

OPEN ACCESS

EDITED BY

Claudia Maletzki, University Hospital Rostock, Germany

REVIEWED BY

Joseph Lam, University of British Columbia, Canada Yurong Song, National Cancer Institute at Frederick (NIH),

United States
*CORRESPONDENCE

RECEIVED 04 August 2025 REVISED 23 October 2025 ACCEPTED 31 October 2025 PUBLISHED 17 November 2025

CITATION

Munteanu CV, Lighezan DL, Capcelea A, Chiriţă-Emandi A and Trifa AP (2025) Genotype-phenotype correlations in *PMS2*-associated constitutional mismatch repair deficiency: a systematic literature review. *Oncol. Rev.* 19:1679576. doi: 10.3389/or.2025.1679576

CODVDICUT

© 2025 Munteanu, Lighezan, Capcelea, Chiriţă-Emandi and Trifa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Genotype-phenotype correlations in *PMS2*-associated constitutional mismatch repair deficiency: a systematic literature review

Cătălin Vasile Munteanu^{1,2}, Diana Luisa Lighezan^{3,4}*, Alexandru Capcelea^{1,5}, Adela Chiriţă-Emandi^{2,6,7} and Adrian Pavel Trifa^{6,8,9}

¹Doctoral School, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania, ²Regional Center of Medical Genetics Timiş, Louis Ţurcanu Clinical Emergency Hospital for Children, Timişoara, Romania, ³Department of Hematology, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania, ⁴Multidisciplinary Research Center for Malignant Hematological Diseases, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania, ⁵Department of Medical Oncology, OncoHelp Oncology Center, Timişoara, Romania, ⁶Department of Microscopic Morphology, Genetics Discipline, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania, ⁷Center for Genomic Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania, ⁸Center of Expertise on Rare Pulmonary Diseases, Victor Babeş Clinical Hospital of Infectious Diseases and Pneumophysiology, Timişoara, Romania, ⁹Breast Cancer Center, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania

Constitutional mismatch repair deficiency (CMMRD) is a rare pediatric cancer predisposition syndrome primarily characterised by central nervous system (CNS), gastro-intestinal (GI) tumours and hematological malignancies, along with NF1-like cutaneous features. The PMS2-related subtype (PMS2-CMMRD) is the most common molecular form of CMMRD, exhibiting variable severity and both early and late-onset clinical presentations. Although pathogenic and likely pathogenic PMS2 heterozygous variants are relatively frequent in healthy population, CMMRD incidence is generally rare in humans and genotypephenotype correlations are still limited. To better characterise PMS2-CMMRD group, we collected clinical cases described in literature, using three alternative methods (VarChat, VarSome and LitVar2), starting from 102 pathogenic/likely pathogenic PMS2 variants (<50 bp) reported in ClinVar by clinical and research laboratories. PMS2-CMMRD cases were split into two distinct groups based on tumour onset age: early (diagnosis under 10 years) and later-onset (diagnosis after 10 years). Significant differences in tumour distribution were observed, with CNS tumours being most prevalent in the early-onset group, while GI tumours were more common in the later-onset group. Six PMS2 variants were associated with either early or later-onset CMMRD. Future validation through larger prospective cohort studies is necessary to confirm our findings and better understand the natural history of PMS2-CMMRD to inform clinical decisionmaking in PMS2-Lynch syndrome (PMS2-LS).

KEYWORDS

constitutional mismatch repair deficiency, PMS2, genotype, Lynch, VarChat

Introduction

Constitutional mismatch repair deficiency (CMMRD) syndrome (OMIM #276300, #619096, #619097, #619101) is a rare autosomal recessive cancer predisposition syndrome manifesting in childhood, associated with biallelic germline variants in mismatch repair (MMR) genes, *MLH1*, *MSH2*, *MSH6* and *PMS2*. Affected individuals typically develop early-onset malignancies, with central nervous system, hematological and gastro-intestinal tumours being the most prevalent neoplasias in this group (1–3). As clinical phenotype in CMMRD overlaps with other rare genetic diseases, such as neurofibromatosis type 1 (NF1) and Legius syndrome (4–6), timely diagnosis plays an essential role for appropriate clinical care and genetic counselling.

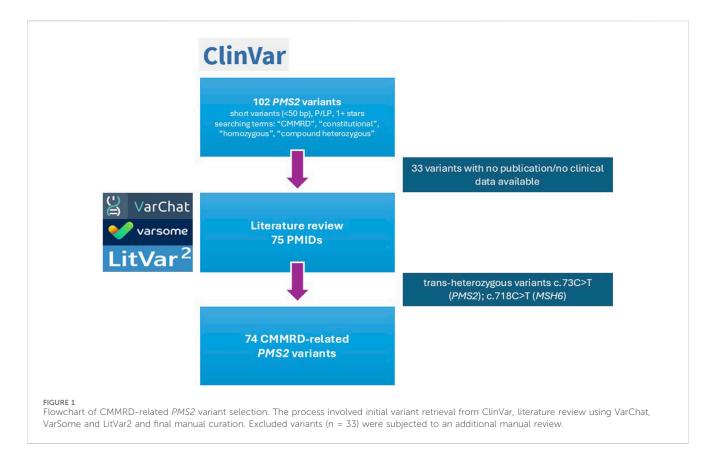
Among reported CMMRD cases, those associated with biallelic PMS2 variants are the most prevalent in literature, compared to presentations involving other Lynch syndrome-associated MMR genes (7-9). In contrast, heterozygous PMS2 variants are typically associated with lower penetrance and later-onset disease, with PMS2-associated Lynch syndrome (PMS2-LS) considered the mildest and the most frequently underdiagnosed form of LS documented to date (8,10-12). However, genotype-phenotype correlations in both PMS2-CMMRD and PMS2-LS remain poorly defined. Despite the presumed high prevalence of pathogenic PMS2 variants in the general population, clinical data on disease progression in relation to specific genotypes remain scarce. For other similar recessive cancer predisposition syndromes, including Fanconi anemia (FA), emerging genotypic data are demonstrating the role of specific variants in disease development (13-15). These insights not only impact the clinical management of biallelic carriers, but also provide valuable data regarding heterozygous carriers of low penetrance variants associated with milder cancer predisposition phenotypes, contributing to more accurate risk assessment and enabling personalized follow-up strategies distinct from conventional gene-based approaches (15-17).

In this context, we aimed to systematically investigate *PMS2*-related CMMRD cases documented in scientific literature to date and reported in ClinVar, the most widely used clinical genomic database worldwide. The primary source of data was represented, in the vast majority of instances, by case reports and case series from which both clinical and molecular information were extracted. In our endeavour, we primarily focused on detailed genotype and phenotype characterisation of the cases under analysis, as well as on discovering potential genotype-phenotype correlations relevant for clinical practice.

Abbreviations: BRCA1, Breast Cancer 1, Early Onset; BRCA2, Breast Cancer 2, Early Onset: CMMRD, Constitutional Mismatch Repair Deficiency; CNS, Central Nervous System; cMSI, Constitutional Microsatellite Instability; Deoxyribonucleic Acid: Gl Gastrointestinal: Immunohistochemistry; LS, Lynch Syndrome; MLH1, MutL Homolog 1, Mismatch Repair Protein; MLPA, Multiplex Ligation-dependent Probe Amplification; MMR, Mismatch Repair (inferred from context, commonly paired with MMRDness); MSH2, MutS Homolog 2, Mismatch Repair Protein; MSH6, MutS Homolog 6, Mismatch Repair Protein; NGS, Next-Generation Sequencing; NF1, Neurofibromin 1; PCR, Polymerase Chain Reaction; PMS2, PMS1 Homolog 2, Mismatch Repair Protein; RNA, Ribonucleic Acid; RT-PCR, Reverse Transcription Polymerase Chain Reaction; VEP, Variant Effect Predictor.

Methods

Variant selection


All *PMS2* variants submitted by clinical and research laboratories to ClinVar were analysed, with ClinVar serving as the genomic database for this study (last accessed 1 May 2025). Only short variants (<50 bp) classified as pathogenic (class 5) and likely pathogenic (class 4) were included. Clinical significance for all variants were established according to the ACMG/AMP 2015 guidelines (18) by independent clinical and research laboratories or expert panels (19), with all variants meeting the ClinVar one-star criteria at least. Seven variants with conflicting interpretations (uncertain significance versus pathogenic/likely pathogenic) were not considered. Variants associated with constitutional mismatch repair deficiency (CMMRD) were selected based on the presence of one of the following terms in ClinVar records: "CMMRD," "constitutional," "homozygous" and "compound heterozygous."

Clinical cases discovery

After variant selection, 102 PMS2 variants were further evaluated for supporting publications in the scientific literature. PMS2 variants were annotated following the Human Genome Variation Society (HGVS) nomenclature guidelines (https://hgvsnomenclature.org/stable/), using the MANE Select transcript (NM_ 000535.7; ENST00000265849.12) as reference, where c.1 denotes the first coding nucleotide. The literature review was conducted in a semi-automated manner based on the HGVS nomenclature of each variant, using three alternative tools: VarSome (https://varsome. com/) (20), LitVar2 (https://www.ncbi.nlm.nih.gov/research/ litvar2/) (21) and VarChat (https://varchat.engenome.com/) (22). Moreover, citations supporting the germline classification of variants in ClinVar, as provided by other submitting laboratories, were manually reviewed. For variants with no publications identified using mentioned resources, an additional manual literature review in PubMed was performed by two independent researchers to ensure a comprehensive analysis (Figure 1).

