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Background: Colorectal cancer is the third most common malignant tumor with
the third highest incidence rate. Distant metastasis is the main cause of death in
colorectal cancer patients. Early detection and prognostic prediction of colorectal
cancer has improved with the widespread use of artificial intelligence technologies.

Purpose: The aim of this study was to comprehensively evaluate the accuracy
and validity of Al-based imaging data for predicting distant metastasis in
colorectal cancer patients.

Methods: A systematic literature search was conducted to find relevant studies
published up to January, 2024, in different databases. The quality of articles was
assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. The
predictive value of Al-based imaging data for distant metastasis in colorectal cancer
patients was assessed using pooled sensitivity, specificity. To explore the reasons for
heterogeneity, subgroup analyses were performed using different covariates.

Results: Seventeen studies were included in the systematic evaluation. The
pooled sensitivity, specificity, and AUC of Al-based imaging data for predicting
distant metastasis in colorectal cancer patients were 0.86, 0.82, and 0.91. Based
on QUADAS-2, risk of bias was detected in patient selection, diagnostic tests to
be evaluated, and gold standard. Based on the results of subgroup analyses,
found that the duration of follow-up, site of metastasis, etc. had a significant
impact on the heterogeneity.

Conclusion: Imaging data images based on artificial intelligence algorithms have
good diagnostic accuracy for predicting distant metastasis in colorectal cancer
patients and have potential for clinical application.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier
PROSPERO (CRD42024516063).

colorectal cancer, distant metastasis, CT, MR, ultrasound, artificial intelligence, deep
learning, machine learning
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Introduction

Colorectal cancer (CRC) ranks third in terms of frequency and
has the third-highest occurrence rate and second-highest death rate
globally (1). The primary reason for mortality in patients with
colorectal cancer is distant metastasis. Even with surgical removal,
approximately 50% of patients experience metastasis, and around
25% of colorectal cancer patients already have distant metastasis
when initially diagnosed (2, 3). The primary sites of metastasis
include the liver, lungs, peritoneum, and peripheral lymph nodes.
Additionally, there may be localized metastases to the bone, adrenal
glands, ovaries, brain, pancreas, and spleen (4). The five-year
survival rate for patients diagnosed with stage I-II colorectal
cancer is between 88% and 95%. In contrast, patients with
metastatic colorectal cancer have a survival range of 3 months to
5 years, with around 60% of them dying within 1-2 years (5).
Hence, doing an early evaluation and forecast of distant metastases
in patients with colorectal cancer is advantageous for enhancing
prognostic outcomes and mitigating the possible hazards linked to
aggressive multimodal therapy (6).

Medical imaging is frequently employed to visualize the
dissemination of tumors and measure their severity, offering
significant data for diagnosis, staging, and treatment planning.
For instance, contrast-enhanced ultrasound (CEUS),
multidetector computed tomography (MDCT), magnetic
resonance imaging (MRI), and fluorodeoxyglucose (FDG)
positron emission tomography (PET)/CT exhibit a sensitivity and
specificity of 80% and 97% respectively in the detection of liver
metastases from colorectal cancer (7). Nevertheless, the task of
accurately and promptly diagnosing medical conditions using
imaging techniques is arduous because of the imbalance between
the number of doctors and patients and the complexity of
radiologic diagnosis.

Artificial Intelligence (AI) has become an essential component
of healthcare in recent years, utilizing algorithms, machine learning,
computers, and data science. Furthermore, using Al has led to a rise
in Al-driven studies, as AI can measure elements of imaging that
are imperceptible to the human eye. This enables the early detection
of tumors or the spread of cancer cells in imaging images (8).
Artificial intelligence (AI), which encompasses deep learning (DL),
refers to the programming of computers to imitate human
intelligence. Semi-automated AI involves using conventional
machine learning methods, including radiomics, in which the
radiologist is required to carry out specific preprocessing tasks on
the picture to ensure its compatibility with the algorithm. Neural
networks are a specific type of deep learning model that imitates the
functioning of the human visual cortex. The neural network layer
comprises neurons that identify various image characteristics
through edge, color, and texture filters (9-11). Artificial
intelligence-driven radiomics applies sophisticated computational
methods to extract several investigator-defined characteristics from
medical pictures (12). Although radiomics models have been
somewhat successful in predicting CRC lymph node metastasis,
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previous studies conducted by Ding et al. and Wang et al. have
demonstrated that deep learning algorithms can detect more
nuanced patterns that are not discernible by conventional
radiological and statistical techniques (13, 14).

There is currently a lack of effective methods for predicting the
distant spread of colorectal cancer, which could help create
personalized treatment plans for high-risk patients undergoing
extensive surgery. Al technology has the potential to detect which
colorectal cancer patients are in danger of developing distant
metastasis before it occurs. Despite numerous research studies on
the use of Al in evaluating colorectal cancer metastasis, a dearth of
recent systematic reviews thoroughly examine the effectiveness of
Al-based medical imaging in accurately predicting outcomes. This
study aims to conduct a systematic review and meta-analysis to
analyze and summarize the existing research data using Al-assisted
medical imaging, specifically CT, MRI, and ultrasound, to assess
colorectal cancer metastasis. The study also aims to evaluate these
imaging techniques’ diagnostic accuracy, sensitivity, and specificity.
This will enable clinicians to forecast patients’ prognostic
information better and choose treatment plans more precisely.

Methods

This systematic review followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses of Diagnostic Test
Accuracy Studies (PRISMA-DTA) guidelines (15). This study is
registered with the Prospective International Registry of Systematic
Evaluation (PROSPERO) (ID: CRD42024516063).

