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Purpose: To guide the preselection of highly repeatable radiomic features (RFs)

in downstream analysis without further analysis its repeatability, a detailed

radiomic feature robustness databank (RF-RobustDB) was established via

image perturbation.

Methods: Data on 1,274 oropharyngeal carcinoma (OPC) patients who had

undergone pretreatment computed tomography (CT) imaging, collected from

a public dataset. The original images and corresponding masks underwent

systematic perturbations to simulate potential variations encountered during

CT image rescanning, including translational shifts, rotational changes, random

noise additions, and contour modifications. For each radiomic feature (RF),

including unfiltered, wavelet-filtered, and Laplacian-of-Gaussian (LoG)-filtered

features, we systematically quantified robustness against these perturbations by

intraclass correlation coefficients (ICCs).

Results: Out of 1395 first- and high-order RFs, 470 demonstrated excellent

repeatability, i.e., a mean ICC of greater than 0.9. The use of these preselected

highly repeatable RFs in model development improved the mean concordance

(C) index in two external validation cohorts and reduced the mean C index gap

between the training and external validation cohorts. These results demonstrate
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that the preselected high repeatable RFs from RF-RobustDB can effectively

enhance radiomic model generalizability.

Conclusions: The methodology employed to establish the RF-RobustDB is

highly transferable to other tumor sites and different imaging modalities, which

will facilitate the creation of RF-RobustDBs to guide the development of

universally applicable radiomic models.
KEYWORDS

radiomics, feature repeatability, model generalizability, oropharyngeal carcinoma,
progression-free survival
1 Introduction

The role and potential of radiomics in cancer management have

been constantly expanding over the past decades, such as the distant

metastases prediction of advanced nasopharyngeal carcinoma

(NPC) (1), performing risk stratification of oropharyngeal cancer

(OPC) (2), breast cancer risk estimation (3), and prediction of

treatment response in non-small-cell lung cancer (NSCLC) (4).

However, model generalizability remains the prime stumbling block

for bend-to-bedside translation of radiomic models. To enhance the

generalizability of radiomic models, concerted efforts have been

made to enhance repeatability and reproducibility of radiomic

features (RFs) for primary model generation (5–7). RF extraction,

implemented prior to modeling process (8–11), is crucial for

ensuring model reliability and generalizability. Although the

Image Biomarker Standardization Initiative (IBSI) provides

standardized guidelines for RF extraction (12), RF repeatability

and reproducibility remain limited across institutions and imaging

protocols (13–15). Consequently, these limitations represent

fundamental challenges that need to be addressed before RFs can

be effectively incorporated into modeling workflows.

Multiple variables influence the repeatability and reproducibility

of RFs throughout the imaging process (13–27), such as scanner

model (13, 14), scanner type (13, 15), scanning parameters (16),

segmentation (17, 18), reconstruction (25), and preprocessing

methods (26, 27). However, clear guidelines for selecting highly

repeatable RFs in multi-institutional datasets remain unavailable.

Test-retest methods pose additional challenges, as they may

increase patients’ radiation exposure and consume medical

resources unnecessarily. Manual re-segmentation further burdens

radiologists with additional workload. Although phantom-based

studies offer a radiation-free alternative for evaluating RF selection

(28), their clinical applicability is limited due to imperfect simulation

of human tissues. Given the practical constraints of test-retest studies

and manual re-segmentation across institutions, there is an urgent

need for a cost-effective, efficient, easily implementable, and clinically

transferable RF robustness assessment method. Fortunately, A
02
software-based image perturbation method proposed by

Zwanenburg et al. offers a promising way to simulate the test-retest

and re-segmentation process (29). This method simulates patient

positioning during imaging, manual segmentation randomization,

and varying noise levels of the imaging device. The effectiveness of

image perturbation has been demonstrated by improved

performance in radiomic models. For example, Teng et al. (30, 31)

and Zhang et al. (6) applied image perturbation to select highly

reproducible RFs that improved the reliability and generalizability of

radiomic models. Moreover, image perturbation has been shown to

achieve the same optimal reliability as test-retest imaging for

constructing radiomic models (32).

Since the perturbation method demonstrates encouraging/

promising capabilities in assessing feature stability, in this study,

we aim to establish a reliable RF robustness databank (RF-

RobustDB) via perturbation method for guiding the downstream

development of radiomic models. Specifically, we included a large-

scale of CT images of OPC patients from a total of 7 medical

institution. The OPC dataset was obtained from the Cancer

Imaging Archive (TCIA) (33). RFs from CT images with and

without applications of popular imaging filters were analyzed.

The repeatability of the RFs in the RF-RobustDB was quantified

by one-way intra-class correlation coefficients (ICCs) (34). We

adopted CT dataset for this study mainly owing to its wide-

spreading popularity in the cancer management for pre-treatment

planning, mid-treatment monitoring, and post-treatment

evaluation, as well as the availability of dataset in the community.

