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practical method to safeguard
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Purpose: To guide the preselection of highly repeatable radiomic features (RFs)
in downstream analysis without further analysis its repeatability, a detailed
radiomic feature robustness databank (RF-RobustDB) was established via
image perturbation.

Methods: Data on 1,274 oropharyngeal carcinoma (OPC) patients who had
undergone pretreatment computed tomography (CT) imaging, collected from
a public dataset. The original images and corresponding masks underwent
systematic perturbations to simulate potential variations encountered during
CT image rescanning, including translational shifts, rotational changes, random
noise additions, and contour modifications. For each radiomic feature (RF),
including unfiltered, wavelet-filtered, and Laplacian-of-Gaussian (LoG)-filtered
features, we systematically quantified robustness against these perturbations by
intraclass correlation coefficients (ICCs).

Results: Out of 1395 first- and high-order RFs, 470 demonstrated excellent
repeatability, i.e., a mean ICC of greater than 0.9. The use of these preselected
highly repeatable RFs in model development improved the mean concordance
(C) index in two external validation cohorts and reduced the mean C index gap
between the training and external validation cohorts. These results demonstrate
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that the preselected high repeatable RFs from RF-RobustDB can effectively
enhance radiomic model generalizability.

Conclusions: The methodology employed to establish the RF-RobustDB is
highly transferable to other tumor sites and different imaging modalities, which
will facilitate the creation of RF-RobustDBs to guide the development of
universally applicable radiomic models.

radiomics, feature repeatability, model generalizability, oropharyngeal carcinoma,
progression-free survival

1 Introduction

The role and potential of radiomics in cancer management have
been constantly expanding over the past decades, such as the distant
metastases prediction of advanced nasopharyngeal carcinoma
(NPC) (1), performing risk stratification of oropharyngeal cancer
(OPC) (2), breast cancer risk estimation (3), and prediction of
treatment response in non-small-cell lung cancer (NSCLC) (4).
However, model generalizability remains the prime stumbling block
for bend-to-bedside translation of radiomic models. To enhance the
generalizability of radiomic models, concerted efforts have been
made to enhance repeatability and reproducibility of radiomic
features (RFs) for primary model generation (5-7). RF extraction,
implemented prior to modeling process (8-11), is crucial for
ensuring model reliability and generalizability. Although the
Image Biomarker Standardization Initiative (IBSI) provides
standardized guidelines for RF extraction (12), RF repeatability
and reproducibility remain limited across institutions and imaging
protocols (13-15). Consequently, these limitations represent
fundamental challenges that need to be addressed before RFs can
be effectively incorporated into modeling workflows.

Multiple variables influence the repeatability and reproducibility
of RFs throughout the imaging process (13-27), such as scanner
model (13, 14), scanner type (13, 15), scanning parameters (16),
segmentation (17, 18), reconstruction (25), and preprocessing
methods (26, 27). However, clear guidelines for selecting highly
repeatable RFs in multi-institutional datasets remain unavailable.
Test-retest methods pose additional challenges, as they may
increase patients’ radiation exposure and consume medical
resources unnecessarily. Manual re-segmentation further burdens
radiologists with additional workload. Although phantom-based
studies offer a radiation-free alternative for evaluating RF selection
(28), their clinical applicability is limited due to imperfect simulation
of human tissues. Given the practical constraints of test-retest studies
and manual re-segmentation across institutions, there is an urgent
need for a cost-effective, efficient, easily implementable, and clinically
transferable RF robustness assessment method. Fortunately, A
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software-based image perturbation method proposed by
Zwanenburg et al. offers a promising way to simulate the test-retest
and re-segmentation process (29). This method simulates patient
positioning during imaging, manual segmentation randomization,
and varying noise levels of the imaging device. The effectiveness of
image perturbation has been demonstrated by improved
performance in radiomic models. For example, Teng et al. (30, 31)
and Zhang et al. (6) applied image perturbation to select highly
reproducible RFs that improved the reliability and generalizability of
radiomic models. Moreover, image perturbation has been shown to
achieve the same optimal reliability as test-retest imaging for
constructing radiomic models (32).

