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Background and aims: Liquid biopsy offers a minimally invasive tool to detect
actionable mutations, monitor minimal residual disease (MRD), and guide therapy
in gastrointestinal (Gl) cancers. We critically review the clinical utility of circulating
tumor DNA (ctDNA), circulating tumor cells (CTCs), and small extracellular
vesicles (sEVs) across Gl malignancies and propose a framework for their
integration into clinical practice.

Methods: We synthesized evidence from over 200 studies, including prospective
trials and translational research, to assess diagnostic accuracy, prognostic value,
and clinical actionability of each biomarker type in esophageal, gastric, colorectal,
pancreatic, hepatocellular, and biliary cancers.

Results: ctDNA has shown strong potential for MRD detection and treatment
monitoring, particularly in colorectal and pancreatic cancer. CTCs offer insights
into metastatic risk and therapeutic resistance, while sEVs provide molecular
cargo relevant to immunomodulation and disease progression. Emerging
microfluidics and Al-driven multi-omics approaches may overcome current
limitations.

Conclusion: The integration of liquid biopsy technologies into Gl oncology holds
promise for early detection and precision therapy. We propose a five-phase
clinical roadmap and outine the key research gaps that need to be addressed
before widespread implementation in routine care.

KEYWORDS

liquid biopsy, gastrointestinal cancer (Gl), circulating tumor cells (CTC), extracellular
vesicles (EVs), circulating tumor DNA (ctDNA)
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THE ROLE OF LIQUID BIOPSY I
GASTROINTESTINAL CANCER
MANAGEMENT
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GRAPHICAL ABSTRACT

Graphical abstract illustrating the role of liquid biopsy in the management of gastrointestinal cancer. Tumor-derived biomarkers, including circulating tumor,
cells, extracellular vesicles, and circulating molecules, can be detected in different biological fluids (blood, saliva, urine, cerebrospinal fluid, seminal fluid,
nipple fluid, ascitic liquid, tears, and breath) through molecular analysis. Liquid biopsy enables early detection, longitudinal monitoring, and the development
of personalized therapeutic strategies. Key translational aspects include the establishment of a clinical roadmap, preclinical and analytical validation,
implementation of standardized guidelines, integration of artificial intelligence and multi-omics approaches, as well as surveillance and adaptive
management.
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1 Introduction

Cancer is the world’s second-deadliest disease, making early
detection vital. While tissue biopsy is still the diagnostic gold
standard, it is invasive and often misses tumour diversity or
changes over time. Liquid biopsy, by analysing tumour-derived
material in blood, saliva, urine, or other fluids, provides a non-
invasive, real-time, and more comprehensive picture of tumour
biology and progression (1). This innovative diagnostic method
minimizes patient discomfort and enables real-time monitoring of
tumour evolution and therapeutic responses (Figure 1) (2).
Additionally, tissue biopsies may be unsuitable for detecting
tumours at early stages (3). In gastrointestinal (GI) cancers,
often marked by late diagnoses and limited treatment options,
liquid biopsy offers a more precise approach to disease
management (4). Key biomarkers include circulating tumour
cells (CTCs), extracellular vesicles (EVs), and circulating
tumour DNA (ctDNA). CTCs are cancer cells shed into the
bloodstream from primary or metastatic sites (5), and their
detection often relies on epithelial markers (e.g, EpCAM,
Cytokeratin) or size and density differences. Advances in single
cell sequencing of CTCs provide valuable insights into genetic
heterogeneity and resistance mechanisms (6). EVs constitute a
diverse population of membrane-bound vesicles secreted by most
cell types fluids. Small EVs
(sEVs, <200 nm), among them exosomes, are the most

and found in biological
extensively studied subclass due to their involvement in both
physiological and pathological processes. They play key roles in
intercellular communication by transferring bioactive molecules,
and increasingly studied for their involvement in disease
pathogenesis, diagnostics, and therapeutics (7). In liquid biopsy,
sEVs have gained prominence due to their ability to carry proteins,
lipids, nucleic acids (DNA, mRNA, non-coding RNA), and
metabolites. These molecular cargos reflect the physiological
and pathological states of their originating cells, making sEVs
valuable biomarkers. They hold significant potential for early
prognostic
monitoring, providing insights into tumour biology and aiding

cancer detection, assessment, and therapeutic
in personalized oncology strategies (8). In GI tumourigenesis, SEV's

promote  cancer  progression by  remodelling  the
microenvironment, enhancing angiogenesis, and modulating
immune responses, supporting metastasis (9-12). Their non-
invasive detection in body fluids enables the monitoring of
disease progression, therapeutic responses, and recurrence.
sEVs-based
stratification, and clinical decision-making in GI cancers (13).

Similarly, ctDNA is an important component of liquid biopsy

assays improve diagnostic accuracy, patient

approaches, consisting of short nucleic acid fragments released
into the bloodstream by cancer cells through apoptosis, necrosis, or
active secretion (14). ctDNA mirrors the genetic and epigenetic
landscape of its tumour, enabling non-invasive liquid biopsy for GI
cancers. It supports early detection, surveillance of progression,
minimal residual disease (MRD), recurrence, and treatment
response. In colorectal, gastric, and pancreatic cancers, ctDNA
detects
personalized therapy (15-17). This review aims to examine the

mutations, resistance, and relapse risk, guiding

advances in liquid biopsy technologies and critically assess their
significant clinical potential for each type of most common GI
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cancer. It explores recent developments in these technologies and
evaluates their impact on the clinical management of GI
cancers (Figure 1).

2 Technological landscape and pre-
analytical considerations

Fragile circulating biomarkers demand ultrasensitive workflows,
combining next-generation sequencing with error-suppression
barcodes, digital PCR and droplet digital PCR, each paired with
purpose-built enrichment modalities (18). CTC pre-enrichment,
microfluidic capture of sEVs and quantitative ctDNA assays now
sharpen MRD detection, serial therapeutic monitoring and
immediate, data-driven treatment adjustment (19-21). Whole
blood must be drawn into stabilising tubes, transported promptly
and processed under cold-chain control to preserve biomolecule
integrity from deviations accelerate degradation. Pre-analytical
disparities collection tubes, centrifugation speeds, storage times
PCR platforms
inter-laboratory variability,

and heterogeneous sequencing or foster

pronounced complicating meta-
(22, 23).