Through systemic analysis, the cohort size effects on feature

repeatability ensured that the sample size is sufficient to maintain

the reliability of RF-RobustDB. Meanwhile, the RF-RobustDB-

enhanced selection of highly repeatable RFs significantly

improved the generalizability of progression-free survival (PFS)

model. These results support the reliability of the comprehensive

CT-based RF-RobustDB for OPC, offering a valuable insight into

RF repeatability. Moreover, this study provided a comprehensive

and generalized methodology for establishing an extensive RF-

RobustDB applicable to diverse tissue sites and imaging modalities.
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2 Materials and methods

2.1 Patient cohort

This retrospective study analyzed a dataset of pretreatment CT

images from 1,418 head-and-neck cancer patients obtained from

TCIA (33). The dataset included patients from seven medical

institutions: 137 patients from the single-institution HEAD-

NECK-RADIOMICS-HN1 (HN1) study (35, 36), 524 patients

from the s ingle- inst i tut ion Radiomic Biomarkers in

Oropharyngeal Carcinoma (RBOPC) study (37, 38), 298 patients

from four institutions in the Head-Neck-PET-CT (HNPET) study

(39, 40), and 459 patients from the single-institution Head and

Neck Squamous Cell Carcinoma (HNSCC) study (41–43). To

maintain consistency, only OPC patients with primary gross

tumor volume (GTV) data were included, resulting in a final

cohort of 1,274 OPC patients for establishing the site-specific RF-

RobustDB. The baseline characteristics of the selected OPC patient

are presented in Table A1. Due to the retrospective nature of this

study, informed consent was not required.
2.2 Image perturbation

To simulate the inevitable variabilities in patient setup during

image acquisition, a validated image perturbation method was used

to mimic patient setup, randomized noise, and manual

segmentation diversity. Translational and rotational perturbations

were applied to the original (unfiltered) images and tumor masks to

mimic patient position. Randomized noise was added to the original

images to simulate noise variations during image acquisition.

Contour randomization was applied to the tumor mask to mimic

variations in manual tumor segmentation.

The image perturbation settings were based on previous studies

on repeatability evaluation via image perturbation (6, 29, 31):

translation distances were set to 0, 0.4, and 0.8 pixels; rotation

angles were set to -20°, 0°, and 20°; noise levels were increased to 0,

1, 2, and 5 times the original noise level; and a three-dimensional
Frontiers in Oncology 03
random displacement field was used to deform segmented masks,

resulting in randomized contours. For each voxel point, a random

field vector component in each dimension is generated from a

uniform distribution between -1 and 1. All z-components of the

field vectors on the same slice are set to the same value to mimic the

uniform inter-slice contour variations resulting from slice-by-slice

contouring. The field vectors are then normalized in each

dimension by the root mean square. Finally, they are smoothed

using a Gaussian filter with a defined sigma value of 10 to ensure

continuous changes in the random displacement field and to avoid

sharp changes in the deformed contours. Sixty different

perturbations were performed to enhance the reliability of our

results, as previous studies have suggested that 40 different

perturbations are sufficient (6, 30). During each perturbation

operation, parameters from the four perturbation modes were

randomly combined to simulate the uncertainty in variables

during image rescanning.
2.3 RF extraction

Image pre-processing and RF extraction were conducted in

accordance with the IBSI guidelines (12). Before RF extraction, all

images were resampled to a 1 × 1 × 1 mm3 resolution, and re-

segmentation was performed to limit pixel values between -150 and

180 HU, effectively excluding non-tumor tissue (such as air and

bone) within the volume of interest (31). As a previous study

suggested, using the fixed bin number between 8 and 128

discretize images can reduce the infinite possible number of

intensity values to a finite set and image noise (44). Hence, a

fixed bin number of 30 was used for image discretization in this

study. RF extraction was performed using PyRadiomics v2.2 (45) in

Python v3.7. Shape-based features, first-order features, and high-

order features from the gray-level co-occurrence matrix (GLCM),

gray-level run-length matrix (GLRLM), gray-level size-zone matrix

(GLSZM), gray-level dependence matrix (GLDM), and neighboring

gray-tone difference matrix (NGTDM) were extracted from the

GTVs in original, Laplacian-of-Gaussian (LoG)-filtered (with sigma

values of 1, 2, 3, 4, 5, and 6 mm) and Coiflet-1 wavelet-

filtered images.

Fourteen shape-based features were extracted from each tumor

mask, and 93 first-order and high-order features were extracted

from each of the unfiltered, LoG-filtered, and wavelet-filtered

images. Following image perturbation, we additionally extracted

corresponding feature sets from all perturbed image variants.

