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Background: Hypoxia inducible factor (HIF-1a) is a major transcriptional factor
regulating gene expression under hypoxic conditions. HIF-1o expression was
closely correlated with the oxygenation status of tumor and could serve as an
important biomarker for tumor hypoxia, aggressiveness, or radiation resistance.
High expression of HIF-1o. contributes to high aggressiveness or poor prognosis
of endometrial cancer.

Purpose: This study aimed to investigate correlations between multimodal MRI
parameters (derived from amide proton transfer weighted imaging [APTw],
conventional diffusion weighted imaging [DWI], intravoxel incoherent motion
[IVIM] imaging and diffusion kurtosis imaging [DKI]) and HIF-1o expression, and to
determine whether multimodal MRI can be used for quantitative evaluation of
HIF-1a expression.

Study type: Retrospective.

Population: A total of 94 patients with EC were examined with 32 cases finally
included in the high HIF-1o expression group and 40 cases included in the low
expression group according to the exclusion and inclusion criteria.

Field Strength/Sequence: 3.0T/APTw, DWI, IVIM, and DKI

Assessment: The asymmetry of magnetization transfer rate (MTR,s,m), apparent
diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo diffusion
coefficient (D*), perfusion fraction (f), mean kurtosis (MK), and mean diffusivity
(MD) were calculated from multimodal MRI and compared between HIF-1a high
expression and HIF-1a low expression groups.
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Statistical Test: Mann—Whitney U-test; Chi-square test or Fisher exact test;
logistic regression analysis; Area under the receiver operating characteristic
(ROC) curve (AUC); The Delong test; Pearson or Spearman correlation
coefficients. The significance threshold was set at P < 0.05.

Result: MTR,s,m, ADC, D, D*, MK and MD values were significantly higher in high
HIF-1a expression than in low HIF-1o expression groups, whereas f value was
significantly lower in high HIF-1a expression than in low HIF-1o. expression
groups. The AUC of HIF-1 o expression evaluated by MTR,sym, ADC, D, D*, f,
MD, MK and their combination were 0.894 (0.740, 0.973), 0.746 (0.568, 0.879),
0.716 (0.528, 0.904), 0.920 (0.772, 0.984), 0.756 (0.578, 0.886), and 0.973 (0.851-
1.000), respectively. Multivariate analysis revealed that only f, MK, and MD values
were independent predictors for evaluating HIF-1o. expression in EC.

Conclusion: APTw combined with multi-model diffusion imaging can
quantitatively evaluate the expression of HIF-1a in EC, and the combination of

multiple quantitative parameters can improve the evaluation efficiency.

DWI, IVIM, HIF-10, endometrial cancer, amide proton transfer weighted imaging

Introduction

Endometrial cancer (EC) is a neoplasm that arises from the
endometrium and is the second most prevalent malignancy affecting
the female reproductive system in China (1, 2). It is the most
frequently diagnosed gynecological tumor in developed nations,
with a steadily increasing incidence (3). Approximately 70% of EC
cases are localized to the uterine body, representing an early clinical
stage with a favorable prognosis (4). Surgery intervention is the
primary treatment for EC, with radiotherapy, chemotherapy, and
hormone therapy often used as adjuvant therapies. tumors are
divided into four subgroups: polymerase-epsilon (POLE) mut,

Abbreviations: MRI, Magnetic resonance imaging; EC, Endometrial cancer;
APT, Amide proton transfer; MTR,qm,, Asymmetric magnetization transfer
rate; IVIM, Intravoxel incoherent motion; DKI, Diffusion kurtos imaging; HIF-
lo, Human epidermal growth factor receptor-2; CEST, Chemical exchange
saturation transfer; ROI, Regions of interest; ICC, Intra-group correlation
coefficient; ROC, Receiver operating characteristic; AUC, Area under the curve;
IHC, Immunohistochemistry; FISH, Fluorescence in situ hybridization; VEGF,
Vascular endothelial growth factor; APTw, Amide proton transfer weighting;
DKI, Diffusion kurtosis imaging; IVIM, Intravoxel incoherent motion; HIF-1a,
Human epidermal growth factor receptor-2; T,WI, T2-weighted Imaging; ADC,
Apparent diffusion coefficient; DWI, Diffusion-weighted imaging; D, pure
diffusion coefficient; D*, pseudo diffusion coefficient; f, perfusion fraction; FA,
fractional anisotropy; MK, mean kurtosis; MD, mean diffusivity; HIF-1o, Human
epidermal growth factor receptor-2; MTR,sm, Asymmetric magnetization
transfer rate; MTR,sym, Asymmetric magnetization transfer rate; EC,

endometrial cancer.
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protein 53 (p53) wild type, p53 missense mutations and mismatch
repair deficient (5). In the face of such a complex disease
classification, when choosing the treatment of endometrial cancer,
we should consider the patient’s age, pathological type, molecular
classification and clinical stage (low, medium, high risk) and other
factors, in order to optimize the outcome of patients (6). Typically,
patients with stage I and stage II endometrial cancer with localized
tumors opt for hysterectomy in the absence of high-risk factors.
Conversely, patients with high-risk factors, such as extrauterine
metastasis, may benefit from concurrent radiotherapy and
chemotherapy to enhance treatment efficacy (7, 8). Progesterone
therapy is typically recommended as the initial treatment for EC
patients seeking to preserve their fertility (9). At the same time,
systematic assessment, such as microsatellite instability, has been
practiced and applied in clinical practice. For patients with this
specific biomarker, Programmed Death-1/Programmed Death-
Ligand 1 inhibitors have shown promising therapeutic outcomes
(10). Radiotherapy plays a crucial role in the treatment of advanced
stage EC patients with high-risk features, such as extrauterine
invasion, although individual responses to this treatment may vary.
Numerous variables influence the efficacy of radiotherapy, including
cellular processes such as growth and apoptosis, the presence of a
hypoxic microenvironment, angiogenesis, and temperature. Among
these factors, hypoxia inducible factor (HIF-1o) is specifically
associated with the hypoxic microenvironment (11, 12).