Since the perturbation method demonstrates encouraging/
promising capabilities in assessing feature stability, in this study,
we aim to establish a reliable RF robustness databank (RE-
RobustDB) via perturbation method for guiding the downstream
development of radiomic models. Specifically, we included a large-
scale of CT images of OPC patients from a total of 7 medical
institution. The OPC dataset was obtained from the Cancer
Imaging Archive (TCIA) (33). RFs from CT images with and
without applications of popular imaging filters were analyzed.
The repeatability of the RFs in the RF-RobustDB was quantified
by one-way intra-class correlation coefficients (ICCs) (34). We
adopted CT dataset for this study mainly owing to its wide-
spreading popularity in the cancer management for pre-treatment
planning, mid-treatment monitoring, and post-treatment
evaluation, as well as the availability of dataset in the community.

Through systemic analysis, the cohort size effects on feature
repeatability ensured that the sample size is sufficient to maintain
the reliability of RF-RobustDB. Meanwhile, the RF-RobustDB-
enhanced selection of highly repeatable RFs significantly
improved the generalizability of progression-free survival (PFS)
model. These results support the reliability of the comprehensive
CT-based RF-RobustDB for OPC, offering a valuable insight into
RF repeatability. Moreover, this study provided a comprehensive
and generalized methodology for establishing an extensive RF-
RobustDB applicable to diverse tissue sites and imaging modalities.
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2 Materials and methods

2.1 Patient cohort

This retrospective study analyzed a dataset of pretreatment CT
images from 1,418 head-and-neck cancer patients obtained from
TCIA (33). The dataset included patients from seven medical
institutions: 137 patients from the single-institution HEAD-
NECK-RADIOMICS-HN1 (HN1) study (35, 36), 524 patients
from the single-institution Radiomic Biomarkers in
Oropharyngeal Carcinoma (RBOPC) study (37, 38), 298 patients
from four institutions in the Head-Neck-PET-CT (HNPET) study
(39, 40), and 459 patients from the single-institution Head and
Neck Squamous Cell Carcinoma (HNSCC) study (41-43). To
maintain consistency, only OPC patients with primary gross
tumor volume (GTV) data were included, resulting in a final
cohort of 1,274 OPC patients for establishing the site-specific RF-
RobustDB. The baseline characteristics of the selected OPC patient
are presented in Table Al. Due to the retrospective nature of this
study, informed consent was not required.

2.2 Image perturbation

To simulate the inevitable variabilities in patient setup during
image acquisition, a validated image perturbation method was used
to mimic patient setup, randomized noise, and manual
segmentation diversity. Translational and rotational perturbations
were applied to the original (unfiltered) images and tumor masks to
mimic patient position. Randomized noise was added to the original
images to simulate noise variations during image acquisition.
Contour randomization was applied to the tumor mask to mimic
variations in manual tumor segmentation.

The image perturbation settings were based on previous studies
on repeatability evaluation via image perturbation (6, 29, 31):
translation distances were set to 0, 0.4, and 0.8 pixels; rotation
angles were set to -20°, 0°, and 20°; noise levels were increased to 0,
1, 2, and 5 times the original noise level; and a three-dimensional

TABLE A1 Baseline patient characteristics of the dataset in different
cohorts.

. Overall
Data cohort Sex Median age
stage

HNSCC Male: 395
57(28-87) -1V

Female:64

HN1 Male: 67
60(44-80) I-IVb

Female:21

RBOPC Male: 423
60(33-89) I-IVb

Female:101

HNPET Male: 151
63(34-90) I-IVb

Female:52
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random displacement field was used to deform segmented masks,
resulting in randomized contours. For each voxel point, a random
field vector component in each dimension is generated from a
uniform distribution between -1 and 1. All z-components of the
field vectors on the same slice are set to the same value to mimic the
uniform inter-slice contour variations resulting from slice-by-slice
contouring. The field vectors are then normalized in each
dimension by the root mean square. Finally, they are smoothed
using a Gaussian filter with a defined sigma value of 10 to ensure
continuous changes in the random displacement field and to avoid
sharp changes in the deformed contours. Sixty different
perturbations were performed to enhance the reliability of our
results, as previous studies have suggested that 40 different
perturbations are sufficient (6, 30). During each perturbation
operation, parameters from the four perturbation modes were
randomly combined to simulate the uncertainty in variables
during image rescanning.

