC25A13 were identified
by the above 3 machine learning algorithms.
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URE 3FIG

(A) All ccRCC samples were divided into three groups according to different levels of glucose metabolism scores: low expression group (C1), high
expression group (C2) and medium expression group (C3). Colour changes in the right colour bar indicate different values: dark red indicates up-
regulation of mRNA expression and dark blue indicates down-regulation of mRNA expression. The closer the glucose metabolism score is to 0.5 the
redder the colour is, the closer it is to -0.5 the bluer the colour is. The three clusters formed by cluster analysis are represented by different colours:
red for C1, olive green for C2, and black for C3. (B) Violin plots showing the accumulation scores of the three clusters. (C) Survival curves based on
the merged C2 versus the two clusters of the original C1 group.
FIGURE 4

(A) Heatmap showing the correlation between the 7 glucose metabolism related genes and various immune infiltration related metrics. The colour
bars on the right show that the closer to red, the greater the positive correlation, and the closer to blue, the greater the negative correlation.
* represents P < 0.05 and ** represents P < 0.01. (B) Bubble plots show the degree of correlation. Bubble size indicates the magnitude of correlation
from 0.1 to 0.3, and colour indicates the p-value from 0 to 0.25. (C) Scatter plot showing the correlation between glucose metabolism and PDCD1,
CTLA4. (D-F) Three scatter plots showing the correlation between glucose metabolism scores and T cell co-inhibition, MHC class I and Type II IFN
Reponse, respectively.
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3.4 Predictive model analysis and validation

Based on the 7 previously selected key genes for glucose

metabolism, AAAS, ADPGK, FBP1, HK3, NUP85, NUP93, and

SLC25A13, we computed risk scores for the data. Based on the

risk score values acquired, the data were separated into two groups,

high-risk score and low-risk score, and their correlation with the

extent of immune cell infiltration was compared employing diverse

immune infiltration algorithms, like the XCELL algorithm and the

TIMER algorithm for the low expression of CD8+ T-cells in the

high-risk score (Figure 5). These outcomes can be employed to

study the differences in the immune microenvironment between

patients with different ccRCC and to explore the therapeutic effect

of immunotherapy in practical applications.
3.5 Predictive analysis of immunotherapy

For the anticipation of pharmacological experimental outcomes

in patients with ccRCC, the Genomics of Drug Sensitivity in Cancer

(GDSC) database is critical. Depending on the expression of genes

in different cell lines in the GDSC database and supported by the

pRRophetic algorithm, we anticipated the pharmacological

influences of ccRCC cells on 12 common first- or second-line

oncological chemotherapeutic and targeted agents used in the

clinic: pazopanib, sorafenib, sunitinib, nilotinib, vorinostat,

acitretinib, gefitinib, ticlosimabe, lapatinib, metformin, bosutinib

and tipifarnib. The outcomes of the drug IC50 anticipation analyses

indicated that the anticipated IC50 values of most of the targeted

drugs for combined C2 were obviously less than that of C1,

suggesting that patients with ccRCC who have high expression of

glucose metabolism-related genes would be more susceptible to

these conventionally targeted drugs (Figure 6A). Therefore, these

targeted drugs are of particular importance for the therapy of

patients with high expression of glucose metabolism-related genes

in ccRCC. From the outcomes, we noticed that currently common

cancer-targeted drugs in the clinic: axitinib (24), gefitinib (25)and

lapatinib (26)are highly sensitive to ccRCC patients with high

expression of glucose metabolism-related genes, which also

suggests that the glucose metabolism pathway may be instructive

for the development of ccRCC-targeted drugs. In addition, we used

the CMap algorithm to predict small-molecule drugs that may have

an effect on the glucose metabolism pathway. The results showed

that STOCK1N.35696, butein, and TTNPB were the top three

potential drugs for treating ccRCC patients with high expression

of glucose metabolism genes (Figure 6B). The heatmap indicated

that the reaction to immune checkpoint Programmed cell death

protein 1(PD-1) treatment was statistically significant in both the

pre-calibration (p = 0.000999001) as well as the post-calibration (p

= 0.007992008) glucose metabolism activity groups (Figure 6C).