HIF-1o serves as a key transcription factor that regulates gene
expression under hypoxia (13-15). Prior studies have shown that (14,
16, 17) the expression of HIF-1a. is closely related to the oxygenation
state of the tumor. In normoxic conditions, HIF-1ot undergoes rapid
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degradation, whereas in hypoxic environments, the degradation of
HIF-1o. is inhibited, leading to its accumulation in the nucleus. This
phenomenon can serve as a significant biomarker for tumor hypoxia,
invasiveness, and resistance to radiation therapy (18). Additionally,
HIF-1a plays a crucial role in regulating various cellular functions in
response to low oxygen levels, including glucose uptake, energy
metabolism, angiogenesis, erythropoiesis, cell proliferation,
apoptosis, cell-cell and cell-matrix interactions, which collectively
contribute to processes such as tumorigenesis, metastasis, and
epithelial-mesenchymal transformation (EMT) (19, 20). Conversely,
elevated levels of HIF-10. can impact the efficacy of tumor therapy by
modulating downstream and upstream molecular signaling pathways
and influencing the expression of hypoxia-related genes involved in
angiogenesis, erythropoiesis, glycolysis, cell adhesion, cell
proliferation, and apoptosis (21), meanwhile, causing inadequate
arterial blood supply, reduced vascular density, impaired vascular
tissue transport efficiency, alterations in red blood cell flow, functional
shunting, and imbalance of oxygen supply and demand (22). These
effects ultimately contribute to tumor hypoxia and heightened
invasiveness of endothelial cells, leading to an unfavorable prognosis
for patients with EC and impacting treatment outcomes. Generally
speaking (23), in the context of tumor hypoxia, the efficacy of tumor

10.3389/fonc.2025.1556311

radiotherapy and chemotherapy is typically diminished, necessitating
the assessment of tumor hypoxia status to inform clinical
interventions. Through an understanding of the molecular pathways
involving HIF-1c, novel therapeutic approaches targeting highly
expressed HIF-1o signaling pathways have been devised to enhance
personalized and precise treatment for cancer patients (24, 25).
Previously, the identification of tumor molecules relied on invasive
surgical procedures or biopsies to obtain tissue samples. However, the
presence of tumor heterogeneity posed a challenge to the efficacy of
these samples, as small tissue samples were unable to accurately
represent the entire tumor (26). In addition, although impact
genomics has been used in molecular/genome analysis, it is hindered
by the widespread use of factors such as technical complexity (27, 28).
Previous methods for assessing tumor hypoxia included direct
approaches such as the use of oxygen sensing probes (29) and
phosphorescence lifetime imaging to measure PO, (30), as well as
indirect methods like oxygen-enhanced magnetic resonance imaging
(OE-MRI) (31), magnetic susceptibility imaging (19), and positron
emission tomography (PET) (32) to infer tumor hypoxia. At the same
time, some studies have also found that there is a correlation of the
quantitative parameters measured by dynamic contract-enhanced
magnetic resonance imaging (DCE-MRI) (33), diffusion weighted

The data of 94 EC patients who underwent uterine
MRI in our hospital from August 2019 to June 2022
were retrospectively analyzed

(n=94)

incomplete pathology data or
no HIF-1a expression on
immunohistochemistry

(n=2)

scan sequence lacking APTw,
DKI or IVIM sequences

(n=5)

N

Poor image quality or unclear
lesions, the image quality scor
e less than 3 (n=15)

Finally,72 EC patients were enrolled in this study,
including 32 in the high HIF-1a expression group
and 40 in the low HIF-1a expression group
High HIF-1a expression: n=32

Low HIF-1a expression:

n=40

FIGURE 1
Flow chart of patient enrollment.
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imaging (DWI) (34) and intravoxel incoherent motion (IVIM) (35)
with tumor hypoxia. Among all these imaging parameters, no
individual one can serve as a definitive marker for assessing tumor
oxygenation. Conversely, the utilization of multiple imaging
parameters obtained through multi-parameter imaging technology is
anticipated to have a greater impact on the assessment of tumor
hypoxia. Thus, this study employed a combination of amide proton
transfer weighted imaging (APTw), DWI, IVIM, and diffusion kurtosis
imaging (DKI) to examine the expression of EC HIF-1o. in relation to
tumor metabolism and blood perfusion.

TABLE 1 Patient characteristics.