2.3 RF extraction

Image pre-processing and RF extraction were conducted in
accordance with the IBST guidelines (12). Before RF extraction, all
images were resampled to a 1 x 1 x 1 mm? resolution, and re-
segmentation was performed to limit pixel values between -150 and
180 HU, effectively excluding non-tumor tissue (such as air and
bone) within the volume of interest (31). As a previous study
suggested, using the fixed bin number between 8 and 128
discretize images can reduce the infinite possible number of
intensity values to a finite set and image noise (44). Hence, a
fixed bin number of 30 was used for image discretization in this
study. RF extraction was performed using PyRadiomics v2.2 (45) in
Python v3.7. Shape-based features, first-order features, and high-
order features from the gray-level co-occurrence matrix (GLCM),
gray-level run-length matrix (GLRLM), gray-level size-zone matrix
(GLSZM), gray-level dependence matrix (GLDM), and neighboring
gray-tone difference matrix (NGTDM) were extracted from the
GTVs in original, Laplacian-of-Gaussian (LoG)-filtered (with sigma
values of 1, 2, 3, 4, 5, and 6 mm) and Coiflet-1 wavelet-
filtered images.

Fourteen shape-based features were extracted from each tumor
mask, and 93 first-order and high-order features were extracted
from each of the unfiltered, LoG-filtered, and wavelet-filtered
images. Following image perturbation, we additionally extracted
corresponding feature sets from all perturbed image variants.
Finally, the RF-RobustDB contained 1,316 unfiltered, LoG-
filtered, and wavelet-filtered RFs, and 78,960 perturbed features
were extracted for ICC analysis.

2.4 RF repeatability assessment
Since the feature is extracted from different perturbated mask

region, the assignment of perturbation parameters is independent
to patients. Therefore, the robustness of each RF was quantified in
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terms of a one-way, random, absolute-agreement ICC, which was
calculated using Equation 1, as follows (34).

_ MS,~MS,,

ICC(I’ 1) — MS,+(k+1)MSy,

o

where MS,, is the mean square for different patients, MSyy is the
mean square for residual sources of variance, and k is the number of
perturbation times plus one for the unperturbed image. As
recommended by a previous study (34), features with an ICC<
0.5 were regarded as having poor repeatability, ICC between 0.50
and 0.75 were regarded as having moderate repeatability, ICC
between 0.75 and 0.90 were regarded as having good repeatability,
and ICC > 0.9 were regarded as having excellent repeatability.

2.5 Establishment of the RF-RobustDB

To determine the reliable patient sample size (n) required for
constructing the RF-RobustDB, the mean ICC values as a function
of patient numbers were systematically analyzed. The methodology

Head and neck cancer

dataset
No
| Oropharyngeal l—’ Exclude
carcinoma
Yes
v
. . . No
Primary diagnosis?  [——— Exclude
Yes
v
PFS event:

O Dead from any cause

10.3389/fonc.2025.1464884

was implemented as follows: Starting with 10 patients, the sample
size was incrementally increased by 10 patients up to 100, followed
by 100-patient increments thereafter. For each specific patient-
number subgroup, 10 rounds of random resampling were
performed from the oropharyngeal carcinoma (OPC) datasets to
calculate the corresponding mean ICC values. The six radiomic
features (RFs) demonstrating the greatest variations in mean ICC
values across different sample sizes were selected to illustrate the
sample size dependency of ICC metrics. Based on this analysis, a
patient number that showed a stabilized trend in mean ICCs was
identified and ultimately used for establishing the RF-RobustDB.