Search strategies and literature screening

We conducted a comprehensive search of various databases,
including PubMed (Medline), Embase, the Cochrane Library, and
Web of Science, to identify studies related to the topic up to January
31, 2024. We used a combination of Medical Subject Headings
(MeSH)/Emtree Glossary and free-form words as search terms for
titles and abstracts. Additionally, we manually searched the
reference lists of relevant studies, reviews, and meta-analyses to
ensure that no potential research literature was missed. We did not
restrict our search to any particular year of publication but only
included studies published in English. The search keywords we used

» « » <« »

were “colorectal cancer,” “metastasis,” “artificial intelligence,” “deep

» o«

learning,” “machine learning,” and “radiomics.” For more
information on the search keywords used for each database, see
Supplementary Material 1.

All studies retrieved from relevant databases were collated in
Endnote X9.3.3 (Clarivate Analytics, London, UK), and duplicates
were removed. Two independent researchers independently
screened the titles and abstracts of all retrieved studies, eliminated
articles that did not meet eligibility criteria, and assessed the full text

for final inclusion. Any disagreements in the screening were
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resolved through discussion or consultation with a third researcher.

All studies retrieved from relevant databases were collated in
Endnote X9.3.3 (Clarivate Analytics, London, UK), and duplicates
were removed. Two independent researchers independently
screened the titles and abstracts of all retrieved studies, eliminated
articles that did not meet eligibility criteria, and assessed the full text
for final inclusion. Any disagreements in the screening were
resolved through discussion or consultation with a third researcher.

Inclusion and exclusion criteria

Articles meeting the following criteria were included: (1)
inclusion of patients with histopathologic diagnosis of colorectal
cancer; (2) development or use of artificial intelligence algorithms
based on imaging data such as CT, MRI, or ultrasound to assess
distant metastasis; (3)research employing radiomics, machine
learning, or deep learning methodologies for the prediction of
metastasis;(4) studies detailing sensitivity, specificity, or receiver
operating characteristic (ROC) curve analyses evaluating the
effectiveness of Al-based imaging models in predicting the
reliability of distant metastasis in colorectal cancer; (5) the study
was an observational study (retrospective or prospective),
randomized or non-randomized controlled trial; (6) language
restriction to English.

Studies were excluded based on the following criteria: (1) case
reports, reviews, review articles, editorials, letters, and conference
abstracts; (2) animal studies; (3) studies that were not relevant to
this study; (4) studies not based on imaging data; and (5) research
relying solely on conventional imaging interpretation, excluding
artificial intelligence components. By applying the above inclusion
and exclusion criteria, we aimed to ensure the studies’ quality and
reliability and minimize potential biases and errors.

Data extraction and quality assessment

Two researchers performed data extraction independently, and
a third researcher resolved their difterences. The results of the data
extraction included the following: (1) last name of the first author;
(2) year of publication; (3) source of participants, country; (4) type
of study; (4) number of patients, age; (5) Sample grouping method
and model validation method; (6) duration of follow-up; (7) site of
metastatic tumor; (8) sample size of metastasis; (9) type of imaging
data; (10) input data; (11) selection of model features; (12) specific
algorithm of artificial intelligence used for constructing the model;
and (13) area under the receiver operating curve (AUC) of the
subjects and other parameters. The following data were extracted
from the included studies: the data collected were four-cell
tabulated data (2 x 2), including true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). When comparing
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the diagnostic performance of different algorithms for the same
sample, the algorithm that produced the best classification results
was selected. If there were no sensitivities or specificities in a study,
we used Engauge Digitizer (version 12.1, Mark Mitchell) to
calculate sensitivities and specificities at the maximum of the
Youden Index based on the receiver operating characteristic
(ROC) curves from the article. If there were more than two
models for the same group of patients in a study, the model with
the higher AUC value was included in our meta-analysis.

The methodological quality and risk of bias of the included
studies were assessed by the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) (16), which assessed a total of
four domains, including the selection of cases, the experiments
to be evaluated, the gold standard, and the case flow and
progression. All components are assessed in terms of risk of
bias, and landmark questions are included in the risk of bias

»

judgment, and according to the answer of “yes,” “no,” or “not
sure” to the relevant landmark question included in each
component, the bias can correspond to the risk of bias. The
risk of bias was assessed as “low,” “high,” or “uncertain”

» o«

no,

»

according to the “yes, or “uncertain” answers to the
relevant landmark questions included in each section. Any
disagreement was resolved by consensus. The evaluation was

performed using Revman 5.3 (Cochrane Collaboration, UK).

Statistical analysis

Stata 14.2 (StataCorp LP, College Station, TX, USA) was used
for the data analysis. Due to the significant heterogeneity of this
study, we combined the relevant diagnostic accuracy indicators,
including sensitivity, specificity, diagnostic odds ratio (DOR), NLR,
and PLR, using a bivariate random-effects model. The model’sAUC
was calculated using the summary receiver operating characteristic
(SROC). A threshold effect test was conducted using Meta-disc
version 1.4 (Hospital Ramon y Cajal and Complutense University of
Madrid, ESP). The presence or absence of a threshold effect was
determined by calculating the Spearman’s correlation coefficient
between the logarithm of sensitivity and the logarithm of (1-
specificity). A strong positive correlation indicated the presence of
a threshold effect. The heterogeneity of the results of the included
studies was assessed using Cochran’s Q test, combined with 2
statistics. If heterogeneity was evident, factors controlling model
accuracy were identified by meta-regression using pre-specified
covariates: imaging modality, study setting, validation method,
site of transfer, type of Al algorithm, and so on. Deek funnel
plots assessed the publication bias of the included studies, and
sensitivity analyses were used to assess the stability of the results.
Post-test probabilities were calculated to assess clinical utility, and
Fagan plots were drawn. The combined effect value of multiple
studies was statistically significant if P < 0.05.
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Results
Literature search

Initially, 858 articles (141 in PubMed, 115 in Embase, 32 in
Cocharne Library, 570 in Web of Science) were identified through
PubMed, Embase, Cocharne Library, and Web of Science databases
using keywords. A total of 60 duplicates were removed, and 74
records were excluded after screening titles and abstracts because
they were abstracts, conference proceedings, letters, reviews, meta-
analyses, or case reports. The remaining 724 studies were reviewed
in full text and screened against the inclusion and exclusion criteria,
resulting in the inclusion of 17 studies. A summary of the PRISMA

flowchart is shown in (Figure 1).