Variants with no literature evidence supporting an association with CMMRD were excluded, resulting in an initial list of 69 *PMS2* variants. Following literature review, the number of short variants (<50 bp) increased to 74 and 8 exonic copy number variants (CNVs, >50 bp) were found in *trans* with the original variants (Figure 1).

Based on 75 PubMed indexed articles (2, 6, 10), (23–40), (41–60), (61–80), (81–94), we build a clinical database with 133 entries comprising patients and/or families with CMMRD. Two cases were excluded: 1) one case with the genotype c.[746_753del]; [1738A>T] and clinical presentation not suggestive of CMMRD (colorectal cancer at age 69) (31), 2) one case with trans-heterozygosity for c.73C>T (*PMS2*) and c.718C>T (*MSH6*), presenting with CMMRD features (glioblastoma at age 8 and café-au-lait macules) (27). Five cases with only one pathogenic *PMS2* variant reported but with clinical features suggestive of CMMRD were included, under the assumption that the second variant might have gone undetected due to technical limitations. A small number of CMMRD cases incidentally

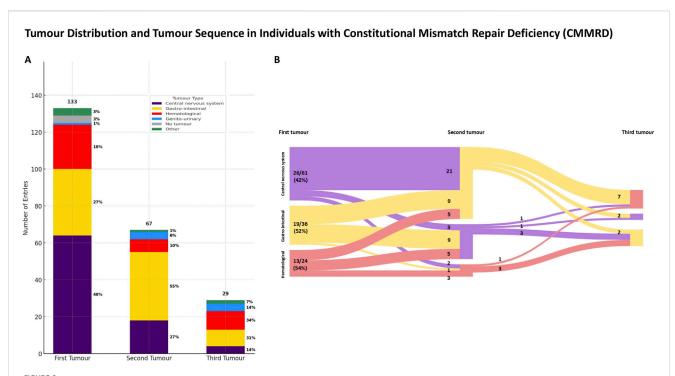
identified during the literature review, for which the genotypes were not reported in ClinVar, were not further assessed.

We constructed an internal review database comprising 133 entries of individuals and families with constitutional mismatch repair deficiency (CMMRD). In the vast majority of cases, each entry represents an individual. However, for three entries, the data reflect families rather than single individuals, due to insufficient clinical details in the original publications to distinguish separate cases. When publications provided enough clinical data and genotype inference was possible, typically for individuals identified through cascade testing or those with very suggestive phenotypes, they were included separately, even if not specifically mentioned in the original papers.

Control variants

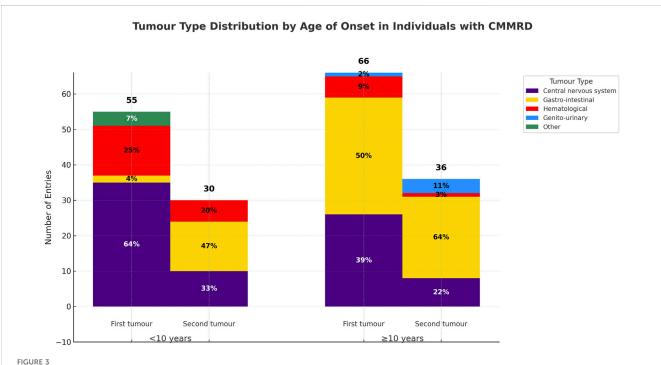
The 74 variants to study were compared with a control group consisting of 733 *PMS2* short variants (<50 bp) concordantly classified as pathogenic (class 5) or likely pathogenic (class 4) in all ClinVar submissions but not associated with CMMRD. Control variants were identified by excluding any variants retrieved using the CMMRD-related keywords described in the variant selection section. Variants that were initially considered for the study group but subsequently excluded were not included in the control group.

Variant annotation and statistical analysis


Both study variants and control variants were annotated using GeneBe (https://genebe.net/) (95) and Ensembl Variant Effect Predictor

(VEP) (https://ensembl.org/Homo_sapiens/Tools/VEP/). The reference human genome used was GRCh38. Variant nomenclature followed the Human Genetic Variation Society guidelines (https://hgvsnomenclature.org/stable/). The MANE Select transcript (NM_000535.7, ENST00000265849.12) represented the reference sequence, with position c.1 being the first coding nucleotide. Splicing impact was predicted *in silico* using three complementary tools, SpliceAI (https://spliceailookup.broadinstitute.org/) (96), SpliceAI-visual (https://mobidetails.chu-montpellier.fr/) (97) and SPiCEv2.1 (98). Statistical analysis was performed using IBM SPSS Statistics 27. Statistical significance was defined for p-values <0.05.

Results


Targeted gene testing—the major approach for establishing definitive molecular diagnostic in CMMRD

For the majority of cases, 73/133 (53.2%), the first-tier molecular testing available was targeted *PMS2* gene testing, typically guided by initial immunohistochemistry (IHC) results. This included DNA sequence analysis (based on long-range PCR, Sanger sequencing and MLPA), RNA sequencing (based on RT-PCR and Sanger sequencing) and combined testing (both DNA and RNA). In 14/133 cases (10.2%), NGS panels were the preferred diagnostic tool. Exome sequencing (both standard and enhanced versions) was used in 10/133 cases (7.3%), while genome sequencing was employed in 3/133 cases (2.1%). In 37/133 cases (27.0%), the preferred testing approach could not be definitively determined.

Tumour distribution (A) and tumour sequence (B) in individuals with PMS2-reated constitutional mismatch repair deficiency (PMS2-CMMRD). (A)

Note that central nervous system tumours were the most prevalent as an initial presentation, followed by gastro-intestinal malignancies that occurred more frequently subsequently during the disease course. (B) Diagram B displays only reported cases with two or more tumours, with both absolute and relative numbers shown. Percentages in diagram B represent the proportion of cases presenting at least two neoplasms. For simplicity, cases with other tumour types were excluded.

Tumour distribution in early and later-onset *PMS2*-CMMRD cases. Central nervous system tumours were the most common initial malignancy in early-onset cases, while gastro-intestinal tumours predominated as a first presentation in later-onset cases. Gastro-interstinal tumours were the major presentation in the evolution of both groups.

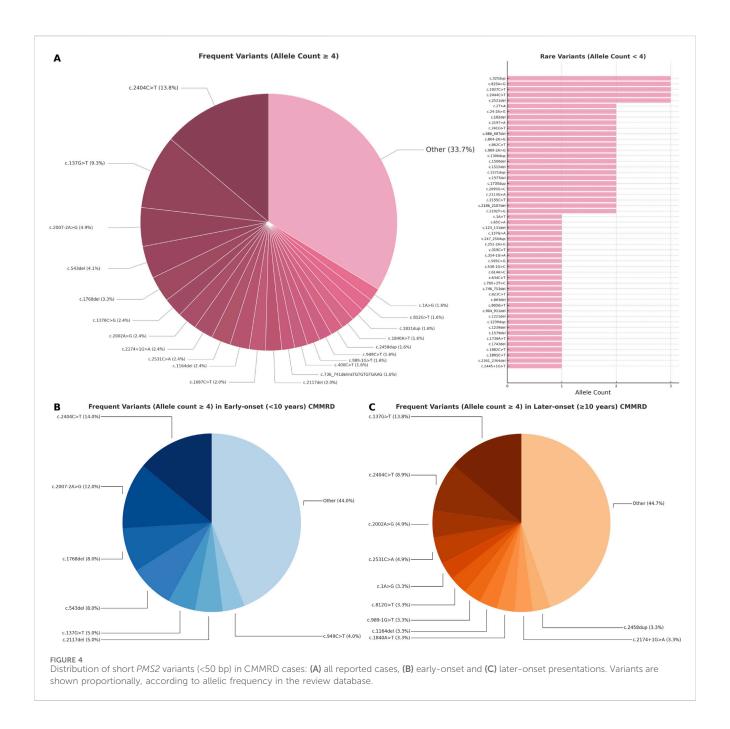
TABLE 1 Summary of cutaneous manifestations and rare tumours in CMMRD cases. NF1-like phenotype was the most frequently reported clinical non-tumoural presentation in the CMMRD group. Both absolute and relative counts are provided for each clinical feature.