2.6 RF selection and PFS model
development

To demonstrate the efficacy of the RF-RobustDB, six PES
models were constructed using RFs selected through different ICC
thresholds: (1) ICC > 0.9, (2) ICC > 0.85, (3) ICC > 0.8, (4) ICC >
0.75, (5) ICC > 0.5, and (6) non-preselected RFs. PFS events were

O Local tumor recurrence
O Regional tumor recurrence
O Distant metastasis

v
HNSCC event/censored: |

142/317

Randomly select

4
HN1 event/censored:

A 4
RBOPC event/censored:

! 1
Lo :

1
censored: 142 : : 142 52/36 197/240 :
1 | A A :
] | . 1
— s - et A St L ™ 2!

i 0, 1o ! 1 = X
::| Train 70% | 131 11| Train 70% Intema;l test : (513 ) E :
i 2T 30% ol =3 3 =i
] il 319, " ! 5 5 2
ICC-Filtered H > 2151 5 A s % 5!
" g 8 3. |2 5 3!
i v LR LN 3 S |3 f -
| Univariate Cox analysis §': : K g °:’_ 3 > \
] (p < 0.05) g 0 | ) @) :
1 v b :: v ] 1
n LASSO i 1t | ¢ | Multivariate ! 1
N Ho Il | Cox model H '
R D - N T T T T T T T T T T e e
Highly frequently
selected radiomic
features
FIGURE 1

Workflow used for building progression-free survival (PFS) models based on CT images of oropharyngeal carcinoma patients. ICC = intraclass
correlation coefficient; LASSO = least absolute shrinkage and selection operator; RF = radiomic feature; HNSCC = Head and Neck Squamous Cell
Carcinoma; HN1 = HEAD-NECK-RADIOMICS-HN1; RBOPC = Radiomic Biomarkers in Oropharyngeal Carcinoma.
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defined as local/regional recurrence, distant metastasis, or death
from any cause. Figure 1 demonstrate the complete feature selection
and modeling workflow. For the feature selection procedure, the
highly reliable RFs derived from unperturbed images were initially
chosen based on their robustness, as defined by the mean ICC.
Subsequently, univariate Cox analysis was utilized to identify the
RFs associated with PFS events within the pre-selected RFs in the
training group. RFs with a p-value of less than 0.05 were considered
significant. Finally, the least absolute shrinkage and selection
operator algorithm was employed to select RFs with non-zero
coefficients in the training group. The training groups were
randomly bootstrapped 10 times from the 10 resampled balanced
HNSCC dataset. The features that appeared frequently were
selected to construct the PFS models.

To determine the optimal number of RFs for modeling, the
relationship between the feature number and model performance
was systematically investigated in the HNSCC dataset (Figure Al).
The results revealed that the model constructed using non-
preselected RFs exhibited optimal performance in the internal
testing group when the feature number reached five (Figure Al
(A)). Specifically, the mean C index exhibited the highest value in
the testing cohorts, indicating the superior predictive ability of the
model at this feature threshold. Moreover, using a greater number
of RFs resulted in larger mean C index gaps between the training
and internal testing groups. Similar trends of optimal performance
were observed in the other five experiments (Figure A1(B)-(F)).
Therefore, the top five RFs that most frequently appeared in all
experiments were ultimately selected to ensure that the feature
number would not introduce conflicts into the final results. The
selected RFs for each experiment are listed in Table A2.

Multivariate Cox regression was employed to model the survival
risks for PFS in the HNSCC dataset. The performance of the
developed PFS models was evaluated by concordance (C) index
for the training, internal testing, and external validation (HNI,
RBOPC) cohorts. The HNPET dataset was excluded from external
validation due to insufficient follow-up data on local/regional
recurrence and distant metastasis. To assess the robustness of the
models, the mean C index and its 95% confidence intervals were
calculated in 100 bootstrap experiments on the 10 randomly
resampled balanced datasets.

2.7 Model generalizability assessment

To assess model generalizability across external validation (EV)
cohorts, a generalizability index (G) that quantifies the absolute
difference in C index values between training and EV groups. The G
index is defined by Equation 2:

_ M |CTrain - CEV,,,'
G=2y, —re el )

where Cry,;, represents the C index of the trained model, Cgy,
is the C index for the m™ EV cohort, and M is the total number of

EV cohorts. Lower G-index values indicate superior model
generalizability, reflecting smaller performance discrepancies
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between training and validation datasets. The mean G index and
corresponding 95% confidence intervals were calculated from 1,000
cross validation models to comprehensively evaluate the
distribution of model generalizability performance.