Finally, the RF-RobustDB contained 1,316 unfiltered, LoG-

filtered, and wavelet-filtered RFs, and 78,960 perturbed features

were extracted for ICC analysis.
2.4 RF repeatability assessment

Since the feature is extracted from different perturbated mask

region, the assignment of perturbation parameters is independent

to patients. Therefore, the robustness of each RF was quantified in
TABLE A1 Baseline patient characteristics of the dataset in different
cohorts.

Data cohort Sex Median age
Overall
stage

HNSCC Male: 395
57(28-87) I-IV

Female:64

HN1 Male: 67
60(44-80) I-IVb

Female:21

RBOPC Male: 423
60(33-89) I-IVb

Female:101

HNPET Male: 151
63(34-90) I-IVb

Female:52
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terms of a one-way, random, absolute-agreement ICC, which was

calculated using Equation 1, as follows (34).

ICC(1, 1) = MSn−MSW
MSn+(k+1)MSW

(1)

whereMSn is the mean square for different patients,MSW is the

mean square for residual sources of variance, and k is the number of

perturbation times plus one for the unperturbed image. As

recommended by a previous study (34), features with an ICC<

0.5 were regarded as having poor repeatability, ICC between 0.50

and 0.75 were regarded as having moderate repeatability, ICC

between 0.75 and 0.90 were regarded as having good repeatability,

and ICC > 0.9 were regarded as having excellent repeatability.
2.5 Establishment of the RF-RobustDB

To determine the reliable patient sample size (n) required for

constructing the RF-RobustDB, the mean ICC values as a function

of patient numbers were systematically analyzed. The methodology
Frontiers in Oncology 04
was implemented as follows: Starting with 10 patients, the sample

size was incrementally increased by 10 patients up to 100, followed

by 100-patient increments thereafter. For each specific patient-

number subgroup, 10 rounds of random resampling were

performed from the oropharyngeal carcinoma (OPC) datasets to

calculate the corresponding mean ICC values. The six radiomic

features (RFs) demonstrating the greatest variations in mean ICC

values across different sample sizes were selected to illustrate the

sample size dependency of ICC metrics. Based on this analysis, a

patient number that showed a stabilized trend in mean ICCs was

identified and ultimately used for establishing the RF-RobustDB.
2.6 RF selection and PFS model
development

To demonstrate the efficacy of the RF-RobustDB, six PFS

models were constructed using RFs selected through different ICC

thresholds: (1) ICC > 0.9, (2) ICC > 0.85, (3) ICC > 0.8, (4) ICC >

0.75, (5) ICC > 0.5, and (6) non-preselected RFs. PFS events were
FIGURE 1

Workflow used for building progression-free survival (PFS) models based on CT images of oropharyngeal carcinoma patients. ICC = intraclass
correlation coefficient; LASSO = least absolute shrinkage and selection operator; RF = radiomic feature; HNSCC = Head and Neck Squamous Cell
Carcinoma; HN1 = HEAD-NECK-RADIOMICS-HN1; RBOPC = Radiomic Biomarkers in Oropharyngeal Carcinoma.
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defined as local/regional recurrence, distant metastasis, or death

from any cause. Figure 1 demonstrate the complete feature selection

and modeling workflow. For the feature selection procedure, the

highly reliable RFs derived from unperturbed images were initially

chosen based on their robustness, as defined by the mean ICC.

Subsequently, univariate Cox analysis was utilized to identify the

RFs associated with PFS events within the pre-selected RFs in the

training group. RFs with a p-value of less than 0.05 were considered

significant. Finally, the least absolute shrinkage and selection

operator algorithm was employed to select RFs with non-zero

coefficients in the training group. The training groups were

randomly bootstrapped 10 times from the 10 resampled balanced

HNSCC dataset. The features that appeared frequently were

selected to construct the PFS models.

To determine the optimal number of RFs for modeling, the

relationship between the feature number and model performance

was systematically investigated in the HNSCC dataset (Figure A1).

The results revealed that the model constructed using non-

preselected RFs exhibited optimal performance in the internal

testing group when the feature number reached five (Figure A1

(A)). Specifically, the mean C index exhibited the highest value in

the testing cohorts, indicating the superior predictive ability of the

model at this feature threshold. Moreover, using a greater number

of RFs resulted in larger mean C index gaps between the training

and internal testing groups. Similar trends of optimal performance

were observed in the other five experiments (Figure A1(B)-(F)).

Therefore, the top five RFs that most frequently appeared in all

experiments were ultimately selected to ensure that the feature

number would not introduce conflicts into the final results. The

selected RFs for each experiment are listed in Table A2.

