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Gut microbes are emerging as critical regulators in cancer therapy, influencing

the efficacy and toxicity of radiotherapy, chemotherapy, immunotherapy,

targeted therapy, Traditional Chinese Medicine, and rehabilitation interventions.

Acting through metabolic reprogramming, immune modulation, DNA damage,

and tumor microenvironment remodeling, specific microbial taxa and their

metabolites can either enhance or hinder treatment outcomes. However,

these interactions are highly context-dependent and shaped by individual

factors such as diet, geography, and host immunity. While microbial

interventions such as probiotics, fecal microbiota transplantation, and

engineered bacteria show promise, their translation into precise and safe

clinical applications remains limited by interindividual variability, regulatory

hurdles, and incomplete mechanistic understanding. Future efforts should

focus on defining high-evidence microbial signatures, clarifying causal

mechanisms, and developing personalized microbiome-based therapeutic

strategies, potentially integrated with nanotechnology. This review underscores

the need for interdisciplinary approaches to harness gut microbiota as co-targets

in cancer treatment.
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1 Introduction

The gut, as the body’s largest immune organ, plays a central role in immune

surveillance and tolerance. Constantly exposed to dietary and microbial antigens, it also

serves as a potential entry point for pathogens. Approximately 30–40 dominant bacterial

species shape the adult gut microbiota, whose composition is dynamic and influenced by

diet, smoking, medications (e.g., antibiotics), probiotics, and host physiology (1, 2). Along

the gastrointestinal tract, bacterial density increases distally, with anaerobes dominating the

colon. Microbial colonization begins at birth and stabilizes by age two, facilitating mucosal

immune maturation and the balance between inflammation and immune tolerance (3, 4).

Gut microbiota contributes to host health by regulating nutrient metabolism,

xenobiotic detoxification, epithelial development, immune modulation, and resistance to

pathogen colonization (5–10). Conversely, dysbiosis can promote malignancies, notably
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colorectal and hepatocellular carcinomas (11). In rodent models,

germ-free or antibiotic-treated conditions have revealed

microbiota-driven tumorigenesis, independent of inflammation

(12). Microbial biofi lms may also reshape the tumor

microenvironment (TME) by promoting metabolic cross-talk and

immune evasion (13–15).

Beyond tumorigenesis, gut microbes profoundly influence the

efficacy and toxicity of anticancer therapies, especially

immunotherapy (15, 16). The TME has emerged as a critical

determinant of therapy response and is shaped by microbial-

derived metabolites and immune signaling (17–20). Specific

microbes enhance immune cell infiltration and antigen

presentation, while others hinder treatment through immune

suppression. Novel strategies such as probiotic supplementation,

fecal microbiota transplantation (FMT), bacterial engineering, and

phage therapy are under investigation for enhancing therapeutic

outcomes (21–24).

Despite rapid progress, challenges remain. Interindividual

variability in microbiota composition, limited mechanistic

understanding, and regulatory constraints hinder clinical translation.

Moreover, the interplay between gut microbes, host immunity, and

cancer remains complex and context-dependent. This review provides

an updated synthesis of how gut microbiota modulate responses to

multiple cancer therapies, including radiotherapy, chemotherapy,

targeted therapy, immunotherapy, Traditional chinese medicine

(TCM), and rehabilitation interventions. We highlight key

mechanisms—ranging from metabolic reprogramming and immune

modulation to TME remodeling—and discuss their translational

potential. Looking forward, personalized microbiota-based

interventions and interdisciplinary innovations such as AI-driven

microbial profiling may pave the way for safer and more effective

cancer treatment strategies.
2 Influence of gut microbes on
multiple antitumor therapies

2.1 Radiation therapy and chemotherapy

Radiotherapy and chemotherapy remain cornerstone

treatments for various malignancies. However, increasing

evidence highlights the gut microbiota as a critical modulator of

both their therapeutic efficacy and associated toxicities.

Radiation-induced damage not only alters tumor tissues but also

disrupts intestinal microbial homeostasis. Certain microbial

populations can exacerbate the toxicity of radiation therapy. Animal

studies have demonstrated that radiation-induced alterations in the gut

microbiota promote the secretion of interleukin-1b (IL-1b) and the

generation of reactive oxygen species (ROS), which in turn disrupt

intestinal tight junctions and amplify inflammatory processes, thereby

further aggravating mucosal inflammation in mice (25, 26). These

effects compromise quality of life and may necessitate dose reductions

or treatment suspension. Conversely, specific commensal strains—

particularly those with anti-inflammatory or mucosal barrier-

protective properties—can mitigate such adverse effects (27). Certain
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intestinal microorganisms—such as Lactobacillus rhamnosus,

Lactobacillus acidophilus, Bifidobacterium, members of the families

Lachnospiraceae and Enterococcaceae, as well as Akkermansia—have

been reported to mitigate the side effects of radiation therapy (27, 28).

Clinical studies reinforce these findings. In a large double-blind,

placebo-controlled trial, Delia et al. demonstrated that probiotic

supplementation significantly reduced radiation-induced diarrhea in

postoperative cancer patients (29). Similarly, Sharma et al.found that

probiotics lowered the incidence of grade III-IV oral mucositis in

patients receiving radiotherapy for head and neck cancers, improving

treatment completion rates (30). These results support the integration

of targeted probiotic interventions into radiotherapy regimens to

reduce complications and improve therapeutic adherence.

Gut microbes can influence chemotherapy through multiple

mechanisms, including drug metabolism, immune modulation, and

barrier integrity maintenance. Numerous studies have demonstrated

that gut microbiota can modulate the efficacy of chemotherapeutic

agents (31). Specific bacterial species, such as Bacteroides fragilis and

Lactobacillus acidophilus, can influence the bioavailability and

antitumor activity of chemotherapeutic drugs through metabolic

interactions. For example, Bacteroides fragilis has been shown to

metabolize agents like 5-fluorouracil (5-FU), thereby affecting its

therapeutic impact (32). Additionally, oxaliplatin (OXP)

chemotherapy has been reported to enhance local immune responses

by modulating the ileal microbiota, ultimately improving its clinical

antitumor efficacy. In contrast, cisplatin can induce alterations in

commensal gut bacteria, exacerbating mucosal injury, increasing

tumor burden, and triggering systemic inflammation. Notably, these

adverse effects can be reversed by the administration of Lactobacillus

acidophilus (33).