Enrichment exploits physical and biological differences: size

analysis and reproducible standardisation efforts
exclusion filters eliminate smaller haematologic cells, while
immunoisolation seizes tumour cells via EpCAM or other surface
markers. Cutting edge microfluidic chips integrate size selective and
antigen specific traps within nanoscale channels, achieving high
sensitivity and purity for CTC recovery while setting performance
benchmarks for liquid biopsy and broader clinical diagnostic
adoption (24). Advanced enrichment platforms enhance liquid-
biopsy diagnostic power. The CTC-iChip merges size filtration
with magnetic immunocapture for label-free CTC recovery (25).
CTCs by
and mesenchymal

Di-electrophoresis separates dielectric  properties,

capturing  epithelial phenotypes without
markers (26). Instead, photoacoustic flow cytometry detects and
isolates rare CTCs in real time via optical-absorption signatures (27).
For sEV isolation, density-based ultracentrifugation, size-exclusion
filtration and antibody-based immunocapture remain standard
approaches, while acoustic nanofilters have recently emerged as
methods  that

integrityduring enrichment (28). Microfluidic chips functionalized

efficient  high-throughput preserve  veicles
with anti-CD63/CD81 nanostructures enhance capture specificity
(29), the ExoChip platform integrates isolation and analysis in a
single step (30), and tangential-flow filtration enables continuous,
high-purity sEVs harvesting (31).

As shown in Figure 2, a unified approach to liquid biopsy begins
with biological fluids collection and sample preparation, followed by
parallel or sequential processing for CTCs, sEVs, and ctDNA. Each
biomarker class demands specific pre-analytical and analytical
bead

enrichment and nucleic acid sequencing. Integrated platforms

workflows, from magnetic capture to microfluidic
that consolidate isolation, detection, and quantification steps are
critical for improving standardization, reducing operator variability,
and enabling routine clinical use.

A series of technological innovations has revolutionised the
analysis and isolation of circulating biomarkers, improving
sensitivity, specificity and operational efficiency. Magnetic beads

functionalised with silica or sequence-specific ligands simplify
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FIGURE 1
Fraction of Liquid Biopsy derived from body fluids. Overview of biological fluids utilized for diagnostic and research purposes. The outer ring

identifies different types of biological fluids, including seminal fluid, tears, ascitic liquid, urine, breath, nipple fluid, saliva, blood, and cerebrospinal fluid.
The inner section highlights key circulating components present within these fluids, such as circulating tumour cells (CTCs), circulating molecules (e.g.,
DNA, RNA, and proteins), and small extracellular vesicles (sEVs), that are obtained from liquid biopsy.

workflows, boost recovery, and cut processing time (32). Nanopore
sequencing provides real-time, single-molecule interrogation of
ctDNA, detecting rare variants with exceptional sensitivity (33).
Instead, droplet microfluidic platforms encapsulate individual
fragments, amplify, and sequence them, enabling base-level
mutation and methylation profiling (34). Microfluidics and
acoustic nanofilters have further enhanced capture specificity;
label-free systems now recover both epithelial and mesenchymal
CTC phenotypes, overcoming immunoaffinity blind spots (35).
While other approaches integrate tangential flow filtration and
updated magnetic-bead devices consolidate steps, curtail labour,
and lower costs, advantages for resource-limited laboratories (36).
Moreover, high-throughput droplet assays and nanopore readers
also facilitate continuous tracking of treatment response and MRD,
directly informing clinical decisions (37). Automated, microfluidic
isolators cement reproducibility and standardisation for routine
adoption (38).

Oncology Reviews

3 Clinical applications by tumour type
3.1 Esophageal cancer

Liquid biopsy is a promising non-invasive tool for managing
oesophageal carcinoma (EC), reducing reliance on repeated tissue
biopsies in monitoring and treatment guidance (39). In
gastroesophageal junction (GE]) adenocarcinoma treated with
pembrolizumab and neoadjuvant chemo-radiotherapy, serial
ctDNA analysis effectively tracks treatment response and disease
progression; post-therapy ctDNA clearance correlates with higher
pathological complete response and better outcomes, while
persistence indicates recurrence risk (40). Beyond quantity,
ctDNA profiling, including TP53 mutations and methylation,
may aid early diagnosis. Singh et al. studied the CAPOX-BETR
regimen in advanced HER2-positive GE adenocarcinoma (phase II
randomized trial), showing ctDNA-detected amplifications in

frontiersin.org


https://www.frontiersin.org/journals/oncology-reviews
https://www.frontiersin.org
https://doi.org/10.3389/or.2025.1702932

Palieri et al. 10.3389/0r.2025.1702932
Clinical Roadmap
for the integration of liquid biopsy in
gastrointestinal cancer management
’ o | [ © ]
Preclinical and analytical Clinical Validation
validation
Launch randomized,
Development and multicenter clinical trials
standardization of high to correlate liquid biopsy
sensitivity methodologies, biomarkers with clinical
such as ddPCR, NGS, _ endpoints (e.g. disease
Microfluidics for ctDNA; progression, response to
CTC and EVs therapy, survival)
\_ v, \_ _J/
e : N ( N\ [ a
Implementation and Training Integration of Al Surveillance and adaptative
Develop clinical practice and Multi-Omics management
guidelines in collaboration Leverage artificial Detection of minimal
with oncologist, pathologists intelligence and machine residual disease and early
and regulatory agencies. learning for predictive relapse post surgery. Real-
Establish comprehensive analysis of ctDNA, CTCs, time adaptation of
training programs for EVs, proteomics therapeutic strategies
clinicians and laboratory methylomics and radiomics based on evolving biology
personal
o y/ N J O\ J
FIGURE 2

Schematic diagram outlining a unified workflow for isolating circulating tumour cells (CTCs), small extracellular vesicles (sEVs), and circulating
tumour DNA (ctDNA) from blood samples. Magnetic beads functionalized with silica or sequence-specific ligands enhance biomarker recovery and
shorten processing time. Advances in droplet microfluidics, nanopore sequencing, and integrated microfluidic devices enable sensitive and reproducible
detection of rare variants and methylation signatures across all biomarker classes.

