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Background: Colorectal cancer is the third most common malignant tumor with

the third highest incidence rate. Distant metastasis is the main cause of death in

colorectal cancer patients. Early detection and prognostic prediction of colorectal

cancer has improvedwith thewidespread use of artificial intelligence technologies.

Purpose: The aim of this study was to comprehensively evaluate the accuracy

and validity of AI-based imaging data for predicting distant metastasis in

colorectal cancer patients.

Methods: A systematic literature search was conducted to find relevant studies

published up to January, 2024, in different databases. The quality of articles was

assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. The

predictive value of AI-based imaging data for distant metastasis in colorectal cancer

patients was assessed using pooled sensitivity, specificity. To explore the reasons for

heterogeneity, subgroup analyses were performed using different covariates.

Results: Seventeen studies were included in the systematic evaluation. The

pooled sensitivity, specificity, and AUC of AI-based imaging data for predicting

distant metastasis in colorectal cancer patients were 0.86, 0.82, and 0.91. Based

on QUADAS-2, risk of bias was detected in patient selection, diagnostic tests to

be evaluated, and gold standard. Based on the results of subgroup analyses,

found that the duration of follow-up, site of metastasis, etc. had a significant

impact on the heterogeneity.

Conclusion: Imaging data images based on artificial intelligence algorithms have

good diagnostic accuracy for predicting distant metastasis in colorectal cancer

patients and have potential for clinical application.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier

PROSPERO (CRD42024516063).
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Introduction

Colorectal cancer (CRC) ranks third in terms of frequency and

has the third-highest occurrence rate and second-highest death rate

globally (1). The primary reason for mortality in patients with

colorectal cancer is distant metastasis. Even with surgical removal,

approximately 50% of patients experience metastasis, and around

25% of colorectal cancer patients already have distant metastasis

when initially diagnosed (2, 3). The primary sites of metastasis

include the liver, lungs, peritoneum, and peripheral lymph nodes.

Additionally, there may be localized metastases to the bone, adrenal

glands, ovaries, brain, pancreas, and spleen (4). The five-year

survival rate for patients diagnosed with stage I-II colorectal

cancer is between 88% and 95%. In contrast, patients with

metastatic colorectal cancer have a survival range of 3 months to

5 years, with around 60% of them dying within 1–2 years (5).

Hence, doing an early evaluation and forecast of distant metastases

in patients with colorectal cancer is advantageous for enhancing

prognostic outcomes and mitigating the possible hazards linked to

aggressive multimodal therapy (6).

Medical imaging is frequently employed to visualize the

dissemination of tumors and measure their severity, offering

significant data for diagnosis, staging, and treatment planning.

For instance , contrast-enhanced ultrasound (CEUS) ,

multidetector computed tomography (MDCT), magnetic

resonance imaging (MRI), and fluorodeoxyglucose (FDG)

positron emission tomography (PET)/CT exhibit a sensitivity and

specificity of 80% and 97% respectively in the detection of liver

metastases from colorectal cancer (7). Nevertheless, the task of

accurately and promptly diagnosing medical conditions using

imaging techniques is arduous because of the imbalance between

the number of doctors and patients and the complexity of

radiologic diagnosis.

Artificial Intelligence (AI) has become an essential component

of healthcare in recent years, utilizing algorithms, machine learning,

computers, and data science. Furthermore, using AI has led to a rise

in AI-driven studies, as AI can measure elements of imaging that

are imperceptible to the human eye. This enables the early detection

of tumors or the spread of cancer cells in imaging images (8).

Artificial intelligence (AI), which encompasses deep learning (DL),

refers to the programming of computers to imitate human

intelligence. Semi-automated AI involves using conventional

machine learning methods, including radiomics, in which the

radiologist is required to carry out specific preprocessing tasks on

the picture to ensure its compatibility with the algorithm. Neural

networks are a specific type of deep learning model that imitates the

functioning of the human visual cortex. The neural network layer

comprises neurons that identify various image characteristics

through edge, color, and texture filters (9–11). Artificial

intelligence-driven radiomics applies sophisticated computational

methods to extract several investigator-defined characteristics from

medical pictures (12). Although radiomics models have been

somewhat successful in predicting CRC lymph node metastasis,
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previous studies conducted by Ding et al. and Wang et al. have

demonstrated that deep learning algorithms can detect more

nuanced patterns that are not discernible by conventional

radiological and statistical techniques (13, 14).

There is currently a lack of effective methods for predicting the

distant spread of colorectal cancer, which could help create

personalized treatment plans for high-risk patients undergoing

extensive surgery. AI technology has the potential to detect which

colorectal cancer patients are in danger of developing distant

metastasis before it occurs. Despite numerous research studies on

the use of AI in evaluating colorectal cancer metastasis, a dearth of

recent systematic reviews thoroughly examine the effectiveness of

AI-based medical imaging in accurately predicting outcomes. This

study aims to conduct a systematic review and meta-analysis to

analyze and summarize the existing research data using AI-assisted

medical imaging, specifically CT, MRI, and ultrasound, to assess

colorectal cancer metastasis. The study also aims to evaluate these

imaging techniques’ diagnostic accuracy, sensitivity, and specificity.