Multivariate Cox regression was employed to model the survival

risks for PFS in the HNSCC dataset. The performance of the

developed PFS models was evaluated by concordance (C) index

for the training, internal testing, and external validation (HN1,

RBOPC) cohorts. The HNPET dataset was excluded from external

validation due to insufficient follow-up data on local/regional

recurrence and distant metastasis. To assess the robustness of the

models, the mean C index and its 95% confidence intervals were

calculated in 100 bootstrap experiments on the 10 randomly

resampled balanced datasets.
2.7 Model generalizability assessment

To assess model generalizability across external validation (EV)

cohorts, a generalizability index (G) that quantifies the absolute

difference in C index values between training and EV groups. The G

index is defined by Equation 2:

G =oM
m

CTrain − CEVm

�
�

�
�

M
(2)

where CTrain represents the C index of the trained model, CEVm

is the C index for the mth EV cohort, and M is the total number of

EV cohorts. Lower G-index values indicate superior model

generalizability, reflecting smaller performance discrepancies
Frontiers in Oncology 05
between training and validation datasets. The mean G index and

corresponding 95% confidence intervals were calculated from 1,000

cross validation models to comprehensively evaluate the

distribution of model generalizability performance.
3 Results

3.1 Patient-number dependence analysis

Figure 2 depicts the relationship between the number of patients

and the mean ICCs of six RFs, which were selected as the top six RFs

exhibiting the most significant variance changes with varying patient

numbers. As the number of patients increased, the mean ICCs of the

Firstorder_Maximum and GLCM_ClusterTendency features initially

increased and then stabilized. In contrast, the mean ICCs of the

remaining four selected features first fluctuated before eventually

stabilizing. All six features tended to stabilize once the patient count

reached 200. This stabilization trend of the mean ICCs demonstrates

that the patient sample size used in this study was sufficient for

constructing the RF-RobustDB. Specifically, 800 resampled patients

were subjected to 100 iterations of resampling to compute the mean

ICCs and their corresponding 95% confidence intervals.
3.2 Establishment and validation of the RF-
RobustDB

3.2.1 The repeatability of shape-based RFs
Figure 3 presents a comprehensive evaluation of the ICCs for

shape-based RFs across multiple simulated test conditions. Notably,

all shape-based features demonstrated consistently high

repeatability, with mean ICC values surpassing the 0.9 threshold

(range: 0.955-0.999) across various perturbation scenarios. This

robust performance supports the clinical applicability of shape-

based RFs, as their measurements consistently reflect the tumor’s

shape characteristics and are less influenced by other

clinical factors.

3.2.2 The repeatability of first-order and textural
RFs

Figure 4 presents the ICCs of the first-order and textural RFs.

The left panel of Figure 4 displays the mean ICCs and their 95%

confidence intervals for each unfiltered RF. The right panel of

Figure 4 gives the mean ICCs of the unfiltered, wavelet-filtered and

LoG-filtered RFs. Collectively, Figures 3 and 4 establish the RF-

RobustDB. Detailed information on the mean ICCs and their 95%

confidence intervals can be found in the Appendix.

3.2.3 RF-RobustDB help improving the
generalizability of PFS models

Figure 5A, B illustrates the selection of highly reproducible

radiomic features (RFs) using the established RF-RobustDB.

Figure 5A quantifies the absolute counts, while Figure 5B presents

the relative proportions of these reproducible RFs across six feature
frontiersin.org
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classes: first-order, GLCM, GLRLM, GLSZM, GLDM, and

NGTDM. Among 1,395 first-order and high-order RFs analyzed,

470 features (33.7%) demonstrated excellent repeatability, defined

by mean ICCs > 0.9. Notably, unfiltered and LoG-filtered features

exhibited significantly higher repeatability rates compared to

wavelet-filtered features.

Using the established RF-RobustDB, six PFS models were

systematically evaluated by recommended RFs at varying mean

ICC thresholds. The C index in the training and internal testing

groups first decreased and then increased as the ICC increased, as

the red and black curve shown in Figure 5C. However, it is
Frontiers in Oncology 06
noteworthy that the EV cohorts (HN1 and RBOPC)

demonstrated superior discriminative performance for models

constructed using ICC preselected RFs, as shown by the pink and

blue lines in Figure 5C. In addition, there was a smaller C index gap

between the training and EV cohorts in the mean ICC preselected

RF groups than in the non-preselected RF group, as shown by the G

index trend in Figure 5D. The smallest mean G index was obtained

in the RF groups preselected with a mean ICC of 0.5, and the largest

mean G index was obtained in the non-preselected RFs groups. By

taking into account the large C index and small G index of the RFs

preselected with mean ICCs, it was found that the PFS models
TABLE A2 Final selected radiomic features for each PFS model.