10.3389/fonc.2025.1556311

Materials and methods

Study population

The Ethics Committee approved the retrospective study and
waived the requirement for informed consent. The retrospective
analysis examined the clinical and imaging data of 94 patients who
underwent 3.0T MR examination at our hospital between August 2019
and June 2022, and were subsequently diagnosed with EC following
uterine curettage or pathology. Inclusion criteria for the study

High HIF-1o expression Low HIF-1o expression Y2/t
n=32 n=40
Age () 72 59.44 + 10.15 58.25 £ 9.18 0.520 0.604
FIGO Stage n (%)
Stage I 52 24/32 (75.00) 28/40 (70.00) 3.275 0.333
Stage 11 6 4/32 (12.50) 2/40 (5.00)
Stage 111 12 3/32 (9.38) 9/40 (22.50)
Stage IV 2 1/32 (3.12) 1/40 (2.50)
Differentiation degree n (%)
Low 26 15/32 (46.88) 11/40 (27.50) 4.011 0.136
Medium 34 11/32 (34.38) 23/40 (57.50)
High 12 6/32 (18.75) 6/40 (15.00)
Menopausal state n (%)
Before 14 7/32 (21.88) 7/40 (17.50) 0.217 0.767
After 58 25/32 (78.13) 33/40 (82.50)
Pathological type n (%)
Type 1 23 11/32 (34.38) 12/40 (30.00) 0.157 0.801
Type 11 49 21/32 (65.63) 28/40 (70.00)
Irregular vaginal bleeding n (%)
No 43 15/32 (46.88) 28/40 (70.00) 3.952 0.040
Yes 29 17/32 (53.12) 12/40 (30.00)
DMI n (%)
<1/2 muscular layer 19 11/32 (34.38) 8/40 (20.00) 1.891 0.189
>1/2 muscular layer 53 21/32 (65.62) 32/40 (80.00)
LVSI n (%)
Positive 14 7/32 (21.88) 7/40 (17.50) 0.217 0.767
Negative 58 25/32 (78.12) 33/40 (82.50)
LNM n (%)
Positive 11 3/32 (9.38) 8/40 (20.00) 1.551 0.325
Negative 61 29/32 (90.62) 32/40 (80.00)

HIF-10, hypoxia inducible factor; FIGO, Federation International of Gynecology and Obstetr; DMI, deep myometrium invasion; LVSI, Lymph-vascular space invasion; LNM, lymph

node metastasis.
The bold values in the tables indicate p-values < 0.05, denoting statistical significance.
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TABLE 2 Main imaging parameters of the MRI sequences.

10.3389/fonc.2025.1556311

Series Orientation TR/ FOV (mm>) ACQ . Thickness/ Sca_n Time
(] Voxel (mm?) Gap(mm) (Min sec)

T,WI TRA 4596/95 240 x 240 x 99 0.7 x 0.7 x 4.0 40/1.0 20 1 min 14 s
T,WI SAG 4930/84 250 % 250 x 99 0.95 x 0.95 x 4.0 40/1.0 20 2 min 08 s
DWI COR 7800/72 380 x 380 x 105 30x3.0x30 3.0/0 35 3 min 31 s
IVIM SAG 2500/94 380 x 380 x 65 30x30x50 5.0/1.0 11 5min 23 s
DKI SAG 1997/89 380 x 356 x 95 30x3.0x50 5.0/1.0 16 5min 29 s
APTw SAG 6416/7.8 130 x 130 x 49 20x20x7.0 7.0/0 7 5 min 53 s

TR, repetition time; TE, echo time; FOV, Field of View; ACQ, Acquisition; T2WI, T2-weighted Imaging; DWI, Diffusion-Weighted Imaging; IVIM, Intravoxel Incoherent Motion; DKI, Diffusion
Kurtosis Imaging; APTw, Amide Proton Transfer weighting; TRA, Transverse; SAG, Sagittal; COR, Coronal.

encompassed the presence of high-quality MRI images with clearly
delineated lesions devoid of artifacts, facilitating the accurate
identification of tumor boundaries during region of interest (ROI)
delineation. Additionally, the inclusion criteria stipulated the presence
of a solitary tumor without concurrent tumors or endometrial
hyperplasia, as well as the absence of prior treatment for endometrial
carcinoma prior to MRI examination. Exclusion criteria encompassed
the absence of essential scan sequences such as APTw, DWI, IVIM,
and DKI, suboptimal MRI image quality resulting in indistinct lesion
visualization or tumor size less than lcm, and incomplete
clinicopathological data including the lack of HIF-1lo. expression

information. The flow chart of the incoming and outgoing group is
shown in Figure 1. Finally, 72 patients were enrolled in this study.
According to the expression of HIF-1a, they were divided into two
groups: high expression of HIF-10. (n = 32) and low expression of HIF-
1o (n = 40). The general clinicopathological data of the two groups of
patients were collected through our hospital information management
system, including age, differentiation degree, menopausal state,
Federation International of Gynecology and Obstetr (FIGO) staging,
deep myometrium invasion (DMI), lymph-vascular space invasion
(LVSI), lymph node metastasis (LNM), and pathological type, as
shown in Table 1.