3 Results
3.1 Patient-number dependence analysis

Figure 2 depicts the relationship between the number of patients
and the mean ICCs of six RFs, which were selected as the top six RFs
exhibiting the most significant variance changes with varying patient
numbers. As the number of patients increased, the mean ICCs of the
Firstorder_Maximum and GLCM_ClusterTendency features initially
increased and then stabilized. In contrast, the mean ICCs of the
remaining four selected features first fluctuated before eventually
stabilizing. All six features tended to stabilize once the patient count
reached 200. This stabilization trend of the mean ICCs demonstrates
that the patient sample size used in this study was sufficient for
constructing the RF-RobustDB. Specifically, 800 resampled patients
were subjected to 100 iterations of resampling to compute the mean
ICCs and their corresponding 95% confidence intervals.

3.2 Establishment and validation of the RF-
RobustDB

3.2.1 The repeatability of shape-based RFs

Figure 3 presents a comprehensive evaluation of the ICCs for
shape-based RFs across multiple simulated test conditions. Notably,
all shape-based features demonstrated consistently high
repeatability, with mean ICC values surpassing the 0.9 threshold
(range: 0.955-0.999) across various perturbation scenarios. This
robust performance supports the clinical applicability of shape-
based RFs, as their measurements consistently reflect the tumor’s
shape characteristics and are less influenced by other
clinical factors.

3.2.2 The repeatability of first-order and textural
RFs

Figure 4 presents the ICCs of the first-order and textural RFs.
The left panel of Figure 4 displays the mean ICCs and their 95%
confidence intervals for each unfiltered RF. The right panel of
Figure 4 gives the mean ICCs of the unfiltered, wavelet-filtered and
LoG-filtered RFs. Collectively, Figures 3 and 4 establish the RF-
RobustDB. Detailed information on the mean ICCs and their 95%
confidence intervals can be found in the Appendix.

3.2.3 RF-RobustDB help improving the
generalizability of PFS models

Figure 5A, B illustrates the selection of highly reproducible
radiomic features (RFs) using the established RF-RobustDB.
Figure 5A quantifies the absolute counts, while Figure 5B presents
the relative proportions of these reproducible RFs across six feature
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TABLE A2 Final selected radiomic features for each PFS model.