ICC threshold Feature name

ICC>0 log-sigma-2-mm-3D_glszm_LowGrayLevelZoneEmphasis_30_binCount

log-sigma-5-mm-3D_glszm_LowGrayLevelZoneEmphasis_30_binCount

log-sigma-6-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis_30_binCount

wavelet-LLH_firstorder_Skewness_30_binCount

log-sigma-3-mm-3D_glszm_ZoneEntropy_30_binCount

ICC>05 wavelet-HHH_firstorder_Energy_30_binCount

wavelet-LHH_firstorder_Energy_30_binCount

log-sigma-5-mm-3D_firstorder_Energy_30_binCount

log-sigma-4-mm-3D_firstorder_Energy_30_binCount

wavelet-LLH_firstorder_Energy_30_binCount

ICC>075 wavelet-LHH_glrlm_GrayLevelNonUniformityNormalized_30_binCount

wavelet-LHH_glcm_Idn_30_binCount

log-sigma-6-mm-3D_glcm_ClusterShade_30_binCount

original_glcm_Correlation_30_binCount

wavelet-LLL_glcm_JointAverage_30_binCount

ICC>08 wavelet-LHH_glcm_Idn_30_binCount

log-sigma-6-mm-3D_glcm_ClusterShade_30_binCount

log-sigma-5-mm-3D_glszm_ZoneEntropy_30_binCount

original_glcm_Correlation_30_binCount

log-sigma-4-mm-3D_glszm_SizeZoneNonUniformity_30_binCount

ICC>085 wavelet-LHH_gldm_SmallDependenceEmphasis_30_binCount

wavelet-LLL_glrlm_ShortRunHighGrayLevelEmphasis_30_binCount

wavelet-LLL_firstorder_Range_30_binCount

log-sigma-2-mm-3D_firstorder_90Percentile_30_binCount

log-sigma-6-mm-3D_glrlm_RunLengthNonUniformity_30_binCount

ICC>09 log-sigma-1-mm-3D_firstorder_Maximum_30_binCount

log-sigma-2-mm-3D_glszm_SizeZoneNonUniformity_30_binCount

original_glcm_Correlation_30_binCount

log-sigma-3-mm-3D_glszm_SizeZoneNonUniformity_30_binCount

log-sigma-6-mm-3D_glcm_DifferenceVariance_30_binCount
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incorporating preselected RFs demonstrated significantly higher

generalizability compared to those using non-preselected RFs.
4 Discussion

4.1 Result analysis

A robust RF-RobustDB of pretreatment CT-derived RFs in

OPC patients was established through image perturbation. This

database effectively guides the preselection of repeatable RFs and
Frontiers in Oncology 07
enhances the generalizability of multi-cohort PFS studies. A new G

index was introduced to quantitatively evaluate the generalizability

of the constructed PFS models. The methodology developed in this

study can be easily extended to other anatomical sites and imaging

modalities, providing a feasible solution for establishing

standardized RF-RobustDBs to comprehensively assess RF

repeatability across various clinical scenarios.

Our analysis of mean ICC dependence on patient cohort size

(Figure 2) revealed that the six selected unfiltered RFs showing the

highest variance across different sample sizes achieved stabilization

when the patient number exceeded 200. This suggests that a

minimum of 200 patients provides sufficient data for reliable

ICC-based assessment of RF robustness, confirming that the

sample size in this study (1,274) ensured the reliability of the RF-

RobustDB. The RF-RobustDB evaluation demonstrated significant

differences in feature repeatability between filtering methods: only

11.7% of wavelet-filtered RFs exhibited excellent repeatability

(ICC>0.9), compared to 56.3% of Laplacian-of-Gaussian (LoG)-

filtered RFs. This substantial disparity (44.6%) establishes the

superior robustness of LoG-filtered features. The low repeatability

of wavelet-filtered RFs likely stems from the characteristics of

wavelet filtering, image resampling strategies, and perturbation

settings (6). Therefore, radiomic model construction requires

more stringent selection criteria for wavelet-filtered RFs

compared to their LoG-filtered counterparts.
4.2 RF-RobustDB reliability analysis

The clinical utility of the RF-RobustDB was evaluated through

external validation using two independent cohorts derived from

separate institutions. Importantly, these validation cohorts were
FIGURE 2

Patient-number dependence of mean intraclass correlation
coefficients (ICCs) in six unfiltered radiomic features, which were
selected based on the top six radiomic features with the largest
variance in mean ICCs between different patient numbers.
FIGURE 3

Mean intraclass correlation coefficients (ICCs) with 95% confidence intervals for each shape-based feature.
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exclusively utilized for feature selection and model training phases,

thereby maintaining the integrity of the validation process.