FIGURE 2

APTw, DKI and IVIM parameters for an EC patient with low HIF-1o expression. (A) sagittal T2WI, showing a slightly high signal mass in the uterine
cavity; (B) sagittal DWI image; (C) sagittal ADC image; (D) APTw fused with T2WI (mean MTRasym value 2.90%) (E-H) ADC, D, D*, and f images.
Mean values are 0.750 x10-3 mm2/sec for ADC, 0.470 X 10-3 mm2/sec for D, 0.560x10-2 mmz2 /sec for D* and 0.30% for f; (I-K) FA, MK, and MD
images. Mean values are 0.314 for FA, 0.555 for MK, and 0.876 um2/ms for MD; (L) Immunohistochemical staining image (x200) showed that HIF-1o

expression of the tumor appeared as low expression
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FIGURE 3

APTw, DKl and IVIM in EC that had high HIF-1a expression. (A) sagittal T2WI, showing a slightly high signal mass in the uterine cavity; (B) sagittal DWI
image; (C) sagittal ADC images; (D) APTw and T2W!I fusion images (mean APT value 3.07%) (E—=H) ADC, D, D*, and f images. Mean values are
0.760x107 mm?/sec for ADC, 0.590 x 10~* mm?/sec for D, 0.600 x102 mm?/sec for D* and 0.160% for f; (I-K) FA, MK, and MD images. Mean
values are 0.395 for FA, 0.674 for MK, and 0.866um? /ms for MD; (L) Immuno-histochemical staining image (x200) showed that HIF-1o. expression

of the tumor appeared as high expression.

MRI technique

MR scans were performed on a 3.0T MR scanner (Ingenia CX,
Philips Healthcare, Best, the Netherlands) with a 32-channel
abdominal coil. Before the examination, the patient was instructed to
empty the bladder, and the intrauterine device was taken out one day
before the examination. The patient was in the supine position with the
feet advanced. The MRI sequences included transverse T2-weighted
imaging (T2WI), sagittal T2WI, diffusion-weighted imaging (DWTI)
(b=0, 800 s/mm?), APTw, DKI (3 b values: 0, 1000, 2000 s/mm?® and
diffusion gradients were applied in 32 orthogonal directions) and IVIM
(10 b values: 0, 20, 50, 100, 150, 200, 400, 800, 1200, 2000 s/mm?), and
the specific parameters are shown in Table 2.

IVIM imaging evaluates the diffusion motion component and
blood perfusion component separately through modelling of related
quantitative parameters on the diffusion weighted images. The
relationship between the signal change and all b-values can be
expressed by the following equation (36).

S,/So= (1-f) - exp(—bD) + f - exp [-b(D++D)],

where b is the diffusion sensitivity factor, Sy and S, represent the
signal intensities of b=0 s/mm? and all other b values, respectively.
The f value is the perfusion fraction (between 0 and 1), which
represents the volume ratio of the microcirculation perfusion in the
voxel to the overall diffusion effect; the D value is the pure diffusion
coefficient, which represents the pure water molecule diffusion

Frontiers in Oncology

movement motion component; D* is the pseudo diffusion
coefficient produced by blood circulation, which represents the
incoherent motion of the microcirculation in the voxel; that is,
the rapid diffusion motion related to perfusion. The IVIM data were
processed on the Intellispace Portal v10.0 workstation (Philips
Healthcare) using the advanced diffusion analysis tool.

APTw imaging was performed using a 3-dimensional (3D) turbo-
spin-echo sequence with chemical shift-selective fat suppression. The
middle slice of APTw images was located through the largest cross-
section of the selected tumor lesion present on conventional MR
images. Data were acquired with seven saturation-frequency offsets (+
27, £ 35, + 43, and -1,540 ppm) for fitting of the Z-spectrum.
Saturation radio-frequency pulses for APTw imaging were
implemented with an amplitude of 2uT and a duration of 2 s. The
acquisition was repeated three times at +3.5 ppm with shifted echo
times for generation of BO maps. BO-corrected ATPw images were
reconstructed online. The MTR,, (magnetization transfer ratio
asymmetry) value at the frequency offset of +3.5 ppm was calculated
as percent level (relative to Sy) for APTw quantitative analysis:

MTR 4y (3.5 ppm) x 100 %
= (Ssat( -35 PPm)/So - Ssat( +3.5 Ppm)/so)) x 100 %

where Sy is the water signal strength at a saturation frequency of
-1540 ppm, and S, is the water signal strength at a saturation
frequency of +3.5/-3.5 ppm after BO correction.
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TABLE 3 Inter-observer agreement on the measurement of imaging parameters.

Parameters Number Observerl Observer2 Observer3 ICC
MTR,gym (%) Low HIF-1at expression(n=40) 2.67 +0.90 277 £ 0.86 2.76 + 0.86 0.923
High HIF-1o. 3.19 +0.86 322 +0.87 3.17 £0.85 0.992

expression(n=32)

ADC Low HIF-10 expression(n=40) 0.678 £ 0.19 0.682 + 0.19 0.684 + 0.19 0.983

(10~ mm?/s)
High HIF-1a 0.86 = 0.28 0.87 £ 0.29 0.87 = 0.30 0.997

expression(n=32)

D Low HIF-1o expression(n=40) 0.49 +0.13 0.49 +0.12 0.49 +0.12 0.968

(x10>mm?/s)
High HIF-1o 0.70 £ 0.28 0.71 £ 0.28 0.71 £ 0.28 0.998

expression(n=32)