Dermatological signs	Cases	(%)	Rare tumours	Cases	(%)
NF1 "features" (CALMs and/or freckling)	65	48.87	Gastric cancer	2	1.50
Hypopigmented macules	6	4.51	Osteosarcoma	2	1.50
Cutaneous nevi	5	3.75	Brain angioma	1	0.75
Pilomatricomas	3	2.25	Basal cell carcinoma	1	0.75
Hemangiomas/vascular malformations	2	1.50	Cerebral angiosarcoma	1	0.75
Adenoma sebaceum	1	0.75	Dermatofibrosarcoma protuberans	1	0.75
Blaschkoid hyperpigmentation	1	0.75	Endometrial cancer (clear cell)	1	0.75
Dermoid cyst	1	0.75	Infantile myofibromatosis	1	0.75
Lichen planus	1	0.75	Melanoma	1	0.75
			Optic pathway glioma	1	0.75
			Rhabdomyosarcoma	1	0.75

Brain tumours followed by gastro-intestinal tumours represent the most common sequence in the natural history of *PMS2*-CMMRD

In 129/133 (97%) of cases, individuals with CMMRD developed at least one tumour (Figure 2), with central nervous system tumours being the most common neoplasia in the natural history (p < 0.001, χ^2). In 67/133 (50.3%) of cases, a second tumour occurred, most commonly in the gastro-intestinal tract. Only 29/133 (21.8%) of cases developed a third tumour during the disease course, with hematological (10/29, 34%) and gastro-intestinal (9/29, 31%) tumours being the most common.

Brain tumours are the most frequent first neoplasia in early-onset *PMS2*-CMMRD, while gastro-intestinal tumours predominate in later-onset cases


First neoplasia developed before age 10 in 55/129 (42.6%) of cases, whereas 66/129 (51.1%) had a later onset (Figure 3). Notably, gastro-intestinal tumours were rare as first presentations in early-onset (<10 years) CMMRD (p < 0.001, χ^2), but represented 50% of initial tumours in later-onset cases (\geq 10 years). For 8/133 (6%) of cases, the age of onset could not be determined and the remaining 4/133 (3%) were tumour-free at the moment of reporting. While observed in both groups, the relative reduction in the number of brain tumours (p = 0.007, χ^2) and the increase in the proportion of gastro-intestinal tumours (p < 0.001, χ^2) from the first to the second neoplasia were significant only in the early-onset group. Even though haematological tumours were not the most common first presentation, they occurred earlier at a median age of 6 years, whereas CNS tumours were diagnosed at a median age of 7.5 years; nevertheless, the difference was not statistically significant (p = 0.41, Mann–Whitney U test).

Rare tumoural and other non-tumoural phenotypes in *PMS2*-associated constitutional mismatch repair deficiency

Apart from early-onset central nervous tumours, gastrointestinal and hematological neoplasms, the CMMRD cases included in this study presented with other clinical features, mainly dermatological, and less commonly reported immunological (3/133, 2.25%) and neuropsychiatric (5/133, 3.75%) manifestations. Rare neoplasms were also reported in several cases (Table 1).

Genotypic characteristics of the study group

We identified 74 short PMS2 variants associated with CMMRD cases that were reported in ClinVar (Figure 4). Among them, 28/74 (37.83%) were frameshift variants, 18/74 (24.32%) stopgain variants (including both nonsense and frameshifts variants creating stop codons at the same genomic site), 13/74 (17.56%) missense, 11/74 (14.86%) splicing (excluding missense and frameshifts located at canonical splice sites), 3/74 (4.05%) startloss and 1/74 (1.35%) synonymous. Homozygosity was noted in 79/133 (59.39%) of entries and 33/74 (44.59%) of variants, while 54/ 133 (40.60%) of entries and 48/74 (64.86%) of variants were compound heterozygous. The large proportion of homozygous cases coincided with a large number of homozygous variants reported in consanguineous families (16 out of 36 homozygous variants, 44.44%) and founder/recurrent variants (10 out of 36 homozygous variants, 27.77%). In 15/133 (11.12%) of entries, compound heterozygosity involved exonic copy number variants (deletions or duplications). Genotypes weighted by their frequency in our database are illustrated in Figure 4.

Later-onset *PMS2*-CMMRD cases are enriched in splicing variants with mild predicted impact

Of the variants reported in cases with onset after 10 years of age, 12/48 (25%) had a predicted splicing impact, whereas in cases with onset before 10 years, 7/39 (17.94%) involved splicing variants. In the later-onset group (≥10 years), in-frame exon skipping and leaky splicing events were more frequently predicted (Table 2). Non-spliceogenic truncating variants were a more frequent occurrence in the early-onset group. However, in the later-onset cases, most variants were clustered in exon 11 of the gene.

PMS2 variants associated with early-onset (<10 years) and later-onset (≥10 years) CMMRD

To minimize the impact of shared polygenic background and non-genetic environmental exposures that may additionally contribute to phenotypic similarity among family members, we filtered out *PMS2* variants reported exclusively within a single family. Due to the limited number of case reports in the review database, variants observed in at least three unrelated individuals were considered sufficiently significant for further analysis. Moreover, inclusion was restricted to variants with an allele count greater than four, thereby excluding those documented solely in two homozygous individuals. Variants occurring exclusively in

TABLE 2 Comparison between predicted spliceogenic effects of *PMS2* variants identified in early-onset (<10 years) and later-onset (≥10 years) CMMRD groups. *In silico* predictions were generated using SpliceAI, SpliceAI-visual, SPiCE and the Ensembl Variant Effect Predictor (VEP).

			•				
Early- onset CMMRD	In silico predictions/ functional impact	Zygosity/ second allele	References	Later- onset CMMRD	<i>In silico</i> predictions/ functional impact	Zygosity/ second allele	Reference
Splicing impact	7/39 (17.94%)				12/48 (25%)		
c.325dup	Cryptic donor, frameshift, mutant leaky splicing	Compound heterozygous/?	(76)	c.24-2A>G	Cryptic acceptor, frameshift, NMD escaping variant	Homozygous	(61)
c.538-1G>C	Cryptic acceptor, frameshift	Compound heterozygous/exons 6_8 deletion	(62)	c.251-2A>G	Frameshift, wild-type leaky exon skipping	Compound heterozygous/ c.1A>G	(10)
c.825A>G	Synonymous, cryptic acceptor, frameshift	Compound heterozygous/ c.2444C>T	(94)	c.325dup	Cryptic donor, frameshift, mutant leaky splicing	Compound heterozygous/ c.825A>G	(2)
c.903G>T	Missense, frameshift	Compound heterozygous/exon 11_12 duplication	(28, 57)	c.354-1G>A	Wild-type and mutant intronic inclusion	Compound heterozygous/ c.137G>T	(57)
c.904_911del	Cryptic acceptor, frameshift	Compound heterozygous/ c.1882C>T	(23)	c.705+2T>C	In-frame exon skipping	Compound heterozygous/?	(64, 75)
c.2007-2A>G	Cryptic acceptor, frameshift, in-frame exon skipping	Homozygous	(39, 57)	c.804-2A>G	Frameshift, wild-type leaky exon skipping	Compound heterozygous/ c.137G>T	(28, 77)
c.2174+1G>A	In-frame exon skipping	Homozygous	(70, 72)	c.812G>T	Missense, frameshift, wild-type and mutant leaky exon skipping	Homozygous	(84)
				c.825A>G	Synonymous, cryptic acceptor, frameshift	Compound heterozygous/ c.325dup	(2)
				c.989-2A>G	In-frame exon skipping	Homozygous	(24)
				c.989-1G>T	In-frame exon skipping	Homozygous	(78)
				c.2002A>G	Missense, cryptic donor, frameshift, leaky splicing	Homozygous	(26, 36, 60)
				c.2174+1G>A	In-frame exon skipping	Homozygous	(70, 72)
Missense	5/39 (12.82%)				8/48 (16.66%)		
Frameshift/ nonsense	28/39 (71.79%)				27/48 (56.25%)		
	10/28 (35.71%) in exon 11				16/27 (59.25%) in exon 11		

Allele unknown, NMD, nonsense-mediated decay.

individuals with CMMRD presenting with early (<10 years) or later (\geq 10 years) onset were reported in Table 3. Two PMS2 variants were exclusively identified in early-onset CMMRD cases (c.2007-2A>G and c.2117del), while four variants were uniquely observed in later-onset cases (c.1A>G, c.2002A>G, c.2458dup and c.2531C>A).