EGEFR, FGFR1, MET, and KRAS correlated with clinical outcomes,
supporting its use in personalized treatment (41). Recent data also
support the role of ctDNA in minimal residual disease detection and
early relapse prediction (42). Ongoing trials like the EXPLORING
phase II randomized trial are evaluating ctDNA-guided therapy
intensification in ctDNA-positive gastric and GEJ cancers using
XELOX, anlotinib, and penpulimab (43). Cell free DNA (cfDNA)
levels are elevated in EC versus healthy individuals and carry
tumour-specific changes, supporting their role in surveillance
(44). In a Randomized controlled trial, the CTC counts, reduced
after pre-operative chemotherapy in oesophageal squamous cell
carcinoma, associate with improved prognosis, highlighting their
utility in treatment assessment (45). Additionally, salivary sEV's rich
in tRNA-GlyGCC-5 can distinguish malignant from benign

Oncology Reviews

conditions, and combined with real-time sequencing, may
enhance early diagnosis and monitoring (46).

3.2 Gastric cancer

Gastric cancer (GC) remains a major challenge due to late
diagnosis and poor prognosis. Liquid biopsy has transformed
non-invasive  diagnostics and treatment monitoring, as
demonstrated in subsequent studies. In a prospective clinical
study, Bai et al. showedthat peritoneal lavage CTCs and ctDNA
can predict metachronous peritoneal metastases aftersurgery in
patients with advanced GI cancer (47), while Jung et al
confirmed the utility of liquid biopsy for guiding therapy in

HER2-positive metastatic GC (48). Izumi et al. validated its use
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for early-stage GC diagnosis in a prospective study (49), and Modlin
et al. demonstrated that multigenomic liquid biopsy markers
outperform traditional markers like CgA in neuroendocrine
tumours, suggesting relevance in GC (50). Slagter et al. linked
higher perioperative ctDNA levels with worse outcomes
(CRITICS phase III randomized trial) (51), and phase II trials
ctDNA
independent

using CAPOX-bevacizumab-trastuzumab  confirmed

utility in precision oncology (41). In two
randomized phase III international trials, Lukovic and Rosati
provided evidence supporting the feasibility of liquid biopsy
markers (52, 53). In GEJ tumours, undetectable ctDNA pre/post-
surgery predicted superior survival and correlated with T-cell
expansion, highlighting its immunologic role (54). In a phase I
study, ctDNA confirmed FGFR2/3 alterations and mirrored
response to FGFR inhibitor KIN-3248 (55).

Besides, Cai et al. identified von Willebrand factor-bearing sEVs
as diagnostic and therapeutic targets (56), and PD-L1-containing
sEVs were linked to poor outcomes post-resection, serving as
independent prognostic indicators (57). Contemponary, another
study showed that exosomal miR-29b suppressed peritoneal
metastases, supporting sEV-based therapy (58), while exosomal
miR-92a-3p was also noted as a non-invasive early diagnostic
biomarker (59), and BM-MSC-derived exosomes overexpressing
miRNA-1228 promoted GC progression via SCAI inhibition (60).
Offering new therapeutic avenues, macrophage-derived sEVs from
TAMs were shown to promote angiogenesis, metastasis, and
resistance (61).

CTCs analysis improved diagnostic accuracy and supported
real-time treatment decisions in advanced GC (62). Zhang et al.
used CTCs to track trastuzumab resistance in HER2-positive GC
(63); Overall, liquid biopsy supports early detection, treatment
adjustment, and non-invasive monitoring in GC, with Jung SH
et al. reinforcing its value in HER2-targeted therapy (48). ctDNA,
CTC, and sEVs aid therapy guidance in neoadjuvant, unresectable,
or metastatic GC (52, 53).

3.3 Cholangiocarcinoma

Cholangiocarcinoma (CCA), a rare and aggressive bile duct
cancer, has benefited from liquid biopsy advances, which offer
minimally invasive detection of tumour-specific alterations
through ctDNA analysis, especially important given the
difficulty of obtaining tissue biopsies (55). ctDNA enables
identification of actionable mutations like FGFR2 fusions and
IDH1/2 mutations to guide targeted therapy. Garmezy et al.
demonstrated ctDNA utility in a phase I clinical trial of the
FGFR inhibitor KIN-3248, confirming FGFR2/3 alterations in
63.3% ctDNA with
radiographic response, supporting its role in patient selection

of cases and correlating clearance
and real-time treatment monitoring (55). CTCs, explored by
Reduzzi et al, revealed in an observational study, non-
CTCs (ncCTCs)

expanding detection capabilities and improving insights into

conventional lacking epithelial markers,
tumour heterogeneity and progression (64). sEVs further
advance diagnostic and monitoring strategies, with serum- and
utine-derived miR-21 and miR-221 profiles mirroring tumour

RNA signatures, while FGFR2 mRNA carried by sEVs supports
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early detection (65). Gu et al. identified by a prospective
observational study a specific exosomal PIWI-interacting RNA
(piRNA) signatures, including piR-10506469, piR-20548188, and
piR-01856912, as novel diagnostic biomarkers for early detection
and personalized care in CCA (66). Together, ctDNA, CTCs, and
sEVs reinforce liquid biopsy as a key tool in early diagnosis,
monitoring, and precision oncology for CCA.

3.4 Colorectal cancer

Colorectal cancer (CRC) ranks third in incidence and second in
mortality in high-HDI countries, per 2022 GLOBOCAN (67).
Metastases are synchronous in 15%-30% and later develop in
20%-50% of localized cases (68). Carcinogenesis involves APC or
TP53 loss, RAS/BRAF/PIK3CA activation, or microsatellite
instability (69). EGFR, VEGFR, and HER2 signaling drive
progression; HER2 is amplified in 5% of metastases, often with
RAS mutations (17%) (70-72). ESMO recommends biomarker
profiling before anti-EGFR or anti-VEGFR therapy (68), but
pathway mutations often cause resistance (73).