This will enable clinicians to forecast patients’ prognostic

information better and choose treatment plans more precisely.
Methods

This systematic review followed the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses of Diagnostic Test

Accuracy Studies (PRISMA-DTA) guidelines (15). This study is

registered with the Prospective International Registry of Systematic

Evaluation (PROSPERO) (ID: CRD42024516063).
Search strategies and literature screening

We conducted a comprehensive search of various databases,

including PubMed (Medline), Embase, the Cochrane Library, and

Web of Science, to identify studies related to the topic up to January

31, 2024. We used a combination of Medical Subject Headings

(MeSH)/Emtree Glossary and free-form words as search terms for

titles and abstracts. Additionally, we manually searched the

reference lists of relevant studies, reviews, and meta-analyses to

ensure that no potential research literature was missed. We did not

restrict our search to any particular year of publication but only

included studies published in English. The search keywords we used

were “colorectal cancer,” “metastasis,” “artificial intelligence,” “deep

learning,” “machine learning,” and “radiomics.” For more

information on the search keywords used for each database, see

Supplementary Material 1.

All studies retrieved from relevant databases were collated in

Endnote X9.3.3 (Clarivate Analytics, London, UK), and duplicates

were removed. Two independent researchers independently

screened the titles and abstracts of all retrieved studies, eliminated

articles that did not meet eligibility criteria, and assessed the full text

for final inclusion. Any disagreements in the screening were
frontiersin.or
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resolved through discussion or consultation with a third researcher.

All studies retrieved from relevant databases were collated in

Endnote X9.3.3 (Clarivate Analytics, London, UK), and duplicates

were removed. Two independent researchers independently

screened the titles and abstracts of all retrieved studies, eliminated

articles that did not meet eligibility criteria, and assessed the full text

for final inclusion. Any disagreements in the screening were

resolved through discussion or consultation with a third researcher.
Inclusion and exclusion criteria

Articles meeting the following criteria were included: (1)

inclusion of patients with histopathologic diagnosis of colorectal

cancer; (2) development or use of artificial intelligence algorithms

based on imaging data such as CT, MRI, or ultrasound to assess

distant metastasis; (3)research employing radiomics, machine

learning, or deep learning methodologies for the prediction of

metastasis;(4) studies detailing sensitivity, specificity, or receiver

operating characteristic (ROC) curve analyses evaluating the

effectiveness of AI-based imaging models in predicting the

reliability of distant metastasis in colorectal cancer; (5) the study

was an observational study (retrospective or prospective),

randomized or non-randomized controlled trial; (6) language

restriction to English.

Studies were excluded based on the following criteria: (1) case

reports, reviews, review articles, editorials, letters, and conference

abstracts; (2) animal studies; (3) studies that were not relevant to

this study; (4) studies not based on imaging data; and (5) research

relying solely on conventional imaging interpretation, excluding

artificial intelligence components. By applying the above inclusion

and exclusion criteria, we aimed to ensure the studies’ quality and

reliability and minimize potential biases and errors.
Data extraction and quality assessment

Two researchers performed data extraction independently, and

a third researcher resolved their differences. The results of the data

extraction included the following: (1) last name of the first author;

(2) year of publication; (3) source of participants, country; (4) type

of study; (4) number of patients, age; (5) Sample grouping method

and model validation method; (6) duration of follow-up; (7) site of

metastatic tumor; (8) sample size of metastasis; (9) type of imaging

data; (10) input data; (11) selection of model features; (12) specific

algorithm of artificial intelligence used for constructing the model;

and (13) area under the receiver operating curve (AUC) of the

subjects and other parameters. The following data were extracted

from the included studies: the data collected were four-cell

tabulated data (2 × 2), including true positive (TP), true negative

(TN), false positive (FP), and false negative (FN). When comparing
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the diagnostic performance of different algorithms for the same

sample, the algorithm that produced the best classification results

was selected. If there were no sensitivities or specificities in a study,

we used Engauge Digitizer (version 12.1, Mark Mitchell) to

calculate sensitivities and specificities at the maximum of the

Youden Index based on the receiver operating characteristic

(ROC) curves from the article. If there were more than two

models for the same group of patients in a study, the model with

the higher AUC value was included in our meta-analysis.

The methodological quality and risk of bias of the included

studies were assessed by the Quality Assessment of Diagnostic

Accuracy Studies (QUADAS-2) (16), which assessed a total of

four domains, including the selection of cases, the experiments

to be evaluated, the gold standard, and the case flow and

progression. All components are assessed in terms of risk of

bias, and landmark questions are included in the risk of bias

judgment, and according to the answer of “yes,” “no,” or “not

sure” to the relevant landmark question included in each

component, the bias can correspond to the risk of bias. The

risk of bias was assessed as “low,” “high,” or “uncertain”

according to the “yes,” “no,” or “uncertain” answers to the

relevant landmark questions included in each section. Any

disagreement was resolved by consensus. The evaluation was

performed using Revman 5.3 (Cochrane Collaboration, UK).
Statistical analysis

Stata 14.2 (StataCorp LP, College Station, TX, USA) was used

for the data analysis. Due to the significant heterogeneity of this

study, we combined the relevant diagnostic accuracy indicators,

including sensitivity, specificity, diagnostic odds ratio (DOR), NLR,

and PLR, using a bivariate random-effects model. The model’sAUC

was calculated using the summary receiver operating characteristic

(SROC). A threshold effect test was conducted using Meta-disc

version 1.4 (Hospital Ramon y Cajal and Complutense University of

Madrid, ESP). The presence or absence of a threshold effect was

determined by calculating the Spearman’s correlation coefficient

between the logarithm of sensitivity and the logarithm of (1-

specificity). A strong positive correlation indicated the presence of

a threshold effect. The heterogeneity of the results of the included

studies was assessed using Cochran’s Q test, combined with I2

statistics. If heterogeneity was evident, factors controlling model

accuracy were identified by meta-regression using pre-specified

covariates: imaging modality, study setting, validation method,

site of transfer, type of AI algorithm, and so on. Deek funnel

plots assessed the publication bias of the included studies, and

sensitivity analyses were used to assess the stability of the results.