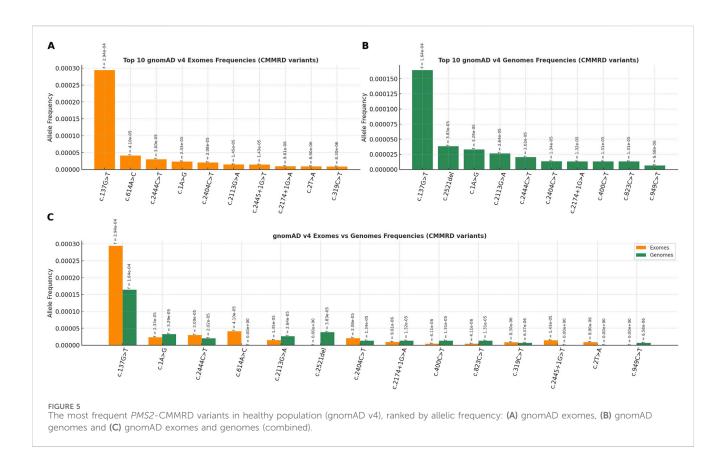
CMMRD-related *PMS2* variants are more frequent than controls in gnomAD v4

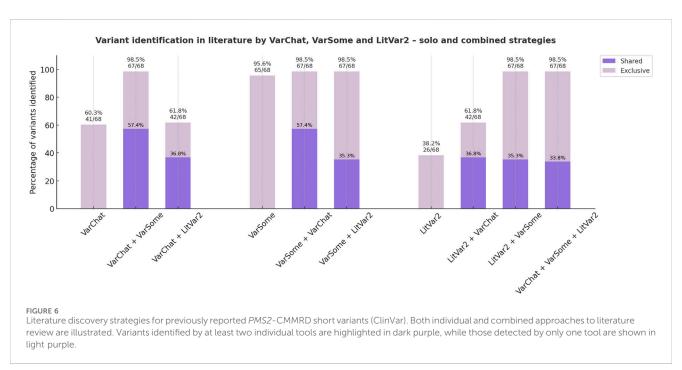
Out of 74 variants identified in CMMRD cases, the paralogous specific variant (PSV) c.2186_2187del was, as expected, very frequent in the gnomAD v4 dataset (115). The remaining 73 CMMRD-associated

variants were more frequent in the general (presumably healthy) population compared to the control group of 733 PMS2 variants (p < 0.001, Mann–Whitney U test). The most prevalent CMMRD variants in gnomAD v4 are illustrated in Figure 5.

The combined VarChat–VarSome strategy is the most effective method for variant detection in literature

All 102 CMMRD-related *PMS2* variants included in ClinVar were investigated using three complementary approaches (VarChat, VarSome and LitVar2) to find supporting literature. A combined


TABLE 3 PMS2 variants exclusively reported in early (<10 years) and later-onset (≥10 years) CMMRD groups.


		, , , , , , , , , , , , , , , , , , ,		3 - 1			
<i>PMS2</i> variant	Predicted consequence	Germline, heterozygous variant (literature)	gnomAD v4.1.0 allelic frequency	CMMRD cases (review database)	Comments		
Early-onset (<10 years) CMMRD group							
c.2007-2A>G	Splice acceptor variant	Colorectal cancer, 45 years; positive family history (endometrial cancer, 50 years; colorectal cancer, 60 years) (99)	No frequency	6 homozygous cases with central nervous tumours and/or haematological tumours before 10 years (39, 57)	Frameshift (cryptic exonic acceptor site): r.2007_2023del (p.Ser669Argfs*9) In-frame exon skipping: r.2007_2174del (p.Ser669_Ala725delinsArg) (39)		
c.2117del	Frameshift	Colorectal cancer, 51 years; positive family history (colorectal cancer, 37 and 51 years; breast cancer, 45 years) (99) Colorectal cancer, 53 years (8) Colorectal cancer, 53 years; positive family history (CO (colorectal cancer 43 and 70 years; uterine cancer, 50 years) (100) Colorectal cancer, 49 years; positive family history (ovarian cancer, 43 years; gastric cancer, 51 and 62 years) (101) Ovarian cancer (102) Colorectal cancer (103)	0.0000825 (exomes), failQC	2 homozygous cases with central nervous tumours before 10 years (51) 1 compound heterozygous case with haematological tumours before 10 years (34, 47)	Founder variant in French-Canadian Quebec population (103)		
Late-onset (≥	≥10 years) CMMRD gro	ир					
c.1A>G	Startloss	Colorectal cancer (99, 104–106) Uterine/endometrial cancer (107, 108) Renal cancer (105, 109) Breast and/or ovarian cancer (102, 110)	0.00002419	4 compound heterozygous cases with gastro-intestinal tumours (mainly) and central nervous tumours after 10 years (10, 43)	Recurrent variant (111) NMD escaping variant (VEP)		
c.2002A>G	Missense	Breast cancer (112)	No frequency	15 homozygous cases with gastro-intestinal tumours (mainly) and central nervous tumours after 10 years (26, 36, 60)	Missense variant that induce missplicing, with residual protein function and atenuated CMMRD phenotype (113) The most frequent reported heterozygous PMS2 variant, founder variant in Inuit population, Northern Quebec (60) Hypomorphic variant (114)		
c.2458dup	Frameshift		No frequency, low coverage	4 homozygous cases with central nervous tumours after 10 years (45)	NMD escaping variant (VEP)		
c.2531C>A	Missense		No frequency, low coverage	3 homozygous cases with gastro-intestinal tumours (mainly) and central nervous tumours after 10 years (28, 57)	Hypomorphic variant, late onset CMMRD, mimicking LS (114)		

search employing both VarChat and VarSome identified PubMed indexed publications for 67/68 (98.5%) confirmed CMMRD-related *PMS2* variants, outperforming each individual tool (Figure 6). None of the tools were able to find relevant literature for the *PMS2*, c.2458dup CMMRD variant, making it the only variant missed by the combined approach.

Of the 102 variants analysed, 13 (12.74%) were located in the same canonical splice sites as other *PMS2* splicing variants previously reported in the literature but lacked direct evidence supporting their role in CMMRD. Similarly, 5/102 variants

(4.90%) without supporting literature affected the start codon. Two frameshift and nonsense variants, c.320_321insT and c.543T>G, had the same predicted protein consequence as other confirmed CMMRD variants. One false positive, c.1376C>A, was erroneously reported by testing laboratories in a CMMRD case (Variation ID: 135936, Accession: SCV005474595.1), where the actual variant was c.1376C>G (93). Another variant, c.1731_1732delinsAGT, was misreported (Variation ID: 9244, Accession: SCV001173401.5), possibly due to a nomenclature-related issue regarding c.1730dup variant, which was described as c.1730_1731insA in the original publication (85).

Discussion

Our study provides a comprehensive review of reported cases of constitutional mismatch repair deficiency (CMMRD) associated with *PMS2* pathogenic and likely pathogenic variants submitted

to ClinVar by diagnostic and research laboratories. CMMRD is a rare autosomal recessive cancer predisposition syndrome, characterised by early onset of malignancies during childhood, most commonly involving central nervous system, gastrointestinal tract and hematopoietic system (1–3). By analysing

133 cases and families with PMS2-associated CMMRD, we confirmed this characteristic pattern of tumor predisposition observed in the syndrome. Brain tumors occurred earliest in the course of disease, most frequently followed by gastro-intestinal malignancies. However, in line with the literature, we also identified a subset of cases with later-onset disease, often associated with previously recognized hypomorphic PMS2 variants, as well as new candidate variants predicted to have a mild impact on protein function (60,114). Splicing variants predicted to cause in-frame exon skipping or affecting exons with constitutive leaky splicing were enriched in cases of lateonset neoplasias. Several of these variants involved exons 4, 6, 8 and 10, which our group previously identified as being prone to exon skipping (116). These cases commonly presented with gastro-intestinal tumors as the first malignancy. Moreover, a significant proportion of the analysed cases presented with cutaneous findings, mainly café-au-lait macules and freckles, which are known features shared with other rare genetic disorders such as neurofibromatosis type 1 and Legius syndrome. In this context, our study reinforces the importance of early recognition of these clinical features and timely molecular diagnosis in distinguishing CMMRD from phenocopies, thereby ensuring precise clinical management and appropriate genetic counselling (4-6).

Two truncating PMS2 variants, c.2007-2A>G and c.2117del, were exclusively associated with a highly penetrant phenotype in our cohort, with brain tumors as the main clinical presentation occurring before the age of 10. However, these findings provide only limited information regarding the penetrance of these variants in heterozygous state. PMS2 is generally considered a low to moderate penetrance cancer predisposition gene, typically associated with milder forms of Lynch syndrome (8,10-12). Moreover, many pathogenic PMS2 variants are expected not to manifest any cancer phenotype over the course of individual's lifetime (8). In LS families related to both c.2007-2A>G and c.2117del PMS2 variants, a high penetrance of cancer phenotype across several generations could be observed, with neoplasia mostly occurring after the age of 40 (99-101). For c.2007-2A>G, calculated constitutional microsatellite instability (cMSI) score in blood of homozygous individuals with CMMRD showed a significantly increased value compared to other PMS2 variants, indicating a more severe phenotype (117). Whether c.2007-2A>G and c.2117del truly confer a higher penetrance compared to other *PMS2* variants remains unclear and represents an important topic for future research.

Moreover, the *PMS2* variants under analysis were significantly more frequent in the healthy population, which might be indicative of a role for lower-penetrance variants in the pathogenesis of CMMRD. Consistent with this observation, an enrichment of variants with milder predicted functional impact was noted among cases where the first neoplasia occurred after the age of 10. Further studies on larger datasets are needed to determine whether lower-penetrance *PMS2* variants must be coinherited with another pathogenic allele to cause CMMRD, similar to the genetic model recently described in Fanconi anemia (FA) (15), in which one *BRCA1* or *BRCA2* variant retains partial protein function to ensure embryonic viability. Additionally, it remains unclear whether variants exclusively

associated with early and later-onset CMMRD significantly differ in penetrance, an important distinction to be made, with potential clinical implications for the management of individuals with *PMS2*-LS.

