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Constitutional mismatch repair deficiency (CMMRD) is a rare pediatric cancer
predisposition syndrome primarily characterised by central nervous system
(CNS), gastro-intestinal (Gl) tumours and hematological malignancies, along
with NF1-like cutaneous features. The PMS2-related subtype (PMS2-CMMRD)
is the most common molecular form of CMMRD, exhibiting variable severity and
both early and late-onset clinical presentations. Although pathogenic and likely
pathogenic PMS2 heterozygous variants are relatively frequent in healthy
population, CMMRD incidence is generally rare in humans and genotype-
phenotype correlations are still limited. To better characterise PMS2-CMMRD
group, we collected clinical cases described in literature, using three alternative
methods (VarChat, VarSome and LitVar2), starting from 102 pathogenic/likely
pathogenic PMS2 variants (<50 bp) reported in ClinVar by clinical and research
laboratories. PMS2-CMMRD cases were split into two distinct groups based on
tumour onset age: early (diagnosis under 10 years) and later-onset (diagnosis
after 10 years). Significant differences in tumour distribution were observed, with
CNS tumours being most prevalent in the early-onset group, while Gl tumours
were more common in the later-onset group. Six PMS2 variants were associated
with either early or later-onset CMMRD. Future validation through larger
prospective cohort studies is necessary to confirm our findings and better
understand the natural history of PMS2-CMMRD to inform clinical decision-
making in PMS2-Lynch syndrome (PMS2-LS).
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Introduction

Constitutional mismatch repair deficiency (CMMRD)
syndrome (OMIM #276300, #619096, #619097, #619101) is a
rare autosomal recessive cancer predisposition syndrome
manifesting in childhood, associated with biallelic germline
variants in mismatch repair (MMR) genes, MLHI, MSH2, MSH6
and PMS2. Affected individuals typically develop early-onset
malignancies, with central nervous system, hematological and
gastro-intestinal tumours being the most prevalent neoplasias in
this group (1-3). As clinical phenotype in CMMRD overlaps with
other rare genetic diseases, such as neurofibromatosis type 1 (NF1)
and Legius syndrome (4-6), timely diagnosis plays an essential role
for appropriate clinical care and genetic counselling.

Among reported CMMRD cases, those associated with biallelic
PMS2 variants are the most prevalent in literature, compared to
presentations involving other Lynch syndrome-associated MMR
genes (7-9). In contrast, heterozygous PMS2 variants are
typically associated with lower penetrance and later-onset disease,
with PMS2-associated Lynch syndrome (PMS2-LS) considered the
mildest and the most frequently underdiagnosed form of LS
documented to date (8,10-12). However, genotype-phenotype
correlations in both PMS2-CMMRD and PMS2-LS remain poorly
defined. Despite the presumed high prevalence of pathogenic PMS2
variants in the general population, clinical data on disease
progression in relation to specific genotypes remain scarce. For
other similar recessive cancer predisposition syndromes, including
Fanconi anemia (FA), emerging genotypic data are demonstrating
the role of specific variants in disease development (13-15). These
insights not only impact the clinical management of biallelic
carriers, but also provide valuable data regarding heterozygous
carriers of low penetrance variants associated with milder cancer
predisposition phenotypes, contributing to more accurate risk
assessment and enabling personalized follow-up strategies distinct
from conventional gene-based approaches (15-17).

In this context, we aimed to systematically investigate PMS2-
related CMMRD cases documented in scientific literature to date
and reported in ClinVar, the most widely used clinical genomic
database worldwide. The primary source of data was represented, in
the vast majority of instances, by case reports and case series from
which both clinical and molecular information were extracted. In
our endeavour, we primarily focused on detailed genotype and
phenotype characterisation of the cases under analysis, as well as
on discovering potential genotype-phenotype correlations relevant

for clinical practice.