Post-test probabilities were calculated to assess clinical utility, and

Fagan plots were drawn. The combined effect value of multiple

studies was statistically significant if P ≤ 0.05.
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Results

Literature search

Initially, 858 articles (141 in PubMed, 115 in Embase, 32 in

Cocharne Library, 570 in Web of Science) were identified through

PubMed, Embase, Cocharne Library, and Web of Science databases

using keywords. A total of 60 duplicates were removed, and 74

records were excluded after screening titles and abstracts because

they were abstracts, conference proceedings, letters, reviews, meta-

analyses, or case reports. The remaining 724 studies were reviewed

in full text and screened against the inclusion and exclusion criteria,

resulting in the inclusion of 17 studies. A summary of the PRISMA

flowchart is shown in (Figure 1).
Literature quality assessment

QUADAS-2 was used to examine the risk of bias and applicability

issues of the included studies (Figure 2). Regarding patient selection,

two studies showed a high risk of bias because they did not avoid

inappropriate patient exclusion. Four studies had an unclear risk of
Frontiers in Oncology 04
bias in “trials to be evaluated” because they did not clearly describe

how their index test was performed and interpreted and did not use

pre-specified thresholds. Three studies had an unclear risk of bias in

the “gold standard” domain because the blinding setting was not

considered. Finally, regarding the risk of bias in the area of “process

and progress,” almost all studies were considered to have a low risk of

bias. Overall, concerns about applicability were low.
Characteristics of included studies

These 17 studies (17–33) included 5474 patients, with an age

range of 19–89 years for inclusion and a follow-up time range of 24–

60 months, with eight studies not mentioning the follow-up time.

Of the included studies, 14 were conducted in China, one in Italy,

one in New Zealand, and one in South Korea. All studies were

retrospective except for one prospective study (24). Of these studies,

14 were single-center, and the remaining three were multicenter

(22, 27, 32). Almost all of the models in these studies were internally

validated, with only three studies being externally validated (23, 27,
FIGURE 1

PRISMA flowchart of literature screening.
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32). The algorithms in these studies essentially randomized patients

into training and validation groups in a 7:3 ratio. Table 1 further

summarizes the characteristics of the included studies and the

patient statistics.

Distant metastasis of colorectal cancer was reported in all

studies, and liver metastasis was the most common site of

metastasis with a metastasis rate of 10.85% (594/5474). In

addition, lung metastasis was 2.43% (133/5474), peritoneal

metastasis was 0.05% (3/5474), and bone metastasis was 1.02%

(56/5474). Table 2 summarizes these findings.

CT and MRI were the imaging modalities used in most of the

studies, with eight studies each using them and the remaining one

using US (33). Due to the high dimensionality and complexity of

imaging data using different sequences, feature selection reduces the

computational power required to perform such complex

analyses.LASSO is often used for feature selection (18, 21, 24, 26,

30–33). Other methods often used for dimensionality reduction
Frontiers in Oncology 05
include analysis of variance (ANOVA) and Mann-Whitney U test

(MW) (19), principal component analysis (PCA) (20), recursive

feature elimination (RFE) (23), and Pierce’s correlation coefficient

(25, 28, 29). For the problem of a very unbalanced dataset, Lee S and

Li Y et al. (20, 23) researchers used the Synthetic Minority

Oversampling Technique (SMOTE) to increase the number of

minority samples in the dataset. Jin J et al. (25) balanced the

positive and negative samples by reducing the samples and using

Min Max to normalize the feature matrix. Different authors used

different artificial intelligence algorithms for modeling, and all

algorithms showed good predictive results in validation (AUC >

0.7). Among the 17 eligible studies, the commonly used algorithms

are Random Forest (RF), Logistic Regression (LR), Support Vector

Machines (SVM), Convolutional Neural Networks (CNN), Multi-

Layer Perceptron Networks (MLP), etc., and the detailed

information is shown in Table 3 and Supplementary Material 2. 3

of the included studies (20, 25, 27) developed neural networks. Lee S
FIGURE 2

Risk of bias and applicability concerns according to Quality Assessment of Diagnostic Accuracy Studies-2 tool: (a) per study assessment (b) per
domain summary.
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et al. (20) developed the neural networks by utilizing a pre-trained

convolutional neural network VGG16 for feature extraction of

images, which did not require further training. For model

construction, Jin J et al. (25) proposed an artificial neural network

model (ANNM). The ANN algorithm can detect complex nonlinear

relationships between dependent and independent variables and

does not require much formal statistical training. It can provide a

variety of training algorithms to improve the model’s performance.

