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Osteosarcoma is the most common primary malignant bone tumor, accounting
for approximately 20% of all primary malignant bone tumors, and predominantly
affects adolescents. The current standard treatment involves a multimodal
approach combining neoadjuvant chemotherapy, surgical resection, and
postoperative adjuvant chemotherapy. However, patient responses to
chemotherapy vary significantly, with response rates (defined as patients
achieving >90% tumor necrosis) ranging from 30% to 60%. Chemotherapy
sensitivity is one of the most critical prognostic factors, and this heterogeneity
underscores the importance of predictive tools for optimizing individualized
treatment and improving clinical outcomes. In recent years, radiomics has
emerged as a revolutionary paradigm in medical imaging analysis. By
extracting high-throughput, deep-layer feature information from medical
images, it provides a novel technical pathway for quantitative tumor
phenotyping. Advanced computer vision algorithms enable the automated
extraction of thousands of quantitative metrics—including morphological
(shape features), intensity (first-order statistics), and texture (second- and
higher-order features)—from multimodal imaging data such as Computed
Tomography (CT), Magnetic Resonance Imaging (MRI) and 18F-
Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET/CT) These
features not only precisely characterize tumor heterogeneity and the
microenvironment but also overcome the subjectivity and reproducibility
limitations of traditional manual image interpretation. Leveraging these
advantages, radiomics has demonstrated significant value in predicting
neoadjuvant chemotherapy efficacy in osteosarcoma.

osteosarcoma, chemotherapy, response, prediction, radiomics, deep learning

Introduction

Osteosarcoma (OS), the most common primary malignant bone tumor, accounting for
approximately 20% of all primary malignant bone tumors, primarily occurs in children and
adolescents, with the metaphysis of long bones being the typical site of involvement (1).
Modern treatment strategies, including optimized neoadjuvant chemotherapy (NAC)
protocols and comprehensive therapeutic approaches, have improved the 5-year
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survival rate to 60%-70%. The current clinical standard employs
multi-agent  chemotherapy regimens, such as high-dose
methotrexate (HD-MTX), ifosfamide (IFO), doxorubicin (ADM),
and cisplatin (DDP) (2). However, significant heterogeneity in
patient responses to the same regimen highlights the need for
predictive systems to assess chemotherapy sensitivity. The
EURAMOS-1 trial found only approximately 50% of patients
achieve good histological response (defined as >90% tumor
necrosis after neoadjuvant chemotherapy). This response rate has
important prognostic implications, as it guided treatment
stratification in the trial, underscoring the need for predictive
tools to optimize chemotherapy selection and improve
outcomes (3, 4).

The clinical value of chemotherapy response prediction spans
three key dimensions. Firstly, at the level of treatment optimization,
accurate predictive models enable truly personalized therapeutic
strategies. For patients likely to respond well to chemotherapy,
treatment can be optimized (e.g., maintaining effective regimens
to avoid unnecessary escalation), while those predicted to be poor
responders can be promptly transitioned to alternative therapies
(currently under investigation in clinical trials, such as targeted
agents or immunotherapy). Secondly, in terms of prognostic
management, reliable  prediction tools facilitate early
identification of high-risk patient populations, allowing for more
intensive monitoring and timely clinical interventions. Finally, from
aresearch translation perspective, robust prediction systems provide
valuable stratification criteria for clinical trial design. For example,
in sarcoma trials like SARC024 (5), predictive tools have enabled
stratification of patients into novel therapy arms based on predicted
resistance, accelerating the drug development process and
improving clinical research efficiency (2, 6).

Therefore, the development of reliable tools to predict
chemotherapy sensitivity is critically important in clinical
oncology. Currently, the standard method for assessing NAC
response in osteosarcoma relies on histopathological evaluation
of tumor necrosis in surgical specimens, as described by Huvos
etal (7). Patients with over 90% tumor necrosis are classified as good
pathological responders, while those with less necrosis are
considered poor pathological responders. However, this approach
can only be applied after surgery, making it unsuitable for early
prediction before or during treatment. To date, no definitive clinical,
biological, or imaging markers allow clinicians to reliably predict
chemotherapy response early enough to modify treatment
strategies (8).