Abbreviations: BRCAL, Breast Cancer 1, Early Onset; BRCA2, Breast Cancer 2,
Early Onset; CMMRD, Constitutional Mismatch Repair Deficiency; CNS,
Central Nervous System; cMSI, Constitutional Microsatellite Instability;
DNA, Deoxyribonucleic Acid; Gl, Gastrointestinal; IHC,
Immunohistochemistry; LS, Lynch Syndrome; MLH1, MutL Homolog 1,
Mismatch Repair Protein; MLPA, Multiplex Ligation-dependent Probe
Amplification; MMR, Mismatch Repair (inferred from context, commonly
paired with  MMRDness); MSH2, MutS Homolog 2, Mismatch Repair
Protein; MSH6, MutS Homolog 6, Mismatch Repair Protein; NGS, Next-
Generation Sequencing; NF1, Neurofibromin 1; PCR, Polymerase Chain
Reaction; PMS2, PMS1 Homolog 2, Mismatch Repair Protein; RNA,
Ribonucleic Acid; RT-PCR, Reverse Transcription Polymerase Chain
Reaction; VEP, Variant Effect Predictor.

Oncology Reviews

10.3389/0r.2025.1679576

Methods
Variant selection

All PMS2 variants submitted by clinical and research
laboratories to ClinVar were analysed, with ClinVar serving as
the genomic database for this study (last accessed 1 May 2025).
Only short variants (<50 bp) classified as pathogenic (class 5) and
likely pathogenic (class 4) were included. Clinical significance for all
established according to the ACMG/AMP
2015 guidelines (18) by independent clinical and research

variants were
laboratories or expert panels (19), with all variants meeting the
ClinVar one-star criteria at least. Seven variants with conflicting
interpretations (uncertain significance versus pathogenic/likely
pathogenic) were not considered. Variants associated with
deficiency (CMMRD) were
selected based on the presence of one of the following terms in

constitutional mismatch repair
ClinVar records: “CMMRD,” “constitutional,” “homozygous” and
“compound heterozygous.”

Clinical cases discovery

102 PMS2 variants were further
evaluated for supporting publications in the scientific literature.

After variant selection,

PMS2 variants were annotated following the Human Genome
Variation Society (HGVS) nomenclature guidelines (https://hgvs-
nomenclature.org/stable/), using the MANE Select transcript (NM_
000535.7; ENST00000265849.12) as reference, where c.1 denotes the
first coding nucleotide. The literature review was conducted in a
semi-automated manner based on the HGVS nomenclature of each
variant, using three alternative tools: VarSome (https://varsome.
com/) (20), LitVar2 (https://www.ncbinlm.nih.gov/research/
litvar2/) (21) and VarChat (https://varchat.engenome.com/) (22).
Moreover, citations supporting the germline classification of
variants in ClinVar, as provided by other submitting laboratories,
were manually reviewed. For variants with no publications identified
using mentioned resources, an additional manual literature review
in PubMed was performed by two independent researchers to ensure
a comprehensive analysis (Figure 1).

Variants with no literature evidence supporting an association
with CMMRD were excluded, resulting in an initial list of 69 PMS2
variants. Following literature review, the number of short variants
(<50 bp) increased to 74 and 8 exonic copy number variants
(CNVs, >50 bp) were found in trans with the original
variants (Figure 1).

Based on 75 PubMed indexed articles (2, 6, 10), (23-40), (41-60),
(61-80), (81-94), we build a clinical database with 133 entries
comprising patients and/or families with CMMRD. Two cases were
excluded: 1) one case with the genotype c.[746_753del]; [1738A>T] and
clinical presentation not suggestive of CMMRD (colorectal cancer at age
69) (31), 2) one case with trans-heterozygosity for ¢.73C>T (PMS2) and
¢.718C>T (MSHS), presenting with CMMRD features (glioblastoma at
age 8 and café-au-lait macules) (27). Five cases with only one
pathogenic PMS2 variant reported but with clinical features
suggestive of CMMRD were included, under the assumption that
the second variant might have gone undetected due to technical
limitations. A small number of CMMRD cases incidentally
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Clinvar

102 PMS2 variants
short variants (<50 bp), P/LP, 1+ stars
searching terms: “CMMRD”, “constitutional”,
“homozygous”, “compound heterozygous”

]
(:) arChat
Literature review
75 PMIDs

N
e varsome

LitVar?