ctDNA enables real-time mutation detection, resistance
monitoring, and disease tracking, addressing tissue biopsy
limitations, as revealed in the SCRUM-Japan GI-SCREEN and
GOZILA studies (74-79). Post-operative ctDNA predicts residual
disease and relapse, as shown in prospective and randomized trials
(e.g., NEJM 2022, stage II colon cancer study) (80-85); positive
status supports adjuvant therapy, while negativity may justify
omission (86-88). High baseline MAF or on-treatment VAF
predicts poor (89-92), and ctDNA  tracks
mutational burden and immune changes in microsatellite-stable
CRC (93-96). RAS-wild-type ctDNA indicates anti-EGFR benefit,
RAS mutations
uncontrolled multicenter study (97-104). Several randomized
phase II trials, including CRONOS, IL VELO, Beyond and CAVE
have evaluaed the clearance of RAS, BRAF, or EGFR mutations and
supported monoclonal antibody rechallenge (105-117). These

survival serial

signal resistance in a non-interventional,

findings have subsequently refined adjuvant treatment decisions,
as confirmed in both phase II and phase III trials (118-123). In the
EVICT (Erlotinib and Vemurafenib in combination trial) and NEW
BEACON studies, ctDNA has been used to guide therapy for BRAF
V600E and KRAS GI12C mutations (124-130). Similary, HER2
(ERBB2) levels in ctDNA inform anti-HER2 tretament decisions
and monitor therapeutic response, as demonstrated with
pertuzumab in a phase2 trial (131), cetuximab or panitumumab
in the NSABP FC-7 a phase Ib study (132), and trastuzumab
deruxtecan in the DESTINY-CRO1 study (133). Methylation of
GRIA4, RARB, VIM, WNT5A, SDC2, SLC8A1, and NPY in
ctDNA correlates with poor prognosis and may aid early
detection (134-136). In the same way, cfDNA-based screening
GALNT9/UPF3A show high
specificity (137). Contemporary, in a multicenter clinical study,
Whang et al. reported that the MethyDT test (NTMT1/
MAP3K14-AS1) outperforms SEPT9 for CRC diagnosis (138),
offering better compliance, though further validation is needed
(139). Blood-based MSI ctDNA  predicts

immunotherapy response (140), though distinguishing tumour

models like sensitivity and

burden from

from immune DNA remains challenging (141).
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CTCs correlate with metastasis, invasiveness, and prognosis in
CRC (142, 143), identifying patients for intensified treatment based
on FOLFOXIRI and bevacizumab versus FOLFOX, in a randomised
phase IIT VISNU-1 trial (144), and in an observational cohort study
(145). CTC enumeration assesses surgery or stent outcomes (146,
147), while Wu et al. in an experimental study demonstratedthat the
detection in peritoneal lavage predicts poor outcomes (148).
Mesenchymal CTCs signal relapses and high mortality (149,
150). CTCs also correlate with immune dysfunction in MRD and
worse survival (151-153), possibly due to MMP-2-mediated
immunosuppression (154), though some studies report limited
added value (155). EVs offer alternative biomarkers; tumour-
derived EVs promote progression, and endothelial EVs predict
survival in metastatic CRC (156). CRC-plasma EVs reprogram
monocytes and differ by disease stage (157). sEVs associated
miRNAs, such as miR-19b, miR-21, miR-222, and miR-92a
contribute to early diagnosis with high miR-222 levels predicting
worse survival (158), while low sEV-miR-193a-5p is associated with
nodal spread (159). Exosomal circ-133 rises with disease stage (160),
and circ-HMGCSI drives invasion via the circ- HMGCS1/miR-34a-
5p/SGPP1 axis (161). A multicenter study identified a five-miRNA
fecal signature (miR-1246, miR-607-5p, miR-6777-5p, miR-4488,
miR-149-3p), with potential to improve non-invasive CRC
screening (162).

3.5 Pancreatic cancer

Pancreatic cancer (PC) remains a top cause of cancer mortality,
with about 467,000 deaths in 2022 and a 10% survival rate (67, 163).
Late diagnosis limits curative options, highlighting the need for early
biomarkers. KRAS-mutant ctDNA is scarce and error-prone;
combining it with serum protein markers improves diagnostic
accuracy (164). Tumour-derived ctDNA is shorter than benign
cfDNA, particularly in early-stage PC (165). In PDAC, ctDNA
detects BRCA2 mutations for PARP inhibitor use and clonal
KRAS/GNAS alterations (166, 167). KRAS-mutant ctDNA signals
poor prognosis, while wild-type status relates to better survival,
though it does not predict immunotherapy response. KRAS G12D/V
mutations expand T-reg cells and suppress antitumour immunity,
especially G12V (168). Elevated neutrophil-to-lymphocyte ratios
correlate with ctDNA presence, linking inflammation and tumour
burden. Serial ctDNA declines during effective therapies correlate
with improved survival in advanced disease (169-171). Particularly,
Pant et al underligthed the use of ELI-002P vaccine to recude the
ctDNA in several patients affected by PC enrolled in the phase
1 AMPLIFY-201 trial (172). Postoperative ctDNA drop predicts
longer survival; cfDNA fragmentomics supports this trend (173,
174). Despite limited yield, ctDNA retains prognostic value post-
chemotherapy; pre-op ctDNA still reflects tumour status in a non-
randomized controlled trial (175). Methylation assays (HOXDS,
POU4F1) of circulation tumor DNA enhance prognostication in
metastatic PC by a post hoc analyses of two clinical trials (176). In a
prospective observational study, named “PASEA” was detected
KRAS mutations in 62.4% of PDAC, with ctDNA clearance
marking stability and reappearance signaling progression (177).
CTCs predict drug response and survival in advanced PDAC
(178), track treatment response and early metastasis, and are
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detectable in early stages via microfluidic devices (179-181). EVs
also hold diagnostic promise, though differentiation from benign
EVs is needed. A three-module PPI model identified LEP and
SSTR5 as key regulators with prognostic value (182). A digital
ELISA test (DEST) showed elevated MUC5AC in EVs predicts
IPMN progression to carcinoma (183). EVs-TFs trigger pro-
thrombotic states, driving progression and chemo-resistance, and
independently predict mortality (184). GPC1 and CD82 markers in
EVs may support diagnosis (185). EVs RNA studies show miR-200
family upregulation promotes EMT and metastasis, with high
diagnostic accuracy (186). PDAC EVs also deliver miR-155-5p,
which activates NF-kB, suppresses EHF, and drives invasiveness
(187). In a multicenter case-control study, six dysregulated exosomal
miRNAs (including miR-21-5p, miR-223-3p) show diagnostic
value, especially with CA19-9, though post-treatment dynamics
remain unclear (188). A three-miRNA signature (PPPIRI2A,
SCN7A, SGCD) predicted poor survival (189). Combining cf-
miRNA and exo-miRNA yielded a 13-miRNA signature for early
detection, even in low CA19-9 cases (multicenter cohort study)
(190). Two diagnostic plasma panels include five miRNAs (miR-
215-5p, miR-122-5p, miR-192-5p, miR-30b-5p, miR-320b) (191)
and three (hsa-miR-1246, hsa-miR-205-5p, hsa-miR-191-5p) (192).
CA19-9 remains a standard marker, but protein panels (193),
inflammatory markers (FAR, FPR, FLR) (194), or ctDNA (174)
enhance its diagnostic range and detect non-threshold cases. The
glycan sTRA, combined with CA19-9, may predict chemo-resistance
(195). Autotaxin, secreted by CAFs, mediates treatment resistance
and tumour growth post-TGFP inhibition, suggesting value in
monitoring therapy (196). The NETest, a multigene blood test,
aids early detection and monitoring of neuroendocrine cancers
(50, 197, 198). Despite progress, identifying reliable biomarkers
for early PC detection and treatment response remains challenging.