Limitations

This systematic review was performed retrospectively, with all recognized limitations for this specific type of study, including potential selection and reporting biases. The current study did not include CMMRD cases for which causative variants were not reported in ClinVar. However, this is not expected to significantly alter the main observations regarding disease phenotype. The literature review relied predominantly on semi-automated tools, which could have influenced the detection or inclusion of some relevant cases. Nonetheless, this approach enabled the development of a combined literature review method, that allows a faster and more scalable data extraction. Moreover, our findings underscore that manual literature review remains essential following the initial screening process to ensure the accuracy and reliability of the information. In the reviewed cases, molecular diagnosis was primarily established through targeted PMS2 gene testing, as a direct consequence to the known issue of gene-pseudogene interference in clinical practice (69,72,118-120). This strategy, however, does not allow for identification of other genetic modifiers that may modulate the phenotype. Tools based on low-pass genome sequencing, such as LOGIC, aim to address this gap (121,122). Although the MMRDness score shows correlations with age at onset and severity of the phenotype, this method falls short in detecting other genomic variants that may account for phenotypic variability among cases. Future research involving larger datasets and prospective cohort studies, using whole genome sequencing as the testing method would be valuable for further expanding and validating genotype-phenotype correlations.

Conclusion

In summary, *PMS2*-associated constitutional mismatch repair deficiency (*PMS2*-CMMRD) represents a heterogenous clinical and genetic entity. Our study highlights emerging genotype–phenotype correlations in *PMS2*-associated CMMRD, which may contribute to refining prognosis and guiding clinical care in both CMMRD and LS. Notably, we identified several candidate *PMS2* variants that represent promising targets for future penetrance studies. Larger datasets and prospective cohort studies are warranted to further validate these observations.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author contributions

CM: Conceptualization, Data curation, Investigation, Writing - original draft, Writing - review and editing, Formal Analysis, Methodology, Project administration, Resources, Software, Validation, Visualization. DL: Methodology, Validation, Writing - original draft, Writing - review and editing. AC: Conceptualization, Data curation, Formal Analysis, Investigation, Writing - original draft, Writing - review and editing. AC-E: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Supervision, Writing original Writing - review and editing. AT: Conceptualization, Methodology, Resources, Supervision, Validation, Visualization, Writing - original draft, Writing - review and editing.

Funding

The authors declare that no financial support was received for the research and/or publication of this article.

Acknowledgements

We would like to acknowledge *Victor Babes University Of Medicine And Pharmacy Timisoara* for their support in covering the costs of publication for this research paper.

References

- 1. Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. *Eur J Med Genet* (2016) 59(3):133–42. doi:10.1016/j.ejmg.2015.12.014
- 2. Johannesma P, van der Klift H, van Grieken N, Troost D, te Riele H, Jacobs M, et al. Childhood brain tumours due to germline bi-allelic mismatch repair gene mutations. *Clin Genet* (2011) 80(3):243–55. doi:10.1111/j.1399-0004.2011.01635.x
- 3. Aronson M, Gallinger S, Cohen Z, Cohen S, Dvir R, Elhasid R, et al. Gastrointestinal findings in the largest series of patients with hereditary biallelic mismatch repair deficiency syndrome: report from the international consortium. *Am J Gastroenterol* (2016) 111(2):275–84. doi:10.1038/ajg.2015.392
- 4. Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. *Clin Genet* (2017) 91(4):507–19. doi:10.1111/cge.12904
- 5. Suerink M, Ripperger T, Messiaen L, Menko FH, Bourdeaut F, Colas C, et al. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy. *J Med Genet* (2019) 56(2):53–62. doi:10.1136/jmedgenet-2018-105664
- 6. Perez-Valencia JA, Gallon R, Chen Y, Koch J, Keller M, Oberhuber K, et al. Constitutional mismatch repair deficiency is the diagnosis in 0.41% of pathogenic NF1/SPRED1 variant negative children suspected of sporadic neurofibromatosis type 1. *Genet Med* (2020) 22(12):2081–8. doi:10.1038/s41436-020-0925-z
- 7. Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? *Hum Genet* (2008) 124(2):105–22. doi:10.1007/s00439-008-0542-4
- 8. Goodenberger ML, Thomas BC, Riegert-Johnson D, Boland CR, Plon SE, Clendenning M, et al. PMS2 monoallelic mutation carriers: the known unknown. *Genet Med* (2016) 18(1):13–9. doi:10.1038/gim.2015.27
- 9. Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'Care for CMMRD' (C4CMMRD). *J Med Genet* (2014) 51(6):355–65. doi:10.1136/jmedgenet-2014-102284
- 10. Senter L, Clendenning M, Sotamaa K, Hampel H, Green J, Potter JD, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. *Gastroenterology* (2008) 135(2):419–28.e1. doi:10.1053/j.gastro.2008.04.026

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 11. Dominguez-Valentin M, Sampson JR, Seppälä TT, ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective Lynch syndrome database. *Genet Med* (2020) 22(1):15–25. doi:10.1038/s41436-019-0596-9
- 12. ten Broeke SW, Suerink M, Nielsen M. Response to roberts 2018: is breast cancer truly caused by MSH6 and PMS2 variants or is it simply due to a high prevalence of these variants in the population? *Genet Med* (2019) 21(1):256–7. doi:10.1038/s41436-018-0029-1
- 13. Sawyer SL, Tian L, Kähkönen M, Schwartzentruber J, Kircher M, Majewski J, et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. *Cancer Discov* (2015) 5(2):135–42. doi:10.1158/2159-8290.CD-14-1156
- 14. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. *Science* (2002) 297(5581):606–9. doi:10.1126/science.1073834
- 15. Pal T, Mundt E, Richardson ME, Chao E, Pesaran T, Slavin TP, et al. Reduced penetrance BRCA1 and BRCA2 pathogenic variants in clinical germline genetic testing. *npj Precision Oncol* (2024) 8(1):247–9. doi:10.1038/s41698-024-00741-4
- 16. Aronson M, Colas C, Shuen A, Hampel H, Foulkes WD, Baris Feldman H, et al. Diagnostic criteria for constitutional mismatch repair deficiency (CMMRD): recommendations from the international consensus working group. *J Med Genet* (2022) 59(4):318–27. doi:10.1136/jmedgenet-2020-107627
- 17. Colas C, Guerrini-Rousseau L, Suerink M, Gallon R, Kratz CP, Ayuso É, et al. ERN GENTURIS guidelines on constitutional mismatch repair deficiency diagnosis, genetic counselling, surveillance, quality of life, and clinical management. *Eur J Hum Genet* (2024) 32(12):1526–41. doi:10.1038/s41431-024-01708-6
- 18. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. *Genet Med* (2015) 17(5):405–24. doi:10.1038/gim. 2015.30
- 19. Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. *Nat Genet* (2014) 46(2):107–15. doi:10.1038/ng.2854

20. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. *Bioinformatics* (2019) 35(11): 1978–80. doi:10.1093/bioinformatics/bty897