Notably, “response to chemotherapy” encompasses two distinct
concepts in osteosarcoma: histological response, defined by post-
surgical tumor necrosis, and radiological response, reflected by
imaging changes (e.g., tumor size or density alterations on CT/
MRI). Radiomics-based predictive tools primarily aim to predict

histological response using pre-treatment imaging, bridging the gap

Abbreviations: Al, Artificial intelligence; Cl, Confidence interval; CLAIM,
Checklist for Artificial Intelligence in Medical Imaging; DOR, Diagnostic
odds ratio; NAC, Neoadjuvant chemotherapy; QUADAS-2, Modified Quality
Assessment of Diagnostic Accuracy Studies; RQS, Radiomics Quality Score;
SROC, Summary receiver operating characteristic; TRIPOD, Transparent
Reporting of a multivariable prediction model for Individual Prognosis
or Diagnosis.
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between early radiological assessment and delayed surgical
pathology (8, 9). Existing radiological criteria such as RECIST are
less applicable to osteosarcoma due to the presence of bone matrix,
which complicates assessment of tumor size changes. This limitation
highlights the need for radiomics, which can extract subtle features
beyond conventional size-based metrics (10, 11).

Radiomics offers a promising alternative for predicting NAC
response, particularly in osteosarcoma. Unlike conventional
methods, radiomics can integrate data from multiple imaging
modalities—including Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) and '*F-Fluorodeoxyglucose Positron
(SF-FDG PET/CT)
comprehensive assessment of tumor structure and function. Its

Emission Tomography to provide a

noninvasive nature also allows for repeated monitoring
throughout therapy. Furthermore, radiomics can extract subtle
imaging features beyond visual detection, potentially uncovering
biomarkers of treatment response (12-14). When combined with
clinical and genomic data, these imaging features may improve
predictive accuracy (15).

The development of predictive models from imaging data relies
(AI)—a broad umbrella concept

encompassing algorithms designed to mimic human cognitive

on artificial intelligence
functions (16). Within Al machine learning (ML) represents a
core subset, focusing on algorithms that learn patterns from data
to make predictions without explicit programming (17). A
specialized branch of ML, deep learning (DL), utilizes multi-layer
neural networks to automatically extract hierarchical features from
complex data (e.g., medical images), enabling it to process high-
dimensional information more effectively than traditional ML
methods (17, 18). Conventional statistical methods demonstrate
significant limitations when processing the high-dimensional,
nonlinear data characteristic of radiomics, particularly in their
restricted capacity for feature extraction and limited ability to
recognize complex patterns (13). In contrast, convolutional
neural networks (CNNs)—a type of DL algorithm—utilize multi-
layer convolutional kernels with localized receptive fields and
parameter-sharing properties to automatically extract hierarchical
image features. This approach enables simultaneous analysis of both
microscopic texture characteristics and macroscopic morphological
patterns (6, 14). The end-to-end learning framework provides two
distinct advantages: first, it eliminates the selection bias inherent in
manual feature engineering; second, through backpropagation
optimization, it can directly identify potential imaging
biomarkers predictive of chemotherapy response from raw pixel
data (6, 14). Clinical validation studies have established that deep
learning-based  prediction

performance  in  assessing

models  demonstrate  superior

neoadjuvant  chemotherapy
response (19, 20).

Emerging evidence demonstrates that combining conventional
imaging features [CT/MRI (19)] with functional parameters [DWI/
DCE-MRI/"®F-FDG PET (9, 21)] using artificial intelligence
can establish highly predictive NAC

assessment systems. This multimodal integration approach has

algorithms response
shown clinical value in predicting treatment response across
various malignancies, offering new possibilities for precision
therapy in osteosarcoma (14, 22).

This comprehensive review followed Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to
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Records identified from: Total (n=1015)
PubMed (n=257)
Embase (n=632)
Web of Science (n=126)

Records after duplicates removed
(n=423)
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Records excluded by reviewers (n=321)
Reports not retrieved (n=6)

Full-text articles accessed for eligibility
(n=96)

Articles excluded:
No outcome of interest (n=3)
Lack of osteosarcoma-specific results (n=3)
Post-NAC focus only (n=4)
Focus on prognosis only (n=11)
Evaluation of chemotherapy response (n=13)
Duplicate article (n=4)
Not radiomics(n=33)

Reports included in review
(n =25)

FIGURE 1
Flowchart of the study-selection procedure.

systematically evaluate studies investigating radiomics for predicting
NAC response in osteosarcoma. We performed quantitative meta-
analysis using random-effects models to compare the predictive
performance of different imaging modalities (MRIPET-CT),
calculating pooled sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC). Study heterogeneity
was assessed using Istatistics. Furthermore, we critically analyzed key
factors affecting prediction accuracy, including feature selection
methods, machine learning algorithms, and validation strategies, to
provide evidence-based recommendations for clinical practice. The
results highlight MRI’s superior capability in multimodal data
integration and high-throughput feature extraction. These findings
provide robust evidence to support individualized treatment decision-
making in clinical practice.