Microbial metabolites also play crucial roles. Butyrate enhances

gemcitabine-induced apoptosis, while microbial b-glucuronidase
can reactivate irinotecan’s active metabolite SN-38, leading to

toxicity—an effect reversible by co-administering b-glucuronidase
inhibitors. Conversely, microbial enzymes like cytidine deaminase

may inactivate gemcitabine, promoting drug resistance in

pancreatic and colorectal cancers.

Gut microbiota act as both mediators and modulators of

chemo-radiotherapeutic outcomes (Figure 1). Their dual role in

enhancing efficacy and limiting toxicity opens promising avenues

for microbiota-informed oncologic strategies. However,

interpatient variability, context-dependent responses, and

incomplete mechanistic understanding remain significant

challenges. Future research should aim to identify predictive

microbial signatures, explore metabolite-host-drug interactions in

depth, and design microbiome-based adjuvant therapies tailored to

individual tumor types and treatment protocols.
2.2 Targeted therapy

Molecular targeted therapies, designed to interfere with specific

oncogenic signaling pathways, have significantly improved cancer

treatment (34). However, recent studies reveal that gut microbiota

can modulate the efficacy of several commonly used targeted agents,
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including trastuzumab (HER2 inhibitor), cetuximab (EGFR

inhibitor), and bevacizumab (VEGF inhibitor) (35). A phase I

trial (NCT03772899) evaluated healthy donor fecal microbiota

transplantation (FMT) combined with PD-1 inhibitors in 20

treatment-naïve advanced melanoma patients. FMT alone was

safe, with no grade 3 events; combined therapy led to a 65%

response rate (including 20% complete responses) but 25% grade

3 immune-related adverse events. Microbiome analysis showed

donor strain engraftment and increased similarity over time only

in responders, alongside enrichment of immunogenic and

reduction of harmful bacteria. Mouse models confirmed enhanced

anti-PD-1 efficacy, supporting further investigation of FMT as an

adjunct to immunotherapy (36).

In HER2-positive breast cancer, low intestinal abundances of

Trichoderma, Zygomycetes, Bifidobacterium, and Prevotella were

found in trastuzumab-nonresponsive patients. In murine models,

antibiotic-induced microbiota depletion reduced trastuzumab

efficacy by impairing CD4+ T cell and granzyme B+ cell

infiltration, dendritic cell activation, and IL-12 secretion within

tumors (37). These findings suggest that gut microbes may enhance

trastuzumab’s therapeutic effect through immune modulation.
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Similarly, gut microbiota diversity has been associated with

improved outcomes in colorectal cancer (CRC) patients treated

with cetuximab or bevacizumab. In contrast, high levels of

Klebsiella pneumoniae, Lactobacillus, Bifidobacterium, and

Clostridium perfringens correlated with disease progression and

poorer prognosis, indicating that not all bacteria exert beneficial

effects (38).

In prostate cancer, the microbiome’s influence extends to

hormonal therapy. Patients receiving androgen axis-targeted

therapies (e.g., bicalutamide, enzalutamide, abiraterone) exhibited

enriched bacterial taxa capable of steroid biosynthesis (39). Notably,

Coccidioides and Mycobacterium species were more abundant in

castration-resistant patients and were shown to convert androgen

precursors into active forms, thereby compromising the efficacy of

androgen deprivation therapy (40).

These studies underscore the role of gut microbiota not only as

passive biomarkers but also as active modulators of targeted therapy

response. Their immunoregulatory capacity and metabolic

flexibility—such as influencing cytokine signaling or steroid

metabolism—can either enhance or undermine treatment efficacy.

Future directions should include identifying microbial signatures
FIGURE 1

Gut microbes are associated with a wide range of tumor therapies. Gut microbes influence multiple aspects of cancer treatment, including
radiotherapy, chemotherapy, immunotherapy, targeted therapy, TCM, and rehabilitation strategies such as dietary intervention and FMT. Specific
microbial taxa can modulate treatment efficacy and toxicity through diverse mechanisms, such as regulating immune responses, altering drug
metabolism, maintaining intestinal barrier integrity, or shaping the tumor microenvironment.
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predictive of response to targeted agents and exploring microbiome

modulation as a strategy to overcome resistance in precision

oncology (Figure 1).
2.3 Immunotherapy

Immunotherapy has revolutionized cancer treatment, offering

durable responses across various malignancies through approaches

such as immune checkpoint inhibitors (ICIs), CAR-T cells, oncolytic

viruses, cancer vaccines, and cytokine therapies (41–43). However,

increasing evidence reveals that gut microbiota critically shape both the

efficacy and toxicity of these immune-based therapies (44, 45).

Clinical and preclinical studies have demonstrated that gut

microbes modulate antitumor immunity, particularly in T-cell-

mediated therapies (17, 33). Disruption of the gut microbiota, such

as through antibiotics, has been shown to impair responses to CAR-T

therapy. For instance, patients treated with antibiotics exhibited

increased tumor burden and systemic inflammation, while those

colonized with Bifidobacterium longum and peptidoglycan-

producing microbes prior to CAR-T therapy showed improved 6-

month survival and reduced tumor progression (46).

Pioneering studies by Sivan et al. (47) first identified the

microbiota-dependency of ICI efficacy. Bifidobacterium

intestinalis and Lactobacillus casei paracasei enhanced CD8+ T-

cell infiltration and dendritic cell (DC) activation, boosting anti-

PD-L1 activity in colorectal cancer models (38,39). Likewise, B.

longum improved anti-PD-L1 responses in melanoma by

promoting tumor-specific CD8+ T-cell effector functions (48).

Subsequent studies confirmed that Bifidobacterium

pseudomallei and B. bifidum similarly enhanced ICI efficacy

across multiple tumor models through oral administration or

modulation of DC function (49). In addition, Clostridium

perfringens activated the STING pathway, promoting PD-L1

expression and IFN-g+ CD8+ TIL accumulation, further

sensitizing tumors to PD-L1 blockade (50). Interestingly, the

efficacy of ICIs may be influenced not only by microbial

composition but also by tumor type, as different malignancies

induce distinct microbiota alterations that can either enhance or

impair immunotherapeutic response (51).