This suggests that patients with high expression of glucose

metabolism-related genes in ccRCC may be responsive to

immune checkpoint inhibitors and that PD-1 therapy holds

promise for development in these patients.
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3.6 Silencing of the ADPGK gene
attenuates glycolysis and promotes cell
death in 786-O and ACHN cells

To assess the biological role of ADPGK in ccRCC, small

interfering RNAs (siRNAs) specifically targeting ADPGK binding

were designed. ADPGK RNA expression was validated in several

ccRCC cell lines. qPCR results showed that ADPGK expression was

relatively high in 786-O and ACHN cells compared to the normal

renal proximal tubular epithelial cell line HK-2, consistent with the

above (Figure 7A). Transfection of 786-O and ACHN cells with

ADPGK siRNA for 48 h showed that ADPGK was successfully

knocked down (Figures 7B, C). CCK-8, colony formation

(Supplementary Figure S1) assay showed that down-regulation of

ADPGK inhibited the proliferative activity of 786-O and ACHN

cells as compared to the si-NC group (Figure 7D). In addition, we

verified the protein expression and knockdown efficiency of

ADPGK through WB experiments. The results showed that the

expression of ADPGK in 786-O and ACHN cells was relatively

higher compared with that in normal human proximal tubular

epithelial cell line HK-2, which was consistent with the above

(Figure 7E). The WB results indicated that ADPGK was

successfully knocked down (Figure 7F). Transwell migration assay

and wound healing assay showed that silencing of ADPGK

significantly inhibited the migration of 786-O and ACHN cells

(Figures 7G-J). Transwell invasion assay showed that the invasive

ability of 786-O and ACHN cells was significantly reduced after

knockdown of ADPGK (Figures 7K, L). These results suggest that

the ADPGK gene is a key therapeutic target located on the ccRCC

glucose metabolism pathway.
3.7 Machine learning-based prognostic
judgement for ccRCC patients

According to the Brier score and the C/D AUC index based on

survival time, it can be found that the Brier score value of random

survival forest (rfsrc) is always lower than that of Cox proportional

hazards (coxph), while the C/D AUC value is always higher than

that of coxph, which indicates that rfsrc’s predictive power is better

than coxph, and the C-index results are consistent with the previous

two results (Figures 8A, B). The line graph of time-dependent

feature importance shows that in coxph, the importance of Stage

increases with time, while in rfsrc, GlucoseMetabolism Score shows

an increase in importance with time, which is consistent with our

previous findings (Figures 8C, D).
4 Discussion

Glucose metabolism, including glycolysis, glycogen synthesis,

glycogenolysis and gluconeogenesis, is an important physiological

process in the maintenance of metabolic homeostasis in organisms,

and plays a key role in the growth of tumour cells (4). Among them,
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glycolysis is the main way to break down glucose into pyruvate and

generate ATP. In tumour cells, this phenomenon is known as the

“Warburg effect” (27). However, even under well-oxygenated

conditions, the source of ATP production in tumour cells is not

aerobic oxidation, but rather glycolysis (28). Lactate, a metabolite of
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aerobic glycolysis, promotes tumour cell growth and metastasis

through several pathways (29). Glycogen synthesis is the process by

which excess carbohydrates are converted to glycogen or fatty acids

under high-sugar dietary conditions and stored in the liver (30). In

contrast, glycogenolysis is activated under conditions of energy
FIGURE 5

Heatmaps showing immune cell responses in the high and low risk groups based on different algorithms. Pink and yellow indicate high and low
penetration levels, respectively, and different algorithms are indicated by different coloured area bars.
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deficiency to release glucose to meet the energy needs of tissues such

as the brain (31). However, when hepatic glycogen reserves are

depleted during prolonged energy deprivation, glucose is rapidly

synthesised via gluconeogenesis, a process that typically utilises

substances such as lactate, glycerol and amino acids as substrates

(32). Glucose metabolism not only plays a key role in maintaining

normal renal cell survival, but is also critical for ccRCC survival

(33). Therefore, targeting glucose metabolism to kill ccRCC cells

may be a potential therapeutic option.

In our study, we first used a combination of three machine

learning algorithms, LASSO algorithm, Boruta algorithm, and RF

algorithm, to screen the 7 core glucose metabolism genes of the

study, AAAS, ADPGK, FBP1, HK3, NUP85, NUP93, and SLC25A13.