Methods
Literature retrieval and study selection

To comprehensively identify studies on radiomics-based
prediction of NAC response in osteosarcoma, we conducted a
systematic literature search following PRISMA guidelines. Our
search strategy encompassed three major databases for articles
published between 1 January 2014 and 31 December 2024. We
employed the following search terms: “osteosarcoma AND
chemotherapy AND response AND prediction” to ensure precise
identification of relevant studies. The search was restricted to
English-language original research articles, excluding review articles.

Two independent investigators (Zhehuang Li and Panhong
Zhang) performed initial screening based on titles and abstracts.
Potentially eligible studies underwent full-text review. Any
discrepancies were resolved through consensus discussion.

Oncology Reviews

Studies were included if they met the following criteria: (1)
histologically confirmed primary osteosarcoma; (2) evaluation of
neoadjuvant chemotherapy (NAC) response prediction; and (3)
reported pathological response (e.g., >90% necrosis). Exclusion
criteria comprised: Studies not reporting relevant outcomes;
Research not the
Investigations limited to post-NAC assessment only; Prognostic

including specific term osteosarcoma;

rather than predictive studies; Non-imaging based approaches.
The complete study selection process is illustrated in Figure 1,

demonstrating rigorous application of our predefined criteria to

ensure methodological quality and relevance to the research question.

Data extraction

Two investigators independently extracted data from the included
studies using a standardized form designed to capture essential study
characteristics. The extraction template documented publication year,
study design, author information, patient demographics, imaging
parameters, radiomic feature extraction methodology, predictive
model construction, and primary outcomes (Table 1). When
encountering missing or ambiguous data, we attempted to contact
the original authors for clarification. Any unresolved data limitations
were explicitly acknowledged in our analysis.

Quality evaluation

We employed the Radiomics Quality Score (RQS) tool to
systematically evaluate study quality across critical research
components. The assessment focused on: imaging acquisition
protocols, including  equipment  parameters and  scanning
standardization to ensure data reliability; tumor segmentation
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TABLE 1 Characteristics of the 24 studies included in the present review.

Imaging Author Year of Patients Image segmentation Radiomics information Prediction model  General result
method publication extraction building
X-ray films
X-ray and MRI Z. Luo (23) 2023 N =102 Manual segmentation (ITK-SNAP | Pyradiomics package extract LR Models using clinical, X-ray
marks ROI) features from ROI radiomics, MRI radiomics, X-ray plus
Intra-group correlation MRI radiomics, and all data
coefficient (ICC) (ICCs >0.75): combined had AUC values of 0.760,
filter features mRMR and LASSO 0.706, 0.751, 0.796, and 0.828,
regression:feature selection respectively
CT images
CT F. Yang 2024 N =225 Manual segmentation (ITK-SNAP | Radiomics features: intensity LASSO. LR, Nomogram  Models combining radiomics and
G (24). marks 3D VOI) statistics, geometric features, clinical features had AUC values of
texture features, etc 0.78 and 0.75 in the training and
independent validation sets,
respectively
CT D. Fu (25) 2023 N =18 Manual segmentation MIMICS 20.0 to extract the LRA The area under ROC curve (AUC) of
following parameters: FAIand 6-h MTX concentration were
1. Peri-osteosarcoma fat 0.950 and 0.963, respectively,
attenuation index (FAI) indicating that they had good
2. Periosteosarcoma fat volume predictive performance in predicting
(PFV) chemotherapy response
3. Fat to volume ratio (FVR)
CT L. Xu (15) 2021 N =157 Manual segmentation (ITK-SNAP | Based on the open source LOOCV, mRMR, This paper improves the accuracy of
outline the tumor) Radiomics package in MATLAB | Multivariate logistic prediction of neoadjuvant
2017b:the tumor area; the tumor | regression algorithm chemotherapy response in
area osteosarcoma patients by combining
CT radiomic features of tumor and
non-tumor bone areas and using
multiple machine learning techniques
(99m)Tc-MIBI C. Wu (26) 2019 N =30 Manual segmentation (ITK-SNAP = Tumor to background ratio (T/B), | 0 In pre-chemotherapy MIBI imaging,
marks ROI) tumor MIBI washout rate (WR), tumor washout rate (WR) was
change rate of tumor uptake after negatively correlated with tumor
chemotherapy (AR) necrosis rate (r = —0.510, P = 0.004).
When WR < 25% was used as the
threshold for predicting good
chemotherapy response, the
sensitivity was 100%, the specificity
was 91.7%, and the accuracy
was 95.8%
MRI
axial T2ZWI and TICE = F. Zheng (27) 2024 N =106 Auto3DSeg framework: DINTS, The first-order statistics, shape DLR:ResNet18, LR, the DLR model achieved the highest

SegResNet two segmentation
models

features, and texture features are
used to extract features from the

MLP; LASSO; SVM

prediction performance with an

(Continued on following page)
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Imaging Author

method

Year of
publication

Patients

TABLE 1 (Continued) Characteristics of the 24 studies included in the present review.