Gut microbiota plays a dual role in immunotherapy: they can

augment antitumor immunity or contribute to resistance. Key taxa

such as Bifidobacterium spp. and Clostridium spp. exert their effects

through modulation of antigen presentation, cytokine signaling,

and T-cell recruitment. Given the complex and context-dependent

interactions, future work should focus on identifying microbial

biomarkers predictive of ICI responsiveness and developing

microbial adjuvants or preconditioning strategies to optimize

immune-based therapies (Figure 1).
2.4 Traditional Chinese medicine

In recent years, cancer treatment strategies have become

increasingly diversified, ranging from modern immunotherapies
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to TCM (52). While these approaches differ significantly in their

theoretical foundations, mechanisms of action, and clinical

application, they also exhibit potential complementarities. ICIs, a

hallmark of modern immunotherapy, offer targeted interventions

against tumor immune evasion with robust clinical efficacy and

scientific reproducibility. However, they are often associated with

variable patient responses and immune-related adverse events. In

contrast, TCM adopts a holistic and multi-targeted approach,

emphasizing the principles of “reinforcing the body’s vital energy

and eliminating pathogenic factors” and “harmonizing organ

function.” It has shown promise in enhancing immune function,

mitigating treatment-related toxicity, and improving patients’

quality of life. Emerging evidence suggests that TCM may

enhance immunotherapy outcomes by modulating the gut

microbiota and reducing systemic inflammation, indicating its

potential as a valuable adjunct to modern treatments. Future

research exploring the synergistic mechanisms of microbiota

regulation and immune modulation between TCM and

immunotherapy may pave the way for integrated cancer

treatment paradigms.

Traditional chinese medicine has demonstrated notable efficacy

in complex diseases, including malignancies, where it contributes to

symptom relief, immune regulation, and prevention of metastasis

and recurrence (53). Recent studies highlight a bidirectional

interaction between TCM and gut microbiota, positioning this

interplay as a potential mediator of TCM’s therapeutic effects

in oncology.

On one hand, TCM can reshape gut microbial composition and

metabolism, thereby restoring host physiological balance and

alleviating tumor-promoting conditions. Herbal compounds may

promote beneficial taxa and suppress pathogenic ones, contributing

to anti-inflammatory and antitumor effects. On the other hand, gut

microbes are involved in the biotransformation of TCM

components, enhancing the bioavailability and activity of

pharmacologically relevant metabolites. However, some microbial

species may antagonize TCM efficacy by degrading active

compounds or interfering with their absorption.

Mechanistically, TCM exerts its antitumor effects through

modulation of host–microbiota axes, including the gut–liver, gut–

brain, and gut–immune pathways, thereby influencing endocrine

and immune networks (54). This modulation helps to disrupt the

tumor-favorable microenvironment and restore systemic

immune homeostasis.

Specific herbal formulations further exemplify this mechanism.

For instance, the Paeonia lactiflora Soft Liver Combination

significantly reduced Mycobacterium avium abundance, while

Jiawei Yuxuan decoction altered gut microbial profiles and

regulated key metabolites—such as primary bile acids and IFN-

g—in a hepatocellular carcinoma model, thereby enhancing

antitumor immunity (17). These findings support the microbiota-

dependent therapeutic potential of TCM in liver and

colorectal cancers.

The gut microbiota–TCM axis represents a promising frontier

in integrative oncology. However, the dualistic nature of this

interaction—where gut microbes can both enhance and hinder
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TCM efficacy—necessitates careful characterization of host-

microbe-drug dynamics. Future research should aim to identify

microbial biomarkers predictive of TCM responsiveness, optimize

herbal compound formulation for microbiota compatibility, and

avoid unintended microbial interference. Particularly in palliative

care, where TCM offers symptomatic relief with minimal toxicity,

microbiota-informed TCM strategies may become valuable

adjuncts to mainstream cancer therapies (Figure 1).
2.5 Rehabilitation physiotherapy

Rehabilitation therapies for cancer patients increasingly

recognize the role of gut microbiota as a modifiable factor

influencing prognosis, treatment tolerance, and quality of life.

Modulating the gut microbial ecosystem—through dietary

interventions, probiotics, FMT, physical activity, or circadian

rhythm regulation—has shown potential in supporting CRC

management and general oncologic recovery.

Dietary fiber is a key determinant of gut microbiota

composition. Fermentation of fiber in the colon produces Short-

Chain Fatty Acids (SCFAs)—such as acetate, propionate, and

butyrate—which enhance mucosal integrity , suppress

inflammation, and inhibit tumor proliferation (55). High-fiber

diets also reduce carcinogenic secondary bile acids and support

beneficial microbial populations.

Personalized nutrition, tailored to the unique microbial profile

of CRC patients, has been proposed as a preventive and therapeutic

strategy (56). Specially formulated diets rich in vegetables, fruits,

oilseeds, low-sugar complex carbohydrates, and unsaturated fatty

acids offer antioxidant and anti-inflammatory benefits (57, 58).

Microecological formulas incorporating short peptides,

Lactobacillus, Bifidobacterium, and herbal extracts have

demonstrated immune-enhancing and anticancer potential,

though further validation is needed to identify microbial or

metabolic predictors of dietary response (59, 60).

Probiotics play a restorative role in gut barrier function,

immune modulation, and malnutrition correction. Butyrate-

producing strains, for example, alleviate intestinal wall atrophy in

malnourished tumor patients (61). FMT from healthy donors has

shown efficacy in resolving therapy-induced complications, such as

Clostridium difficile infections, by restoring microbial diversity

(62). Notably, FMT from immune checkpoint inhibitor-

responsive donors enhanced PD-1 blockade efficacy in germ-free

mice, associated with elevated Akkermansia muciniphila levels (63).