Comparative analysis revealed that models incorporating RF-

RobustDB-preselected features demonstrated superior

performance in external validation, as evidenced by the higher

mean concordance indices compared to models using non-
Frontiers in Oncology 08
preselected features and a reduction in the performance gap

between training and validation cohorts. Zhang and colleagues

improved the generalizability of a disease-free survival model for

head and neck cancer by pre-selecting highly reproducible RFs

using the perturbation method (6). The study by Gong et al. also

provides compelling evidence supporting the critical importance of
FIGURE 4

Intraclass correlation coefficients (ICCs) of first-order and textural radiomic features. GLCM = gray-level co-occurrence matrix; GLRLM = gray-level
run-length matrix; GLSZM = gray-level size-zone matrix; GLDM = gray-level dependence matrix; NGTDM = neighboring gray-tone difference
matrix.
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feature stability in radiomic analyses (46). Through systematic

perturbation analysis of CT-derived imaging features in

esophageal squamous cell carcinoma, their findings substantiate

that incorporating high-stability features can enhance model

performance in the external validation set. Thomas Louis et al.

reported that robust features demonstrated superior predictive

potential compared to non-robust features in predicting the

outcomes of an external validation dataset (47). These studies

collectively highlight the critical importance of feature stability for

model generalizability, demonstrating findings consistent with our

own results. This convergence of evidence further substantiates the

fundamental value of establishing comprehensive RF-RobustDB to

support subsequent radiomics research.

The reproducibility of RFs in clinical practice is subject to

multiple influencing factors, such as patient positioning variability,

segmentation quality, the noise level of medical imaging devices, and
Frontiers in Oncology 09
the variations between the performance of devices depending on their

model and vendor, leading to differences in CT number values (13).

Additionally, the reproducibility of RFs can be affected by scanning

parameters and reconstruction algorithms (16, 25). This

multifactorial variability explains the observed reduction reliability

and generalizability when applying RFs inmulti-cohort studies versus

single-cohort studies. However, unlike variations in CT scanners or

scanning modalities, variations in patient positioning, segmentation,

and random noises are similar in various clinical circumstances,

which allows perturbationmethods to be a universal tool for assessing

RF repeatability. Therefore, employing image perturbation across

multiple institutions is a feasible approach for evaluating the

robustness of RFs, as demonstrated by the enhanced

generalizability of our PFS models. Considering these factors, the

methodology employed in this study is both feasible and applicable

for establishing RF-RobustDBs for other tumor sites and imaging
FIGURE 5

(A) Numbers and (B) proportions of excellent repeatable radiomic features in first-order, gray-level co-occurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size-zone matrix (GLSZM), gray-level dependence matrix (GLDM), and neighboring gray-tone difference matrix
(NGTDM) features selected based on mean ICCs. (C) Performance of progression-free survival (PFS) models built using preselected highly repeatable
radiomic features with different mean intraclass correlation coefficient (ICC) thresholds in the training (Train), internal testing (Test), and two external
validation (HN1 and RBOPC) cohorts. (D) Generalizability index (G) of the PFS models across the training and EV groups based on the concordance
(C) index gap.
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modalities. The methodology is a promising approach for assessing

the repeatability and enhancing the generalizability of radiomic

models, thereby facilitating the development of more reliable and

robust radiomic models with enhanced clinical translatability.
4.3 Existing limitations analysis

This study has several limitations that should be acknowledged.

First, although our perturbation method simulated key variability

sources including translations, rotations, random noise, and

contour variations, they could not fully replicate all potential

sources of variability encountered in clinical practice. For

example, transient signal fluctuations that may occur during

repeated scans under identical acquisition parameters cannot be

effectively modeled. This inherent limitation underscores that

image perturbation methods cannot entirely replace traditional

test-retest validation approaches. Second, the optimal ICC

thresholds for establishing reliable radiomic models remain

controversial in the field. Additional investigations are required to

establish evidence-based cutoff values for robust feature selection in

clinical applications. Third, while our multi-institutional study

design strengthened the generalizability of findings, the persistent

effects of inter-scanner variability and acquisition parameter

differences on feature reproducibility warrant further

investigation. Furthermore, the dual use of our dataset for both

RF-RobustDB construction and PFS model development may

introduce circularity. Future validation should incorporate

independent multi-institutional datasets to more rigorously assess

the RF-RobustDB’s clinical utility. Addressing these limitations

through continued research will be essential for optimizing the

RF-RobustDB’s performance and expanding its applicability across

diverse clinical implementations.
5 Conclusion

We have established a RF-RobustDB using an image perturbation

approach for CT-derived RFs in OPC patients. The ICCs were

calculated to quantify the reliability and repeatability of RFs.

Through multi-cohort PFS experiments, we demonstrated the

reference value of the RF-RobustDB, demonstrating that

preselected highly repeatable RFs improved PFS model

generalizability. To quantitatively assess model performance, we

introduced a generalizability metric (G-index). The methodology

we employed is cost-effective and easily applicable across different

institutions, suggesting its potential extension to other lesion areas

and imaging modalities. The comprehensive RF-RobustDB can

facilitate robust RF selection when only small training datasets or

single-institutional data are available, thereby enhancing the

reliability, reproducibility, and generalizability of radiomic

predictive models.
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9. Koçak B, Durmaz E.Ş, Ates ̧ E, Kılıçkesmez Ö. Radiomics with artificial
intelligence: A practical guide for beginners. Diagn Interv Radiol. (2019) 25:485–95.
doi: 10.5152/dir.2019.19321