It is worth mentioning that the CNN proposed by Liu X et al. (27) is

based on the residual structure, which can solve the problem of

gradient vanishing, and at the same time, in order to make the

dataset contain complete tumor information, the use of early

stopping and appropriate dropout can effectively improve the

robustness of the model. The results showed that the AUC of the

CNN model in the validation cohort was 0.892.
Frontiers in Oncology 06
In machine learning models, a hyperparameter is an adjustable

parameter that needs to be initialized before training the model and

is critical to its performance. Taghavi M et al. (22) used Bayesian

Hyperparameter Optimization. This iterative search procedure uses

simpler machine learning algorithms to find the highest-performing

hyperparameter combinations.
Meta-analysis

We performed a meta-analysis of the performance metrics of

the predictive models. Diagnostic threshold analysis showed no

significant threshold effect (Spearman correlation coefficient =

0.429, p = 0.13), but the results indicated a high degree of

heterogeneity (Q = 34.4 with 2 degrees of freedom, p = 0.00; I2 =
TABLE 1 Baseline data from included studies.

Studies Design Data source Country Number
of
Patients

Age (years) Sample group-
ing method

Validation
method

Follow-up
(months)

Li, 2019 (17) Retrospective Single center China 48 63.33 ± 11.21 1(TC):1(VC) Cross-validation NR

Liang, 2019 (18) Retrospective Single center China 108 54.5± 10.9 54(LM):54
(Nonmetastasis)

Cross-validation 24

Shu, 2019 (19) Retrospective Single center China 192 NR 7(TC):3(VC) Cross-validation NR

Lee, 2020 (20) Retrospective Single center Korea 2019 63.1 ± 9.5 7(TC):3(VC) Cross-validation 60

Li, 2020 (21) Retrospective Single center China 100 59.5 (52.0–68.5) 8(cross-validation
set):2(test
set)

Cross-validation NR

Taghavi, 2021 (22) Retrospective Multicenter The Netherlands 91 64 ± 11 split into a training
set
(n=70) and
independent
validation set
(n=21)

Cross-validation 24

Li, 2022 (23) Retrospective Single center China 323 61 (53-69) 171(TC);77
(IVC);75(EVC)

external
validation

NR

Sun, 2022 (24) prospective Single center China 150 Range: 51–62 50(initial LM):50
(follow-up
LM):50
(Nonmetastasis)

train-test split 24

Jin, 2023 (25) Retrospective Single center China 614 58.0 (49.3, 68.0) 7(TC):3(VC) Cross-validation NR

Li M, 2020 (26) Retrospective Single center China 148 59.7 ± 11.7 7(TC):3(VC) train-test split 36

Liu, 2021 (27) Retrospective Multicenter China 235 54.82± 10.85 170(primary
cohort);65(EVC)

external
validation

36

Liu, 2019 (28) Retrospective Single center China 177 64 (21–88) 7(TC):3(VC) train-test split NR

Chiloiro, 2020 (29) Retrospective Single center Italy 213 64 (26-83) 90%(Training and
cross-validation
data):10%
(Testing data)

Cross-validation 60

Hu, 2019 (30) Retrospective Single center China 194 58.6 ± 10.73 y 7(TC):3(VC) Cross-validation 24

Liu, 2020 (31) Retrospective Single center China 169 57.0 ± 10.6 7(TC):3(VC) train-test split NR

Huang, 2023 (32) Retrospective Multicenter China 454 55.47 ± 11.43 8(TC):2(IVC);
EVC(81)

external
validation

36

Mou, 2023 (33) Retrospective Single center China 239 Range: 19–89 7(TC):3(VC) Cross-validation NR
fr
EVC, independent external validation cohort; LM, liver metastasis; NR, not reported; IVC, internal validation cohort; TC, training cohort; VC, validation cohort.
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94, 95% CI: 89- 99), for which a random-effects model was used to

combine effect sizes. The pooled sensitivity and specificity were 0.86

(95% CI: 0.81-0.89) and 0.82 (95% CI: 0.78-0.86), respectively. The

pooled diagnostic ratio, diagnostic score, positive likelihood ratio,

and negative likelihood ratio were 28.08 (95% CI, 19.21-41.04), 3.34

(95% CI, 2.96-3.71), 4.88 (95% CI, 3.88-6.14), and 0.17 (95%

CI,0.13-0.23), respectively (Figures 3–5).

In addition, we plotted sROC curves to evaluate the imaging

model’s performance based on the AI algorithm in predicting distant

metastasis of colorectal cancer (Figure 6). The results showed that the

AI algorithm-based imaging model performed well in predicting

distant metastasis of colorectal cancer with an overall AUC of 0.91.

To determine the source of heterogeneity, we performed a

meta-regression analysis. Table 4 shows the results of the meta-

regression analysis, according to which our algorithm for

considering the duration of follow-up, the site of metastasis

(bone, peritoneal metastasis), and the lasso-constructed model

were the sources of heterogeneity (p-value less than 0.05 for all).

Our subgroup analysis showed that models based on large sample

sizes had higher specificity (83% vs. 82%, p-value = 0.00). Regarding

imaging modalities, ultrasound had higher sensitivity than other

imaging modalities (97% vs. 85%, p-value = 0.04), and MR had
Frontiers in Oncology 07
higher specificity (85% vs. 80%, p-value = 0.00). Validation of the

model using cross-validation had higher specificity (83% vs. 82%, p-

value = 0.00), and validation of the model by other methods had

higher sensitivity (85% vs. 84%, p-value = 0.00). Models that

predicted (e.g., liver and lung metastases) but not multiple

metastases, non-bone, or peritoneal metastases had higher

sensitivity (p-value < 0.05), and models that predicted lung

metastases had higher specificity (p-value < 0.05). In addition,

studies using lasso-constructed models had higher sensitivity (p-

value = 0.02) than those using other methods, whereas using other

methods, non-SVM, LR, and Lasso-constructed models had higher

specificity (p-value = 0.00).
Fagan nomogram analysis

The AI-based imaging model could increase the post-test

probability of predicting metastasis with a PLR of 5 from 50% to

83% when the pre-test was positive. When the pre-test was

negative, the NLR was 0.17, and the post-test probability was 15%

(Figure 7). These findings suggest that AI models are helpful in

clinical practice.
TABLE 2 Summary analysis of distant metastases by site.