10.3389/fonc.2025.1464884

ICC threshold Feature name

ICC>0

log-sigma-2-mm-3D_glszm_LowGrayLevelZoneEmphasis_30_binCount

log-sigma-5-mm-3D_glszm_LowGrayLevelZoneEmphasis_30_binCount

log-sigma-6-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis_30_binCount

ICC>05

wavelet-LLH_firstorder_Skewness_30_binCount

log-sigma-3-mm-3D_glszm_ZoneEntropy_30_binCount

wavelet-HHH_ firstorder_Energy_30_binCount

wavelet-LHH_ firstorder_Energy_30_binCount

log-sigma-5-mm-3D_firstorder_Energy_30_binCount

ICC>075

log-sigma-4-mm-3D_firstorder_Energy_30_binCount

wavelet-LLH_firstorder_Energy_30_binCount

wavelet-LHH_glrlm_GrayLevelNonUniformityNormalized_30_binCount

wavelet-LHH_glem_Idn_30_binCount

log-sigma-6-mm-3D_glcm_ClusterShade_30_binCount

original_glem_Correlation_30_binCount

ICC>08

wavelet-LLL_glem_JointAverage_30_binCount

wavelet-LHH_glem_Idn_30_binCount

log-sigma-6-mm-3D_glcm_ClusterShade_30_binCount

log-sigma-5-mm-3D_glszm_ZoneEntropy_30_binCount

original_glcm_Correlation_30_binCount

log-sigma-4-mm-3D_glszm_SizeZoneNonUniformity_30_binCount

ICC>085

wavelet-LHH_gldm_SmallDependenceEmphasis_30_binCount

wavelet-LLL_glrlm_ShortRunHighGrayLevelEmphasis_30_binCount

wavelet-LLL_firstorder_Range_30_binCount

log-sigma-2-mm-3D_firstorder_90Percentile_30_binCount

log-sigma-6-mm-3D_glrlm_RunLengthNonUniformity_30_binCount

ICC>09

log-sigma-1-mm-3D_firstorder_Maximum_30_binCount

log-sigma-2-mm-3D_glszm_SizeZoneNonUniformity_30_binCount

original_glem_Correlation_30_binCount

log-sigma-3-mm-3D_glszm_SizeZoneNonUniformity_30_binCount

log-sigma-6-mm-3D_glem_DifferenceVariance_30_binCount

classes: first-order, GLCM, GLRLM, GLSZM, GLDM, and
NGTDM. Among 1,395 first-order and high-order RFs analyzed,
470 features (33.7%) demonstrated excellent repeatability, defined
by mean ICCs > 0.9. Notably, unfiltered and LoG-filtered features
exhibited significantly higher repeatability rates compared to
wavelet-filtered features.

Using the established RF-RobustDB, six PFS models were
systematically evaluated by recommended RFs at varying mean
ICC thresholds. The C index in the training and internal testing
groups first decreased and then increased as the ICC increased, as
the red and black curve shown in Figure 5C. However, it is
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noteworthy that the EV cohorts (HN1 and RBOPC)
demonstrated superior discriminative performance for models
constructed using ICC preselected RFs, as shown by the pink and
blue lines in Figure 5C. In addition, there was a smaller C index gap
between the training and EV cohorts in the mean ICC preselected
RF groups than in the non-preselected RF group, as shown by the G
index trend in Figure 5D. The smallest mean G index was obtained
in the RF groups preselected with a mean ICC of 0.5, and the largest
mean G index was obtained in the non-preselected RFs groups. By
taking into account the large C index and small G index of the RFs
preselected with mean ICCs, it was found that the PFS models
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FIGURE 2

Patient-number dependence of mean intraclass correlation
coefficients (ICCs) in six unfiltered radiomic features, which were
selected based on the top six radiomic features with the largest
variance in mean ICCs between different patient numbers.

incorporating preselected RFs demonstrated significantly higher
generalizability compared to those using non-preselected RFs.

4 Discussion
4.1 Result analysis

A robust RF-RobustDB of pretreatment CT-derived RFs in
OPC patients was established through image perturbation. This
database effectively guides the preselection of repeatable RFs and
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enhances the generalizability of multi-cohort PES studies. A new G
index was introduced to quantitatively evaluate the generalizability
of the constructed PFS models. The methodology developed in this
study can be easily extended to other anatomical sites and imaging
modalities, providing a feasible solution for establishing
standardized RF-RobustDBs to comprehensively assess RF
repeatability across various clinical scenarios.

Our analysis of mean ICC dependence on patient cohort size
(Figure 2) revealed that the six selected unfiltered RFs showing the
highest variance across different sample sizes achieved stabilization
when the patient number exceeded 200. This suggests that a
minimum of 200 patients provides sufficient data for reliable
ICC-based assessment of RF robustness, confirming that the
sample size in this study (1,274) ensured the reliability of the RF-
RobustDB. The RF-RobustDB evaluation demonstrated significant
differences in feature repeatability between filtering methods: only
11.7% of wavelet-filtered RFs exhibited excellent repeatability
(ICC>0.9), compared to 56.3% of Laplacian-of-Gaussian (LoG)-
filtered RFs. This substantial disparity (44.6%) establishes the
superior robustness of LoG-filtered features. The low repeatability
of wavelet-filtered RFs likely stems from the characteristics of
wavelet filtering, image resampling strategies, and perturbation
settings (6). Therefore, radiomic model construction requires
more stringent selection criteria for wavelet-filtered RFs
compared to their LoG-filtered counterparts.

4.2 RF-RobustDB reliability analysis

The clinical utility of the RF-RobustDB was evaluated through
external validation using two independent cohorts derived from
separate institutions. Importantly, these validation cohorts were
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exclusively utilized for feature selection and model training phases,

thereby maintaining the integrity of the validation process.