74 CMMRD-related

PMS2 variants

FIGURE 1

33 variants with no publication/no clinical
data available

trans-heterozygous variants c.73C>T
(PMS2); c.718C>T (MSH®6)

Flowchart of CMMRD-related PMS2 variant selection. The process involved initial variant retrieval from ClinVar, literature review using VarChat,
VarSome and LitVar2 and final manual curation. Excluded variants (n = 33) were subjected to an additional manual review.

identified during the literature review, for which the genotypes were not
reported in ClinVar, were not further assessed.

We constructed an internal review database comprising 133 entries
of individuals and families with constitutional mismatch repair
deficiency (CMMRD). In the vast majority of cases, each entry
represents an individual. However, for three entries, the data reflect
families rather than single individuals, due to insufficient clinical details
in the original publications to distinguish separate cases. When
publications provided enough clinical data and genotype inference
was possible, typically for individuals identified through cascade
testing or those with very suggestive phenotypes, they were included
separately, even if not specifically mentioned in the original papers.

Control variants

The 74 variants to study were compared with a control group
consisting of 733 PMS2 short variants (<50 bp) concordantly classified
as pathogenic (class 5) or likely pathogenic (class 4) in all ClinVar
submissions but not associated with CMMRD. Control variants were
identified by excluding any variants retrieved using the CMMRD-
related keywords described in the variant selection section. Variants that
were initially considered for the study group but subsequently excluded
were not included in the control group.

Variant annotation and statistical analysis

Both study variants and control variants were annotated using
GeneBe (https://genebe.net/) (95) and Ensembl Variant Effect Predictor
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(VEP) (https://ensembl.org/Homo_sapiens/Tools/VEP/). The reference
human genome used was GRCh38. Variant nomenclature followed the
Human Genetic Variation Society guidelines  (https://hgvs-
nomenclature.org/stable/). The MANE Select transcript (NM_
000535.7, ENST00000265849.12) represented the reference sequence,
with position c.1 being the first coding nucleotide. Splicing impact was
predicted in silico using three complementary tools, SpliceAI (https://
spliceailookup.broadinstitute.org/)  (96),  SpliceAl-visual ~ (https://
mobidetails.chu-montpellier.fr/) (97) and SPiCEv2.1 (98). Statistical
analysis was performed using IBM SPSS Statistics 27. Statistical
significance was defined for p-values <0.05.

Results

Targeted gene testing—the major approach
for establishing definitive molecular
diagnostic in CMMRD

For the majority of cases, 73/133 (53.2%), the first-tier molecular
testing available was targeted PMS2 gene testing, typically guided by
initial immunohistochemistry (IHC) results. This included DNA
sequence analysis (based on long-range PCR, Sanger sequencing and
MLPA), RNA sequencing (based on RT-PCR and Sanger
sequencing) and combined testing (both DNA and RNA). In 14/
133 cases (10.2%), NGS panels were the preferred diagnostic tool.
Exome sequencing (both standard and enhanced versions) was used
in 10/133 cases (7.3%), while genome sequencing was employed in
3/133 cases (2.1%). In 37/133 cases (27.0%), the preferred testing
approach could not be definitively determined.
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Tumour Distribution and Tumour Sequence in Individuals with Constitutional Mismatch Repair Deficiency (CMMRD)
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FIGURE 2

Tumour distribution (A) and tumour sequence (B) in individuals with PMS2-reated constitutional mismatch repair deficiency (PMS2-CMMRD). (A)
Note that central nervous system tumours were the most prevalent as an initial presentation, followed by gastro-intestinal malignancies that occurred
more frequently subsequently during the disease course. (B) Diagram B displays only reported cases with two or more tumours, with both absolute and
relative numbers shown. Percentages in diagram B represent the proportion of cases presenting at least two neoplasms. For simplicity, cases with
other tumour types were excluded.