D* Low HIF-1o expression(n=40) 0.52 £ 0.29 0.53 + 0.30 0.54 £ 0.29 0.991

(x10°mm?/s)
High HIF-1a 2.45+298 229 +2.87 2.26 +2.83 0.969

expression(n=32)

f Low HIF-1a. expression(n=40) 0.40 + 0.14 0.40 £ 0.16 0.40 + 0.16 0.938

(%)
High HIF-1o 0.23 £0.18 0.24 £0.19 0.24 £0.17 0.991

expression(n=32)

MK Low HIF-1a. expression(n=40) 0.60 + 0.11 0.60 + 0.11 0.60 + 0.10 0.998
High HIF-1o 0.70 £ 0.12 0.71 £ 0.12 0.71 £ 0.12 0.998
expression(n=32)
MD Low HIF-1a. expression(n=40) 0.96 = 0.19 0.95 + 0.19 0.95 + 0.19 0.995
(p.mz/ms)
High HIF-1o 1.20 + 0.51 1.21 + 0.54 1.21 + 0.51 0.997

expression(n=32)

FA Low HIF-1a. expression(n=40) 0.33 +0.12 0.34 £ 0.12 0.34 £0.12 0.998

High HIF-1a 0.33 £ 0.11 0.33 + 0.11 0.33 £ 0.10 0.999
expression(n=32)

ICC, Intra-group correlation coefficient; MTRasym, asymmetric magnetization transfer rate; ADC,Apparent diffusion coefficient; D, pure diffusion coefficient; D*, pseudo diffusion coefficient; f,
perfusion fraction; MK, mean kurtosis; MD, mean diffusivity; FA, fractional anisotropy.

DKI uses 3 b values (0, 1000, and 2000 s/mm? and 32 S(b) = S(0) - exp(—b - MD + 1/6-b2 -MD? - MK)
orthogonal directions to obtain DKI parameters of fractional
anisotropy (FA), mean kurtosis (MK) and mean diffusivity (MD)
by the following equation (37):

where S(0) is the DWT signal of bounded 0, and S(b) is the DWI
signal of a specific b value. MD represents the average diffusion

TABLE 4 Comparison of imaging parameters between low HIF-1a expression and high HIF-1o expression patient groups.

Parameters High HIF-1o expression n= Low HIF-1o expression n=40
MTR 5y (%) 3.19 + 0.85 2.73 + 0.85 2.126 0.034
ADC (x10°mm?/s) 0.87 + 0.29 0.68 + 0.19 3.038 0.002
D (x10>mm?/s) 0.71 + 0.28 0.49 + 0.12 3.810 <0.001
D* (x10mm’/s) 2.34 +2.81 0.53 +0.29 4.145 <0.001
£ (%) 0.24 +0.18 0.40 + 0.15 -4.757 <0.001
MK 0.708 + 0.118 0.602 + 0.108 3.621 <0.001
MD (um?/ms) 1207 + 0517 0.961 + 0.190 1.989 0.047
FA 0.334 + 0.107 0.339 + 0.121 0.011 0.991

HIF-10., Human epidermal growth factor receptor-2; MTRasym, Asymmetric magnetization transfer rate; ADC, Apparent diffusion coefficient; D, pure diffusion coefficient; D, pseudo diffusion
coefficient; f, perfusion fraction; MK, mean kurtosis; MD, mean diffusivity; FA, fractional anisotropy.
The bold values in the tables indicate p-values < 0.05, denoting statistical significance.
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FIGURE 4

The histogram of EC parameters in HIF-1 o high expression group and HIF-1 a low expression group. The differences of MTRasym, ADC, D, D*, f,
MK, MD and FA values between the two groups were compared. Note: *, P < 0.05; ***, P < 0.001.

TABLE 5 Univariate and multivariate analysis for identifying low HIF-1a
expression and high HIF-1o expression patient groups.

Parameters Univariate Multivariate
Analysis Analysis
(@]3 OR
(95%Cl) (95%Cl)
Irregular 0.378(0.143 0.049 0.545(0.053 0.609
vaginal bleeding -0.997) - 5.594)
MTR gy 1.007(1.001 0.032 1.006(0.995 0.303
- 1.013) - 1.017)
ADC 1.034(1.010 0.005 0.985(0.907 0.726
- 1.059) - 1.070)
D 1.061(1.025 0.001 1.031(0.891 0.683
- 1.098) - 1.192)
D* 1.015(1.002 0.026 1.012(0.996 0.136
- 1.027) - 1.027)
f 0.939(0.907 <0.001 0.900(0.817 0.032
- 0.973) - 0.991)
MK 1.102(1.039 0.001 1.161(1.035 0.011
- 1.169) - 1.301)
MD 1.028(1.006 0.011 1.086(1.002 0.046
- 1.050) - 1.178)

The bold values in the tables indicate p-values < 0.05, denoting statistical significance.

OR, odds ratio; CI, confidence interval; MTRasym, Asymmetric magnetization transfer rate; ADC,
Apparent diffusion coefficient; D, pure diffusion coefficient; D*, pseudo diffusion coefficient;
f, perfusion fraction; MK, mean kurtosis; MD, mean diffusivity; FA, fractional anisotropy.
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coefficient, reflecting the complexity of the tissue structure, while
MK represents the average diffusion kurtosis, reflecting the overall
diftusion level and diffusion resistance of water molecules.