Image segmentation

Radiomics information
extraction

transformed image through a
variety of filters

Prediction model
building

General result

accuracy of 93.8% and an AUC of
0.961 in the test sets

T2WI and T1CE (a Y. Zhang (20) 2024 N =109 Manual segmentation (ITK-SNAP | Radiomics features of T2WI and | RF, LR, DCA The combined model (the pre-NAC,
single MRI sequence at marks VOI) TI1CE post-NAC)achieved the highest areas
a single time point) under the receiver operating curve
(AUC) values of 0.999 and 0.915 in
the training and test sets, respectively.
The AUCs of the post-NAC model
were higher than those of the pre-
NAC model
baseline MRI Kanthawang, 2024 N =95 Manual segmentation (VOI) Multiple parameter combinations: = SVM, LRA Tumour volume >150 mL and
Thanat (11) tumor volume, maximum axial maximum axial diameter >7.0 cm
diameter, necrotic area, and could be used as an independent
extent of soft tissue edema predictor (multivariable analysis,
P-value = 0.025, 0.045)
MRI-based radiomics J. Zhong (10) 2022 N =144 nnU-Net Use FeAture Explorer Nomogram radiomics models achieved AUC
0.3.6 software (based on values of 0.699, 0.759 and 0.784
Pyradiomics 3.0)
multimodal MRI K. Y. Teo (28) 2022 N =15 Manual segmentation Extract statistical parameters and | RF, LR, Multi-feature The machine learning model
Haralick texture features Fuzzy Clustering combined with multimodal MRI
Technique, Weighted showed good performance in
Majority Rule predicting tumor necrosis, with AUC
values of 0.999 in the training set and
0.915 in the test set
IVIM-MRI Esha Baidya 2022 N =35 Manual segmentation The BETV method was used for | Independent sample The IVIM parameters showed AUC =
Kayal (29) parameter estimation; Histogram | t-test, Univariate and 0.87, sensitivity = 86%, specificity =
analysis of the above parameters | multivariate Cox regression | 77% at baseline (t0) and AUC = 0.96,
was performed analyses, Kaplan-Meier sensitivity = 86%, specificity = 100%
after the first chemotherapy cycle (t1)
MRI J. Dufau (30) 2019 N =69 Manual segmentation Matlab SVM, LDA. holdout The analysis focused on the MRIs of

69 patients, 55.1% (38/69) of whom
were good histological responders.
The model obtained by support
vector machines from initial MRI
radiomic data had an AUROC of 0.98,
a sensitivity of 100% (IC 95% [100%-
100%]) and specificity of 86% (IC
95% [59.7%-111%]). DISCUSSION:
Radiomic based on MRI data would
predict the chemotherapy response
before treatment initiation, in
patients treated for osteosarcoma

(Continued on following page)
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TABLE 1 (Continued) Characteristics of the 24 studies included in the present review.

Imaging
method

MRI

DCE-MRI

Author

G.
J. Djurici¢ (31)

Zeng Yan-
Ni (32)

Year of
publication

2017

2022

Patients

Centers

Image segmentation

Manual segmentation (Image]
marks ROI)

Manual segmentation (Cover areas
of the lesion that are most markedly
enhanced and avoid areas of
necrosis and blood vessels)

Radiomics information
extraction

fractal analysis; Gray level co-
occurrence matrix (GLCM)
analysis

Semi-quantitative parameters of
ROIs were automatically
generated by software

Prediction model
building

Bootstrap, X-tile 3.6.1

Mann-Whitney U test

General result

computational morphological
analysis of primary osteosarcoma MR
images using fractal and GLCM
algorithms can predict chemotherapy
response with high accuracy, as
indicated by a ROC AUC of 0.82 and
an accuracy of 82% in predicting
actual chemotherapy outcomes

At the thresholds of 3.2%/s (Slope),
175 s (TTP) and 5.4% (ER), the
sensitivity and specificity for
predicting a good response to
chemotherapy were 83.3% and 92.3%,
91.7% and 69.2%, 84.6% and 75.0%,
respectively

DCE MRI and
IVIM-DWI

Xibin Xia (33)

2022

N =163

1*

Manual segmentation

Matlab

ANN. SVM, Combined
feature selection methods
(ReliefF and t-test)

After two treatment cycles, Ktrans,
Kep and Ve values in CR/PR group
were significantly lower than those in
SD and PD groups, while D, ADC and
f values were significantly higher in
CR/PR group than in SD or PD
group. ALP and LDH are positively
correlated with Ktrans, Kep and Ve
values, but negatively correlated with
D, ADC and f values