Tumour Type Distribution by Age of Onset in Individuals with CMMRD
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FIGURE 3

Tumour distribution in early and later-onset PMS2-CMMRD cases. Central nervous system tumours were the most common initial malignancy in
early-onset cases, while gastro-intestinal tumours predominated as a first presentation in later-onset cases. Gastro-interstinal tumours were the major
presentation in the evolution of both groups.
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TABLE 1 Summary of cutaneous manifestations and rare tumours in CMMRD cases. NF1-like phenotype was the most frequently reported clinical non-
tumoural presentation in the CMMRD group. Both absolute and relative counts are provided for each clinical feature.

Dermatological signs Cases (%) Rare tumours Cases (%)
NF1 “features” (CALMs and/or freckling) 65 48.87 Gastric cancer 2 1.50
Hypopigmented macules 6 4.51 Osteosarcoma 2 1.50
Cutaneous nevi 5 3.75 Brain angioma 1 0.75
Pilomatricomas 3 225 Basal cell carcinoma 1 0.75
Hemangiomas/vascular malformations 2 1.50 Cerebral angiosarcoma 1 0.75
Adenoma sebaceum 1 0.75 Dermatofibrosarcoma protuberans 1 0.75
Blaschkoid hyperpigmentation 1 0.75 Endometrial cancer (clear cell) 1 0.75
Dermoid cyst 1 0.75 Infantile myofibromatosis 1 0.75
Lichen planus 1 0.75 Melanoma 1 0.75
Optic pathway glioma 1 0.75

Rhabdomyosarcoma 1 0.75

Brain tumours followed by gastro-intestinal
tumours represent the most common
sequence in the natural history of
PMS2-CMMRD

In 129/133 (97%) of cases, individuals with CMMRD developed
at least one tumour (Figure 2), with central nervous system tumours
being the most common neoplasia in the natural history (p < 0.001,
x*)- In 67/133 (50.3%) of cases, a second tumour occurred, most
commonly in the gastro-intestinal tract. Only 29/133 (21.8%) of
cases developed a third tumour during the disease course, with
hematological (10/29, 34%) and gastro-intestinal (9/29, 31%)
tumours being the most common.

Brain tumours are the most frequent first
neoplasia in early-onset PMS2-CMMRD,
while gastro-intestinal tumours
predominate in later-onset cases

First neoplasia developed before age 10 in 55/129 (42.6%) of cases,
whereas 66/129 (51.1%) had a later onset (Figure 3). Notably, gastro-
intestinal tumours were rare as first presentations in early-onset
(<10 years) CMMRD (p < 0.001, x*), but represented 50% of initial
tumours in later-onset cases (>10 years). For 8/133 (6%) of cases, the
age of onset could not be determined and the remaining 4/133 (3%)
were tumour-free at the moment of reporting. While observed in both
groups, the relative reduction in the number of brain tumours (p =
0.007, x°) and the increase in the proportion of gastro-intestinal
tumours (p < 0.001, X*) from the first to the second neoplasia were
significant only in the early-onset group. Even though haematological
tumours were not the most common first presentation, they occurred
earlier at a median age of 6 years, whereas CNS tumours were diagnosed
at a median age of 7.5 years; nevertheless, the difference was not
statistically significant (p = 0.41, Mann-Whitney U test).
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Rare tumoural and other non-tumoural
phenotypes in PMS2-associated
constitutional mismatch repair deficiency

Apart from early-onset central nervous tumours, gastro-
intestinal and hematological neoplasms, the CMMRD cases
included in this study presented with other clinical features,
mainly  dermatological, and less commonly reported
immunological (3/133, 2.25%) and neuropsychiatric (5/133,
3.75%) manifestations. Rare neoplasms were also reported in

several cases (Table 1).