Image analysis

Image analysis and data measurement were performed
independently by three radiologists (TS F, MC J and LJ, with 10, 4
and 2 years of experience in uterine MR readings, respectively) who
were blinded to the clinical and imaging data. The APTw and IVIM
images were transferred to Intellispace Portal workstation, and the DKI
images were transferred to GE AW4.6 workstation for post-processing.
The specific measurement method is as follows: First, the maximum
cross-sectional tumor on the conventional T,WI and DWI image was
located; Second, each parameter map were merged with the DWI
images (b=800 s/mm®) of the same layer to draw the regions of interest
(ROIs) on the maximum cross-sectional tumor by using a freehand
tool, which should include as many solid areas of the tumor as possible
(Figures 2, 3). Every ROI was carefully positioned to avoid necrosis,
hemorrhage, cystic degeneration, blood vessels, and partial volume
effects on the edge of tumors. The mean value from the ROI for each
parameter was recorded for further analysis.

Pathologic analysis

The paraffin blocks of endometrial cancer tissues submitted for
examination in the pathology department of our hospital were
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FIGURE 5
Forest plot of multivariate logistic regression (MD and MK values are risk factors for HIF-1a in EC, f value is protective factor for HIF-1o in EC).

collected retrospectively, and then 4 pum sections were made by a  immunohistochemical experiment in the pathology laboratory, and
pathology technician with 10 years of pathological wax section  the staining was observed by two-step immunohistochemical method.
experience, and sealed and preserved in a cool and dark  The specific staining process included: baking, dewaxing, antigen
environment. Then a graduate student with 3 years’ experience of  repair, blocking endogenous peroxidase, first antibody incubation,
immunohistochemical experiment performed HIF-lo. second antibody incubation, Diaminobenzidine Horseradish
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FIGURE 6
ROC curve analysis of the performance of each imaging parameter to evaluate the HIF-1a expression, AUCs of APT, ADC, D, D*, f, MD, MK, and
Combined to evaluate the HIF-1a expression are 0.894 (0.740, 0.973), 0.746 (0.568, 0.879), 0.716 (0.528, 0.904), 0.920 (0.772, 0.984), 0.756 (0.578,
0.886), 0.973 (0.851-1.000), respectively.
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TABLE 6 Predictive performance for identifying low HIF-1a expression and high HIF-1a expression EC.

Parameters AUC (95% CI) Cutoff Sensitivity (%) = Specificity (%) Delong test
MTR oy 0.646 0.034 3515 65.60 90.00 7 =4.940 <0.001
(0.519 - 0.774)
ADC 0.709 0.002 0.815 50.00 87.50 Z=4.161 <0.001
(0.586 - 0.832)
D 0.763 <0.001 0575 71.90 77.50 7=3335 <0.001
(0.640 - 0.885)
D* 0.784 <0.001 0.585 68.80 87.50 7=3.300 0.001
(0.669 - 0.900)
f 0.828 <0.001 0225 87.50 75.00 7=2.608 0.009
(0.720 - 0.935)
MK 0.750 <0.001 0593 90.60 5250 7=4.033 <0.001
(0.639 - 0.860)
MD 0.637 0.047 1.227 44.50 97.50 7=4.976 <0.001
(0505 - 0.769)
Combined (a.u.) 0.970 <0.001 0251 96.90 85.00 NA NA
(0.938 - 1.000)

MTRasym, asymmetric magnetization transfer rater; ADC, apparent diffusion coefficient; D, true diffusion; D*, pseudo diffusion; f, perfusion fraction; MK, mean kurtosis; MD, mean diffusivity;

OR, odds ratio; CI, confidence interval; a.u., arbitrary unit; NA, not available.
The bold values in the tables indicate p-values < 0.05, denoting statistical significance.

Peroxidase Color Development Kit working solution coloration, re-
staining and dehydration sealing. The staining results were evaluated
by two doctors with 3 and 4 years’ pathology experience respectively
without knowing the clinical and imaging information. When results of
the two assessments were inconsistent, they discussed and agreed with
another pathologist with 10 years of experience. Among them, HIF-1o.
is mainly expressed in the nucleus, and observed under a high-power
microscope, 3 visual fields are randomly selected from each tissue
section, and then the expression level is judged comprehensively
according to the percentage of positive cells and staining intensity:
the total positive score is 0 (less than 1%), 1 (1% ~ 10%), 2 (11% ~
50%), 3 (51% ~ 80%), and 4 (> 80%). The staining intensity scores were
0 (no staining), 1 (light yellow), 2 (dark yellow), and 3 (dark brown).
The EC was defined as high expression group when HIF-1 o positive
cells were more than 50% and staining intensity > 2 points, otherwise
they were defined as low expression group (Figures 2, 3).