T1CE-MRI

DCE-MRI

A.
Bouhamama
(19)

L. Zhang (34)

2022

2021

N =176

N =102

Manual segmentation

Manual segmentation (Exclude
edema and vascular areas)

DCE-MRI parameters
(KtransKtrans, KepKep, VeVe)
and IVIM-DWTI parameters (DD,
D#Ds*, ADC, ff)

Radcloud; LASSO

ReliefF and t-test, ANN,
SVM., Logistic Regression

KNN, SV, LR,
Gridsearch algorithm,
Nomogram

The model had an area under the
ROC curve (AUC) of 0.95 and 0.97,
respectively, with a sensitivity of 91%
and a specificity of 92%

Models combining clinical risk
factors (such as surgical stage) and
radiomic features showed better
predictive performance than
radiomic models alone in both the
training and test sets, with prediction
accuracy (ACC) of 0.91 for the
training set, ACC of 0.90 for the test
set, and area under the ROC curve
(AUC) of 0.94 and 0.95, respectively

Multiparametric MRI

with DWI

M. M. Saleh (9)

2020

Manual segmentation

Apparent diffusion coefficient
(ADC), Minimum and average
ADC values

The article highlights the importance
of using multi-parameter MRI,
especially DWI and ADC maps, in
predicting the sensitivity of

osteosarcoma to chemotherapy, and

(Continued on following page)
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TABLE 1 (Continued) Characteristics of the 24 studies included in the present review.

Imaging Author Year of

method publication

Patients

Centers

Image segmentation

Radiomics information

extraction

Prediction model
building

General result

points out the limitations of
traditional assessment methods based
on tumor volume change

(18)F-FDF PET/CT

(18)F-FDF PET/CT B. C. Kim (35) = 2021

(18)E-FDG PET/CT Kim, ] (36). 2021

N =105

1

Manual segmentation (ROI)

Manual segmentation (ROI)

LiFEx (version 4.0)

LIFEx version 4.0

RF, GB. CNN

RF, SVM. 2D CNN,
dropout

The chemotherapy response and
metastasis test accuracy with image
texture features was 0.83 and 0.76,
respectively. The highest test accuracy
and AUC of chemotherapy response
with AUC_max, KI67, and EZRIN
were estimated to be 0.85 and 0.89,
respectively. The highest test accuracy
and AUC of metastasis with
AUC_max, KI67, and EZRIN were
estimated to be 0.85 and 0.8,
respectively. The metastasis
prediction accuracy increased by 10%
using radiogenomics data

The prediction model for NAC
response with baseline PETO ((18)F-
FDG positron emission tomography/
computed tomography (PET/CT)
images were acquired before) texture
features machine learning estimated a
poor outcome, but the 2D CNN
network using (18)F-FDG baseline
PETO images could predict the
treatment response before prior
chemotherapy in osteosarcoma.
Additionally, using the 2D CNN
prediction model using a tumor
center slice of (18)F-FDG PET images
before NAC can help decide whether
to perform NAC to treat
osteosarcoma patients

(18)F-FDG PET/CT H. Song (37) 2019

Manual segmentation (ROI)

PyRadiomics; calculate the
traditional parameters such as
SUVmax, SUVmean, MTV
and TLG

Pearson correlation
analysis, Student’s t-test,
Kaplan-Meier

Metabolic tumor volume (MTV) is
the best parameter for predicting
chemotherapy response, with an area
under ROC curve of 0.918 and a p
value of less than 0.0001, indicating
high predictive accuracy

(18)F-FDG PET/CT S. Y. Jeong (38) = 2019

Manual segmentation (ROT)

Chang-Gung Image Texture
Analysis tool box (open source

SVM. RF. GB, PCA

AUCs of the baseline (18)F-FDG
features SUVmax, TLG, MTV, 1st
entropy, and gray level co-occurrence

(Continued on following page)
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TABLE 1 (Continued) Characteristics of the 24 studies included in the present review.