Studies Total
number
of patients

distant met-
astatic site

Number
of metastasis

Number
of hepatic
metastasis

Number of pul-
monary metastasis

Peritoneal
metastasis

Bone
metastasis

Synchronous
metastasis

Li, 2019 (17) 48 Hepatic 24 24 NR NR NR NR

Liang,
2019 (18)

108 Hepatic 54 54 NR NR NR NR

Shu, 2019 (19) 192 Hepatic 111 111 NR NR NR NR

Lee, 2020 (20) 2019 Hepatic 100 100 NR NR NR NR

Li, 2020 (21) 100 Hepatic 50 50 NR NR NR NR

Taghavi,
2021 (22)

91 Hepatic 24 24 NR NR NR NR

Li, 2022 (23) 323 Hepatic 23 23 NR NR NR NR

Sun, 2022 (24) 150 Hepatic 100 100 NR NR NR NR

Jin, 2023 (25) 614 Bone 53 NR NR NR 53 NR

Li M, 2020 (26) 148 Multiple 51 15 24 NR NR 12

Liu, 2021 (27) 235 Multiple 68 NR NR NR NR NR

Liu, 2019 (28) 177 Multiple 59 27 16 3 3 11

Chiloiro,
2020 (29)

213 Multiple 72 NR NR NR NR NR

Hu, 2019 (30) 194 pulmonary 93 NR 93 NR NR NR

Liu, 2020 (31) 169 Hepatic 32 32 NR NR NR NR

Huang,
2023 (32)

454 Multiple 121 NR NR NR NR NR

Mou, 2023 (33) 239 Hepatic 34 34 NR NR NR NR
NR, not reported.
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TABLE 3 Basic features of predictive models for imaging data based on artificial intelligence algorithms.

Studies Image Input data Feature selection AI algorithm AUC Accuracy Specificity Sensitivity NPV PPV

1 0.95 0.86 NR NR

0 0.76 0.83 NR NR

2 0.79 0.95 NR NR

NR NR NR NR

0.79 ± 0.04 0.85 ± 0.02 0.85 ± 0.02 0.81 ± 0.03

NR NR NR NR

4 0.77 0.81 0.79 0.53

8 0.76 0.81 NR NR

NR NR NR NR

8 0.70 0.92 NR NR

0.89 0.86 NR NR

7 0.94 0.72 0.87 0.87
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Li, 2019 (17) CT Portal venous
phase images

heterogeneity;entropy,;energy of
vertical wavelet image; diameter of tumor

RELIEFF, SVM 0.96 0.9

Liang, 2019 (18) MR high-resolution oblique
axial (perpendicular to
the long axis
of the tumor) T2WI
without fat saturation;
axial
three-dimensional liver
acquisition with
volume acceleration
multienhanced
MR images

Firstorder;GLCM;GLRLM;GLSZM; SVM, LR 0.87 0.8

Shu, 2019 (19) MR T2WI GLCMEntropy_ALLDirection_offset1_SD;
GLCMEntropy_ALLDirection_offset1;
ShortRunEmphasis_ALLDirection_offset7_SD;
ShortRunEmphasis_angle35_offset7;
LongRunEmphasis_angle45_offset7;
GreyLeveLNonuniformity_ALLDirection_offset7_SD;
RunLengthNonuniformity_ALLDirection_offset4_SD

LASSO, PCA, LR 0.89 0.9

Lee, 2020 (20) CT non-contrast
abdominal CT
scan image

Clinical features(age,gender, T stage and N stage);
imaging features(sequential summation of PC1
to PC10)

VGG, PCA, LR, RFC 0.75 N

Li, 2020 (21) CT Portal venous
phase images

Firstorder;GLDM;GLCM;GLRLM;GLSZM;IDMN LASSO, SVM, RFC,
GBDT, LR, MLP, SCLF

0.90 ± 0.02 N

Taghavi, 2021 (22) CT Portal venous
phase images

Firstorder;GLCM;GLRLM;GLSZM; MGTDM;GLDM RF, DT, ML 0.95 N

Li, 2022 (23) CT Portal venous
phase images

Three original image features, two wavelet
image features and one LoG image feature.

SMOTE, MLP,
RFE, SVM

0.85 0.7

Sun, 2022 (24) CT Portal venous
phase images

NR LASSO, LR, LD, KNN,
NB, DT, SVM

NR 0.7

Jin, 2023 (25) MR DWI GLCM RF, DT, ANN, SVM 0.93 N

Li M, 2020 (26) CT Portal venous
phase images

MaxIntensity;
RelativeDeviation;Inertia_AllDirection_offset7_SD

LASSO, LR 0.84 0.9

Liu, 2021 (27) MR T2WI;
DWI

prognostic-related imaging information ResNet18 0.93 N

Liu, 2019 (28) MR oblique axial
T2WI images

mrN staging,
SphericalDisproportion, CA199, GLCMEntropy_
angle90_offset7, GLCMEnergy_angle135 _offset7,
Inertia_AllDirection_offset1_SD, CEA,SurfaceArea,
GLCMEntropy_ angle0_offset4, and gender.