Statistical analysis

Statistical analysis was performed using SPSS 27.0 software
(Chicago, IL, USA) and MedCalc15.2.2 software (MedC Software,
Ostend, Belgium). The inter-class correlation coefficient (ICC) was
employed to assess the agreement among the measurements provided
by three observers. ICC values of 0.40 and 0.75 were utilized as
thresholds for categorizing the consistency levels as low, medium,
and high. The mean of the measurements obtained from the three
observers was utilized for further analysis. The Kolmogorov-Smirnov
test was conducted to evaluate the normality of the measurement data.
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The data adhering to a normal distribution were presented as mean +
standard deviation and analyzed using an independent sample t-test for
group comparisons. Data not conforming to a normal distribution
were represented as median (25th percentile, 75th percentile) and
analyzed using the Mann-Whitney U test. Categorical data were
expressed as frequencies and percentages, and group comparisons
were conducted using the Chi-square test or Fisher’s exact test.
Receiver operating characteristic (ROC) curve analysis was utilized to
assess the predictive value of statistically significant parameters and
their combinations in predicting low and high HIF-1o. expression in
EC. Binary logistic regression was employed to determine the
predictive value of EC HIF-1ow expression status in conjunction with
independent risk factors. The area under the curve (AUC) was
compared using the Delong test. A P-value less than 0.05 was
considered statistically significant.

Result
Patient characteristics

Of the 72 EC patients finally enrolled, 32 (44.44%) were in the
high HIF-1o. expression group, and 40 (55.56%) were in the low
HIF-1o expression group. Based on the pathological analysis, there
were no statistically significant differences observed between the
two groups in terms of age, differentiation degree, menopausal state,
FIGO stage, DMI, LVSI, LNM, and pathological type. However, a
significant difference was found between the two groups in presence
of irregular vaginal bleeding (P=0.040), as presented in Table 1.
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Agreement on imaging parameters among
the three observers

The three observers had high consistency on measurements of
the MTR,4ym» ADC, D, D¥, f, MK, FA, and MD values with the ICCs
higher than 0.75, as shown in Table 3.

Comparison of imaging parameters
between high and low HIF-1o expression
groups

The imaging parameters for high and low HIF-1ow expression
groups are presented in Table 4. MTRm, ADC, D, D*, MK and
MD values were significantly higher in high HIF-1ot expression
than those in low HIF-1o. expression groups, whereas f value was
significantly lower in high HIF-1o expression than in low HIF-1o
expression groups (Figure 4).

Regression analyses

Based on the comprehensive clinicopathological data and
various quantitative parameters with P values below 0.1 in the
comparison between the two groups, multiple linear regression
analysis was conducted to assess covariance interference. It is
found that except for D (11.368, excluded in the multiple linear
regression analysis), the variance expansion factors (VIF) of other
parameters were all less than 10 (MTR,¢m=1.104, ADC=6.654,
D*=2.472, f=1.906, MK=1.135, and MD=1.251). Univariate
analysis showed that irregular vaginal bleeding, MTR4ym, ADC,
D, D*, f, MK and MD were all helpful to evaluate the expression of
HIF-1o in EC, but multivariate analysis showed that only f, MK
and MD were independent predictors of HIF-1o. expression in EC
(Table 5, Figure 5).

Ability of the imaging parameters to
discriminate high HIF-1o expression from
low HIF-1o expression groups

ROC curves for APTw and multiple model DWI parameters
and their combinations to discriminate high HIF-1o expression
from low HIF-1ot expression are shown in Figure 6. MTRgym, ADC,
D, D*and f values commonly had good specificity (90.00%, 87.50%,
77.50%, 87.50% and 75.00%), while moderate sensitivity (65.60%,
50.00%, 71.90%, 68.80% and 87.50%). Combination of the above
parameters showed significantly improved diagnostic performance
with excellent sensitivity (96.90%) and specificity (85.00%)
(Table 6). The ROCs for each parameters and their combination
are shown in Figure 6.
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Correlation analysis between independent
factors and HIF-1a expression

Spearman rank correlation analysis showed that there was an
inverse correlation between f and HIF-1a. expression level (rho =
-0.565; P < 0.001). MK and MD showed positive correlations with
the HIF-1a expression level (rtho = 0.430, 0.316; both P < 0.001).

Discussion

The major finding of this work was that multimodal quantitative
MRI parameters, by APTw, DWI, DKI and IVIM, can be used to assess
the HIF-1at expression in EC. We found that APT, ADC, D, D*, MK
and MD values were significantly higher in high HIF-1ow expression
than in low HIF-lo expression groups, whereas f value was
significantly lower in high HIF-1ow expression than in low HIF-lo
expression groups, meanwhile, the f value, MK value, and MD value are
independent risk factors for predicting HIF-10. expression in EC. There
was an inverse correlation between f and HIF-10. expression level, and
there were positive correlations of MK value, and MD value with the
HIF-1o expression level. The combination of different imaging
parameters showed a significantly improved diagnostic efficacy in
differentiation of HIF-1o expression in EC.

APTw imaging can be used to evaluate changes of intracellular
protein concentration and tissue pH value with advantages of non-
invasive and quantitative analysis (38-40). In this study, the MTRygym,
of HIF-1 o high expression group was higher than that of low
expression group, and the difference was statistically significant. The
reason may be that the expression of HIF-1 o can regulate the
metabolism and proliferation of local tumor (15), the number of cells
in the local tumor increases and the metabolism is exuberant, which
leads to the increase of local mobile proteins or peptides and the
increase of MTR gym
Nuclear atypia, which induce the interaction between macromolecules