3.6 Liver cancer

Liver cancer is the third leading cause of cancer-related death
globally, with 865,000 new cases in 2022 (67). Hepatocellular
carcinoma (HCC), mostly caused by chronic HBV or HCV
infection, represents 75%-85% of cases (199). Due to poor early
detection, diagnosis often occurs at advanced stages (200). Liquid
biopsy is gaining value for early diagnosis and monitoring. The
Hepa-AiQ ctDNA methylation test outperformed AFP and DCP for
early-stage HCC and relapse prediction, though limited to CHB/LC-
related cases in Chinese patients (prospective validation study)
(201). In the PETAL phase Ib study, D.J. Pinato and colleagues
demonstrated that ctDNAeffectively tracked responses to
neoantigen vaccines and revealed tumor heterogeneity; however,
the immune response was insufficient to fully eradicate residual
disease (202). In another phase II clinical trial, Y.Xia et al.
estabilished that the changes in ctDNA levels reflected
radiological response to TACE with PD-1 inhibitors (203) and
post-op predicted
immunosuppressive therapy (204). In HBV-related cases, vh-

increases recurrence during
DNA tracked tumour burden and recurrence risk but lacks
general applicability (205). c¢fDNA concentrations post-resection
independently predicted recurrence better than AFP (206).

cSMART-detected mutations (TERT, TP53, CTNNBI1), combined
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with AFP, AFP-L3, and PIVKA-II, created a model superior to AFP
alone, especially for early HCC (207). The mt-HBT test, combining
cfDNA methylation markers, AFP, and gender, showed 88% overall
and 82% early-stage sensitivity, outperforming AFP and GALAD
(208). The PreCar Score, based on cfDNA features, enhanced
detection in non-cirrhotic, HBV-related cases, especially when
paired with ultrasound (209). CTC counts and mesenchymal
traits predicted recurrence risk and informed resection strategy
(210), while the anterior approach reduced intraoperative CTC
spread and early relapse (211). CTC-based models, incorporating
size, nodule count, and MV, accurately predicted recurrence (212),
and high CTC levels before/after surgery indicated poorer survival
and metastasis risk (213). EV size >145.65 nm before TACE was
associated with worse prognosis (214). sEV proteins like A2MG and
PIGR showed better diagnostic accuracy than AFP, while others
(Fetuin-A, Meprin A) indicated progression in the SORAMIC trial
study (215). In non-viral HCC, EV markers (GPX3, ACTR3,
ARHGAPI) predicted SIRT and sorafenib outcomes (216). EV
IncRNAs such as SENP3-EIF4A1, FAM72D-3, EPC1-4, and a
panel (MALAT1, DLEU2, HOTTIP, SNHG1) showed diagnostic
and prognostic potential (217, 218). A combined EV purification
and RT-ddPCR test achieved high sensitivity and specificity in early
HCC detection (219). MYCN correlated with liver function and
fibrosis, outperforming AFP in predicting progression (220). A five-
protein panel (OPN, GDF15, NSE, TRAP5, OPG) effectively
detected early-stage HCC (221), and a seven-autoantibody panel
showed greater sensitivity than AFP (222). Spectroscopy proved
useful for early detection in obese cirrhotic patients where
ultrasound fails (223), and platelet mRNA markers have been
proposed for early-stage HCC detection (224).

4 Clinical decision framework:
matching liquid biopsy tools to clinical
objectives

To translate emerging evidence into actionable clinical
strategies, we propose a decision-oriented framework that aligns
each liquid biopsy modality ctDNA, CTCs, and EVs with specific
oncologic goals in gastrointestinal (GI) cancers. For instance, EV-
based profiling, especially in saliva or plasma, offers promise for
early detection or screening, particularly when combined with
sEVs
biomarker class in liquid biopsy, offering molecular cargo that

miRNA signatures. Furthermore, represent a unique
captures complex tumor biology beyond genetic mutations alone.
Unlike ctDNA, which primarily reflects tumor-specific genetic
alterations, and CTCs, which provide phenotypic and genomic
information on intact circulating tumor cells, EVs carry a diverse
set of bioactive molecules including miRNAs, proteins, lipids, and
metabolites. This cargo influences tumor progression, immune
evasion, and metastatic niche formation, thus providing insights
into tumor microenvironment interactions and systemic disease
processes. For example, specific EV-derived miRNAs such as miR-
21, miR-29b, and miR-92a-3p have been linked to tumor growth,
chemoresistance, and prognosis in gastrointestinal cancers, while
proteins like PD-L1 carried on EVs correlate with immune
checkpoint modulation and therapy response. These molecular
offer distinct clinical advantages,

signatures especially  in
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TABLE 1 Number of ongoing clinical trials on liquid biopsy in
gastrointestinal cancers (ClinicalTrials.gov, accessed 22 September 2025).

Type of tumor ctDNA CTCs EVs Liquid biopsy

Oesophageal Cancer 10 1 0 8
Gastric Cancer 15 3 0 6
Cholangiocarcinoma 4 0 0 0
Colorectal Cancer 37 7 2 15
Pancreatic Cancer 12 2 0 8
Liver Cancer 6 1 0 5

scenarios where ctDNA levels are low or CTC capture is
challenging, such as in early-stage disease or certain upper GI
cancers. Furthermore, sEVs are highly stable in bodily fluids,
making them suitable for repeated sampling and longitudinal
monitoring. Emerging evidence also supports their role in
predicting treatment outcomes and immune responses, thereby
complementing the information obtained from ctDNA and CTC
analyses and enriching personalized oncology strategies. Conversely,
ctDNA analysis via serial plasma sampling is the most robust tool for
MRD detection, treatment response monitoring, and molecular
relapse prediction. CTC enumeration and phenotyping, on the
other hand, may be particularly informative for predicting
metastatic spread, immune evasion, and drug resistance,
especially in cancers such as colorectal and pancreatic carcinoma.