Among them, LASSO is one of the first machine learning

algorithms used and is suitable for handling data with multiple

covariates, but may not handle some nonlinear features completely
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(34). The RF model allows random sampling of the original features

thus generating random features and calculating feature importance

(35). The Boruta algorithm is based on the RF model and filters out

more significant nonlinear features by comparing the importance of

raw and random features (16). The combination of these three

algorithms helps to improve the accuracy of feature screening, more

comprehensively identifies key genes for glucose metabolism

associated with ccRCC, and reduces the bias that may result from

a single approach. Then, based on the mRNA expression of the 7

glucose metabolism-related genes in combination with the GSVA

algorithm to obtain three clusters of ccRCC samples. Based on the

two clusters, C1, which is the low expression of glycometabolic

genes, and C2, which is the combination of medium and high

expression of glycometabolic genes, we constructed the survival

curves of glycometabolism-related genes. In the survival curves, we

noted that upregulation of glycometabolic genes had the lowest
FIGURE 6

(A) Box line plot showing IC50 prediction of KIRC cells treated with common tumour-targeting drugs. (B) The cMAP algorithm predicts small
molecule drugs that may have an effect on the gluconeogenic pathway. (C) Heatmap showing predictions of p-values obtained by comparing
glycometabolically active and non-glycometabolically active samples using PD-1 and CTLA4 treatments, and comparative results of p-values after
Bonferroni correction.
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FIGURE 7

(A-C) qPCR showing the comparison of mRNA expression of ADPGK between 786-O and ACHN cells and HK-2 cells and the efficiency of knocking
down ADPGK on 786-O and ACHN cell lines. (D) CCK-8 assay showing the viability of cell proliferation after knocking down ADPGK compared to the
non-knockdown group. (E) WB displays a comparison of ADPGK protein expression between 786-O and ACHN cells and HK-2 cells. (F) WB showed the
protein expression changes after knocking down ADPGK in the 786-O cell line. (G-J) Wound healing assay and Transwell migration assay showed the
migration ability of 786-O and ACHN cells treated with si-NC or si-ADPGK. (K, L) Transwell invasion assays showing the invasion ability of 786-O and
ACHN cells treated with si-NC or si-ADPGK. Data are expressed as SD ± mean. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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survival values, suggesting that most glycometabolism-related genes

are risk genes in ccRCC that promote tumour cell growth. To

explore the role of targeted therapy as well as immunotherapy in

ccRCC, we further analysed the targeted drug and immunotherapy

predictions, and from the results, we observed that targeted drug

therapy in ccRCC was closely associated with changes in gene

expression levels in the glucose metabolism pathway. After

clarifying the correlation between immune cells and glucose

metabolism genes, we verified the correlation of glucose

metabolism scores with the immune checkpoint genes PDCD1

and CTLA4 and compared the p-value predictions of two clusters

of glucose metabolism scores after treatment with PD-1 and

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). The

results suggest that glucose metabolism is important in tumour

immunotherapy, which is uniform with former findings (36). These

findings prov ide new ideas for the deve lopment of

immunotherapies as well as drugs targeted for the treatment

of ccRCC.

Subsequently, we chose ADPGK as a follow-up study gene. The

results of in vitro experiments showed that ADPGK is significantly

important for ccRCC cell proliferation and migration, and it would

promote the proliferation and migration of ccRCC cells. ccRCC

CPTAC database samples results further demonstrated that

ADPGK was obviously extremely expressed and the upper the

expression of ADPGK, the inferior the prognosis of ccRCC.
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ADPGK, also known as ADP-dependent glucose kinase, is an

enzyme involved in the glycolytic pathway. Unlike typical ATP-

dependent hexokinases (HKs), it catalyses the phosphorylation of

glucose to glucose 6-phosphate using ADP rather than ATP as the

phosphate donor (37). The role of ADPGK on the growth of ccRCC

is unclear and few studies have been conducted. 2012, Richter et al.

showed that silencing or overexpression of ADPGK in lung cancer

cells did not affect anaerobic glycolysis but reduced clone formation

in lung cancer cells (38). 2023, Xu et al. studied the expression and

role of ADPGK in prostate cancer cells in in vitro and in vivo

experiments, and their results proved that overexpression of

ADPGK promotes a malignant phenotype, and inhibition of

ADPGK suppresses the proliferation and migration of prostate

cancer cells. In addition, their experiments demonstrated that

ADPGK could promote glycolysis in prostate cancer cells through

activation of the ALDOC-AMPK pathway (39). Due to the high

degree of heterogeneity between different tumours, it is uncertain

whether these two contradictory conclusions apply to ccRCC and

whether ADPGK can adjust glycolysis in ccRCC cells. Our research

affords preliminary proof that ADPGK is a driver of ccRCC

progression and that its high expression leads to a poor prognosis

in ccRCC patients.