in the group with high expression of HIF-1 o

and hydrophobic cell membrane and promote the release of proteins
and peptides, may be another factor in the increase of MTR,y, in
malignant tumors (41, 42). Although there was no difference in the
pathological indexes of the degree of tumor differentiation, depth of
myometrial invasion and tumor stage between the two groups (due to
the small sample size and bias), previous studies (43, 44) showed that
the tumors with higher expression of HIF-1o. had lower tissue
differentiation, deeper myometrial invasion, higher probability of
lymph node metastasis and higher malignant degree of tumor. In
addition, pH value is also one of the factors affecting MTRqgym, (45, 46).
Tumor with higher expression of HIF-1a. can be associated with
serious local hypoxia (47), where the tumor is mainly anaerobic
metabolism, leading to increased production of local lactic acid and
reduced pH value. However, the higher expression of HIF-10: can also
induce the expression of vascular endothelial growth factor (VEGF)
and other genes, which leads to the increase of tumor angiogenesis and
local tumor microcirculation perfusion (48), and dilutes tumor local
acidity to some extent. It may lead to the relative increase of pH value,
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which in turn leads to the increase of MTRqym value. However, as
mentioned above, the high expression of HIF-1o increases the
expression of VEGF and other genes (49), tumor neovascularization,
local tumor microcirculation perfusion, and dilutes tumor local acidity
to some extent. It may lead to the relative increase of pH value, which
in turn leads to the increase of MTR ym, Value. At the same time, the
perfusion parameter D* of the group with high expression of HIF-1ou
was higher than that of the group with low expression of HIF-1a,
which further indicated that the perfusion of local microcirculation was
increased in the group with high expression of HIF-10.. Compared with
the results by Li et al. (42), the MTR m, and D* values of cervical
squamous cell carcinoma in poorly differentiated group were higher
than those in well differentiated group, which also verified the
hypothesis of the relationship between the change of MTR,gm, value
caused by the change of pH value and the perfusion parameter D*
value of IVIM microcirculation.

The parameter D from the double exponential IVIM model (50)
reflect the diffusion movement of water molecules without
microperfusion (51), D* represents the diffusion effect caused by
blood perfusion and reflects the perfusion of microcirculation in
capillaries (52), and f reflects the percentage of the volume of water
molecules in blood vessels to the volume of water molecules in the
whole voxel (35). DKI is based on non-Gaussian distribution, which
truly reflects that the movement of water molecules in living tissues is
limited by tissue microstructure (53). The parameter MK by DKI can
reflect the complexity of tissue structure, while MD value can reflect the
overall diffusion level and diffusion resistance of water molecules (54).
In this study, the parameters reflecting the diffusion of water molecules
in EC (ADC, D and MD) were higher in the high HIF-1o. expression
than in the low expression group, which may be due to that the higher
expression of HIF-10 may results in the increased proliferation of local
tumor cells (15), and thus reduced extracellular space in EC. In
addition, the MK value of the parameter reflecting the complexity of
tumor tissue was also higher in the high HIF-1o expression than that in
the low expression groups, which was related to the fact that the
expression of HIF-1ow could regulate the proliferation and epithelial
mesenchymal transition of tumor cells, resulting in the exuberant
proliferation of tumor local cells, the increase of epithelial stromal
transition and the complexity of tumor local structure (15, 16). At the
same time (55), the expression of HIF-lo can also regulate the
apoptosis of tumor cells, which complicates the structural
components of tumor tissue, which is another reason for the increase
of MK in EC patients with high expression of HIF-1o. The D* and f
values were higher in the group with high expression of HIF-1q,
because the expression of HIF-1c. could induce the expression of VEGF
and other genes (49), which increased tumor angiogenesis and local
microcirculation perfusion, which was consistent with the results of
previous studies on IVIM to evaluate the expression level of HIF-10 in
cervical cancer (35). However, in this study, the f value of EC in the
high expression group of HIF-1ow was lower than that in the low
expression group EC. The reason may be that the value of f is not only
related to microvessel density and blood flow velocity, but can also be
related to the overall motion state of water molecules in tissue, vascular
wall pressure and the b value setting in IVIM scan (51, 56-58). Pang
et al. (59) found that when the b value varies from 0 to 700 s/mm?, the f
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value increases, while when the b value exceeds 700 s/mm?, the f value
decreases. In this study, the b value of IVIM is between 0 and 2000 s/
mm?, which makes the change trend of f value decrease with the
increase of b. The high expression of HIF-1o associated with increased
proliferation of tumor cells can results in the higher pressure on tumor
neovascularization wall, which may slow down the blood flow velocity
of local tumor microcirculation and lead to the reduced f value.
Multivariate analysis showed that f value was a protective factor for
the high expression of EC HIF-10,, and there was a negative correlation
between f value and HIF-1ow expression, which further indicated that
the higher the f value, the weaker the invasive biological behavior of
tumor cells and the lower the malignant degree of tumor, so the lower
expression level of HIF-1o.

The shortcomings of this study are as follows: firstly, the sample
size of this study is small, which needs to be further studied by
increasing the sample size; secondly, the quantitative parameter
measurement of this study avoids bleeding and necrosis, and does
not outline the tumor globally, and some heterogeneity information
may be omitted, which need to be studied in the future, such as texture
analysis. The image quality of APTw, IVIM and DKI maps can be
affected by respiratory movement, which needs to be optimized by
respiratory trigger.

In summary, the quantitative parameters based on APTw and
multi-model diffusion imaging can effectively evaluate the expression
of EC HIF-1a, which has a certain prospect of clinical applications.
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