The choice of biomarker is also informed by tumour location
and disease extent. In upper GI malignancies (esophageal, gastric,
cholangiocarcinoma), CTCs and sEVs often yield higher diagnostic
utility due to anatomical sampling limitations. In lower GI cancers
(colorectal, pancreatic, hepatocellular carcinoma), ctDNA tends to
be more abundant and clinically actionable, especially in the
metastatic setting. Finally, advanced-stage disease or patients
under active systemic therapy may benefit most from real-time
ctDNA tracking, while drug resistance can be further evaluated by

combining ctDNA mutation profiling with dynamic CTC analysis.

4.1 Overview of clinical trials

A systematic analysis of ongoing clinical trials was conducted
using the ClinicalTrials.gov database (accessed on 22 September
2025). Each gastrointestinal malignancy (oesophageal, gastric,
colorectal, pancreatic, hepatic, and biliary tumours) was searched
in combination with terms related to liquid biopsy (CTCs, ctDNA,
EVs, and “liquid biopsy”). The total number of active studies is
presented in Table 1, while the complete list, including identifiers,
project titles, and URLs, is provided in Supplementary Table S1.

The distribution of ongoing clinical trials indicates significant
trends in the translational adoption of liquid biopsy in
gastrointestinal cancers. Colorectal cancer emerges as the leading
field, with a predominance of ctDNA-based studies, reflecting its
central role in the identification of minimal residual disease,
therapeutic monitoring, and clinical decision-making. Gastric and
oesophageal cancers also show a growing number of ctDNA- and
liquid biopsy-oriented studies, in line with their clinical necessity to
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Flowchart illustrating the proposed clinical roadmap for integrating liquid biopsy in gastrointestinal cancer management. The diagram outlines five
sequential phases: (1) analytical validation; (2) clinical validation and threshold definition; (3) guideline development and training; (4) multi-omics and Al

integration; (5) adaptive surveillance and therapeutic adjustment.

improve early diagnosis and response assessment. In contrast,
cholangiocarcinoma and liver cancer remain underrepresented,
with only a handful of ctDNA-focused initiatives, underscoring
the limited clinical translation of liquid biopsy in these settings.
In detail, studies specifically investigating EV's are virtually non-
existent, suggesting that while preclinical evidence is expanding, its
incorporation into large-scale clinical protocols is still in its early
stages. On an overall basis, the current study landscape highlights
the greater clinical readiness of ctDNA compared to CTCs and VEs,
who remain in the early stages of translational validation.

5 From bench to bedside: a clinical
integration roadmap for liquid biopsy in
Gl oncology

Liquid biopsy holds strong promise across GI cancers, but its
clinical translation remains incomplete. To move from experimental
utility to standard of care, a structured roadmap is needed one that
aligns assay development, regulatory validation, and clinical
adoption. We propose a five-phase integration model to guide

Oncology Reviews

the systematic implementation of liquid biopsy platforms across
GI malignancies (Figure 3). This framework emphasizes
harmonization of technologies, validation through clinical
endpoints, and interdisciplinary collaboration among oncologists,
pathologists, and laboratorians.

5.1 Phase 1: analytical and preclinical
validation

The first step toward clinical translation of liquid biopsy is the
development of high-fidelity, reproducible assays for ctDNA, CTCs,
and EVs. A critical requirement at this stage is the implementation
of standardized workflows, capable of reducing inter-laboratory
variability and ensuring clinical comparability.

Recent studies in various cancer types have shown the feasibility of
standardized liquid biopsy workflows. For example, Sathyanarayana
et al. reported an automated cfDNA extraction and quantification
protocol validated across multiple centers, ensuring reproducibility
and minimizing pre-analytical variability (225). The International
Society of Liquid Biopsy (ISLB) recently issued minimal quality
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control requirements for ctDNA analysis, stressing harmonization across
pre-analytical, analytical, and post-analytical phases (226). Pantel and
Alix-Panabiéres highlighted key barriers to CTC adoption and advocated
inter-laboratory trials with robust benchmarking to speed translation
(227). In the pre-analytical setting, Grolz et al. showed that collection
tubes, transport time, and storage conditions critically affect (fDNA
integrity and downstream analyses (228).

Building on these experiences, we propose a GI-specific
analytical workflow, aimed at addressing the unique challenges of
GI tumors:

o Pre-analytical standardization. Use of cfDNA-stabilizing
blood collection tubes to reduce leukocyte lysis. Strict limits
for transport (<24 h) and processing times, under controlled
temperature. Defined centrifugation protocols (two-step
processing with standardized speeds).

« Controlled extraction and enrichment. Automated bead-based
methods for ¢fDNA isolation with internal QC metrics (yield,
size distribution). Microfluidic or immunoaffinity platforms for
reproducible CTC and EV enrichment. Validation of devices
such as ExoChip or CTC-iChip in GI-specific clinical settings.

o Analytical performance benchmarking

« Definition of thresholds for sensitivity, specificity, and limit of
detection (LOD) through the use of reference standards and
spike-in controls. Inclusion of both positive and negative
process controls in every analytical run.

o Inter-laboratory harmonization. Establishment of ring trials
among reference centers to assess reproducibility of ctDNA
allele frequency quantification and CTC counts. Development
of shared databases and consensus reporting templates.

o Bioinformatics and reporting. Adoption of error-corrected
sequencing pipelines, including molecular barcoding, to
reduce false positives. Transparent reporting of quality
metrics (e.g., read depth, fragment size distribution, variant
allele frequency confidence). Harmonization of output into
clinically  interpretable for into

reports integration

tumor boards.

5.2 Phase 2: clinical validation

This phase focuses on demonstrating the correlation between
liquid biopsy metrics and meaningful clinical endpoints:

o Launch of prospective, multi-center trials to assess ctDNA,
CTCs, and EVs in early diagnosis, treatment response, and
MRD detection.

o Definition of actionable thresholds (e.g., ctDNA mutant allele
frequency, CTC count cutoffs).

« Cross-comparison with conventional markers such as CEA,
CA19-9, AFP, and radiologic imaging.