Moderate exercise (e.g., yoga, swimming, walking) has been

linked to increased microbial diversity and SCFA production,

enhancing gut barrier integrity and immune responsiveness (64–

66). Disruption of circadian rhythms negatively impacts microbiota

structure and immune balance. Taurocholic acid metabolism,

epigenetically regulated by microbial activity, can promote MDSC

accumulation and lung metastasis in CRC models when circadian

patterns are disturbed (67).

Microbiota-targeted rehabilitation represents a promising

adjunct in cancer care, extending beyond tumor suppression to
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approaches based on microbiome profiling, define optimal

combinations of diet, probiotics, and lifestyle interventions, and

explore their synergy with frontline oncologic treatments. These

strategies not only support tumor rehabilitation but may contribute

broadly to patient resilience and survivorship (Figure 1).
3 Mechanisms by which gut microbes
affect tumor therapy

3.1 Gut microbes intervene in tumor cell
metabolism and metastasis through flora
metabolites

A growing body of evidence suggests that gut microbial

metabolites play a pivotal role in modulating tumor cell behavior,

influencing both therapeutic response and metastatic potential (45,

68–71)(Table 1).

One representative example is indole-3-acetic acid (3-IAA), a

tryptophan-derived metabolite produced by Bacteroides fragilis and

B. polymorphicus, which was enriched in pancreatic ductal

adenocarcinoma (PDAC) patients who responded to chemotherapy.

Exogenous 3-IAA supplementation or a high-tryptophan diet

enhanced therapeutic efficacy, highlighting its potential as a

microbial co-adjuvant in treatment. Similarly, reuterin, secreted by

Lactobacillus reuteri, has shown anti-cancer properties in colon cancer

models by inducing protein oxidation and suppressing ribosome

biogenesis, thereby inhibiting tumor progression (72).

In contrast, some metabolites may promote tumor

development. For example, indole-3-acrylic acid (IDA), mainly

produced by Streptococcus species enriched in CRC patients, was

shown to accelerate CRC progression in mice by inhibiting

ferroptosis via the AHR–ALDH1A3 pathway, a mechanism

associated with poor prognosis (73).

In addition to soluble metabolites, microbial extracellular

vesicles (EVs) can directly modulate tumor behavior. Fn-OMVs,

derived from clostridium nucleatum, promote lung metastasis by

activating autophagic flux in tumor cells. Inhibiting autophagy with

chloroquine significantly reduced metastases in murine models,

confirming the pro-metastatic role of microbial vesicles in

CRC (74).

These findings underscore a dualistic role of microbial

metabolites in cancer: some exert therapeutic potential, while

others facilitate tumor progression. The regulatory landscape is

shaped by metabolite structure, producing species, and host context.

Understanding these mechanisms provides opportunities to:

Identify metabolite biomarkers predictive of treatment response;

Design diet or microbiota-based interventions to modulate

metabolite production; Target pathogenic metabolite pathways,

such as ferroptosis suppression or autophagy activation.

Future therapeutic strategies may involve precision modulation

of microbiota-derived metabolites, either by microbial engineering

or metabolite-mimicking drugs, to enhance antitumor efficacy while

mitigating metastatic risk (Figure 2).
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3.2 Gut microbes influence tumor cell
therapeutic progression by regulating the
metabolic reprogramming of tumor cells

Metabolic reprogramming is a hallmark of cancer,

underpinning genomic instability, inflammation, and immune

escape (75). As a “second genome,” the gut microbiota play a

crucial role in modulating host metabolic pathways, including

glucose, lipid, and amino acid metabolism, thereby indirectly

reshaping tumor cell behavior and response to therapy (76, 77).

Enhanced glycolysis (the Warburg effect) in CRC leads to

lactate accumulat ion and acidificat ion of the tumor

microenvironment (TME), fostering tumor progression (78, 79).

Recent studies have linked this metabolic shift to specific gut

microbes. Clostridium nucleatum and Clostridium perfringens are

enriched in CRC tissues with elevated glucose metabolism, as

confirmed via PET/CT imaging and qPCR. Mechanistically, C.

perfringens promotes glycolysis by epigenetically modulating

histone acetylation through lncRNA ENO1-IT1-mediated

regulation of ENO1, a glycolytic enzyme, revealing a microbe-

epigenetic-metabolism axis in CRC (80, 81).

Lipid biosynthesis is often upregulated in tumor cells.

Circulating tumor-derived lipids can alter intestinal microbiota by

damaging bacterial membranes and shifting microbial composition,

leading to dysbiosis and inflammation (82). Conversely, gut

microbial metabolites such as butyrate and propionate activate

PPARg signaling, which promotes lipid catabolism, reduces

hepatic fat accumulation, and may counteract tumor-driven

metabolic shifts (83).

Although the role of microbial fatty acids in tumor lipid

anabolism remains unclear, they represent promising candidates

for therapeutic exploitation (84).Tumor cells exhibit glutamine

addiction under glycolytic stress, relying on glutaminolysis for
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ATP, nucleotide, and redox homeostasis. While direct microbial

regulation of glutamine metabolism in tumors is poorly defined,

studies suggest that glutamine supplementation can reshape gut

microbial communities—reducing the Firmicutes/Bacteroidetes

ratio—and elevate protective secretory IgA (SIgA), which

maintains intestinal immune integrity (85, 86).Disruption of this

axis may promote the leakage of harmful microbial metabolites into

circulation, fueling tumor progression.

The gut microbiota influence tumor metabolism through

bidirectional nutrient and metabolite exchange. Key microbial

products—including SCFAs and lncRNA-regulated epigenetic

modifiers—affect tumor energy metabolism, redox balance, and

epigenetic landscape. Future research should focus on: Identifying

microbe-metabolite-target networks driving therapeutic resistance;

Modulating microbial composition to reverse oncogenic metabolic

states; Integrating microbiota data into metabolic precision

oncology platforms. These insights may unlock novel microbial

adjuvants or diet-microbiome interventions that synergize with

metabolic-targeted cancer therapies (Figure 2).
3.3 Gut microbes regulate immune cells in
the immune microenvironment

The TME often displays strong immunosuppressive features

that hinder the effectiveness of cancer immunotherapies. Emerging

evidence indicates that gut microbiota can reshape the immune

landscape of the TME by influencing both innate and adaptive

immunity, thereby modulating therapeutic response (33, 49,

87–89).