Genotypic characteristics of the study group

We identified 74 short PMS2 variants associated with
CMMRD cases that were reported in ClinVar (Figure 4).
Among them, 28/74 (37.83%) were frameshift variants, 18/74
(24.32%) stopgain variants (including both nonsense and
frameshifts variants creating stop codons at the same
genomic site), 13/74 (17.56%) missense, 11/74 (14.86%)
splicing (excluding missense and frameshifts located at
canonical splice sites), 3/74 (4.05%) startloss and 1/74
(1.35%) synonymous. Homozygosity was noted in 79/133
(59.39%) of entries and 33/74 (44.59%) of variants, while 54/
133 (40.60%) of entries and 48/74 (64.86%) of variants were
compound heterozygous. The large proportion of homozygous
cases coincided with a large number of homozygous variants
reported in consanguineous families (16 out of 36 homozygous
variants, 44.44%) and founder/recurrent variants (10 out of
36 homozygous variants, 27.77%). In 15/133 (11.12%) of
entries, compound heterozygosity involved exonic copy

number variants (deletions or duplications). Genotypes

weighted by their frequency in our database are illustrated
in Figure 4.
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Distribution of short PMS2 variants (<50 bp) in CMMRD cases: (A) all reported cases, (B) early-onset and (C) later-onset presentations. Variants are
shown proportionally, according to allelic frequency in the review database.

Later-onset PMS2-CMMRD cases are
enriched in splicing variants with mild
predicted impact

Of the variants reported in cases with onset after 10 years of
age, 12/48 (25%) had a predicted splicing impact, whereas in
cases with onset before 10 years, 7/39 (17.94%) involved splicing
variants. In the later-onset group (>10 years), in-frame exon
skipping and leaky splicing events were more frequently
predicted (Table 2). Non-spliceogenic truncating variants were
a more frequent occurrence in the early-onset group. However, in
the later-onset cases, most variants were clustered in exon
11 of the gene.

Oncology Reviews

06

PMS2 variants associated with early-onset
(<10 years) and later-onset
(=10 years) CMMRD

To minimize the impact of shared polygenic background and non-
genetic environmental exposures that may additionally contribute to
phenotypic similarity among family members, we filtered out PMS2
variants reported exclusively within a single family. Due to the limited
number of case reports in the review database, variants observed in at
least three unrelated individuals were considered sufficiently significant
for further analysis. Moreover, inclusion was restricted to variants with
an allele count greater than four, thereby excluding those documented
solely in two homozygous individuals. Variants occurring exclusively in
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TABLE 2 Comparison between predicted spliceogenic effects of PMS2 variants identified in early-onset (<10 years) and later-onset (=10 years) CMMRD
groups. In silico predictions were generated using SpliceAl, SpliceAl-visual, SPiCE and the Ensembl Variant Effect Predictor (VEP).

In silico Zygosity/ References Later- In silico Zygosity/ References
predictions/ second allele onset predictions/ second
functional CMMRD functional allele
impact impact
Splicing impact  7/39 (17.94%) 12/48 (25%)
¢.325dup Cryptic donor, Compound (76) c24-2A>G Cryptic acceptor, Homozygous (61)
frameshift, mutant heterozygous/? frameshift, NMD
leaky splicing escaping variant
¢.538-1G>C Cryptic acceptor, Compound (62) c.251-2A>G Frameshift, wild-type Compound (10)
frameshift heterozygous/exons leaky exon skipping heterozygous/
6_8 deletion cl1A>G
c.825A>G Synonymous, cryptic Compound (94) ¢.325dup Cryptic donor, Compound (2)
acceptor, frameshift heterozygous/ frameshift, mutant heterozygous/
€.2444C>T leaky splicing c.825A>G
c.903G>T Missense, frameshift Compound (28, 57) c.354-1G>A Wild-type and mutant =~ Compound (57)
heterozygous/exon intronic inclusion heterozygous/
11_12 duplication c137G>T
€.904_911del Cryptic acceptor, Compound (23) ¢.705+2T>C In-frame exon skipping =~ Compound (64, 75)
frameshift heterozygous/ heterozygous/?
c.1882C>T
¢.2007-2A>G Cryptic acceptor, Homozygous (39, 57) c.804-2A>G Frameshift, wild-type Compound (28, 77)
frameshift, in-frame leaky exon skipping heterozygous/
exon skipping c.137G>T
c2174+1G>A In-frame exon Homozygous (70, 72) c.812G>T Missense, frameshift, Homozygous (84)
skipping wild-type and mutant
leaky exon skipping
c.825A>G Synonymous, cryptic Compound )
acceptor, frameshift heterozygous/
¢.325dup
c.989-2A>G In-frame exon skipping =~ Homozygous (24)
c.989-1G>T In-frame exon skipping = Homozygous (78)
¢.2002A>G Missense, cryptic Homozygous (26, 36, 60)
donor, frameshift, leaky
splicing
c2174+1G>A In-frame exon skipping =~ Homozygous (70, 72)
Missense 5/39 (12.82%) 8/48 (16.66%)
Frameshift/ 28/39 (71.79%) 27/48 (56.25%)
nonsense
10/28 (35.71%) in 16/27 (59.25%) in
exon 11 exon 11