Literature quality assessment

QUADAS-2 was used to examine the risk of bias and applicability
issues of the included studies (Figure 2). Regarding patient selection,
two studies showed a high risk of bias because they did not avoid
inappropriate patient exclusion. Four studies had an unclear risk of

10.3389/fonc.2025.1558915

bias in “trials to be evaluated” because they did not clearly describe
how their index test was performed and interpreted and did not use
pre-specified thresholds. Three studies had an unclear risk of bias in
the “gold standard” domain because the blinding setting was not
considered. Finally, regarding the risk of bias in the area of “process
and progress,” almost all studies were considered to have a low risk of
bias. Overall, concerns about applicability were low.

Characteristics of included studies

These 17 studies (17-33) included 5474 patients, with an age
range of 19-89 years for inclusion and a follow-up time range of 24—
60 months, with eight studies not mentioning the follow-up time.
Of the included studies, 14 were conducted in China, one in Italy,
one in New Zealand, and one in South Korea. All studies were
retrospective except for one prospective study (24). Of these studies,
14 were single-center, and the remaining three were multicenter
(22,27, 32). Almost all of the models in these studies were internally
validated, with only three studies being externally validated (23, 27,

—
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FIGURE 1
PRISMA flowchart of literature screening.
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Risk of bias and applicability concerns according to Quality Assessment of Diagnostic Accuracy Studies-2 tool: (a) per study assessment (b) per

domain summary.

32). The algorithms in these studies essentially randomized patients
into training and validation groups in a 7:3 ratio. Table 1 further
summarizes the characteristics of the included studies and the
patient statistics.

Distant metastasis of colorectal cancer was reported in all
studies, and liver metastasis was the most common site of
metastasis with a metastasis rate of 10.85% (594/5474). In
addition, lung metastasis was 2.43% (133/5474), peritoneal
metastasis was 0.05% (3/5474), and bone metastasis was 1.02%
(56/5474). Table 2 summarizes these findings.

CT and MRI were the imaging modalities used in most of the
studies, with eight studies each using them and the remaining one
using US (33). Due to the high dimensionality and complexity of
imaging data using different sequences, feature selection reduces the
computational power required to perform such complex
analyses.LASSO is often used for feature selection (18, 21, 24, 26,
30-33). Other methods often used for dimensionality reduction
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include analysis of variance (ANOVA) and Mann-Whitney U test
(MW) (19), principal component analysis (PCA) (20), recursive
feature elimination (RFE) (23), and Pierce’s correlation coefficient
(25, 28, 29). For the problem of a very unbalanced dataset, Lee S and
Li Y et al. (20, 23) researchers used the Synthetic Minority
Oversampling Technique (SMOTE) to increase the number of
minority samples in the dataset. Jin J et al. (25) balanced the
positive and negative samples by reducing the samples and using
Min Max to normalize the feature matrix. Different authors used
different artificial intelligence algorithms for modeling, and all
algorithms showed good predictive results in validation (AUC >
0.7). Among the 17 eligible studies, the commonly used algorithms
are Random Forest (RF), Logistic Regression (LR), Support Vector
Machines (SVM), Convolutional Neural Networks (CNN), Multi-
Layer Perceptron Networks (MLP), etc., and the detailed
information is shown in Table 3 and Supplementary Material 2. 3
of the included studies (20, 25, 27) developed neural networks. Lee S
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TABLE 1 Baseline data from included studies.

10.3389/fonc.2025.1558915

Studies Data source = Country Number = Age (years) Sample group- Validation Follow-up
of ing method method (months)
Patients
Li, 2019 (17) Retrospective = Single center China 48 63.33 + 11.21 1(TC):1(VC) Cross-validation NR
Liang, 2019 (18) Retrospective = Single center China 108 54.5+ 109 54(LM):54 Cross-validation 24
(Nonmetastasis)
Shu, 2019 (19) Retrospective = Single center China 192 NR 7(TC):3(VC) Cross-validation NR
Lee, 2020 (20) Retrospective = Single center Korea 2019 63.1 +9.5 7(TC):3(VC) Cross-validation 60
Li, 2020 (21) Retrospective = Single center China 100 59.5 (52.0-68.5) 8(cross-validation Cross-validation NR
set):2(test
set)
Taghavi, 2021 (22) Retrospective = Multicenter The Netherlands | 91 64 + 11 split into a training Cross-validation 24
set
(n=70) and
independent
validation set
(n=21)
Li, 2022 (23) Retrospective = Single center China 323 61 (53-69) 171(TC);77 external NR
(IVC);75(EVC) validation
Sun, 2022 (24) prospective Single center China 150 Range: 51-62 50(initial LM):50 train-test split 24
(follow-up
LM):50
(Nonmetastasis)
Jin, 2023 (25) Retrospective = Single center China 614 58.0 (49.3, 68.0) 7(TC):3(VC) Cross-validation NR
Li M, 2020 (26) Retrospective = Single center China 148 59.7 + 11.7 7(TC):3(VC) train-test split 36
Liu, 2021 (27) Retrospective = Multicenter China 235 54.82+ 10.85 170(primary external 36
cohort);65(EVC) validation
Liu, 2019 (28) Retrospective =~ Single center China 177 64 (21-88) 7(TC):3(VC) train-test split NR
Chiloiro, 2020 (29) Retrospective = Single center Ttaly 213 64 (26-83) 90%(Training and Cross-validation 60
cross-validation
data):10%
(Testing data)
Hu, 2019 (30) Retrospective = Single center China 194 58.6 + 10.73 y 7(TC):3(VC) Cross-validation 24
Liu, 2020 (31) Retrospective = Single center China 169 57.0 £ 10.6 7(TC):3(VC) train-test split NR
Huang, 2023 (32) Retrospective = Multicenter China 454 5547 + 11.43 8(TC):2(IVC); external 36
EVC(81) validation
Mou, 2023 (33) Retrospective = Single center China 239 Range: 19-89 7(TC):3(VC) Cross-validation NR