Gut microbes release microbe-associated molecular patterns

(MAMPs)—such as l ipopolysaccharides, flagell in, and

peptidoglycans—that are sensed by host pattern recognition
TABLE 1 Gut microbes associated with cancer therapies and mechanisms.

Therapy Type Key Microbes Mechanisms
Associated
Cancers

References

Radiotherapy Lactobacillus spp., Bifidobacterium spp.
Alleviate radiation-induced mucositis and diarrhea; enhance
epithelial integrity; anti-inflammatory cytokine modulation

Colorectal,
Head and Neck

(31, 158)

Enterococcus faecalis, others
Promote IL-1b secretion, tight junction disruption, enhance
radiation toxicity via dysbiosis

Colorectal (159)

Chemotherapy
Bacteroides fragilis,
Mycobacterium polymorphum

Promote Th17/Th1 activation via translocation; enhance
cyclophosphamide efficacy

Breast,
Colorectal

(160)

Targeted Therapy Bifidobacterium spp., Prevotella spp.
Modulate DC activation and T-cell recruitment, enhance
trastuzumab response

Breast (21, 161)

Immunotherapy
(ICI)

Bifidobacterium longum, Faecalibacterium
prausnitzii, Akkermansia muciniphila

Enhance CD8+ T cell infiltration, improve ICI efficacy via DC
activation and IFN-g production

Melanoma,
NSCLC, CRC

(162)

Fusobacterium nucleatum
Suppresses ICI efficacy via TIGIT binding, succinate-mediated
IFN-b inhibition

Colorectal (163)

TCM
Mycobacterium avium,
Bifidobacterium spp.

Modulate bile acid metabolism and interferon-related
metabolites; adjust intestinal flora

Liver, Colorectal (164, 165)

Rehabilitation
(Diet,
FMT, Probiotics)

SCFA-producing bacteria (Roseburia,
Butyricicoccus, etc.)

Enhance gut barrier, reduce systemic inflammation, promote
immune response

Colorectal (166)
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receptors (e.g., TLRs, NOD-like receptors), influencing both

systemic and intratumoral immune responses (21, 82, 90). For

instance, dietary fiber enhances cyclic di-adenosine secretion from

gut microbes, which activates the STING pathway and promotes

type I interferon production in the TME, facilitating antigen

presentation and boosting the efficacy of immune checkpoint

blockade (ICB) therapies (91, 92).

Additionally, microbial sensing impacts therapy-induced

immunotoxicity. For example, TLR9 or MYD88 deficiency

reduces graft-versus-host disease (GVHD) in mice, while TLR2

signaling attenuates methotrexate toxicity by inducing

compensatory metabolic pathways (17, 93).

Increased gut permeability during tumor progression or therapy

allows translocation of live bacteria and metabolites into secondary

lymphoid tissues or tumors, influencing immune activation (84).

Fusobacterium nucleatum (Fn), a CRC-associated microbe, has

been shown to localize preferentially in tumors and interfere with

ICB efficacy. Fn-derived succinic acid suppresses IFN-I signaling

and CD8+ T-cell infiltration, while its surface protein FAP2 binds

TIGIT on T/NK cells to inhibit antitumor immunity (94–96).

SCFAs such as butyrate, acetate, and propionate, as well as

tryptophan metabolites, play key roles in modulating immune

responses (97, 98). Butyrate enhances CD8+ T-cell activation by

inhibiting histone deacetylases and inducing ID2 expression,

thereby improving responses to ICB and radiotherapy (99).
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However, it may also suppress type I IFN production in dendritic

cells, reducing radiotherapy efficacy in certain contexts (100).

In contrast, microbial SCFAs also exhibit cytoprotective effects,

alleviating treatment-related toxicity. For example, butyrate from

Prevotella loescheii mitigates cardiotoxicity associated with PD-1/

PD-L1 blockade (101), while propionate and indole-derived

metabolites reduce hematologic and gastrointestinal toxicity

during radiotherapy (102).

Gut microbiota also influences immune checkpoint expression.

Coprobacillus cateniformis, for example, downregulates PD-L2 in

dendritic cells, enhancing CD8+ T-cell–mediated antitumor

immunity. In germ-free mice, blockade of PD-L2 or its receptor

RGMb restores responsiveness to anti-PD-1/PD-L1 therapy, in a

MYD88-dependent manner (103).

The gut-tumor immune axis is a dynamic interface with both

therapeutic potential and challenges. While some bacteria promote

immune activation, others contribute to therapy resistance or immune

suppression. Conflicting findings across studies highlight the influence

of host genetic background, tumor type, and microbiota composition.

Identifying key microbial species and metabolites that predict or

modulate immunotherapy outcomes; Targeting microbial pathways

(e.g., SCFA production, MAMP sensing) to enhance immune

responses; Designing microbiome-informed immunotherapy

protocols, including prebiotic/probiotic combinations or

microbial-derived adjuvants (Figure 2).
FIGURE 2

Gut microbes modulate the efficacy of cancer therapies through multiple mechanisms. Gut microbiota exerts a profound influence on cancer
therapy outcomes by orchestrating a range of biological processes within the host and tumor microenvironment. These mechanisms include: (1)
metabolic reprogramming of tumor cells via microbial metabolites such as SCFAs and tryptophan derivatives, which can either enhance or impair
therapeutic efficacy; (2) modulation of the tumor immune microenvironment by influencing T-cell function, antigen presentation, and immune
checkpoint expression; (3) remodeling of tumor biomechanical properties such as extracellular matrix stiffness and intercellular adhesion, thereby
affecting tumor invasion and immune infiltration; (4) translocation of bacteria from the gut to tumor tissue, contributing to the formation of
intratumoral microbiota that can interact with local immune cells; and (5) induction of DNA damage and genomic instability through genotoxic
bacterial products like colibactin. Together, these pathways illustrate the multifaceted regulatory roles of gut microbes in shaping therapeutic
response, toxicity, and resistance, suggesting new opportunities for microbiota-targeted adjuvant interventions.
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3.4 Regulation of the biophysical
properties of the tumor microenvironment

The biophysical landscape of the TME—including matrix stiffness,

cellular adhesion, and mechanical stress—plays a crucial role in cancer

progression and immune regulation. Recent studies reveal that gut

microbiota, particularly specific bacterial species and their bioactive

factors, can significantly influence these mechanical properties, thereby

modulating tumor invasiveness and therapeutic response.