In order to explore better prognostic models, this study

constructed the rfsrc model, which outperformed the previously

routinely used coxph in terms of predictive power and had
FIGURE 8

(A-D) Glucose metabolism scores obtained based on the SURVEX package, constructing both the random forest model and the COX regression
model of the MOMC-VM and combining it with machine learning.
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more favourable predictive power for external data. In addition, the

rfsrc predictions showed that the importance of glucose metabolism

scores increased with time, which is consistent with our findings.
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13. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA):
an immeasurable source of knowledge. Contemp Oncol (Poznan Poland). (2015) 19:
A68–77. doi: 10.5114/wo.2014.47136
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1559887/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1559887/full#supplementary-material
https://doi.org/10.3322/caac.21387
https://doi.org/10.1016/j.ctrv.2007.12.001
https://doi.org/10.1158/1535-7163.MCT-17-1299
https://doi.org/10.1038/s41580-019-0123-5
https://doi.org/10.1038/nrc3038
https://doi.org/10.1038/nrc3038
https://doi.org/10.1016/j.tibs.2016.01.004
https://doi.org/10.1038/nrneph.2017.59
https://doi.org/10.1038/nrneph.2017.59
https://doi.org/10.1080/14737159.2019.1607729
https://doi.org/10.1080/01635581.2017.1295090
https://doi.org/10.1016/j.cmet.2018.07.020
https://doi.org/10.1016/j.semcancer.2022.10.004
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.3389/fonc.2025.1559887
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1559887
14. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenet. (2019)
11:123. doi: 10.1186/s13148-019-0730-1

15. Ishwaran H LM, Kogalur UB. Randomforestsrc: variable importance (VIMP)
with subsampling inference vignette. (2021).

16. Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat Softw.
(2010) 36(11):1–13. doi: 10.18637/jss.v036.i11

17. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

18. Román Palacios C, Wright A, Uyeda J. treedata.table: a wrapper for data.table
that enables fast manipulation of large phylogenetic trees matched to data. PeerJ. (2021)
9:e12450. doi: 10.7717/peerj.12450

19. Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT:
Pharmacometrics Syst Pharmacol. (2013) 2:e79. doi: 10.1038/psp.2013.56

20. YangW, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics
of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in
cancer cells. Nucleic Acids Res. (2013) 41:D955–61. doi: 10.1093/nar/gks1111

21. Gao Y, Kim S, Lee YI, Lee J. Cellular stress-modulating drugs can potentially be
identified by in silico screening with connectivity map (CMap). Int J Mol Sci. (2019)
20:5601. doi: 10.3390/ijms20225601

22. Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, et al. CCL5 of
glioma-associated microglia/macrophages regulates glioma migration and invasion via
calcium-dependent matrix metalloproteinase 2. Neuro-oncology. (2020) 22:253–66.
doi: 10.1093/neuonc/noz189

23. Meng L, Collier KA, Wang P, Li Z, Monk P, Mortazavi A, et al. Emerging
immunotherapy approaches for advanced clear cell renal cell carcinoma. Cells. (2023)
13:34. doi: 10.3390/cells13010034

24. Karam JA, Devine CE, Urbauer DL, Lozano M, Maity T, Ahrar K, et al. Phase 2
trial of neoadjuvant axitinib in patients with locally advanced nonmetastatic clear cell
renal cell carcinoma. Eur Urol. (2014) 66:874–80. doi: 10.1016/j.eururo.2014.01.035

25. Iyevleva AG, Novik AV, Moiseyenko VM, Imyanitov EN. EGFR mutation in
kidney carcinoma confers sensitivity to gefitinib treatment: a case report. Urol Oncol.
(2009) 27:548–50. doi: 10.1016/j.urolonc.2008.03.022

26. Gross-Goupil M, Bernhard JC, Ravaud A. Lapatinib and renal cell carcinoma.
Expert Opin Investig Drugs. (2012) 21:1727–32. doi: 10.1517/13543784.2012.713935
Frontiers in Oncology 14
27. Warburg O. On the origin of cancer cells. Sci (New York NY). (1956) 123:309–14.
doi: 10.1126/science.123.3191.309

28. Warburg O. On respiratory impairment in cancer cells. Sci (New York NY).
(1956) 124:269–70. doi: 10.1126/science.124.3215.269

29. Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor
cells. Semin Cancer Biol. (2022) 86:1216–30. doi: 10.1016/j.semcancer.2022.09.007

30. Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism
from a liver-centric perspective. Exp Mol Med. (2016) 48:e218. doi: 10.1038/
emm.2015.122