RF, LR 0.83 0.8
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R
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Publication bias and sensitivity analysis

Among the included studies, Deek’s test was used to investigate

potential publication bias; however, the funnel plot asymmetry test

showed no significant publication bias (p-value = 0.13) (Figure 8).

When conducting the meta-analysis, we also performed a sensitivity

analysis (Figure 9), which showed that the point estimates of the

combined effect sizes after deleting a particular study fell between

the 95% confidence intervals of the total combined effect sizes,

indicating the stability of the findings.
Discussion

This study investigated the value of artificial intelligence-based

imaging data in predicting distant metastasis of colorectal cancer.

The results showed satisfactory diagnostic accuracy with an overall

AUC of 0.91 and pooled sensitivity and specificity levels of 86% and

82%, respectively.

In clinical practice, radiologists’ utilization of medical imaging

and analysis of these images play a crucial role in detecting diseases.

Due to the emergence of artificial intelligence, medical image

analysis has become an up-and-coming field of study. A recent

systematic evaluation demonstrated comparable performance

between deep learning models and healthcare professionals in

disease detection through picture analysis (34). The deep learning

models exhibited a combined sensitivity of 87% and specificity of

92.5% in the analyzed investigations, whereas healthcare experts

had a sensitivity of 86.4% and a specificity of 90.5%. This highlights

the considerable potential of AI approaches in disease

identification. Artificial intelligence employs sophisticated

mathematical and computer algorithms to identify potential

connections between characteristics and outcome variables (35,

36). These algorithms can forecast and enhance particular patient

responses using existing data when applied to medicine. AI-based

medical image analysis has demonstrated notable accuracy in

predicting potential distant metastases with high sensitivity and

specificity. While the current quality of AI studies is not yet

adequate for routine clinical use, these findings indicate that AI-

based medical images may be able to identify patients at high risk of

developing distant systemic metastases after radical resection.

Consequently, numerous researchers are endeavoring to utilize

artificial intelligence (AI) in personalized medicine to enhance

disease detection, therapy selection, and results (37). Staal et al.

(38) examined 40 papers focused on colorectal cancer in their

systematic review. They determined that artificial intelligence (AI)

has demonstrated encouraging outcomes in predicting therapy

response and long-term prognosis survival for this kind of cancer.

Nevertheless, the authors recognized that a significant drawback of

the mentioned studies was the heterogeneity of the included studies,

specifically the various imaging techniques used to examine colon

and rectal cancer. This indicates the necessity for careful

consideration before implementing artificial intelligence results in

clinical practice.
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FIGURE 3

Combined sensitivity and specificity forest plot.
FIGURE 4

Forest plot for likelihood ratio after combination (LR+, LR-).
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Likelihood ratios and post-test probabilities are valuable in

determining the presence of distant metastases in patients with

positive or negative test findings. Based on our study, a positive
Frontiers in Oncology 11
likelihood ratio of 5 means that the model is 5 times more likely to

accurately identify a positive result than incorrectly identify a

positive result. This leads to a post-test probability of a positive

result of 83%. Similarly, a negative likelihood ratio value of 0.17

suggests that the model is 0.17 times more prone to incorrectly

predicting a negative result than correctly predicting a negative

result, resulting in a 15% chance of a pessimistic prediction. These

findings additionally indicate that the use of AI-based imaging is

precious in evaluating the presence of distant metastases in

colorectal cancer.

In our study, we observed significant heterogeneity among the

included studies. However, a threshold effect test measured by

Spearman’s correlation coefficient indicated that a threshold effect

did not cause the heterogeneity. Therefore, we performed meta-

regression analyses for the source of data, sample size, follow-up time,

imaging modality, model validation modality, transfer type, and

different algorithms to explore possible sources of heterogeneity.

We analyzed 17 studies in which CT and MR were the most

commonly used imaging modalities, followed by ultrasound. This

may be due to the disadvantages of ultrasound compared to CT/

MRI, such as dependence on operator experience and patient

condition, resulting in higher heterogeneity of ultrasound imaging

modalities. In contrast, MRI can better characterize soft tissue

features, atomic signal intensity, and lesion enhancement and

provide more information about tissue function than CT. Our

analysis showed that the ultrasound model based on AI

algorithms has higher sensitivity than CT and MR, while MR has
FIGURE 6

Summary receiver-operating characteristic and the area under the
curve after combination.
FIGURE 5

Forest plot for diagnostic odds ratio and diagnostic score after combination.
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higher specificity with a pooled AUC of 0.91 (Figure 10). Our

comprehensive literature search failed to identify any studies

directly comparing the performance of different imaging

modalities in predicting distant metastases, which may be because

most of the literature reviewed consisted of different MRI

sequences, with differences in sensitivity and specificity depending

on the sequence selected. Therefore, prospective, large-scale, and

multicenter studies may be needed to determine the superiority of

one imaging modality over another.

In this analysis, the heterogeneity caused by different follow-up

times was more pronounced, which may be because the longer the

duration of follow-up, the higher the probability of distant
Frontiers in Oncology 12
metastasis. Whereas eight studies did not mention a precise

follow-up time, we considered whether the lack of data caused

higher heterogeneity. After deleting these eight studies and

performing a subgroup analysis specific to follow-up time, we

found significantly less heterogeneity between studies, while there

was no statistically significant difference (I2 = 45, p=0.16).