In CRC, Fusobacterium nucleatum (Fn) has been shown to

enhance tumor cell adhesion to endothelial cells via upregulation of

ICAM1, a key adhesion molecule, facilitating extravasation and

metastasis in in vivo models. This process is mediated by the

ALPK1-NF-kB signaling axis (104).Furthermore, circulating

tumor cells experience fluid shear stress and other mechanical

forces that can cause cytoskeletal damage and limit metastatic

potential (105, 106). However, cancer cells invaded by certain

bacteria—termed intratumoral microbes (InTM)—exhibit

enhanced survival under these conditions. In murine models,

bacterial invasion induced RhoA-ROCK-actin remodeling, which

strengthens cytoskeletal integrity and increases resistance to

mechanical stress, promoting distant metastasis (107).

The exact microbial trigger for this phenotype remains under

investigation, but bacterial factors such as C3 ribosyl transferase from

Clostridium botulinum, known to alter actin dynamics, are potential

candidates (108). Microbial dysbiosis also influences extracellular

matrix (ECM) dynamics within tumors. For instance, reduced

abundance of Faecalibacterium prausnitzii in CRC patients correlates

with enhanced MMP2 activation, leading to chronic inflammation,

fibrosis, and excessive ECM deposition (109). These changes result in

increased TME stiffness, which has been observed across multiple

cancers (e.g., breast, liver, pancreatic, prostate) and is associated with

poor prognosis, immune evasion, and therapeutic resistance (105).The

st i ffened ECM promotes tumor progress ion through

mechanotransduction pathways, enabling cancer cells to sense and

respond to physical cues via integrins and YAP/TAZ transcriptional

regulation, further reinforcing invasive phenotypes.

Gut microbes not only influence biochemical signaling but also

remodel the physical architecture of the TME through: Modulation

of adhesion molecules (e.g., ICAM1); Cytoskeletal reprogramming

under shear stress; Fibrosis-induced ECM stiffening. These

biomechanical changes contribute to metastasis, immune

suppression, and therapy resistance. Understanding how specific

microbial species interact with tumor biophysics offers a novel

therapeutic avenue. Targeting bacteria-ECM-cytoskeleton crosstalk

may allow us to “soften” the TME and enhance antitumor

immunity or drug penetration (Figure 2).
3.5 Gut microbes influence intracellular
bacteria in tumors to regulate tumor
development

Studies have increasingly demonstrated that microorganisms

can negatively impact antitumor immunity, particularly in
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pancreatic cancer. In a genetically engineered mouse model of

PDAC, Pushalkar et al. identified a high abundance of bacteria

within tumor tissues, with up to 20% originating from the gut

microbiota—an observation further supported by human surgical

specimens in which these bacteria were absent from adjacent non-

tumor areas (110, 111). Notably, pancreatic tumorigenesis was

found to induce time-dependent disruptions in gut microbial

composition, which correlated with Kras activation, highlighting a

dynamic gut-tumor microbiome interaction during disease

progression (112, 113).

Beyond direct colonization, the intratumoral microbiome can

also be shaped indirectly by gut microbiota modulation. FMT from

short-term survivors (STS), long-term survivors (LTS), and healthy

individuals into tumor-bearing mice led to distinct differences in

tumor microbiome composition, immune infiltration, and tumor

growth, underscoring the profound influence of gut-derived

microbial signals on the tumor immune microenvironment

(17, 114).

The origins of the intratumoral microbiota are believed to

include mucosal surfaces (e.g., gastrointestinal tract, lungs),

nearby normal tissues, and the circulatory system (115). Tumors

at mucosal sites are particularly susceptible to microbial infiltration

due to barrier dysfunction. For example, PDAC-associated bacteria

have been shown to translocate from the gut to the pancreas via the

pancreatic duct, facilitated by the unique inflammatory and

immunosuppressive microenvironment of adenocarcinoma (116,

117). However, even tumors in non-mucosal sites such as the breast

harbor microorganisms, suggesting alternative routes of microbial

entry, possibly via blood or immune cells (118).

A 2020 study further revealed that tumor-resident microbiota

closely resembles the bacterial communities in adjacent normal

tissues, suggesting NATs as a potential seeding source for

intratumoral bacteria (119). Given the multisource and tissue-specific

nature of tumor microbiota, systematic comparisons across tumor

types and anatomical regions may help uncover tumor-specific

microbial signatures. These findings open new avenues for cancer

prevention and precision therapeutics by targeting microbial

components of the tumor microenvironment (Figure 2).
3.6 Regulating DNA stability

Gut microbes have emerged as key players in CRC pathogenesis

through their capacity to induce genotoxic stress, compromise

genome integrity, and drive malignant transformation (120–122).

One of the most well-characterized mechanisms involves colibactin,

a genotoxin synthesized by pks+ strains of Escherichia coli, which

causes DNA double-strand breaks, triggers DNA damage response

cascades, and increases chromosomal instability and mutation

frequency. In vivo experiments have shown that inhibiting

colibactin production can suppress tumor development,

underscoring its critical role in carcinogenesis.

Furthermore, col ibactin-producing E. coli can act

synergistically with enterotoxin-producing Bacteroides fragilis-like

species. These bacteria degrade the protective mucus barrier,
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facilitating the colonization of the colonic mucosa by pks+ E. coli,

thereby amplifying DNA damage within epithelial cells. This

coordinated microbial assault accelerates neoplastic initiation in

the colon.

To explain these dynamics, researchers have proposed the

“driver–passenger” model: early “driver” bacteria possess

oncogenic traits that initiate DNA damage and tumor formation.

As tumor progression remodels the local microenvironment—

through inflammation, nutrient shifts, and immune suppression—

it becomes more permissive to “passenger” or opportunistic

bacteria. These later colonizers, although not directly oncogenic,

benefit from the altered niche and further exacerbate tumor

development through immune modulation or metabolic

interactions (31, 123).