EVC, independent external validation cohort; LM, liver metastasis; NR, not reported; IVC, internal validation cohort; TC, training cohort; VC, validation cohort.

et al. (20) developed the neural networks by utilizing a pre-trained
convolutional neural network VGG16 for feature extraction of
images, which did not require further training. For model
construction, Jin J et al. (25) proposed an artificial neural network
model (ANNM). The ANN algorithm can detect complex nonlinear
relationships between dependent and independent variables and
does not require much formal statistical training. It can provide a
variety of training algorithms to improve the model’s performance.
It is worth mentioning that the CNN proposed by Liu X et al. (27) is
based on the residual structure, which can solve the problem of
gradient vanishing, and at the same time, in order to make the
dataset contain complete tumor information, the use of early
stopping and appropriate dropout can effectively improve the
robustness of the model. The results showed that the AUC of the
CNN model in the validation cohort was 0.892.

Frontiers in Oncology

In machine learning models, a hyperparameter is an adjustable
parameter that needs to be initialized before training the model and
is critical to its performance. Taghavi M et al. (22) used Bayesian
Hyperparameter Optimization. This iterative search procedure uses
simpler machine learning algorithms to find the highest-performing
hyperparameter combinations.

Meta-analysis

We performed a meta-analysis of the performance metrics of
the predictive models. Diagnostic threshold analysis showed no
significant threshold effect (Spearman correlation coefficient =
0.429, p = 0.13), but the results indicated a high degree of
heterogeneity (Q = 34.4 with 2 degrees of freedom, p = 0.00; I* =
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TABLE 2 Summary analysis of distant metastases by site.

10.3389/fonc.2025.1558915

Studies Total distant met- Number Number Number of pul- Peritoneal Bone Synchronous
number astatic site of metastasis = of hepatic monary metastasis metastasis metastasis = metastasis
of patients metastasis

Li, 2019 (17) 48 Hepatic 24 24 NR NR NR NR

Liang, 108 Hepatic 54 54 NR NR NR NR

2019 (18)

Shu, 2019 (19) 192 Hepatic 111 111 NR NR NR NR

Lee, 2020 (20) 2019 Hepatic 100 100 NR NR NR NR

Li, 2020 (21) 100 Hepatic 50 50 NR NR NR NR

Taghavi, 91 Hepatic 24 24 NR NR NR NR

2021 (22)

Li, 2022 (23) 323 Hepatic 23 23 NR NR NR NR

Sun, 2022 (24) 150 Hepatic 100 100 NR NR NR NR

Jin, 2023 (25) 614 Bone 53 NR NR NR 53 NR

Li M, 2020 (26) 148 Multiple 51 15 24 NR NR 12

Liu, 2021 (27) 235 Multiple 68 NR NR NR NR NR

Liu, 2019 (28) 177 Multiple 59 27 16 3 3 11

Chiloiro, 213 Multiple 72 NR NR NR NR NR

2020 (29)

Hu, 2019 (30) 194 pulmonary 93 NR 93 NR NR NR

Liu, 2020 (31) 169 Hepatic 32 32 NR NR NR NR

Huang, 454 Multiple 121 NR NR NR NR NR

2023 (32)

Mou, 2023 (33) | 239 Hepatic 34 34 NR NR NR NR

NR, not reported.

94, 95% CI: 89- 99), for which a random-effects model was used to
combine effect sizes. The pooled sensitivity and specificity were 0.86
(95% CI: 0.81-0.89) and 0.82 (95% CI: 0.78-0.86), respectively. The
pooled diagnostic ratio, diagnostic score, positive likelihood ratio,
and negative likelihood ratio were 28.08 (95% CI, 19.21-41.04), 3.34
(95% CI, 2.96-3.71), 4.88 (95% CI, 3.88-6.14), and 0.17 (95%
CL0.13-0.23), respectively (Figures 3-5).

In addition, we plotted sROC curves to evaluate the imaging
model’s performance based on the Al algorithm in predicting distant
metastasis of colorectal cancer (Figure 6). The results showed that the
Al algorithm-based imaging model performed well in predicting
distant metastasis of colorectal cancer with an overall AUC of 0.91.