Allele unknown, NMD, nonsense-mediated decay.

individuals with CMMRD presenting with early (<10 years) or later
(=10 years) onset were reported in Table 3. Two PMS2 variants were
exclusively identified in early-onset CMMRD cases (¢.2007-2A>G and
c.2117del), while four variants were uniquely observed in later-onset
cases (c.1A>G, ¢.2002A>G, ¢.2458dup and c.2531C>A).

CMMRD-related PMS2 variants are more
frequent than controls in gnomAD v4
Out of 74 variants identified in CMMRD cases, the paralogous

specific variant (PSV) ¢.2186_2187del was, as expected, very frequent in
the gnomAD v4 dataset (115). The remaining 73 CMMRD-associated

Oncology Reviews

variants were more frequent in the general (presumably healthy)
population compared to the control group of 733 PMS2 variants
(p < 0.001, Mann-Whitney U test). The most prevalent CMMRD
variants in gnomAD v4 are illustrated in Figure 5.

The combined VarChat—VarSome strategy is
the most effective method for variant
detection in literature

All 102 CMMRD-related PMS2 variants included in ClinVar

were investigated using three complementary approaches (VarChat,
VarSome and LitVar2) to find supporting literature. A combined
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TABLE 3 PMS2 variants exclusively reported in early (<10 years) and later-onset (=10 years) CMMRD groups.

PMS2

Predicted
consequence

Germline,
heterozygous
variant (literature)

variant

Early-onset (<10 years) CMMRD group

gnomAD
v4.1.0 allelic
frequency

CMMRD cases
(review database)

Comments

¢2007-2A>G | Splice acceptor variant =~ Colorectal cancer, 45 years; No frequency 6 homozygous cases with | Frameshift (cryptic exonic acceptor
positive family history central nervous tumours site): 1.2007_2023del
(endometrial cancer, 50 years; and/or haematological (p.Ser669Argfs*9)
colorectal cancer, 60 years) (99) tumours before 10 years In-frame exon skipping:

(39, 57) 1r.2007_2174del

(p.Ser669_Ala725delinsArg) (39)
c.2117del Frameshift Colorectal cancer, 51 years; 0.00000825 (exomes), 2 homozygous cases with | Founder variant in French-
positive family history failQC central nervous tumours Canadian Quebec population (103)
(colorectal cancer, 37 and before 10 years (51)
51 years; breast cancer, 1 compound heterozygous
45 years) (99) case with haematological
Colorectal cancer, 53 years (8) tumours before 10 years
Colorectal cancer, 53 years; (34, 47)
positive family history (CO
(colorectal cancer 43 and
70 years; uterine cancer,
50 years) (100)
Colorectal cancer, 49 years;
positive family history (ovarian
cancer, 43 years; gastric cancer,
51 and 62 years) (101)
Ovarian cancer (102)
Colorectal cancer (103)
Late-onset (=10 years) CMMRD group
c1A>G Startloss Colorectal cancer 0.00002419 4 compound heterozygous | Recurrent variant (111)
(99, 104-106) cases with gastro-intestinal | NMD escaping variant (VEP)
Uterine/endometrial cancer tumours (mainly) and
(107, 108) central nervous tumours
Renal cancer (105, 109) after 10 years (10, 43)
Breast and/or ovarian cancer
(102, 110)
c2002A>G Missense Breast cancer (112) No frequency 15 homozygous cases with | Missense variant that induce mis-
gastro-intestinal tumours splicing, with residual protein