In summary, gut microbes contribute to CRC not only by

initiating genotoxic events but also by participating in a dynamic

ecological succession that sustains and promotes tumor

progression. This interplay highlights the potential of targeting

specific microbial signatures or their genotoxins as a strategy for

CRC prevention and intervention (Figure 2).

Recent studies have further elucidated the diverse mechanisms

by which gut microbes influence cancer progression and therapeutic

responses. Notably, the STING signaling pathway has emerged as a

critical mediator linking microbial-derived signals to innate

immune activation, thereby shaping antitumor immunity (124).

Additionally, autophagy regulation has been shown to intersect

with microbial cues, affecting tumor cell survival and

responsiveness to treatment (125). Microbial metabolites also play

pivotal roles in driving epigenetic reprogramming within the tumor

microenvironment, altering gene expression patterns that can either

suppress or promote tumorigenes i s (15) . Moreover ,

Bifidobacterium species have been reported to enhance dendritic

cell maturation and T-cell activation, strengthening host antitumor

immune responses (126). Together, these insights underscore the

multifaceted ways in which gut microbes and their metabolites

modulate cancer biology and highlight promising avenues for

therapeutic intervention.
4 Microbiota-targeted therapeutics:
clinical perspectives and challenges

4.1 Current clinical applications of FMT,
probiotics, and next-generation probiotics

In recent years, microbiota-targeted interventions have been

increasingly explored in cancer therapy, with FMT emerging as a

promising strategy for microbiota reconstruction. FMT has shown

preliminary clinical value in modulating immunity and enhancing

therapeutic efficacy (127–131). Particularly in patients with poor

responses to ICIs, FMT has been demonstrated to restore microbial

diversity and metabolic function, thereby improving the immune

microenvironment and therapeutic outcomes (Table 2). For

instance, FMT from ICI-responsive donors has been applied to

patients with melanoma and non-small cell lung cancer, leading to
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significant alterations in gut microbial composition and immune

cell infiltration (132). Additionally, probiotics and next-generation

probiotics have exhibited potential in supporting radiotherapy,

chemotherapy, or ICI therapy in several phase I/II clinical trials

(133, 134). However, current applications are largely empirical,

lacking standardized and personalized clinical protocols. The

substantial functional heterogeneity among strains, challenges in

maintaining formulation viability, and the complex clinical

backgrounds of recipients all obscure the translational pathway.

Therefore, future efforts should focus on identifying functional

microbial biomarkers and elucidating underlying mechanisms to

advance gut microbial interventions from empirical approaches

toward mechanism-driven precision strategies.
4.2 The potential of synthetic biology-
engineered bacteria and phage therapy in
cancer treatment

With advances in synthetic biology and microbial engineering,

engineered bacteria and phage therapy have opened unprecedented

avenues in cancer treatment (135, 136). By genetically modifying

gut-colonizing bacteria such as Escherichia coli, it is now possible to

endow them with the ability to selectively release cytokines,

immune-activating molecules, or anti-tumor metabolites within

the tumor microenvironment—effectively functioning as an “in

vivo micro-factory” for targeted therapy (137, 138). For instance,

engineered E. coli Nissle strains have been developed to express PD-

L1 nanobodies, with the potential to enhance the penetration and

efficacy of immune checkpoint therapies (137). In addition,

synthetic phages can be designed to selectively eliminate

oncogenic bacterial populations (e.g., Fusobacterium nucleatum),

thereby mitigating their roles in promoting cancer cell adhesion and

immune suppression (139, 140).

However, several technical challenges remain in the clinical

translation of these strategies, including biosafety concerns,

microbial co-adaptation, and the risk of genetic drift. Achieving

precise control over in vivo activity—such as spatiotemporal release,
TABLE 2 Summary of gut microbiota-related studies in cancer therapy.

Therapy
Type

Microbial Species
Model
System

References

Immunotherapy
Bifidobacterium spp.,
Akkermansia muciniphila

Clinical,
Animal

(146, 167, 168)

Immunotherapy Fusobacterium nucleatum
In
vitro,
Animal

(169)

Chemotherapy Fusobacterium nucleatum Animal (81)

Radiotherapy
Lactobacillus
rhamnosus GG

Animal (31)

Traditional
Chinese
Medicine

Bifidobacterium spp. Animal (170)

FMT Donor microbiota Clinical (36)
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modulation of immune tolerance, and avoiding unintended

disruption of the gut microbiota—remains a critical bottleneck.

Moving forward, integrating dynamic simulation modeling,

nanocarrier delivery platforms, and CRISPR-based regulatory

systems is expected to enhance the precision, controllability, and

clinical viability of these synthetic microbiome-based interventions.
4.3 Controllability, safety, and
interindividual variability in microbiota-
based interventions

Although microbiota-targeted interventions have demonstrated

promising therapeutic effects, significant interindividual variability

remains one of the primary barriers to clinical translation (33, 127).

The gut microbiota exhibits highly personalized characteristics

influenced by factors such as genetic background, dietary patterns,

antibiotic usage history, and baseline immune status, leading to

substantial differences in response to the same microbial intervention

across individuals (141–143). Furthermore, the diffusion, retention

time, and interactions of FMT and engineered microbial

preparations during intervention are complex and can lead to

unpredictable efficacy, immune responses, or dysbiosis (144).

In terms of safety, there is currently a lack of systematic

assessment regarding the potential pathogenicity and cumulative

toxicity associated with the long-term use of engineered bacteria or

FMT (143, 145, 146). Serious infection events reported in some

clinical cases of FMT have also exposed shortcomings in donor

screening and risk management protocols. Therefore, establishing

standardized recipient/donor matching criteria, predictive models

for pre-intervention microbiota structure and function, and

incorporating dynamic monitoring alongside pharmacokinetic

profiling are crucial strategies to enhance the reliability and safety

of microbiota-based cancer interventions.
4.4 Challenges in standardized modeling
and multi-omics integration

The lack of standardization and integration of multi-omics data

significantly hampers the clinical advancement of microbiota-based

therapies. In clinical settings, microbiota sequencing and functional

prediction often suffer from inconsistencies in data dimensions,

non-uniform analytical methods, and poor reproducibility, making

cross-study comparisons and longitudinal accumulation of

evidence difficult (147). Moreover, current intervention strategies

lack mechanisms for synergistic interpretation with other omics

data (e.g., metabolomics, transcriptomics, proteomics), which

hinders the establishment of clear causal links between microbiota

changes and therapeutic outcomes (148).