« Integration with histology, tumour stage, and therapy type to
refine biomarker interpretation.

5.3 Phase 3: implementation, and training

For clinical integration, three parallel initiatives must occur:

Oncology Reviews

10

10.3389/0r.2025.1702932

o Development of practical guidelines, consensus statements,
and diagnostic algorithms for biomarker use in specific GI
tumour types.

o Training programs for clinicians, lab personnel, and oncology
teams on interpretation and use of liquid biopsy data.

standardization networks to

« Inter-laboratory ensure

reproducibility, quality assurance, and data interoperability.

5.4 Phase 4: integration of Al and
multi-omics

As datasets grow in complexity, artificial intelligence and
machine learning will be essential to:

o Integrate liquid biopsy data with proteomics, methylomics,
radiomics, and clinical variables.

o Develop predictive models for recurrence, response, and
resistance.

« Identify novel biomarker signatures using pattern recognition
from high-dimensional data.

5.5 Phase 5: surveillance and adaptive
management

The final phase positions liquid biopsy as a cornerstone of
precision surveillance:

o Use of serial ctDNA and CTC analysis to detect early
relapse and MRD.

o Real-time biomarker feedback to guide therapy escalation, de-
escalation, or rechallenge strategies.

« Incorporation into adaptive trial designs and tumour board
decision-making.

6 Limitations and future directions

Recent advances in liquid biopsy research are promising;

however, significant limitations continue to constrain the
robustness and generalizability of the evidence in GI oncology.
Many studies involve small and heterogeneous patient cohorts,
which limits statistical power and hampers meaningful subgroup
analyses, particularly for less common malignancies such as
cholangiocarcinoma, data notably

Methodological variability remains a critical barrier. Differences

where remain sparse.
in pre-analytical procedures—including blood collection tubes,
centrifugation protocols, and storage conditions—combined with
inconsistencies in analytical platforms, such as sequencing
technologies, PCR assays, and enrichment methods, contribute to
significant inter-laboratory variability. This lack of standardization
hinders the establishment of clinically relevant thresholds for
biomarkers like ctDNA allele frequency, CTC counts, and EV
signatures.

Furthermore, the geographic and institutional concentration of
existing studies limits external validity, as much of the evidence
originates from single-centre investigations or cohorts from East
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TABLE 2 Summary table presenting the key studies cited throughout the manuscript, highlighting liquid biopsy techniques—including ctDNA, CTCs, EVs
and generally liquid biopsy, across various Gl cancers. Each entry specifies tumour type, liquid biopsy component studied, and the associated references
supporting the discussed diagnostic, prognostic, therapeutic insights, and promising biomarkers. This compilation underscores the growing evidence base

for integrating liquid biopsy into cancer management.

Type of tumour

Esophageal Cancer (EC)

ctDNA

Post-therapy ctDNA clearance
predicts better response and
survival in GEJ adenocarcinoma
(40) ctDNA profiling (TP53,
EGEFR, KRAS) aids personalized
treatment (41)

CTCs

Reduced CTC counts post-
chemotherapy correlate with
improved prognosis (45)

EVs

Salivary sEVs with tRNA-
GlyGCC-5 signature
distinguish malignant from
benign lesions, potential early
diagnostic tool (46)

Liquid biopsy

Gastric Cancer (GC)

Cholangiocarcinoma (CCA)

Colorectal Cancer (CRC)

Pancreatic Cancer (PC)

Peritoneal lavage ctDNA and
CTCs predict metastases post-
surgery (47)

Undetectable ctDNA pre/post-
surgery predicts superior
survival (54)

ctDNA detects actionable
FGFR2 fusions and IDH1/
2 mutations, guides targeted
therapy (55)

ctDNA predicts post-op relapse
and guides adjuvant therapy
(74-79)

Prospective trials validate ctDNA
for minimal residual disease
(80-85)

KRAS-mutant ctDNA combined
with protein markers improves
diagnosis (164-171) ctDNA
methylation (HOXD8, POU4F1)
predicts prognosis (176)

CTCs track trastuzumab
resistance in HER2+ metastatic
GC (63)

Non-conventional CTCs
lacking epithelial markers reveal
tumour heterogeneity (64)

CTCs associate with metastasis
and prognosis (142, 143)
CTC-based stratification for
intensive chemo regimens (144)

CTCs predict drug response and
early metastasis (178-181)

Von Willebrand factor-
bearing EVs as diagnostic
markers (56)

PD-L1+ sEVs linked to poor
prognosis (57)

Exosomal miRNAs (miR-29b,
miR-92a-3p, miR-1228)
regulate metastasis and
progression (58-61)

EVs miR-21, miR-221, and
piRNA signatures serve as
early diagnostic biomarkers
(65, 66)

sEVs miRNAs (miR-19b, miR-
21, miR-222, miR-92a)
support early diagnosis
(156-159)

circRNAs linked to invasion
and disease progression (160)

EVs markers (MUC5AC,
GPC1, CD82) and exosomal
miRNAs (miR-200 family,
miR-155-5p) as diagnostic and
prognostic tools (182-192)

Monitoring HER2-positive
metastatic gastric cancer therapy
(48, 49)

Five-miRNA fecal signature
(miR-1246, miR-607-5p, miR-
6777-5p, miR-4488, miR-149-
3p), showing potential for
improving non-invasive CRC
screening (162)

Plasma panels with specific
miRNAs improve diagnosis
(191, 192). CA19-9 gains
accuracy combined with protein/
inflammatory markers or ctDNA
(174, 193, 194). sTRA predicts
chemoresistance with CA19-9
(195). Autotaxin linked to
therapy resistance (196). NETest
aids early detection and
monitoring of neuroendocrine
cancers (50, 197, 198)

Liver Cancer (Hepatocellular
Carcinoma, HCC)

ctDNA methylation assays (e.g.,
Hepa-AiQ) combined with AFP,
AFP-13, PIVKA-II for early
detection (201-205)

CTC counts and phenotypes
predict recurrence risk and
metastasis (210-213)

EVs proteins and IncRNAs
(A2MG, PIGR, MALATI,
SENP3-EIF4A1) enhance
diagnosis and prognosis
(214-219)

cfDNA post-resection predicts
recurrence better than AFP
(206). Multi-marker models
(cSMART (207), mt-HBT (208),
PreCar (209)) improve early
HCC detection