Imaging

method

Year of
publication

Author

Patients

Centers

Image segmentation

Radiomics information
extraction

software package based on
MATLAB)

Prediction model
building

General result

matrix entropy were 0.553, 0538,
0.536, 0.538, and 0.543, respectively.
However, AUCs of the machine
learning features linear SVM, random
forest, and gradient boost were 0.72,
0.78, and 0.82, respectively

99m Tc-MDP bone 1. Lee, B (39) 2018 N =62 1 Manual segmentation: T/N (T/NT max), SUVmax Spearman rank correlation | The Tc-MDP bone scan and F-FDG
scintigraphy and 18F- 99m Tc-MDP bone scintigraphy analysis PET scan showed respective
FDG PET/CT (ROI), advantages with differing features
{18}F-FDG PET (VOI)
(18)F-FDG PET/CT J. C. Davis (40) = 2018 N =34 1* Manual segmentation SUVmax, MRLTumor volume logistic regression analysis SUV (max) on routine images at 5 or
10 weeks and percentage change in
SUV (max) from baseline to week
10 were metabolic predictors of a
histologic response in OS
dual-phase (18)F-FDG  B. H. 2015 N =34 1* Manual segmentation (ROT) SUVmax, arly/delayed SUVmax | Mann-Whitney test, By using combined criterion of %
PET/CT Byun (41), change (RImax), early/delayed Wilcoxon signed rank test |~ SUV and RImax2 or SUV2 and
SUVmean change (RImean), RImeanl or SUV2 and RImax2,
Percentage change before and accuracies were 81%, 77%, and 77%.
after treatment (% SUV) The histological response after NAC
could be predicted by using
RImean] before the initiation of NAC
in osteosarcoma. The combined use
of SUV and RI values may provide a
better prediction
Combine multiple methods
X-ray and MRI Z. Luo (23) 2023 N =102 1 Manual segmentation (ITK-SNAP = Pyradiomics package extract LR, DCA Models using clinical, X-ray
marks ROI) features from ROI radiomics, MRI radiomics, X-ray plus
Intra-group correlation MRI radiomics, and all data
coefficient (ICC) (ICCs >0.75): combined had AUC values of 0.760,
filter features mRMR and LASSO 0.706, 0.751, 0.796, and 0.828,
regression:feature selection respectively
Multiparametric MRI M. M. Saleh (9) = 2020 N =53 1* Manual segmentation Apparent diffusion coefficient 0 The article highlights the importance
with DWI (ADC), Minimum and average of using multi-parameter MRI,
ADC values especially DWI and ADC maps, in
predicting the sensitivity of
osteosarcoma to chemotherapy, and
points out the limitations of
traditional assessment methods based
on tumor volume change
1. Lee, B (39) 2018 N =62 1 Manual segmentation: T/N (T/NT max), SUVmax Spearman rank correlation

99m Tc-MDP bone scintigraphy

analysis

(Continued on following page)
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The Tc-MDP bone scan and F-FDG
PET scan showed respective

General result

advantages with differing features

SUV (max) on routine images at 5 or
10 weeks and percentage change in

SUV (max) from baseline to week

10 were metabolic predictors of a

histologic response in OS

Prediction model

building

logistic regression analysis

Radiomics information

extraction

SUVmax, MRIL:Tumor volume
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publication

TABLE 1 (Continued) Characteristics of the 24 studies included in the present review.

scintigraphy and 18F-

99m Tc-MDP bone
FDG PET/CT
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Manual segmentation

1*

N =34

2018

J. C. Davis (40)

(18)F-FDG PET/CT

T2WL:axial T2-weighted imaging; T1CE:contrast-enhanced T1-weighted imaging; IVIM-MRI:Non-invasive intravoxel incoherent motion MRI; DCE-MRI:Dynamic Contrast Enhanced MRI; (18)F-FDG PET: (18)F-fluorodeoxyglucose positron emitted tomography;

in three different centers, Multicenter retrospective study; 0:No machine learning methods were used to predict chemotherapy effects, traditional

wo centers and different hospitals; 3
statistical analysis was used; 0:No machine learning methods were used to predict chemotherapy effects, traditional statistical analysis was used; GB:Gradient Boosting algorithm; RF:Random Forest; LR:Logistic Regression; ROC:Receiver Operating Characteristic; DCA:

1* = a single center prospective study; 1 = a singlecenter retrospective study; 2

Decision Curve Analysis; MLP:Multilayer Perceptron; LR:Logistic Regression; SVM:Support Vector Machine; DLR:Deep Learning Radiomics; BETV:Bi-exponential model with Total Variation Penalty function; GLCM:Gray Level Cooccurrence Matrix; SFR:Space-

Filling Ratio; 2D CNN:2-dimensional convolutional neural network; LASSO:Least Absolute Shrinkage and Selection Operator; LOOCV:Leave-One-Out Cross-Validation; mRMR:Maximum Relevance Minimum Redundancy Feature Selection Method; ANN:Artificial

Neural Network; KNN:K-nearest neighbor; CNN:Convolutional Neural Network.
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methodology, evaluating accuracy and reproducibility as these directly
impact feature extraction precision; and feature selection and computation
processes, examining methodological rigor. This comprehensive scoring
system enabled objective quality assessment across studies, helping identify
methodological strengths and limitations while providing readers with
transparent quality benchmarks (Tables 2, 3).