Although some studies have identified specific microbial taxa

associated with treatment responses, elucidating their signaling

pathways or the role of microbial metabolites remains a challenge

(20, 133, 149–151). Therefore, future efforts should focus on

developing standardized microbiota intervention models, unifying
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protocols for sampling, sequencing, and analysis, and integrating

clinical cohort data with mechanistic studies. Leveraging big data

platforms to build a cross-omics analytical framework will be

crucial to strengthen the evidence base and provide traceable

mechanistic insights for microbiota-targeted therapies.
4.5 AI and microbiome integration for
therapeutic prediction and precision
intervention design

Encouragingly, the integration of artificial intelligence (AI)

technologies offers a novel approach to achieving precision

microbiome interventions. AI models can extract features and

uncover associations within the complex tripartite relationship

between the microbiota, host, and therapy, enabling predictive

modeling of key microbial taxa linked to therapeutic responses

(152, 153). On this basis, the incorporation of multi-omics datasets

—such as scRNA-seq, metabolomics, and 16S rRNA sequencing—

allows AI to optimize personalized intervention strategies and

enhance both therapeutic efficacy and safety margins (154, 155).

Recent studies have demonstrated that deep learning can identify

characteristic microbial signatures in responders to ICIs, thereby

supporting donor selection and improving the predictive accuracy of

FMT outcomes (156). Furthermore, reinforcement learning algorithms

can simulate the impact of different intervention pathways on

microbial succession, assisting in the selection of intervention targets

and the timing of therapeutic decisions (157).

However, current AI systems remain limited by the scale of

training data, the precision of microbial taxonomic annotation, and

insufficient causal inference capabilities. Moving forward, it is essential

to leverage multicenter clinical cohorts and construct high-quality,

well-annotated datasets. The development of interpretable and

generalizable AI models will be critical to achieving an intelligent

leap from population-level microbial “common pattern recognition” to

truly individualized microbiome regulation.
5 Conclusion and perspectives

In recent years, gut microbiota has emerged as a crucial player in

host immune modulation and metabolic regulation, gaining

increasing prominence in the field of cancer therapy. A growing

body of evidence indicates that the composition of the gut microbiota,

its metabolic products, and its interactions with host cells significantly

influence the outcomes of various antitumor treatments, including

immunotherapy, chemotherapy, and radiotherapy. From enhancing

treatment response rates to alleviating adverse effects and reshaping

the tumor microenvironment, gut microbes exhibit a “triple role” of

response prediction, therapeutic potentiation, and toxicity mitigation.

As such, targeting the gut microbiome has become a new research

frontier with the potential to transform next-generation cancer

intervention strategies.

Despite impressive progress, the complex mechanisms through

which gut microbes affect cancer therapy remain incompletely
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understood. High interindividual variability—driven by host

genetics, immune status, and metabolic profiles—poses a

challenge in decoding causative microbial-host interactions from

vast multi-omics datasets. Moreover, the phenomenon of microbial

“co-morbidity-coexistence-co-therapy” complicates efforts in

precise clinical targeting. Current studies largely remain at the

level of association analysis, with limited functional validation or

mechanistic elucidation, which restricts the clinical application of

gut microbiota as reliable biomarkers or therapeutic targets.

The controllability and safety of microbial interventions also

represent major bottlenecks in translational applications. Existing

strategies such as FMT, probiotic/next-generation microbial

formulations, and synthetic engineered bacteria have shown

therapeutic promise to some extent. However, issues such as poor

stability, undefined side effect profiles, and potential interference

with host immunity and metabolism persist. This is especially

critical in the context of cancer, where patients often exhibit

compromised immune systems, narrowing the “therapeutic safety
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window.” Therefore, intervention strategies must be accompanied

by enhanced precision and controllability under dynamic

immunological conditions.

Future research should emphasize the development of an

integrated “tumor × microbiome × immunity × metabolism”

framework, leveraging single-cell sequencing, spatial multi-omics,

and metabolomics to enable in-depth analysis from population-

wide to single-cell resolution (Figure 3). The incorporation of AI

will be pivotal in overcoming existing limitations. AI-driven tools

for microbiome prediction modeling, immune response forecasting,

and individualized intervention optimization will significantly

improve the clinical interpretability of microbiome data, fostering

the evolution from “experience-based” to “mechanism-driven

precision microbiome therapy.”

Ultimately, personalized microbiome-based therapy is poised to

become a central component of future anticancer strategies. Given

the regional, dietary, lifestyle, and genetic diversity of microbiomes,

constructing high-resolution population microbiota maps and
FIGURE 3

Future directions for gut microbes in cancer therapy. Harnessing the potential of gut microbes represents a promising frontier in precision oncology.
Future research should focus on identifying key microbial taxa that influence specific anti-tumor therapeutic modalities—including chemotherapy,
radiotherapy, immunotherapy, and targeted therapies—through detailed microbiome profiling. Mechanistic studies are needed to elucidate how gut
microbes and their metabolites modulate treatment response, therapeutic resistance, and host immunity. Moreover, robust clinical trials must be
conducted to validate the efficacy and safety of microbiota-based interventions such as probiotics, FMT, and microbial metabolite supplementation
in cancer patients. With the advancement of synthetic biology and nanotechnology, the design of “artificial anti-tumor bacteria” engineered to
deliver drugs, modulate the tumor microenvironment, or boost host immune responses could enable precise and controllable microbial therapy.
Ultimately, integrating microbiome science with multi-omics and artificial intelligence tools will drive the development of individualized, microbiota-
informed strategies for improving cancer treatment outcomes.
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dynamic evaluation systems will be a key research priority. By

establishing a three-dimensional interactive network of

“microbiota-host-tumor,” it may become feasible to design early

screening strategies, personalized interventions, and synergistic

treatment pathways based on microbiota status—achieving truly

symbiotic and microbiota-empowered anticancer approaches.
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