10. Zhang Y-P, Zhang X-Y, Cheng Y-T, Li B, Teng X-Z, Zhang J, et al. Arti-ficial
intelligence-driven radiomics study in cancer: the role of feature engineering and
modeling. Military Med Res. (2023) 10:22. doi: 10.1186/s40779-023-00458-8

11. Chaddad A, Liang X. Stability of radiomic models and strategies to enhance
reproducibility. IEEE Trans Radiat Plasma Med Sci. (2024) 8:540–55. doi: 10.1109/
TRPMS.2024.3365778

12. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: standardized quantitative ra-
diomics for high-throughput image-based phenotyping. Radiology. (2020) 295:328–38.
doi: 10.1148/radiol.2020191145

13. Chen Y, Zhong J, Wang L, Shi X, Lu W, Li J, et al. Robustness of CT radiomics
features: consistency within and between single-energy CT and dual-energy CT. Eur
Radiol. (2022) 32:5480–90. doi: 10.1007/s00330-022-08628-3

14. Rinaldi L, De Angelis SP, Raimondi S, Rizzo S, Fanciullo C, Rampinelli C, et al.
Reproducibility of radiomic features in CT images of NSCLC patients: an integrative
analysis on the impact of acquisition and reconstruction parameters. Eur Radiol Exp.
(2022) 6:2. doi: 10.1186/s41747-021-00258-6
15. Pandey U, Saini J, Kumar M, Gupta R, Ingalhalikar M. Normative baseline for
radiomics in brain MRI: evaluating the robustness, regional variations, and
reproducibility on FLAIR images. J Magn Reson Imaging. (2021) 53:394–407.
doi: 10.1002/jmri.27349

16. Muenzfeld H, Nowak C, Riedlberger S, Hartenstein A, Hamm B, Jahnke P, et al.
Intra-scanner repeatability of quantitative imaging features in a 3D printed semi-
anthropomorphic CT phantom. Eur J Radiol. (2021) 141:109818. doi: 10.1016/
j.ejrad.2021.109818

17. Haniff NSM, Abdul KarimMK, Osman NH, Saripan MI, Che Isa IN, IbahimMJ.
Stability and reproducibility of radiomic features based various segmentation technique
on MR images of hepatocellular carcinoma (HCC). Diagnostics. (2021) 11:1573.
doi: 10.3390/diagnostics11091573

18. Tunali I, Hall LO, Napel S, Cherezov D, Guvenis A, Gillies RJ, et al. Stability and
reproducibility of computed tomography radiomic features extracted from peritumoral
regions of lung cancer lesions. Med Phys. (2019) 46:5075–85. doi: 10.1002/mp.13808

19. Wang H, Zhou Y, Wang X, Zhang Y, Ma C, Liu Bo, et al. Reproducibility and
repeatability of CBCT-derived radiomics features. Front Oncol. (2021) 11:773512.
doi: 10.3389/fonc.2021.773512

20. Jha AK, Mithun S, Jaiswar V, Sherkhane UB, Purandare NC, Prabhash K, et al.
and reproducibility study of radiomic features on a phantom and human cohort. Sci
Rep. (2021) 11:2055. doi: 10.1038/s41598-021-81526-8

21. Bologna .M, Tenconi C, Corino VDA, Annunziata G, Orlandi E, Calareso G,
et al. Repeatability and reproducibility of MRI-radiomic features: A phantom
experiment on a 1.5 T scanner. Med Phys. (2023) 50:750–62. doi: 10.1002/mp.16054

22. Fiset S, Welch ML, Weiss J, Pintilie M, Conway JL, Milosevic M, et al.
Repeatability and reproducibility of MRI-based radiomic features in cervical cancer.
Radiotherapy Oncol. (2019) 135:107–14. doi: 10.1016/j.radonc.2019.03.001

23. Kocak B, Durmaz ES, Kaya OK, Ates E, Kilickesmez O. Reliability of single-slice–
based 2D CT texture analysis of renal masses: influence of intra- and interobserver
manual segmentation variability on radiomic feature reproducibility. Am J Roentgenol.
(2019) 213:377–83. doi: 10.2214/AJR.19.21212

24. Traverso A, Wee L, Dekker A, Robert G. Repeatability and reproducibility of
radiomic features: a systematic review. Int J Radiat Oncol Biol Phys. (2018) 102:1143–
58. doi: 10.1016/j.ijrobp.2018.05.053

25. Escudero Sanchez L, Rundo L, Gill AB, Hoare M, Mendes Serrao E, Sala E.
Robustness of radiomic features in CT images with different slice thickness, comparing
liver tumour and muscle. Sci Rep. (2021) 11:8262. doi: 10.1038/s41598-021-87598-w