- 21. Allot A, Wei CH, Phan L, Hefferon T, Landrum M, Rehm HL, et al. Tracking genetic variants in the biomedical literature using LitVar 2.0. *Nat Genet* (2023) 55(6): 901–3. doi:10.1038/s41588-023-01414-x
- 22. De Paoli F, Berardelli S, Limongelli I, Rizzo E, Zucca S. VarChat: the generative AI assistant for the interpretation of human genomic variations. *Bioinformatics* (2024) 40(4):btae183. doi:10.1093/bioinformatics/btae183
- 23. Kroeze E, Weijers DD, Hagleitner MM, De Groot-Kruseman HA, Jongmans MCJ, Kuiper RP, et al. High prevalence of constitutional mismatch repair deficiency in a pediatric T-cell lymphoblastic lymphoma cohort. *HemaSphere* (2022) 6(1):E668. doi:10. 1097/HS9.0000000000000668
- 24. Fiala EM, Jayakumaran G, Mauguen A, Kennedy JA, Bouvier N, Kemel Y, et al. Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors. *Nat Cancer* (2021) 2(3): 357–65. doi:10.1038/s43018-021-00172-1
- $25.\ Tan$ S, Wu X, Wang A, Ying L. Diagnostic challenges in a CMMRD patient with a novel mutation in the PMS2 gene: a case report. BMC Med Genomics (2021) 14(1):184. doi:10.1186/s12920-021-01031-9
- 26. Rittberg R, Harlos C, Rothenmund H, Das A, Tabori U, Sinha N, et al. Immune checkpoint inhibition as primary adjuvant therapy for an IDH1-mutant anaplastic astrocytoma in a patient with CMMRD: a case report—usage of immune checkpoint inhibition in CMMRD. $Curr\ Oncol\ (2021)\ 28(1):757–66.$ doi:10.3390/curroncol28010074
- 27. Chhabda S, Sudhakar S, Mankad K, Jorgensen M, Carceller F, Jacques TS, et al. Constitutional mismatch repair deficiency (CMMRD) presenting with high-grade glioma, multiple developmental venous anomalies and malformations of cortical development—a multidisciplinary/multicentre approach and neuroimaging clues to clinching the diagnosis. *Child's Nerv Syst* (2021) 37(7):2375–9. doi:10.1007/s00381-020-04986-9
- 28. Guerrini-Rousseau L, Varlet P, Colas C, Andreiuolo F, Bourdeaut F, Dahan K, et al. Constitutional mismatch repair deficiency-associated brain tumors: report from the european C4CMMRD consortium. *Neuro-Oncology Adv* (2019) 1(1):vdz033. doi:10. 1093/noajnl/vdz033
- 29. Siraj AK, Masoodi T, Bu R, Parvathareddy SK, Siraj S, Alassiri A, et al. The study of Lynch syndrome in a special population reveals a strong founder effect and an unusual mutational mechanism in familial adenomatous polyposis. *Gut* (2020) 69(11):2048–9. doi:10.1136/gutjnl-2019-320511
- 30. Sağ E, Erkut M, Saygin İ, Çebi AH, Bahadir A, Erduran E, et al. Constitutional Mismatch Repair Gene Defect Syndrome Presenting with Adenomatous Polyposis and Cafe au Lait Spots: a Case Report. *J Pediatr Hematology/Oncology* (2020) 42(7):e689–91. doi:10.1097/MPH.0000000000001614
- 31. Okkels H, Lagerstedt-Robinsson K, Wikman FP, Hansen TVO, Lolas I, Lindberg LJ, et al. Detection of PMS2 mutations by screening hereditary nonpolyposis Colon cancer families from Denmark and Sweden. *Genet Test Mol Biomarkers* (2019) 23(9): 688–95. doi:10.1089/gtmb.2018.0316
- 32. Pavelka Z, Zitterbart K, Nosková H, Bajčiová V, Slabý O, Štěrba J. Effective immunotherapy of glioblastoma in an adolescent with constitutional mismatch repair-deficiency syndrome. *Klin Onkol.* (2019) 32(1):70–4. doi:10.14735/amko201970
- 33. Gallon R, Mühlegger B, Wenzel SS, Sheth H, Hayes C, Aretz S, et al. A sensitive and scalable microsatellite instability assay to diagnose constitutional mismatch repair deficiency by sequencing of peripheral blood leukocytes. *Hum Mutat* (2019) 40(5): 649–55. doi:10.1002/humu.23721
- 34. Henn J, Spier I, Adam RS, Holzapfel S, Uhlhaas S, Kayser K, et al. Diagnostic yield and clinical utility of a comprehensive gene panel for hereditary tumor syndromes. Hered Cancer Clin Pract (2019) 17(1):5. doi:10.1186/s13053-018-0102-4
- 35. D'Arcy BM, Blount J, Prakash A. Biochemical and structural characterization of two variants of uncertain significance in the PMS2 gene. *Hum Mutat* (2019) 40(4): 458–71. doi:10.1002/humu.23708
- 36. Shuen AY, Lanni S, Panigrahi GB, Edwards M, Yu L, Campbell BB, et al. Functional repair assay for the diagnosis of constitutional mismatch repair deficiency from non-neoplastic tissue. *J Clin Oncol* (2019) 37(6):461–70. doi:10.1200/JCO.18.00474
- 37. Baig SM, Fatima A, Tariq M, Khan TN, Ali Z, Faheem M, et al. Hereditary brain tumor with a homozygous germline mutation in PMS2: pedigree analysis and prenatal screening in a family with constitutional mismatch repair deficiency (CMMRD) syndrome. *Fam Cancer* (2019) 18(2):261–5. doi:10.1007/s10689-018-0112-4
- 38. Hildreth A, Valasek MA, Thung I, Savides T, Sivagnanam M, Ramamoorthy S, et al. Biallelic mismatch repair deficiency in an adolescent female. *Case Rep Genet* (2018) 2018:1–5. doi:10.1155/2018/8657823
- 39. Stefanovic E, Kilcawley KN, Roces C, Rea MC, O'Sullivan M, Sheehan JJ, et al. Evaluation of the potential of Lactobacillus paracasei adjuncts for flavor compounds development and diversification in short-aged cheddar cheese. *Front Microbiol* (2018) 9: 1506. doi:10.3389/fmicb.2018.01506

- 40. Leenders EKSM, Westdorp H, Brüggemann RJ, Loeffen J, Kratz C, Burn J, et al. Cancer prevention by aspirin in children with constitutional mismatch repair deficiency (CMMRD). Eur J Hum Genet (2018) 26(10):1417–23. doi:10.1038/s41431-018-0197-0
- $41.\,G$ röbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature (2018) 555(7696):321–7. doi:10.1038/nature25480
- 42. Marks LJ, Oberg JA, Pendrick D, Sireci AN, Glasser C, Coval C, et al. Precision medicine in children and young adults with hematologic malignancies and blood disorders: the Columbia university experience. *Front Pediatr* (2017) 5:265. doi:10.3389/fped.2017.00265
- 43. Mardis ER, Potter SL, Schieffer KM, Varga EA, Mathew MT, Costello HM, et al. Germline susceptibility from broad genomic profiling of pediatric brain cancers. *Neuro-Oncology Adv* (2024) 6(1):vdae099. doi:10.1093/noajnl/vdae099
- 44. Andrianova MA, Chetan GK, Sibin MK, Mckee T, Merkler D, Narasinga RKVI, et al. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours. *The J Pathol* (2017) 243(3):331–41. doi:10.1002/path.4957
- 45. Suerink M, Potjer TP, Versluijs AB, ten Broeke SW, Tops CM, Wimmer K, et al. Constitutional mismatch repair deficiency in a healthy child: on the spot diagnosis? *Clin Genet* (2018) 93(1):134–7. doi:10.1111/cge.13053
- 46. Ramchander NC, Ryan NAJ, Crosbie EJ, Evans DG. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD). *BMC Med Genet* (2017) 18(1):40. doi:10.1186/s12881-017-0391-x
- 47. Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, et al. Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. *The Am J Hum Genet* (2016) 99(2):337–51. doi:10. 1016/j.ajhg.2016.06.015
- 48. van der Klift HM, Mensenkamp AR, Drost M, Bik EC, Vos YJ, Gille HJJP, et al. Comprehensive mutation analysis of PMS2 in a large cohort of probands suspected of Lynch syndrome or constitutional mismatch repair deficiency syndrome. *Hum Mutat* (2016) 37(11):1162–79. doi:10.1002/humu.23052
- 49. Ortiz MV, Kobos R, Walsh M, Slotkin EK, Roberts S, Berger MF, et al. Integrating genomics into clinical pediatric oncology using the molecular tumor board at the memorial sloan kettering cancer center. *Pediatr Blood Cancer* (2016) 63(8):1368–74. doi:10.1002/pbc.26002
- 50. Mork ME, Borras E, Taggart MW, Cuddy A, Bannon SA, You YN, et al. Identification of a novel PMS2 alteration c.505C>G (R169G) in trans with a PMS2 pathogenic mutation in a patient with constitutional mismatch repair deficiency. Fam Cancer (2016) 15(4):587–91. doi:10.1007/s10689-016-9902-8
- 51. Bouffet E, Larouche V, Campbell BB, Merico D, De Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. *J Clin Oncol* (2016) 34(19):2206–11. doi:10.1200/JCO.2016.66.6552
- 52. Shirts BH, Casadei S, Jacobson AL, Lee MK, Gulsuner S, Bennett RL, et al. Improving performance of multigene panels for genomic analysis of cancer predisposition. *Genet Med* (2016) 18(10):974–81. doi:10.1038/gim.2015.212
- 53. Baris HN, Barnes-Kedar I, Toledano H, Halpern M, Hershkovitz D, Lossos A, et al. Constitutional mismatch repair deficiency in Israel: high proportion of founder mutations in MMR genes and consanguinity. *Pediatr Blood Cancer* (2016) 63(3): 418–27. doi:10.1002/pbc.25818
- 54. Palova H, Das A, Pokorna P, Bajciova V, Pavelka Z, Jezova M, et al. Precision immuno-oncology approach for four malignant tumors in siblings with constitutional mismatch repair deficiency syndrome. *npj Precision Oncol* (2024) 8(1):110. doi:10.1038/s41698-024-00597-8
- 55. Urganci N, Genc DB, Kose G, Onal Z, Vidin OO. Colorectal cancer due to constitutional mismatch repair deficiency mimicking neurofibromatosis I. *Pediatrics* (2015) 136(4):e1047–50. doi:10.1542/peds.2015-1426
- 56. Li J, Dai H, Feng Y, Tang J, Chen S, Tian X, et al. A comprehensive strategy for accurate mutation detection of the highly homologous PMS2. *The J Mol Diagn* (2015) 17(5):545–53. doi:10.1016/j.jmoldx.2015.04.001
- 57. Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. *J Med Genet* (2015) 52(11):770–8. doi:10.1136/jmedgenet-2015-103299
- 58. Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, et al. Diagnosis of constitutional mismatch repair-deficiency syndrome based on microsatellite instability and lymphocyte tolerance to methylating agents. *Gastroenterology* (2015) 149(4): 1017–29.e3. doi:10.1053/j.gastro.2015.06.013
- 59. Daou B, Zanello M, Varlet P, Brugieres L, Jabbour P, Caron O, et al. An unusual case of constitutional mismatch repair deficiency syndrome with Anaplastic ganglioglioma, colonic adenocarcinoma, osteosarcoma, acute myeloid leukemia, and signs of neurofibromatosis type 1: case report. *Neurosurgery* (2015) 77(1):E145–52. doi:10.1227/NEU.00000000000000754
- 60. Li L, Hamel N, Baker K, McGuffin MJ, Couillard M, Gologan A, et al. A homozygous PMS2 founder mutation with an attenuated constitutional mismatch

repair deficiency phenotype. J Med Genet (2015) 52(5):348–52. doi:10.1136/jmedgenet-2014-102934