To determine the source of heterogeneity, we performed a
meta-regression analysis. Table 4 shows the results of the meta-
regression analysis, according to which our algorithm for
considering the duration of follow-up, the site of metastasis
(bone, peritoneal metastasis), and the lasso-constructed model
were the sources of heterogeneity (p-value less than 0.05 for all).
Our subgroup analysis showed that models based on large sample
sizes had higher specificity (83% vs. 82%, p-value = 0.00). Regarding
imaging modalities, ultrasound had higher sensitivity than other
imaging modalities (97% vs. 85%, p-value = 0.04), and MR had
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higher specificity (85% vs. 80%, p-value = 0.00). Validation of the
model using cross-validation had higher specificity (83% vs. 82%, p-
value = 0.00), and validation of the model by other methods had
higher sensitivity (85% vs. 84%, p-value = 0.00). Models that
predicted (e.g., liver and lung metastases) but not multiple
metastases, non-bone, or peritoneal metastases had higher
sensitivity (p-value < 0.05), and models that predicted lung
metastases had higher specificity (p-value < 0.05). In addition,
studies using lasso-constructed models had higher sensitivity (p-
value = 0.02) than those using other methods, whereas using other
methods, non-SVM, LR, and Lasso-constructed models had higher
specificity (p-value = 0.00).

Fagan nomogram analysis

The Al-based imaging model could increase the post-test
probability of predicting metastasis with a PLR of 5 from 50% to
83% when the pre-test was positive. When the pre-test was
negative, the NLR was 0.17, and the post-test probability was 15%
(Figure 7). These findings suggest that AI models are helpful in
clinical practice.
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TABLE 3 Basic features of predictive models for imaging data based on artificial intelligence algorithms.

e @ uayd

80

[SSIRVFETM I

Studies Input data Feature selection Al algorithm Accuracy Specificity Sensitivity
Li, 2019 (17) CT Portal venous heterogeneity;entropy,;energy of RELIEFF, SVM 0.91 0.95 0.86 NR NR
phase images vertical wavelet image; diameter of tumor
Liang, 2019 (18) MR high-resolution oblique Firstorder; GLCM;GLRLM;GLSZM; SVM, LR 0.80 0.76 0.83 NR NR
axial (perpendicular to
the long axis
of the tumor) T2WI
without fat saturation;
axial
three-dimensional liver
acquisition with
volume acceleration
multienhanced
MR images
Shu, 2019 (19) MR T2WI GLCMEntropy_ALLDirection_offset]_SD; LASSO, PCA, LR 0.89 0.92 0.79 0.95 NR NR
GLCMEntropy_ALLDirection_offset1;
ShortRunEmphasis_ALLDirection_offset7_SD;
ShortRunEmphasis_angle35_offset7;
LongRunEmphasis_angle45_offset7;
GreyLeveLNonuniformity_ALLDirection_offset7_SD;
RunLengthNonuniformity_ALLDirection_offset4_SD
Lee, 2020 (20) CT non-contrast Clinical features(age,gender, T stage and N stage); VGG, PCA, LR, REC 0.75 NR NR NR NR NR
abdominal CT imaging features(sequential summation of PC1
scan image to PC10)
Li, 2020 (21) CT Portal venous Firstorder; GLDM;GLCM;GLRLM;GLSZM;IDMN LASSO, SVM, RFC, 0.90 + 0.02 NR 0.79 + 0.04 0.85 + 0.02 0.85 + 0.02 0.81 +0.03
phase images GBDT, LR, MLP, SCLF
Taghavi, 2021 (22) CT Portal venous Firstorder; GLCM;GLRLM;GLSZM; MGTDM;GLDM RF, DT, ML 0.95 NR NR NR NR NR
phase images
Li, 2022 (23) CT Portal venous Three original image features, two wavelet SMOTE, MLP, 0.85 0.74 0.77 0.81 0.79 0.53
phase images image features and one LoG image feature. RFE, SVM
Sun, 2022 (24) CT Portal venous NR LASSO, LR, LD, KNN, NR 0.78 0.76 0.81 NR NR
phase images NB, DT, SVM
Jin, 2023 (25) MR DWI GLCM RF, DT, ANN, SVM 0.93 NR NR NR NR NR
Li M, 2020 (26) CT Portal venous MaxIntensity; LASSO, LR 0.84 0.98 0.70 0.92 NR NR
phase images RelativeDeviation;Inertia_AllDirection_offset7_SD
Liu, 2021 (27) MR T2WT; prognostic-related imaging information ResNet18 0.93 NR 0.89 0.86 NR NR
DWI
Liu, 2019 (28) MR oblique axial mrN staging, RF, LR 0.83 0.87 0.94 0.72 0.87 0.87
T2WI images SphericalDisproportion, CA199, GLCMEntropy_
angle90_offset7, GLCMEnergy_anglel135 _offset7,
Inertia_AllDirection_offsetl_SD, CEA,SurfaceArea,
GLCMEntropy_ angle0_offset4, and gender.

(Continued)
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TABLE 3 Continued

Specificity Sensitivity

Accuracy

€
<
k=
<
o
o
®
<

Feature selection

Input data

Image

0.81 0.86 0.71 0.86 0.71

NR

LR

medianFD 30,60.delta; F_szm.lzlge 1.1.delta;

T2-weighted fast spin-

MR
echo 3D

Chiloiro, 2020 (29)

ph.pca.flatness.pre; F_cm.clust.prom 0.6.pre

F_mor;

highresolution images

0.88 091 0.85 0.84 0.93

0.93

LASSO, LR

Hist; GLCM;GLRLM;FD;LoG

Reconstructed images

CT

Hu, 2019 (30)
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0.82 0.79 0.90 0.96 0.60

0.92

LASSO

exponential_ngtdm_Coarseness;

exponential_glszm_La

high-resolution T2WT

MR

Liu, 2020 (31)

... ighGrayLevelEmphasis;

wavelet-LLH_firstorder_Median’

wavelet-LHH_gldm_DependenceVariance;
wavelet-LLH_glem_ClusterShade

0.89 0.81 0.81 0.82 0.93 0.59

LASSO, LR, ComBat

GLCM;GLRLM;GLSZM; GLDM; NGTDM

MR T2WI, DWI, CE-T1WI

Huang, 2023 (32)