26. Li Y, Tan G, Vangel M, Hall J, Cai W. Influence of feature calculating parameters
on the reproducibility of CT ra-diomic features: A thoracic phantom study. Quant
Imaging Med Surg. (2020) 10:1775–85. doi: 10.21037/qims-19-921

27. Scalco E, Belfatto A, Mastropietro A, Rancati T, Avuzzi B, Messina A, et al. T2w-
MRI signal nor-malization affects radiomics features reproducibility. Med Phys. (2020)
47:1680–91. doi: 10.1002/mp.14038

28. Euler A, Laqua FC, Cester D, Lohaus N, Sartoretti T, Pinto dos Santos D, et al.
Virtual monoen-ergetic images of dual-energy CT—Impact on repeatability,
reproducibility, and classification in radiomics. Cancers. (2021) 13:4710.
doi: 10.3390/cancers13184710
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1464884/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1464884/full#supplementary-material
https://doi.org/10.1016/j.knosys.2021.107649
https://doi.org/10.1111/odi.14386
https://doi.org/10.3390/cancers13215497
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1007/s00330-023-10164-7
https://doi.org/10.1016/j.radonc.2023.109578
https://doi.org/10.3348/kjr.2018.0070
https://doi.org/10.1007/s00259-019-04372-x
https://doi.org/10.5152/dir.2019.19321
https://doi.org/10.1186/s40779-023-00458-8
https://doi.org/10.1109/TRPMS.2024.3365778
https://doi.org/10.1109/TRPMS.2024.3365778
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1007/s00330-022-08628-3
https://doi.org/10.1186/s41747-021-00258-6
https://doi.org/10.1002/jmri.27349
https://doi.org/10.1016/j.ejrad.2021.109818
https://doi.org/10.1016/j.ejrad.2021.109818
https://doi.org/10.3390/diagnostics11091573
https://doi.org/10.1002/mp.13808
https://doi.org/10.3389/fonc.2021.773512
https://doi.org/10.1038/s41598-021-81526-8
https://doi.org/10.1002/mp.16054
https://doi.org/10.1016/j.radonc.2019.03.001
https://doi.org/10.2214/AJR.19.21212
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1038/s41598-021-87598-w
https://doi.org/10.21037/qims-19-921
https://doi.org/10.1002/mp.14038
https://doi.org/10.3390/cancers13184710
https://doi.org/10.3389/fonc.2025.1464884
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1464884
29. Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, et al. Assessing
robustness of radiomic features by image perturbation. Sci Rep. (2019) 9:614.
doi: 10.1038/s41598-018-36938-4

30. Teng X, Zhang J, Zwanenburg A, Sun J, Huang Y, Lam S, et al. Building reliable
radiomic models using image perturbation. Sci Rep. (2022) 12:10035. doi: 10.1038/
s41598-022-14178-x

31. Teng X, Zhang J, Ma Z, Zhang Y, Lam S, Li W, et al. Improving radiomic model
reliability using robust features from perturbations for head-and-neck carcinoma.
Front Oncol. (2022) 12:974467. doi: 10.3389/fonc.2022.974467

32. Zhang J, Teng X, Zhang X, Lam S-K, Lin Z, Liang Y, et al. Comparing
effectiveness of image perturbation and test retest imaging in improving radiomic
model reliability. Sci Rep. (2023) 13:18263. doi: 10.1038/s41598-023-45477-6

33. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer
imaging archive (TCIA): maintaining and operating a public information repository. J
Digit Imaging. (2013) 26:1045–57. doi: 10.1007/s10278-013-9622-7

34. Koo TK, Li MYA. Guideline of selecting and reporting intraclass correlation
coefficients for reliability research. J Chiropr Med. (2016) 15:155–63. doi: 10.1016/
j.jcm.2016.02.012

35. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho
S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun. (2014) 5:4006. doi: 10.1038/ncomms5006

36. Wee L, Dekker A. Data from HEAD-NECK-RADIOMICS-HN1 [Data set.
Cancer Imaging Arch. (2019). doi: 10.7937/tcia.2019.8kap372n

37. Kwan JYY, Su J, Huang SH, Ghoraie LS, Xu W, Chan B, et al. Radiomic
biomarkers to refine risk models for distant metastasis in HPV-related oropharyngeal
carcinoma. Int J Radiat Oncol Biol Phys. (2018) 102:1107–16. doi: 10.1016/
j.ijrobp.2018.01.057

38. Kwan JYY, Su J, Huang SH, Ghoraie LS, Xu W, Chan B, et al. Data from
radiomic biomarkers to refine risk models for distant metastasis in oropharyngeal
carcinoma. Cancer Imaging Arch. (2019). doi: 10.7937/tcia.2019.8dho2gls
Frontiers in Oncology 12
39. Vallières M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Aerts HJWL, et al.
Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci
Rep. (2017) 7:10117. doi: 10.1038/s41598-017-10371-5
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