The liver, peritoneum, lung, bone, and brain are the primary

areas where colorectal cancer commonly spreads (39). The results

of our study revealed a significant level of heterogeneity in

predicting various types of metastases. Specifically, the two

studies that focused on predicting bone and peritoneal

metastases exhibited high levels of heterogeneity. This can be
TABLE 4 Subgroup analysis in combined model studies.

Variable n Sensitivity P1 Specificity P2 Joint model analysis

LRT chi2 P-value I2

Country china 14 0.85 (0.82- 0.89) 0.81 0.82 (0.78-0.86) 0.05 3.38 0.18 41

Others 3 0.71 (0.54-0.88) 0.86 (0.74-0.98)

Research approach Retrospective 16 0.85 (0.81-0.89) 0.07 0.83 (0.79-0.87) 0.11 1.52 0.47 0

prospective 1 0.81 (0.66-0.96) 0.76 (0.57-0.96)

Sample size >150 11 0.86 (0.81-0.90) 0.00 0.83 (0.78-0.87) 0.00 0.04 0.98 0

≤150 6 0.86 (0.79- 0.92) 0.82 (0.74-0.89)

Datasource Multicenter 3 0.83 (0.73- 0.93) 0.03 0.85 (0.77- 0.93) 0.00 0.41 0.82 0

Single center 14 0.85 (0.81- 0.89) 0.82 (0.78- 0.86)

Imaging mode CT 8 0.84 (0.79- 0.90) 0.00 0.81 (0.75-0.88) 0.00 0.32 0 0

MR 8 0.83 (0.77-0.89) 0.00 0.85 (0.80- 0.89) 0.00 1.46 0.48 0

Ultra 1 0.97 (0.91-1.00) 0.04 0.73 (0.56- 0.90) 0.01 4.72 0.09 58

Validation Methods train-test split 4 0.85 (0.80- 0.91) 0.00 0.82 (0.77-0.88) 0.00 0.17 0.92 0

external
validation

3 0.82 (0.74- 0.90) 0.00 0.83 (0.75- 0.91) 0.00 1.22 0.54 0

Cross-
validation

10 0.84 (0.78- 0.90) 0.00 0.83 (0.77- 0.89) 0.00 0.71 0.70 0

Follow-up >24months 5 0.82 (0.77- 0.88) 0.00 0.83 (0.76-0.89) 0.01 87.83 0.00 98

≤24 months 4 0.83 (0.77- 0.89) 0.83 (0.74- 0.91)

Distant metastatic site multiple 5 0.81 (0.74-0.87) 0.00 0.85 (0.80- 0.90) 0.00 2.32 0.31 14

hepatic 13 0.85 (0.80- 0.89) 0.00 0.81 (0.76- 0.85) 0.00 2.47 0.29 19

pulmonary 3 0.85 (0.76- 0.93) 0.00 0.87 (0.80- 0.94) 0.01 2.22 0.33 10

bone 2 0.71 (0.53- 0.90) 0.01 0.94 (0.89- 1.00) 0.98 6.58 0.04 70

peritoneal 1 0.71 (0.53-0.90) 0.01 0.94 (0.89- 1.00) 0.98 6.58 0.04 70

AI algorithm LR 10 0.83 (0.78-0.88) 0.00 0.82 (0.77- 0.88) 0.00 1.26 0.53 0

Lasso
regression

8 0.88 (0.84-0.91) 0.00 0.79 (0.74- 0.84) 0.00 7.37 0.03 73

SVM 6 0.82 (0.75-0.89) 0.00 0.79 (0.72-0.87) 0.00 3.38 0.18 41

others 12 0.81 (0.77-0.86) 0.00 0.84 (0.80- 0.89) 0.00 4.93 0.08 59
fr
AI, artificial intelligence; CT, computed tomography; LR, logistic regression; Lasso, least absolute shrinkage and selection operator; MRI, magnetic resonance imaging; SVM, support
vector machine.
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attributed to the limited number of studies on these specific types

of metastases. The subgroup analysis revealed that the models

predicting single metastasis, specifically liver and lung metastasis,

showed higher sensitivity. Additionally, the models predicting

lung metastasis exhibited the highest specificity. Model

development can be achieved using many algorithms, including
Frontiers in Oncology 13
support vector machine, logistic regression, random forest, etc.

Subgroup analyses were conducted on various AI algorithms,

revealing that the model created using lasso had a higher

sensitivity than the others. The pooled AUC for this model was

0.89 (Figure 11a). On the other hand, other algorithms, like

convolutional neural networks, exhibited a relatively high

specificity, with a pooled AUC of 0.90 (Figure 11b). In a meta-

analysis of hepatocellular liver cancer, Zhang J et al. (40)

conducted a study using AI-based imaging images to predict the

features of MVI. Among the 13 studies, the model built with a

convolutional neural network demonstrated high effectiveness in

predicting MVI, with a pooled AUC value of 0.90. Nevertheless, it

is essential to use caution when interpreting the findings of the

subgroup analysis because the meta-analysis included a limited

number of models.

In this study, we briefly analyzed and compared the artificial

intelligence algorithms utilized in the literature and described the

advantages and limitations of these models (Supplementary Table

S1). The results indicate that the models constructed by most

algorithms exhibit high sensitivity and specificity. Researchers

frequently employ oversampling (SMOTE) when addressing

imbalanced datasets, oversampling the minority classes within the

training set, which involves augmenting the minority samples to

approximate the number of positive and negative examples,

followed by model training. Alternatively, the appropriate

evaluation metrics are selected. For imbalanced datasets, the use

of accuracy as an evaluation metric is potentially misleading;

therefore, appropriate evaluation metrics, such as precision, recall,

F1 score, and AUC, should be selected. For overfitting issues, cross-

validation or regularization (L1/L2) (Supplementary Table S2) is

often implemented.