0.77 0.73 0.96 NR NR

0.92

LASSO, LR

Hist;GLCM; GLSZM; Firstorder;

ultrasound images

Ultrasound

Mou, 2023 (33)

AL artificial intelligence; ANN, artificial neural network; AUC, area under the curve; CE-T1WI, contrast-enhanced T1-weighted imaging; CNN, convolutional neural network; CT, computed tomography; DT, decision tree; DWI, diffusion-weighted imaging; FD, fractal
dimension; GBDT, gradient boosting decision tree; GLCM, gray-level co-occurrence matrices; GLDM, gray level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; Hist, histogram; KNN, k-nearest neighbor; Lasso, least

absolute shrinkage and selection operator; IDMN, inverse difference moment normalized; LR, logistic regression; LD, linear discriminant; LOG, laplacian of gaussian filter; MRI, magnetic resonance imaging; ML, machine learning; MLP, multilayer perceptron; NB, naive

Bayesian; NGTDM, neighboring gray tone difference matrix; NPV, negative predictive value; NR, not reported; PC, principal component; PCA, principal component analysis; PPV, positive predictive value; RFE, recursive feature elimination; RF, random forest; RFC,

random forest classifier; RLM, run length matrix; SVM, support vector machine; SCLF, stacking classifier; SMOTE, synthetic minority oversampling technique; T2WI, T2-weighted imaging; VGG, visual veometry vroup.

10.3389/fonc.2025.1558915

Publication bias and sensitivity analysis

Among the included studies, Deek’s test was used to investigate
potential publication bias; however, the funnel plot asymmetry test
showed no significant publication bias (p-value = 0.13) (Figure 8).
When conducting the meta-analysis, we also performed a sensitivity
analysis (Figure 9), which showed that the point estimates of the
combined effect sizes after deleting a particular study fell between
the 95% confidence intervals of the total combined effect sizes,
indicating the stability of the findings.

Discussion

This study investigated the value of artificial intelligence-based
imaging data in predicting distant metastasis of colorectal cancer.
The results showed satisfactory diagnostic accuracy with an overall
AUC of 0.91 and pooled sensitivity and specificity levels of 86% and
82%, respectively.

In clinical practice, radiologists’ utilization of medical imaging
and analysis of these images play a crucial role in detecting diseases.
Due to the emergence of artificial intelligence, medical image
analysis has become an up-and-coming field of study. A recent
systematic evaluation demonstrated comparable performance
between deep learning models and healthcare professionals in
disease detection through picture analysis (34). The deep learning
models exhibited a combined sensitivity of 87% and specificity of
92.5% in the analyzed investigations, whereas healthcare experts
had a sensitivity of 86.4% and a specificity of 90.5%. This highlights
the considerable potential of AI approaches in disease
identification. Artificial intelligence employs sophisticated
mathematical and computer algorithms to identify potential
connections between characteristics and outcome variables (35,
36). These algorithms can forecast and enhance particular patient
responses using existing data when applied to medicine. Al-based
medical image analysis has demonstrated notable accuracy in
predicting potential distant metastases with high sensitivity and
specificity. While the current quality of AI studies is not yet
adequate for routine clinical use, these findings indicate that AI-
based medical images may be able to identify patients at high risk of
developing distant systemic metastases after radical resection.
Consequently, numerous researchers are endeavoring to utilize
artificial intelligence (AI) in personalized medicine to enhance
disease detection, therapy selection, and results (37). Staal et al.
(38) examined 40 papers focused on colorectal cancer in their
systematic review. They determined that artificial intelligence (AI)
has demonstrated encouraging outcomes in predicting therapy
response and long-term prognosis survival for this kind of cancer.
Nevertheless, the authors recognized that a significant drawback of
the mentioned studies was the heterogeneity of the included studies,
specifically the various imaging techniques used to examine colon
and rectal cancer. This indicates the necessity for careful
consideration before implementing artificial intelligence results in
clinical practice.
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Likelihood ratios and post-test probabilities are valuable in
determining the presence of distant metastases in patients with
positive or negative test findings. Based on our study, a positive
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likelihood ratio of 5 means that the model is 5 times more likely to
accurately identify a positive result than incorrectly identify a
positive result. This leads to a post-test probability of a positive
result of 83%. Similarly, a negative likelihood ratio value of 0.17
suggests that the model is 0.17 times more prone to incorrectly
predicting a negative result than correctly predicting a negative
result, resulting in a 15% chance of a pessimistic prediction. These
findings additionally indicate that the use of Al-based imaging is
precious in evaluating the presence of distant metastases in
colorectal cancer.

In our study, we observed significant heterogeneity among the
included studies. However, a threshold effect test measured by
Spearman’s correlation coefficient indicated that a threshold effect
did not cause the heterogeneity. Therefore, we performed meta-
regression analyses for the source of data, sample size, follow-up time,
imaging modality, model validation modality, transfer type, and
different algorithms to explore possible sources of heterogeneity.

We analyzed 17 studies in which CT and MR were the most
commonly used imaging modalities, followed by ultrasound. This
may be due to the disadvantages of ultrasound compared to CT/
MRI, such as dependence on operator experience and patient
condition, resulting in higher heterogeneity of ultrasound imaging
modalities. In contrast, MRI can better characterize soft tissue
features, atomic signal intensity, and lesion enhancement and
provide more information about tissue function than CT. Our
analysis showed that the ultrasound model based on AI
algorithms has higher sensitivity than CT and MR, while MR has
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TABLE 4 Subgroup analysis in combined model studies.