Comparative analysis revealed that models incorporating RF-
RobustDB-preselected features demonstrated superior

performance in external validation, as evidenced by the higher

mean concordance indices compared to models using non-

Frontiers in Oncology

preselected features and a reduction in the performance gap
between training and validation cohorts. Zhang and colleagues
improved the generalizability of a disease-free survival model for
head and neck cancer by pre-selecting highly reproducible RFs
using the perturbation method (6). The study by Gong et al. also
provides compelling evidence supporting the critical importance of
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feature stability in radiomic analyses (46). Through systematic
perturbation analysis of CT-derived imaging features in
esophageal squamous cell carcinoma, their findings substantiate
that incorporating high-stability features can enhance model
performance in the external validation set. Thomas Louis et al.
reported that robust features demonstrated superior predictive
potential compared to non-robust features in predicting the
outcomes of an external validation dataset (47). These studies
collectively highlight the critical importance of feature stability for
model generalizability, demonstrating findings consistent with our
own results. This convergence of evidence further substantiates the
fundamental value of establishing comprehensive RF-RobustDB to
support subsequent radiomics research.

The reproducibility of RFs in clinical practice is subject to
multiple influencing factors, such as patient positioning variability,
segmentation quality, the noise level of medical imaging devices, and
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the variations between the performance of devices depending on their
model and vendor, leading to differences in CT number values (13).
Additionally, the reproducibility of RFs can be affected by scanning
parameters and reconstruction algorithms (16, 25). This
multifactorial variability explains the observed reduction reliability
and generalizability when applying RFs in multi-cohort studies versus
single-cohort studies. However, unlike variations in CT scanners or
scanning modalities, variations in patient positioning, segmentation,
and random noises are similar in various clinical circumstances,
which allows perturbation methods to be a universal tool for assessing
RF repeatability. Therefore, employing image perturbation across
multiple institutions is a feasible approach for evaluating the
robustness of RFs, as demonstrated by the enhanced
generalizability of our PFS models. Considering these factors, the
methodology employed in this study is both feasible and applicable
for establishing RF-RobustDBs for other tumor sites and imaging
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modalities. The methodology is a promising approach for assessing
the repeatability and enhancing the generalizability of radiomic
models, thereby facilitating the development of more reliable and
robust radiomic models with enhanced clinical translatability.

4.3 Existing limitations analysis

This study has several limitations that should be acknowledged.
First, although our perturbation method simulated key variability
sources including translations, rotations, random noise, and
contour variations, they could not fully replicate all potential
sources of variability encountered in clinical practice. For
example, transient signal fluctuations that may occur during
repeated scans under identical acquisition parameters cannot be
effectively modeled. This inherent limitation underscores that
image perturbation methods cannot entirely replace traditional
test-retest validation approaches. Second, the optimal ICC
thresholds for establishing reliable radiomic models remain
controversial in the field. Additional investigations are required to
establish evidence-based cutoff values for robust feature selection in
clinical applications. Third, while our multi-institutional study
design strengthened the generalizability of findings, the persistent
effects of inter-scanner variability and acquisition parameter
differences on feature reproducibility warrant further
investigation. Furthermore, the dual use of our dataset for both
RF-RobustDB construction and PFS model development may
introduce circularity. Future validation should incorporate
independent multi-institutional datasets to more rigorously assess
the RF-RobustDB’s clinical utility. Addressing these limitations
through continued research will be essential for optimizing the
RF-RobustDB’s performance and expanding its applicability across
diverse clinical implementations.

5 Conclusion

We have established a RF-RobustDB using an image perturbation
approach for CT-derived RFs in OPC patients. The ICCs were
calculated to quantify the reliability and repeatability of RFs.
Through multi-cohort PFS experiments, we demonstrated the
reference value of the RF-RobustDB, demonstrating that
preselected highly repeatable RFs improved PFS model
generalizability. To quantitatively assess model performance, we
introduced a generalizability metric (G-index). The methodology
we employed is cost-effective and easily applicable across different
institutions, suggesting its potential extension to other lesion areas
and imaging modalities. The comprehensive RF-RobustDB can
facilitate robust RF selection when only small training datasets or
single-institutional data are available, thereby enhancing the
reliability, reproducibility, and generalizability of radiomic
predictive models.
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