31. Somsák L. Inhibition of glycogenolysis towards antidiabetic and other therapies.
Mini Rev Med Chem. (2010) 10:1091–2. doi: 10.2174/1389557511009011091

32. Gerich JE. Role of the kidney in normal glucose homeostasis and in the
hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med: J Br
Diabetic Assoc. (2010) 27:136–42. doi: 10.1111/j.1464-5491.2009.02894.x

33. Qi X, Li Q, Che X, Wang Q, Wu G. The uniqueness of clear cell renal
cell carcinoma: summary of the process and abnormality of glucose metabolism and
lipidmetabolism in ccRCC. Front Oncol. (2021) 11:727778. doi: 10.3389/fonc.2021.727778

34. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and
validation of a radiomics nomogram for preoperative prediction of lymph node
metastasis in colorectal cancer. J Clin Oncol: Off J Am Soc Clin Oncol. (2016)
34:2157–64. doi: 10.1200/JCO.2015.65.9128

35. Sekhar CR, Minal, Madhu E. Mode choice analysis using random forrest
decision trees. Transp Res Procedia. (2016) 17:644–52. doi: 10.1016/j.trpro.2016.11.119

36. Ucche S, Hayakawa Y. Immunological aspects of cancer cell metabolism. Int J
Mol Sci. (2024) 25:5288. doi: 10.3390/ijms25105288

37. Guo N, Luo Q, Zheng Q, Yang S, Zhang S. Current status and progress of
research on the ADP-dependent glucokinase gene. Front Oncol. (2024) 14:1358904.
doi: 10.3389/fonc.2024.1358904

38. Richter S, Richter JP, Mehta SY, Gribble AM, Sutherland-Smith AJ, Stowell KM,
et al. Expression and role in glycolysis of human ADP-dependent glucokinase.Mol Cell
Biochem. (2012) 364:131–45. doi: 10.1007/s11010-011-1212-8

39. Xu H, Li YF, Yi XY, Zheng XN, Yang Y, Wang Y, et al. ADP-dependent
glucokinase controls metabolic fitness in prostate cancer progression. Mil Med Res.
(2023) 10:64. doi: 10.1186/s40779-023-00500-9
frontiersin.org

https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.7717/peerj.12450
https://doi.org/10.1038/psp.2013.56
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.3390/ijms20225601
https://doi.org/10.1093/neuonc/noz189
https://doi.org/10.3390/cells13010034
https://doi.org/10.1016/j.eururo.2014.01.035
https://doi.org/10.1016/j.urolonc.2008.03.022
https://doi.org/10.1517/13543784.2012.713935
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.124.3215.269
https://doi.org/10.1016/j.semcancer.2022.09.007
https://doi.org/10.1038/emm.2015.122
https://doi.org/10.1038/emm.2015.122
https://doi.org/10.2174/1389557511009011091
https://doi.org/10.1111/j.1464-5491.2009.02894.x
https://doi.org/10.3389/fonc.2021.727778
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1016/j.trpro.2016.11.119
https://doi.org/10.3390/ijms25105288
https://doi.org/10.3389/fonc.2024.1358904
https://doi.org/10.1007/s11010-011-1212-8
https://doi.org/10.1186/s40779-023-00500-9
https://doi.org/10.3389/fonc.2025.1559887
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Machine learning-based analysis identifies glucose metabolism-related genes ADPGK as potential diagnostic biomarkers for clear cell renal cell carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Gather and analysis of sugar metabolism gene sets
	2.2 Recognition of illness characterisation genes
	2.3 Glucose metabolism score constructed by GSVA algorithm
	2.4 Estimation of immune cell infiltration
	2.5 Prediction of targeted therapy and immunotherapy
	2.6 Glucose metabolism mRNA screening reveals prognosis
	2.7 Statistical analyses
	2.8 Cell culture
	2.9 siRNA transfection
	2.10 RT-qPCR assay
	2.11 Cell proliferation determination
	2.12 Wound healing tests
	2.13 Cell migration and invasion assays
	2.14 Western blot assay

	3 Results
	3.1 Machine learning algorithm to identify target gene ADPGK
	3.2 These three clusters correspond to the expression of genes related to sugar metabolism
	3.3 Analysis of immune infiltration and immune checkpoint blockade
	3.4 Predictive model analysis and validation
	3.5 Predictive analysis of immunotherapy
	3.6 Silencing of the ADPGK gene attenuates glycolysis and promotes cell death in 786-O and ACHN cells
	3.7 Machine learning-based prognostic judgement for ccRCC patients

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