Variable

Sensitivity P1

10.3389/fonc.2025.1558915

Specificity P2 Joint model analysis

|2

LRT chi®

P-value

Country china 14 0.85 (0.82- 0.89) 0.81 0.82 (0.78-0.86) 0.05 3.38 0.18 41
Others 3 0.71 (0.54-0.88) 0.86 (0.74-0.98)

Research approach Retrospective 16 0.85 (0.81-0.89) 0.07 0.83 (0.79-0.87) ‘ 0.11 1.52 0.47 0
prospective 1 0.81 (0.66-0.96) 0.76 (0.57-0.96)

Sample size >150 11 0.86 (0.81-0.90) 0.00 0.83 (0.78-0.87) ‘ 0.00 0.04 0.98 0
<150 6 0.86 (0.79- 0.92) 0.82 (0.74-0.89)

Datasource Multicenter 3 0.83 (0.73- 0.93) 0.03 0.85 (0.77- 0.93) ‘ 0.00 0.41 0.82 0
Single center 14 0.85 (0.81- 0.89) 0.82 (0.78- 0.86)

Imaging mode CT 8 0.84 (0.79- 0.90) 0.00 0.81 (0.75-0.88) 0.00 0.32 0 0
MR 8 0.83 (0.77-0.89) 0.00 0.85 (0.80- 0.89) 0.00 1.46 0.48 0
Ultra 1 0.97 (0.91-1.00) 0.04 0.73 (0.56- 0.90) 0.01 4.72 0.09 58

Validation Methods train-test split 4 0.85 (0.80- 0.91) 0.00 0.82 (0.77-0.88) 0.00 0.17 0.92 0
external 3 0.82 (0.74- 0.90) 0.00 0.83 (0.75- 0.91) 0.00 1.22 0.54 0
validation
Cross- 10 0.84 (0.78- 0.90) 0.00 0.83 (0.77- 0.89) 0.00 0.71 0.70 0
validation

Follow-up >24months 5 0.82 (0.77- 0.88) 0.00 0.83 (0.76-0.89) 0.01 87.83 0.00 98
<24 months 4 0.83 (0.77- 0.89) 0.83 (0.74- 0.91)

Distant metastatic site multiple 5 0.81 (0.74-0.87) 0.00 0.85 (0.80- 0.90) 0.00 232 0.31 14
hepatic 13 0.85 (0.80- 0.89) 0.00 0.81 (0.76- 0.85) 0.00 247 0.29 19
pulmonary 3 0.85 (0.76- 0.93) 0.00 0.87 (0.80- 0.94) 0.01 222 0.33 10
bone 2 0.71 (0.53- 0.90) 0.01 0.94 (0.89- 1.00) 0.98 6.58 0.04 70
peritoneal 1 0.71 (0.53-0.90) 0.01 0.94 (0.89- 1.00) 0.98 6.58 0.04 70

Al algorithm LR 10 0.83 (0.78-0.88) 0.00 0.82 (0.77- 0.88) 0.00 1.26 0.53 0
Lasso 8 0.88 (0.84-0.91) 0.00 0.79 (0.74- 0.84) 0.00 7.37 0.03 73
regression
SVM 6 0.82 (0.75-0.89) 0.00 0.79 (0.72-0.87) 0.00 3.38 0.18 41
others 12 0.81 (0.77-0.86) 0.00 0.84 (0.80- 0.89) 0.00 493 0.08 59

Al artificial intelligence; CT, computed tomography; LR, logistic regression; Lasso, least absolute shrinkage and selection operator; MRI, magnetic resonance imaging; SVM, support

vector machine.

higher specificity with a pooled AUC of 0.91 (Figure 10). Our
comprehensive literature search failed to identify any studies
directly comparing the performance of different imaging
modalities in predicting distant metastases, which may be because
most of the literature reviewed consisted of different MRI
sequences, with differences in sensitivity and specificity depending
on the sequence selected. Therefore, prospective, large-scale, and
multicenter studies may be needed to determine the superiority of
one imaging modality over another.

In this analysis, the heterogeneity caused by different follow-up
times was more pronounced, which may be because the longer the
duration of follow-up, the higher the probability of distant

Frontiers in Oncology

metastasis. Whereas eight studies did not mention a precise
follow-up time, we considered whether the lack of data caused
higher heterogeneity. After deleting these eight studies and
performing a subgroup analysis specific to follow-up time, we
found significantly less heterogeneity between studies, while there
was no statistically significant difference (I* = 45, p=0.16).

The liver, peritoneum, lung, bone, and brain are the primary
areas where colorectal cancer commonly spreads (39). The results
of our study revealed a significant level of heterogeneity in
predicting various types of metastases. Specifically, the two
studies that focused on predicting bone and peritoneal
metastases exhibited high levels of heterogeneity. This can be
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Fagan plots for assessing the clinical utility of models.

attributed to the limited number of studies on these specific types
of metastases. The subgroup analysis revealed that the models
predicting single metastasis, specifically liver and lung metastasis,
showed higher sensitivity. Additionally, the models predicting
lung metastasis exhibited the highest specificity. Model
development can be achieved using many algorithms, including
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FIGURE 8
Deeks’ funnel plot with superimposed regression line. the funnel
plot asymmetry test revealed no publication bias (P-values > 0.10).
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support vector machine, logistic regression, random forest, etc.
Subgroup analyses were conducted on various Al algorithms,
revealing that the model created using lasso had a higher
sensitivity than the others. The pooled AUC for this model was
0.89 (Figure 1la). On the other hand, other algorithms, like
convolutional neural networks, exhibited a relatively high
specificity, with a pooled AUC of 0.90 (Figure 11b). In a meta-
analysis of hepatocellular liver cancer, Zhang ] et al. (40)
conducted a study using Al-based imaging images to predict the
features of MVL. Among the 13 studies, the model built with a
convolutional neural network demonstrated high effectiveness in
predicting M VT, with a pooled AUC value of 0.90. Nevertheless, it
is essential to use caution when interpreting the findings of the
subgroup analysis because the meta-analysis included a limited
number of models.