- 61. Ten Broeke SW, Brohet RM, Tops CM, van der Klift HM, Velthuizen ME, Bernstein I, et al. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. *J Clin Oncol* (2015) 33(4):319–25. doi:10.1200/JCO.2014.57.8088
- 62. Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. *Eur J Cancer* (2014) 50(5):987–96. doi:10.1016/j.ejca.2013.12.005
- 63. Walter AW, Ennis S, Best H, Vaughn CP, Swensen JJ, Openshaw A, et al. Constitutional mismatch repair deficiency presenting in childhood as three simultaneous malignancies. *Pediatr Blood Cancer* (2013) 60(11):E135–E136. doi:10.1002/pbc.24613
- 64. Chmara M, Wernstedt A, Wasag B, Peeters H, Renard M, Beert E, et al. Multiple pilomatricomas with somatic CTNNB1 mutations in children with constitutive mismatch repair deficiency. *Genes, Chromosomes and Cancer* (2013) 52(7):656–64. doi:10.1002/gcc.22061
- 65. Onishi S, Yamasaki F, Kuraoka K, Taguchi A, Takayasu T, Akagi K, et al. Diagnostic and therapeutic challenges of glioblastoma as an initial malignancy of constitutional mismatch repair deficiency (CMMRD): two case reports and a literature review. *BMC Med Genomics* (2023) 16(1):6. doi:10.1186/s12920-022-01403-9
- 66. Yeung JT, Pollack IF, Shah S, Jaffe R, Nikiforova M, Jakacki RI. Optic pathway glioma as part of a constitutional mismatch-repair deficiency syndrome in a patient meeting the criteria for neurofibromatosis type 1. *Pediatr Blood and Cancer* (2013) 60(1):137–9. doi:10.1002/pbc.24254
- 67. Vasovcak P, Krepelova A, Menigatti M, Puchmajerova A, Skapa P, Augustinakova A, et al. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. *DNA Repair (Amst)* (2012) 11(7):616–23. doi:10.1016/j.dnarep.2012.04.004
- 68. Wernstedt A, Valtorta E, Armelao F, Togni R, Girlando S, Baudis M, et al. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL. Genes, Chromosomes and Cancer (2012) 51(9):819–31. doi:10.1002/gcc.21966
- 69. Vaughn CP, Hart KJ, Samowitz WS, Swensen JJ. Avoidance of pseudogene interference in the detection of 3' deletions in PMS2. *Hum Mutat* (2011) 32(9):1063–71. doi:10.1002/humu.21540
- 70. Herkert JC, Niessen RC, Olderode-Berends MJW, Veenstra-Knol HE, Vos YJ, van der Klift HM, et al. Paediatric intestinal cancer and polyposis due to bi-allelic PMS2 mutations: case series, review and follow-up guidelines. *Eur J Cancer* (2011) 47(7):965–82. doi:10.1016/j.ejca.2011.01.013
- 71. Leenen C, Geurts-Giele W, Dubbink H, Reddingius R, van den Ouweland A, Tops C, et al. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic PMS2 germline mutations. Clin Genet (2011) 80(6):558-65. doi:10.1111/j.1399-0004.2010.01608.x
- 72. Vaughn CP, Robles J, Swensen JJ, Miller CE, Lyon E, Mao R, et al. Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes. *Hum Mutat* (2010) 31(5): 588–93. doi:10.1002/humu.21230
- 73. Kratz CP, Holter S, Etzler J, Lauten M, Pollett A, Niemeyer CM, et al. Rhabdomyosarcoma in patients with constitutional mismatch-repair-deficiency syndrome. *J Med Genet* (2009) 46(6):418–20. doi:10.1136/jmg.2008.064212
- 74. Roy S, Raskin L, Raymond VM, Thibodeau SN, Mody RJ, Gruber SB. Pediatric duodenal cancer and biallelic mismatch repair gene mutations. *Pediatr Blood and Cancer* (2009) 53(1):116–20. doi:10.1002/pbc.21957
- 75. Wachter-Giner T, Bieber I, Warmuth-Metz M, Bröcker E, Hamm H. Multiple pilomatricomas and gliomatosis cerebri a new association? *Pediatr Dermatol* (2009) 26(1):75–8. doi:10.1111/j.1525-1470.2008.00827.x
- 76. Douglas SPM, Lahtinen AK, Koski JR, Leimi L, Keränen MAI, Koskenvuo M, et al. Enrichment of cancer-predisposing germline variants in adult and pediatric patients with acute lymphoblastic leukemia. Sci Rep (2022) 12(1):10670. doi:10.1038/s41598-022-14364-x
- 77. Giunti L, Cetica V, Ricci U, Giglio S, Sardi I, Paglierani M, et al. Type A microsatellite instability in pediatric gliomas as an indicator of Turcot syndrome. *Eur J Hum Genet* (2009) 17(7):919–27. doi:10.1038/ejhg.2008.271
- 78. Sjursen W, Bjørnevoll I, Engebretsen LF, Fjelland K, Halvorsen T, Myrvold HE. A homozygote splice site PMS2 mutation as cause of Turcot syndrome gives rise to two different abnormal transcripts. *Fam Cancer* (2009) 8(3):179–86. doi:10.1007/s10689-008-9225-5
- 79. Pe'ron S, Metin A, Gardès P, Alyanakian MA, Sheridan E, Kratz CP, et al. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. *The J Exp Med* (2008) 205(11):2465–72. doi:10.1084/jem.20080789
- 80. Jackson CC, Holter S, Pollett A, Clendenning M, Chou S, Senter L, et al. Café-au-lait macules and pediatric malignancy caused by biallelic mutations in the DNA mismatch repair (MMR) gene PMS2. *Pediatr Blood and Cancer* (2008) 50(6): 1268–70. doi:10.1002/pbc.21514