The RQS evaluation served dual purposes: guiding researchers in
improving study design and enabling readers to critically appraise result
reliability. All quality assessments were conducted independently by two
reviewers, with discrepancies resolved through consensus discussion
involving a third investigator when necessary. This rigorous approach
ensured unbiased quality appraisal while maintaining consistency with
current best practices in radiomics research.

Statistical analysis

To quantitatively evaluate the predictive performance of different
imaging modalities (Xray, CT, MRI, PET-CT) in assessing
osteosarcoma response to neoadjuvant chemotherapy, we
conducted a meta-analysis using a random-effects model. Pooled
sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC) were calculated to determine the
diagnostic accuracy of each imaging approach. The statistic was
used to assess study heterogeneity, with significant heterogeneity
defined as I* > 50% and p < 0.05. All statistical analyses were
performed using specialized software (Rstudio, IBM SPSS Statistics,
Review Manager) to ensure accuracy and reliability (Figures 2, 3).

This analytical approach allowed for robust comparison of
imaging modalities while accounting for potential variations
across studies, thereby strengthening the validity of our findings.

Radiomics and deep learning methodology

The radiomics pipeline for osteosarcoma NAC prediction relies
heavily on deep learning (summarized in Table 1) (10, 17, 19).

1. Image segmentation: Frameworks like nnU-Net and
Auto3DSeg enable precise tumor delineation;

2. Feature extraction: Software tools extract thousands of
quantitative  features  (morphological, intensity-based,
textural) from MRI/CT to characterize tumor heterogeneity;

3. Model building: CNNs automate hierarchical feature learning,
bypassing manual selection bias. Their end-to-end training—via
localized convolution kernels and backpropagation-optimizes
predictive performance for high-dimensional imaging data.
These models now extend beyond chemosensitivity prediction to

tumor grading, survival analysis, and metastatic risk stratification.

Results
Literature retrieval and study selection
A total of 1015 potentially relevant records were initially

identified through searches in three databases: PubMed (n =
257), Embase (n = 632), and Web of Science (n = 126). After
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removing duplicate records, 423 studies remained for further
evaluation.

Subsequently, two independent investigators screened the titles
and abstracts of these 423 studies, excluding 321 records that clearly
did not meet the eligibility criteria. Additionally, 6 reports could not
be retrieved despite efforts to access full texts, leaving 96 studies for
full - text review.

During the full - text assessment, studies were excluded for the
3), lack of
osteosarcoma - specific results (n = 3), focus only on post -

following reasons: no outcome of interest (n

neoadjuvant chemotherapy (NAC) assessment (n = 4), focus only
= 11), evaluation of
13),
duplicate articles (n = 4), and no association with radiomics (n =

33). Finally, 25 studies were included in the systematic review and

on prognosis rather than prediction (n

chemotherapy response without predictive analysis (n

meta - analysis. The detailed flow of study selection is presented
in Figure 1.

Statistical analysis

The forest plot (Figure 2) presents a comparative analysis of
diagnostic performance among different imaging modalities (CT,
MR, and "*F-FDG PET/CT) in predicting chemotherapy response
sensitivity. Chemotherapy response sensitivity was defined as the
histological response of the tumor to NAC, with a good response
defined as >90% tumor necrosis. All included studies used this
consistent cutoff. For each modality, we have included studies from
various years and authors, along with their respective sample sizes.
The primary outcome measure-the area under the curve (AUC) with
95% confidence intervals-serves as an indicator of diagnostic
1.0
performance. Key findings from the analysis reveal distinct

accuracy, where values closer to represent  superior
patterns across modalities: CT demonstrated moderate diagnostic
utility with AUC values ranging from 0.750 to 0.950 across studies,
though with notable variability between reports. MRI consistently
showed high and stable predictive accuracy, with AUC values
between 0.873 and 0.961 in all included studies. '*F-FDG PET/
CT exhibited the widest performance variation, with AUC values
spanning from 0.726 to 0.948, indicating inconsistent predictive
capability across different study populations.

The comparative analysis suggests that MRI currently offers the
most reliable and consistent performance for predicting
chemotherapy response sensitivity in osteosarcoma, while both
CT and "F-FDG PET/CT show greater variability in diagnostic
accuracy. These findings may inform modality selection for clinical
decision-making regarding neoadjuvant chemotherapy response
assessment.

We conducted a meta-analysis to pool AUC data from multiple
relevant studies (Figure 3). This figure presents the AUC values of
individual studies for different imaging modalities (CT, PET-CT,
MRI), along with their respective weights and the pooled AUC
values calculated using both fixed-effect and random-effects models.
This comprehensive approach evaluates the diagnostic performance
of each modality in predicting chemotherapy response sensitivity.