In this study, we briefly analyzed and compared the artificial
intelligence algorithms utilized in the literature and described the
advantages and limitations of these models (Supplementary Table
S1). The results indicate that the models constructed by most
algorithms exhibit high sensitivity and specificity. Researchers
frequently employ oversampling (SMOTE) when addressing
imbalanced datasets, oversampling the minority classes within the
training set, which involves augmenting the minority samples to
approximate the number of positive and negative examples,
followed by model training. Alternatively, the appropriate
evaluation metrics are selected. For imbalanced datasets, the use
of accuracy as an evaluation metric is potentially misleading;
therefore, appropriate evaluation metrics, such as precision, recall,
F1 score, and AUC, should be selected. For overfitting issues, cross-
validation or regularization (L1/L2) (Supplementary Table S2) is
often implemented.

Specific models that perform well on a particular task may not
generalize to other tasks, and heterogeneity may be one of the main
reasons specific models do not generalize to other tasks. The results
showed high heterogeneity in our study, which is common in meta-
analyses of imaging-based AI studies (41-44). However, these
heterogeneities may still affect the generalizability of the results.
According to the subgroup analysis, the sources of heterogeneity are
various imaging modalities, different predicted metastatic sites, and
different modeling approaches. Different medical scanners operate
under different settings and datasets, and heterogeneity due to
imaging modalities is mitigated by developing methods that can
be validated on different types of images. Most colorectal cancers
metastasize to the liver and lungs. Our results showed that only two
articles were from patients with bone metastases, and one was from
patients with peritoneal metastases. Moreover, the appearance of
different metastatic tumors on imaging may differ. Therefore, this
comparison is not ideal. This is still an open research area that
requires further study, and different models may need to be
designed for different metastatic tumors to obtain satisfactory
performance. Despite the advances in Al-based medical imaging
algorithms, there are still deficiencies in the different algorithms. In
the case of different algorithms, these shortcomings include patient
selection, image acquisition, a limited number of studies, and lack of
uniform study protocols, which result in a wide range of sensitivity
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and specificity values, making it challenging to compare results.
Future research should focus on validating Al-based algorithms in
prospective studies, investigating the inner workings of the
algorithms, developing interpretable AI models, integrating Al
radiomics features with clinical data, and developing standardized
methods for data collection and feature extraction.

In recent years, Al has demonstrated remarkable developmental
momentum. If appropriately utilized, it may yield optimal outcomes
across numerous application domains. AI has achieved
unprecedented performance levels in learning to solve increasingly
complex computational tasks, thereby becoming pivotal to the
advancement of human society. The complexity of AI-driven
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systems is escalating, such that their design and deployment
necessitate minimal human intervention. However, the decision-
making processes of Al systems are often perceived as a ‘black
box,” with their internal operational mechanisms and decision
rationales frequently remaining opaque. Consequently, eXplainable
Artificial Intelligence (XAI), such as SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-agnostic Explanations
(LIME), is widely considered a critical feature for the practical
deployment of AI models. Its core objective is to elucidate the
‘black box,” revealing how AI generates specific predictions or
decisions, along with the underlying logic and rationale. Of the AI
models assessed in this study, 13 employed intrinsically interpretable
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models, including linear regression and decision trees, while few
studies utilized SHAP and LIME, a disparity that contrasts with the
requirements for retrospective decision-making in clinical practice.
This study has several limitations. First, because this study was a
systematic review of pooled data from multiple studies, it was
inherently limited by the included studies. Most of the included
studies were retrospective, inevitably leading to patient selection
bias, and only three of the included studies used independent
external validation cohorts to assess model performance, which
limits comparisons in terms of predictive features and model
robustness. Our ultimate goal is to apply the developed imaging
model based on artificial intelligence algorithms to improve
prognosis. On this basis, our model and estimation results should
be generalizable to practice. However, most included studies used
internal model validation, which is more prone to overestimation
and lack generalizability. Therefore, prospective studies and more
external validation are necessary to assess model performance on
unseen data before applying the models to the clinic. Second, the
heterogeneity among the included studies regarding imaging
modalities and modeling methods should be addressed. The
majority of studies were conducted within a single-center setting
in China, and the patient recruitment from a single center
constrained the generalizability and reproducibility of the
findings. Furthermore, regional bias should be considered due to
variations in disease backgrounds across different regions,
countries, and races, which may diminish the generalizability of
artificial intelligence models beyond China. It is recommended that
future research incorporate multi-center studies across a broader
range of countries. Finally, the majority of the included literature in
this study provided limited quantitative assessment of model
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explainability and lacked comprehensive reporting on integration
with existing clinical decision-making processes. Future research
should incorporate the validation of XAI within the framework of
model performance evaluation.

Conclusion

In conclusion, Our study demonstrates that Al algorithms may
accurately predict tumor metastasis in medical radiography. These
algorithms exhibit high sensitivity and specificity, making them suitable
for clinical use. The extensive use of this technology in clinical settings
can help address the scarcity of medical resources, enhance the rate and
precision of tumor metastasis identification, and consequently enhance
patients’ prognosis. Nevertheless, it is imperative to recognize the
necessity for additional rigorous study into the implementation of
artificial intelligence in the field of medicine in order to advance clinical
practice and establish standardized research protocols. Future research
should prioritize prospective studies with more significant sample
numbers and explore various imaging modalities. Additionally, it is
essential to emphasize the quality of reporting, validate the external
model, ensure generalization to actual clinical circumstances, and
improve the reproducibility of results.
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