MYCN (220), protein/
autoantibody panels (221, 222),
and spectroscopy (223)
outperform AFP in specific
contexts

Asia and selected European institutions. These limitations raise
concerns about the broader applicability of findings across
diverse populations and healthcare systems. Additionally, much
of the current data is descriptive or exploratory. Although
retrospective analyses and early-phase prospective trials offer
valuable proof-of-concept insights, large, randomized, multi-
centre studies demonstrating improvements in overall survival,
progression-free survival, or cost-effectiveness are still scarce.
Biological complexities also pose substantial challenges to clinical
translation. Intratumourally heterogeneity, clonal evolution, and
variability in biomarker shedding contribute to false negatives and
inconsistent results, while distinguishing tumour-derived signals from
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background circulating material remains particularly difficult in early-
stage disease when biomarker abundance is low. Looking forward, the
field must prioritize harmonized protocols, broad international
collaboration, and the incorporation of artificial intelligence-driven
analytic frameworks. Only through rigorously designed, globally
representative clinical trials can liquid biopsy transition from an
experimental adjunct to a validated, standardized component of
routine oncological care. Addressing economic factors, regulatory
heterogeneity, inter-laboratory variability, and educational needs
in parallel with technological and clinical advances is essential to
ensure the effective integration of liquid biopsy into everyday
clinical practice.
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7 Conclusion

invasive
Its
components CTCs, ctDNA, and EVs capture intratumour

Liquid biopsy offers a sensitive, minimally

complement to tissue sampling in GI malignancies.
heterogeneity, support early detection and enable real-time
therapeutic monitoring (229). In EC and GC, combining
ctDNA with CTCs enumeration refines neoadjuvant decision-
making (4), while early detection of resistance allows rapid
therapy adjustment. Protein- or miRNA-enriched sEVs sharpen
prognosis and may predict immunotherapy benefit (230-232).
CCA presents unique diagnostic and therapeutic challenges,
often due to the difficulty of obtaining adequate tissue samples.
In this setting, ctDNA profiling for actionable alterations in genes
such as FGFR and IDH not only circumvents the limitations of
tissue biopsy but also informs the selection of targeted therapies.
Longitudinal monitoring of ctDNA can guide modifications in
dosage or therapeutic agents over the course of treatment,
supporting a more adaptive and responsive approach to disease
management (233, 234). CRC has been at the forefront of liquid
biopsy adoption, with post-operative ctDNA detection serving as a
highly sensitive indicator of MRD. Dynamic changes in ctDNA
mutation profiles can herald impending relapse, while the
emergence of Neo-RAS wild-type status may reopen eligibility
for anti-EGFR therapies, thereby expanding treatment options
(235, 236). Furthermore, analysis of SEVs cargo has been shown
to provide additional risk stratification for metastatic disease,
particularly in cases where conventional markers are
inconclusive (237). In PC, the diagnostic sensitivity of liquid
biopsy is enhanced by integrating ctDNA analysis with serum
protein markers or by employing fragment omics approaches to
detect subclinical disease. The identification of KRAS-associated
regulatory T cell enrichment and chemoresistance-associated
circulating tumour-initiating cells provides valuable insights for
guiding immunological and pharmacological interventions (238,
239). Exosomal miRNAs—miR-200 family, miR-155-5p—augment
diagnostic and prognostic panels (240). HCC studies show ctDNA
methylation assays (e.g., HepaAiQ) and virus-host DNA hybrids
enhance early detection, while combining ctDNA with AFP, AFP-
L3 and PIVKA-II yields superior accuracy (201, 208). Counting,
CTCs alongside MET markers and EVs-derived molecules yields
strong prognostic value and sharper post-operative surveillance.
Yet broad clinical use of liquid biopsy still depends on assay
the

management of biomarker heterogeneity. In addition to the

standardisation, inter-laboratory reproducibility and
discussion above, Table 2 provides a comprehensive summary
of the key studies referenced throughout the manuscript, detailing
the application of liquid biopsy techniques, across a spectrum of GI
cancers such as oesophageal, gastric, cholangiocarcinoma,
colorectal, pancreatic, and liver malignancies. Each entry in the
table specifies the tumour type, the liquid biopsy component
investigated, and the corresponding references that support the
diagnostic, prognostic, and therapeutic insights discussed. This
compilation further underscores the expanding evidence base for
the integration of liquid biopsy into routine cancer management

and highlights its potential to transform clinical practice as

standardization and validation efforts advance. Large,
prospective, multi-center trials are needed to validate
Oncology Reviews

12

10.3389/0r.2025.1702932

biomarkers and cement uniform protocols. Growing data
nevertheless show that liquid biopsy improves early detection,
patient stratification, treatment guidance and disease monitoring
in GI cancers. As ongoing research resolves current obstacles, this
sensitive, dynamic and non-invasive approach is likely to become a
mainstay of GI oncology, raising the standard of care and
patient outcomes.

Liquid biopsy has emerged as a transformative tool in GI oncology,
enabling minimally invasive diagnosis, real-time monitoring, and
dynamic treatment adaptation. While ctDNA, CTCs, and EVs have
each demonstrated clinical relevance, their true potential will be
unlocked through integration with multi-omics and Al-driven
analytics. Such approaches will allow the simultaneous incorporation
of genomic, epigenomic, transcriptomic, proteomic, and radiomic
features into predictive models, refining patient stratification and
guiding precision therapies. Looking forward, certain biomarkers
appear particularly promising in specific GI cancers: ctDNA for
minimal residual disease detection in colorectal and pancreatic
cancers; CTCs for predicting metastasis and therapeutic resistance in
esophageal and gastric cancers; EV-derived signatures (miRNAs,
proteins) for early detection and immunomodulation in gastric and
ctDNA  for
cholangiocarcinoma and hepatocellular carcinoma. As large-scale

liver cancers; and actionable mutations in
prospective studies validate these applications and standardization
improves, liquid biopsy—augmented by multi-omics and AI—will
become a cornerstone of precision oncology, offering more tailored
and adaptive management strategies for patients with GI malignancies.

This study highlights several promising biomarkers reported in
Table 2 with potential applications in early diagnosis, prognosis, and
as therapeutic targets in Glcancers. Given the continuous evolution
and dynamic nature of this research field, these biomarkers
represent valuable tools not only for improving clinical decision-
making but also for guiding the development of innovative

therapeutic strategies.
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