Specific models that perform well on a particular task may not

generalize to other tasks, and heterogeneity may be one of the main

reasons specific models do not generalize to other tasks. The results

showed high heterogeneity in our study, which is common in meta-

analyses of imaging-based AI studies (41–44). However, these

heterogeneities may still affect the generalizability of the results.

According to the subgroup analysis, the sources of heterogeneity are

various imaging modalities, different predicted metastatic sites, and

different modeling approaches. Different medical scanners operate

under different settings and datasets, and heterogeneity due to

imaging modalities is mitigated by developing methods that can

be validated on different types of images. Most colorectal cancers

metastasize to the liver and lungs. Our results showed that only two

articles were from patients with bone metastases, and one was from

patients with peritoneal metastases. Moreover, the appearance of

different metastatic tumors on imaging may differ. Therefore, this

comparison is not ideal. This is still an open research area that

requires further study, and different models may need to be

designed for different metastatic tumors to obtain satisfactory

performance. Despite the advances in AI-based medical imaging

algorithms, there are still deficiencies in the different algorithms. In

the case of different algorithms, these shortcomings include patient

selection, image acquisition, a limited number of studies, and lack of

uniform study protocols, which result in a wide range of sensitivity
FIGURE 8

Deeks’ funnel plot with superimposed regression line. the funnel
plot asymmetry test revealed no publication bias (P-values > 0.10).
FIGURE 7

Fagan plots for assessing the clinical utility of models.
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and specificity values, making it challenging to compare results.

Future research should focus on validating AI-based algorithms in

prospective studies, investigating the inner workings of the

algorithms, developing interpretable AI models, integrating AI

radiomics features with clinical data, and developing standardized

methods for data collection and feature extraction.

In recent years, AI has demonstrated remarkable developmental

momentum. If appropriately utilized, it may yield optimal outcomes

across numerous application domains. AI has achieved

unprecedented performance levels in learning to solve increasingly

complex computational tasks, thereby becoming pivotal to the

advancement of human society. The complexity of AI-driven
Frontiers in Oncology 14
systems is escalating, such that their design and deployment

necessitate minimal human intervention. However, the decision-

making processes of AI systems are often perceived as a ‘black

box,’ with their internal operational mechanisms and decision

rationales frequently remaining opaque. Consequently, eXplainable

Artificial Intelligence (XAI), such as SHapley Additive exPlanations

(SHAP) and Local Interpretable Model-agnostic Explanations

(LIME), is widely considered a critical feature for the practical

deployment of AI models. Its core objective is to elucidate the

‘black box,’ revealing how AI generates specific predictions or

decisions, along with the underlying logic and rationale. Of the AI

models assessed in this study, 13 employed intrinsically interpretable
FIGURE 9

Sensitivity analysis.
FIGURE 10

Summarized sROC curves for the model constructed based on MR images (a) and the model constructed based on CT images (b). sROC, summary
receiver operating characteristic.
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models, including linear regression and decision trees, while few

studies utilized SHAP and LIME, a disparity that contrasts with the

requirements for retrospective decision-making in clinical practice.

This study has several limitations. First, because this study was a

systematic review of pooled data from multiple studies, it was

inherently limited by the included studies. Most of the included

studies were retrospective, inevitably leading to patient selection

bias, and only three of the included studies used independent

external validation cohorts to assess model performance, which

limits comparisons in terms of predictive features and model

robustness. Our ultimate goal is to apply the developed imaging

model based on artificial intelligence algorithms to improve

prognosis. On this basis, our model and estimation results should

be generalizable to practice. However, most included studies used

internal model validation, which is more prone to overestimation

and lack generalizability. Therefore, prospective studies and more

external validation are necessary to assess model performance on

unseen data before applying the models to the clinic. Second, the

heterogeneity among the included studies regarding imaging

modalities and modeling methods should be addressed. The

majority of studies were conducted within a single-center setting

in China, and the patient recruitment from a single center

constrained the generalizability and reproducibility of the

findings. Furthermore, regional bias should be considered due to

variations in disease backgrounds across different regions,

countries, and races, which may diminish the generalizability of

artificial intelligence models beyond China. It is recommended that

future research incorporate multi-center studies across a broader

range of countries. Finally, the majority of the included literature in

this study provided limited quantitative assessment of model
Frontiers in Oncology 15
explainability and lacked comprehensive reporting on integration

with existing clinical decision-making processes. Future research

should incorporate the validation of XAI within the framework of

model performance evaluation.
Conclusion

In conclusion, Our study demonstrates that AI algorithms may

accurately predict tumor metastasis in medical radiography. These

algorithms exhibit high sensitivity and specificity, making them suitable

for clinical use. The extensive use of this technology in clinical settings

can help address the scarcity of medical resources, enhance the rate and

precision of tumor metastasis identification, and consequently enhance

patients’ prognosis. Nevertheless, it is imperative to recognize the

necessity for additional rigorous study into the implementation of

artificial intelligence in the field of medicine in order to advance clinical

practice and establish standardized research protocols. Future research

should prioritize prospective studies with more significant sample

numbers and explore various imaging modalities. Additionally, it is

essential to emphasize the quality of reporting, validate the external

model, ensure generalization to actual clinical circumstances, and

improve the reproducibility of results.
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