- 81. Etzler J, Peyrl A, Zatkova A, Schildhaus HU, Ficek A, Merkelbach-Bruse S, et al. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference. *Hum Mutat* (2008) 29(2):299–305. doi:10.1002/humu.20657
- 82. Kratz CP, Niemeyer CM, Jüttner E, Kartal M, Weninger A, Schmitt-Graeff A, et al. Childhood T-cell non-hodgkin's lymphoma, colorectal carcinoma and brain tumor in association with café-au-lait spots caused by a novel homozygous PMS2 mutation. *Leukemia* (2008) 22(5):1078–80. doi:10.1038/sj.leu.2405008
- 83. Gururangan S, Frankel W, Broaddus R, Clendenning M, Senter L, McDonald M, et al. Multifocal anaplastic astrocytoma in a patient with hereditary colorectal cancer, transcobalamin II deficiency, agenesis of the corpus callosum, mental retardation, and inherited PMS2 mutation. *Neuro-Oncology* (2008) 10(1):93–7. doi:10.1215/15228517-2007-037
- 84. Krüger S, Kinzel M, Walldorf C, Gottschling S, Bier A, Tinschert S, et al. Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1. Eur J Hum Genet (2008) 16(1):62–72. doi:10.1038/sj.ejhg. 5201923
- 85. Auclair J, Leroux D, Desseigne F, Lasset C, Saurin JC, Joly MO, et al. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation. *Hum Mutat* (2007) 28(11):1084–90. doi:10.1002/humu.20569
- 86. De Vos M, Hayward BE, Charlton R, Taylor GR, Glaser AW, Picton S, et al. PMS2 mutations in childhood cancer. *JNCI: J Natl Cancer Inst* (2006) 98(5):358–61. doi:10.1093/jnci/djj073
- 87. Arslan Ates E, Turkyilmaz A, Alavanda C, Yildirim O, Guney AI. Multigene panel testing in Turkish hereditary cancer syndrome patients. *Medeniyet Med J* (2022) 37(2): 150–8. doi:10.4274/MMJ.galenos.2022.22556
- 88. Agostini M, Tibiletti MG, Lucci-Cordisco E, Chiaravalli A, Morreau H, Furlan D, et al. Two PMS2 mutations in a Turcot syndrome family with small bowel cancers. *The Am J Gastroenterol* (2005) 100(8):1886–91. doi:10.1111/j.1572-0241.2005.50441.x
- 89. De Vos M, Hayward BE, Picton S, Sheridan E, Bonthron DT. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. *The Am J Hum Genet* (2004) 74(5):954–64. doi:10.1086/420796
- 90. De Rosa M, Fasano C, Panariello L, Scarano MI, Belli G, Iannelli A, et al. Evidence for a recessive inheritance of Turcot's syndrome caused by compound heterozygous mutations within the PMS2 gene. *Oncogene* (2000) 19(13):1719–23. doi:10.1038/sj.onc. 1203447
- 91. Miyaki M, Nishio J, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, et al. Drastic genetic instability of tumors and normal tissues in Turcot syndrome. *Oncogene* (1997) 15(23):2877–81. doi:10.1038/sj.onc.1201668
- 92. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, et al. The molecular basis of turcot's syndrome. *N Engl J Med* (1995) 332(13):839–47. doi:10.1056/NEJM199503303321302
- 93. AlAli MN, Zikry AH, AlShammari SA, Zayed MA, Alswayyed M, AlObeed OA. A constitutional mismatch repair deficiency syndrome presented with an advanced rectal cancer in a juvenile female: a case report and literature review. *Cureus* (2022) 14(4): e24615. doi:10.7759/cureus.24615
- 94. Mishra AK, Achari RB, Zameer L, Achari G, Gehani A, Roy P, et al. Germline biallelic mismatch repair deficiency in childhood glioblastoma and implications for clinical management. *Neurol India* (2022) 70(2):772–4. doi:10.4103/0028-3886.344608
- 95. Stawiński P, Płoski R. Genebe.net: implementation and validation of an automatic ACMG variant pathogenicity criteria assignment. *Clin Genet* (2024) 106(2):119–26. doi:10.1111/cge.14516
- 96. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. *Cell* (2019) 176(3):535–48.e24. doi:10.1016/j.cell.2018.12.015
- 97. de Sainte Agathe JM, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, et al. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation. *Hum Genomics* (2023) 17(1):7. doi:10.1186/s40246-023-00451-1
- 98. Leman R, Gaildrat P, Gac GL, Ka C, Fichou Y, Audrezet MP, et al. Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in Silico/in vitro studies: an international collaborative effort. *Nucleic Acids Res* (2018) 46(15):11656–7. doi:10.1093/nar/gky979
- 99. Wang Q, Leclerc J, Bougeard G, Olschwang S, Vasseur S, Cassinari K, et al. Characterisation of heterozygous PMS2 variants in French patients with Lynch syndrome. *J Med Genet* (2020) 57(7):487–99. doi:10.1136/jmedgenet-2019-106256
- 100. Yurgelun MB, Kulke MH, Fuchs CS, Allen BA, Uno H, Hornick JL, et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. *J Clin Oncol* (2017) 35(10):1086-95. doi:10.1200/JCO.2016.71.0012
- 101. Blount J, Prakash A. The changing landscape of Lynch syndrome due to PMS2 mutations. Clin Genet (2018) 94(1):61–9. doi:10.1111/cge.13205
- 102. Susswein LR, Marshall ML, Nusbaum R, Vogel Postula KJ, Weissman SM, Yackowski L, et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. *Genet Med* (2016) 18(8):823–32. doi:10.1038/gim.2015.166

- 103. Chong AL, Mejia-Garcia A, Behl S, El Haffaf Z, Chénier S, Maranda B, et al. PMS2 c.2117del (p.Lys706Serfs*19) is the Most frequent cancer-associated founder pathogenic variant in the French-Canadian population of Quebec, Canada. *Clin Genet* (2025) 108:747–51. doi:10.1111/cge.14784
- 104. Singh AK, Talseth-Palmer B, Xavier A, Scott RJ, Drabløs F, Sjursen W. Detection of germline variants with pathogenic potential in 48 patients with familial colorectal cancer by using whole exome sequencing. *BMC Med Genomics* (2023) 16(1):126. doi:10. 186/s12920-023-01562-3
- 105. Talseth-Palmer BA, McPhillips M, Groombridge C, Spigelman A, Scott RJ. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer. *Hered Cancer Clin Pract* (2010) 8(1):5. doi:10.1186/1897-4287-8-5
- 106. Brennan B, Hemmings CT, Clark I, Yip D, Fadia M, Taupin DR. Universal molecular screening does not effectively detect Lynch syndrome in clinical practice. *Therap Adv Gastroenterol* (2017) 10(4):361–71. doi:10.1177/1756283X17690990
- 107. Sjursen W, McPhillips M, Scott RJ, Talseth-Palmer BA. Lynch syndrome mutation spectrum in New South Wales, Australia, including 55 novel mutations. *Mol Genet and Genomic Med* (2016) 4(2):223–31. doi:10.1002/mgg3.198
- 108. Tian W, Bi R, Ren Y, He H, Shi S, Shan B, et al. Screening for hereditary cancers in patients with endometrial cancer reveals a high frequency of germline mutations in cancer predisposition genes. *Int J Cancer* (2019) 145(5):1290–8. doi:10.1002/ijc.32389
- 109. Hartman TR, Demidova EV, Lesh RW, Hoang L, Richardson M, Forman A, et al. Prevalence of pathogenic variants in DNA damage response and repair genes in patients undergoing cancer risk assessment and reporting a personal history of early-onset renal cancer. *Sci Rep* (2020) 10(1):13518. doi:10.1038/s41598-020-70449-5
- 110. Desmond A, Kurian AW, Gabree M, Mills MA, Anderson MJ, Kobayashi Y, et al. Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. *JAMA Oncol* (2015) 1(7):943–51. doi:10.1001/jamaoncol.2015.2690
- 111. Tomsic J, Senter L, Liyanarachchi S, Clendenning M, Vaughn CP, Jenkins MA, et al. Recurrent and founder mutations in the *PMS2* gene. *Clin Genet* (2013) 83(3): 238–43. doi:10.1111/j.1399-0004.2012.01898.x
- 112. Hu L, Sun J, Li Z, Qu Z, Liu Y, Wan Q, et al. Clinical relevance of pathogenic germline variants in mismatch repair genes in Chinese breast cancer patients. *npj Breast Cancer* (2022) 8(1):52–10. doi:10.1038/s41523-022-00417-x
- 113. Guerrini-Rousseau L, Gallon R, Pineda M, Brugières L, Baert-Desurmont S, Corsini C, et al. Report of the sixth meeting of the European Consortium 'Care for

- CMMRD' (C4CMMRD), Paris, France, November 16th 2022. Fam Cancer (2024) 23(4): $447-57.\ doi:10.1007/s10689-024-00403-1$
- 114. Gallon R, Brekelmans C, Martin M, Bours V, Schamschula E, Amberger A, et al. Constitutional mismatch repair deficiency mimicking Lynch syndrome is associated with hypomorphic mismatch repair gene variants. *npj Precision Oncol* (2024) 8(1):119. doi:10.1038/s41698-024-00603-z
- 115. Segura AVC, da Silva SIO, Santiago KM, Brianese RC, Carraro DM, Torrezan GT. Misclassification of a frequent variant from PMS2CL pseudogene as a PMS2 loss of function variant in Brazilian patients. *Fam Cancer* (2024) 23(4):653–7. doi:10.1007/s10689-024-00411-1
- 116. Munteanu CV, Marian C, Chiriță-Emandi A, Puiu M, Trifa AP. *In silico* splicing analysis of the PMS2 gene: exploring alternative molecular mechanisms in PMS2-associated Lynch syndrome. *BMC Genomic Data* (2024) 25(1):1–14. doi:10.1186/s12863-024-01281-3
- 117. Gallon R, Phelps R, Hayes C, Brugieres L, Guerrini-Rousseau L, Colas C, et al. Constitutional microsatellite instability, genotype, and phenotype correlations in constitutional mismatch repair deficiency. *Gastroenterology* (2023) 164(4):579–92.e8. doi:10.1053/j.gastro.2022.12.017
- 118. Gould GM, Grauman PV, Theilmann MR, Spurka L, Wang IE, Melroy LM, et al. Detecting clinically actionable variants in the 3^\prime exons of PMS2 via a reflex workflow based on equivalent hybrid capture of the gene and its pseudogene. *BMC Med Genet* (2018) 19(1):176–13. doi:10.1186/s12881-018-0691-9
- 119. Vaughn CP, Baker CL, Samowitz WS, Swensen JJ. The frequency of previously undetectable deletions involving 3' exons of the PMS2 gene. *Genes, Chromosomes and Cancer* (2013) 52(1):107–12. doi:10.1002/gcc.22011
- 120. Hayward BE, De Vos M, Valleley EMA, Charlton RS, Taylor GR, Sheridan E, et al. Extensive gene conversion at the PMS2 DNA mismatch repair locus. *Hum Mutat* (2007) 28(5):424–30. doi:10.1002/humu.20457
- 121. Chung J, Negm L, Bianchi V, Stengs L, Das A, Liu ZA, et al. Genomic microsatellite signatures identify germline mismatch repair deficiency and risk of cancer onset. *J Clin Oncol* (2023) 41(4):766–77. doi:10.1200/JCO.21.02873
- 122. Hamideh D, Das A, Bianchi V, Chung J, Negm L, Levine A, et al. Using comprehensive genomic and functional analyses for resolving genotype–phenotype mismatches in children with suspected CMMRD in Lebanon: an IRRDC study. *Hum Genet* (2023) 142(4):563–76. doi:10.1007/s00439-023-02530-8