(mainly) and central function and atenuated CMMRD

nervous tumours after phenotype (113)

10 years (26, 36, 60) The most frequent reported
heterozygous PMS2 variant, founder
variant in Inuit population,
Northern Quebec (60)
Hypomorphic variant (114)

¢.2458dup Frameshift No frequency, low 4 homozygous cases with | NMD escaping variant (VEP)
coverage central nervous tumours

after 10 years (45)

c2531C>A Missense No frequency, low 3 homozygous cases with | Hypomorphic variant, late onset
coverage gastro-intestinal tumours CMMRD, mimicking LS (114)

(mainly) and central

nervous tumours after

10 years (28, 57)

search employing both VarChat and VarSome identified PubMed
indexed publications for 67/68 (98.5%) confirmed CMMRD-related
PMS2 variants, outperforming each individual tool (Figure 6). None
of the tools were able to find relevant literature for the PMS2,
¢.2458dup CMMRD variant, making it the only variant missed by
the combined approach.

Of the 102 variants analysed, 13 (12.74%) were located in the
same canonical splice sites as other PMS2 splicing variants
previously reported in the literature but lacked direct evidence
supporting their role in CMMRD. Similarly, 5/102 variants

Oncology Reviews 08

(4.90%) without supporting literature affected the start codon. Two
frameshift and nonsense variants, ¢.320_321insT and ¢.543T>G, had the
same predicted protein consequence as other confirmed CMMRD
variants. One false positive, c.1376C>A, was erroneously reported by
testing laboratories in a CMMRD case (Variation ID: 135936, Accession:
SCV005474595.1), where the actual variant was c.1376C>G (93).
Another variant, ¢.1731_1732delinsAGT, was misreported (Variation
ID: 9244, Accession: SCV001173401.5), possibly due to a nomenclature-
related issue regarding c.1730dup variant, which was described as
¢.1730_1731insA in the original publication (85).
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FIGURE 5

The most frequent PMS2-CMMRD variants in healthy population (gnomAD
genomes and (C) gnomAD exomes and genomes (combined).

v4), ranked by allelic frequency: (A) gnomAD exomes, (B) gnomAD
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FIGURE 6

Literature discovery strategies for previously reported PMS2-CMMRD short variants (ClinVar). Both individual and combined approaches to literature
review are illustrated. Variants identified by at least two individual tools are highlighted in dark purple, while those detected by only one tool are shown in

light purple.

Discussion
Our study provides a comprehensive review of reported cases of

constitutional mismatch repair deficiency (CMMRD) associated
with PMS2 pathogenic and likely pathogenic variants submitted
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to ClinVar by diagnostic and research laboratories. CMMRD is a

rare autosomal recessive cancer predisposition syndrome,
characterised by early onset of malignancies during childhood,
most commonly involving central nervous system, gastro-

intestinal tract and hematopoietic system (1-3). By analysing
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133 cases and families with PMS2-associated CMMRD, we
confirmed this characteristic pattern of tumor predisposition
observed in the syndrome. Brain tumors occurred earliest in the
course of disease, most frequently followed by gastro-intestinal
malignancies. However, in line with the literature, we also
identified a subset of cases with later-onset disease, often
associated with previously recognized hypomorphic PMS2
variants, as well as new candidate variants predicted to have a
mild impact on protein function (60,114). Splicing variants
predicted to cause in-frame exon skipping or affecting exons
with constitutive leaky splicing were enriched in cases of late-
onset neoplasias. Several of these variants involved exons 4, 6,
8 and 10, which our group previously identified as being prone to
exon skipping (116). These cases commonly presented with
gastro-intestinal tumors as the first malignancy. Moreover, a
significant proportion of the analysed cases presented with
cutaneous findings, mainly café-au-lait macules and freckles,
which are known features shared with other rare genetic
type 1
syndrome. In this context, our study reinforces the importance

disorders such as neurofibromatosis and Legius

of early recognition of these clinical features and timely
distinguishing CMMRD
phenocopies, thereby ensuring precise clinical management

molecular diagnosis in from
and appropriate genetic counselling (4-6).

Two truncating PMS2 variants, ¢.2007-2A>G and c.2117del,
were exclusively associated with a highly penetrant phenotype in
our cohort, with brain tumors as the main clinical presentation
occurring before the age of 10. However, these findings provide
only limited information regarding the penetrance of these
variants in heterozygous state. PMS2 is generally considered a
low to moderate penetrance cancer predisposition gene, typically
associated with milder forms of Lynch syndrome (8,10-12).
Moreover, many pathogenic PMS2 variants are expected not
to manifest any cancer phenotype over the course of
individual’s lifetime (8). In LS families related to both ¢.2007-
2A>G and c.2117del PMS2 variants, a high penetrance of cancer
phenotype across several generations could be observed, with
neoplasia mostly occurring after the age of 40 (99-101). For
€.2007-2A>G, calculated constitutional microsatellite instability
(cMSI) score in blood of homozygous individuals with CMMRD
showed a significantly increased value compared to other PMS2
variants, indicating a more severe phenotype (117). Whether
€.2007-2A>G and c.2117del truly confer a higher penetrance
compared to other PMS2 variants remains unclear and represents
an important topic for future research.

Moreover, the PMS2 variants analysis
significantly more frequent in the healthy population, which

under were
might be indicative of a role for lower-penetrance variants in the
pathogenesis of CMMRD. Consistent with this observation, an
enrichment of variants with milder predicted functional impact
was noted among cases where the first neoplasia occurred after
the age of 10. Further studies on larger datasets are needed to
determine whether lower-penetrance PMS2 variants must be
coinherited with another pathogenic allele to cause CMMRD,
similar to the genetic model recently described in Fanconi
anemia (FA) (15), in which one BRCA1 or BRCA2 variant
retains partial protein function to ensure embryonic viability.
Additionally, it remains unclear whether variants exclusively
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associated with early and later-onset CMMRD significantly
differ in penetrance, an important distinction to be made,
with potential clinical implications for the management of
individuals with PMS2-LS.

Limitations

This systematic review was performed retrospectively, with
all recognized limitations for this specific type of study,
including potential selection and reporting biases. The
current study did not include CMMRD cases for which
causative variants were not reported in ClinVar. However,
this expected significantly alter the
observations regarding disease phenotype. The literature

is not to main
review relied predominantly on semi-automated tools, which
could have influenced the detection or inclusion of some
this

development of a combined literature review method, that

relevant cases. Nonetheless, approach enabled the
allows a faster and more scalable data extraction. Moreover,
our findings underscore that manual literature review remains
essential following the initial screening process to ensure the
accuracy and reliability of the information. In the reviewed
cases, molecular diagnosis was primarily established through
targeted PMS2 gene testing, as a direct consequence to the
known issue of gene-pseudogene interference in clinical
practice (69,72,118-120). This strategy, however, does not
allow for identification of other genetic modifiers that may
modulate the phenotype. Tools based on low-pass genome
sequencing, such as LOGIC, aim to address this gap
(121,122). Although the MMRDness score shows correlations
with age at onset and severity of the phenotype, this method falls
short in detecting other genomic variants that may account for
phenotypic variability among cases. Future research involving
larger datasets and prospective cohort studies, using whole
genome sequencing as the testing method would be valuable
for further expanding and validating genotype-phenotype
correlations.

Conclusion

In summary, PMS2-associated constitutional mismatch repair
deficiency (PMS2-CMMRD) represents a heterogenous clinical and
genetic entity. Our study highlights emerging genotype—phenotype
correlations in PMS2-associated CMMRD, which may contribute to
refining prognosis and guiding clinical care in both CMMRD and
LS. Notably, we identified several candidate PMS2 variants that
represent promising targets for future penetrance studies. Larger
datasets and prospective cohort studies are warranted to further
validate these observations.
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