For CT (Figure 3A), three studies were included, showing
variability in AUC values—ranging from 0.750 (F.Yang, 2024) to

0.950 (D.Fu, 2023). Significant heterogeneity was observed (I* =
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69.9%), indicating limited consistency across studies. The pooled
AUC was 0.90 (fixed-effect) and 0.86 (random-effects).

PET-CT (Figure 3B) incorporated four studies, with AUC values
fluctuating between 0.7760 [Byun, (41)] and 0.9180 [Song, (37)].
Low heterogeneity (I* = 2.0%) suggested high inter-study
consistency. Both models yielded a pooled AUC of 0.84.

MRI (Figure 3C) demonstrated the strongest performance
among the three modalities. Seven studies were analyzed, with
most reporting high and clustered AUC values {e.g., 0.9410 [Xia,
(33)] and 0.8280 [Luo, (23)]}. Heterogeneity was low (I* = 23.4%),
and the pooled AUC was 0.92 under both models.

MRTI’s superiority stems from several factors. First, its
exceptional soft-tissue contrast and spatial resolution enable
precise visualization of tumor involvement in bone marrow, soft
neurovascular  bundles, and joints—critical ~ for
chemotherapy response assessment (42). Second, radiomics

tissues,

allows high-throughput feature extraction from MRI data, while

multimodal sequences integrate complementary biological
information to enhance predictive accuracy (43, 44). Advanced
techniques like IVIM-MRI further contribute to this capability (29).

Additionally, functional MRI methods such as DCE-MRI and
DWI quantify tumor vascularity and cellularity, providing robust
biomarkers for treatment response (9). Baseline MRI features also
show significant value in predicting chemoresistance, particularly
when combined with machine learning (45). Unlike CT, MRI avoids
ionizing radiation and offers multiplanar imaging (axial, coronal,
sagittal), facilitating comprehensive anatomic evaluation. These
advantages make MRI indispensable for pretreatment tumor
staging and chemotherapy response

prediction, ultimately

supporting clinical decision-making (46).

Discussion

The present review confirms that radiomics, particularly when
integrated with deep learning, holds significant promise for
predicting NAC response in osteosarcoma. Among imaging
modalities, MRI demonstrates superior performance, with pooled
AUC of 0.92 across studies, making it the most reliable tool for
clinical decision-making. This is attributed to its ability to capture
both anatomical and functional tumor characteristics (e.g., DWI for
cellularity, DCE-MRI for vascularity), which directly reflect
chemotherapy-induced biological changes.

We categorized studies by imaging type and generated a pooled
AUC forest plot (Figure 3), highlighting sensitivity differences.

X-ray films

Plain radiography serves as a fundamental imaging modality for
the initial evaluation of suspected bone tumors. By assessing lesion
location, mineralization patterns, and margin characteristics, it
provides essential guidance for differential diagnosis and remains
the optimal macroscopic imaging method for demonstrating
primary bone tumor features. Prior to advanced imaging (CT or
MRI), radiologists should review radiographs to optimize scan
protocols based on tumor size and location, ensuring maximal
diagnostic yield from subsequent examinations (42).
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In the context of osteosarcoma NAC response prediction,

radiography maintains critical clinical relevance. Emerging
evidence demonstrates that integrating radiographic features with
clinical and advanced imaging data significantly enhances predictive
accuracy. A 2023 study by Luo et al (23) analyzed combined X-ray
and MRI features in 102 osteosarcoma patients. Their results

revealed that a multimodal model incorporating radiomics and

clinical parameters achieved superior performance (AUC
0.828) compared to: Clinical-only models (AUC = 0.760); X-ray-
only models (AUC = 0.706); MRI-only models (AUC = 0.751);
Simple X-ray + MRI combined models (AUC = 0.796).

These findings underscore that while radiography has inherent
limitations as a standalone predictor of NAC response, its
foundational imaging data—when systematically integrated into
comprehensive assessments—provides indispensable value for
refining  predictive and

accuracy supporting  personalized

treatment strategies.

Computed tomography

CT imaging serves as a cornerstone in osteosarcoma diagnosis
and treatment evaluation, providing precise assessment of tumor
volume dynamics, local extension, and critical morphological
features including margin characteristics, internal architecture,
calcification patterns, bone destruction extent, and periosteal
reaction (43). The advent of radiomics has further enhanced CT’s
utility by enabling quantitative extraction of subtle imaging
biomarkers to improve chemotherapy response prediction.

Extensive research has demonstrated the significant efficacy of
CT-derived analyses in predicting osteosarcoma chemotherapy
response through multiple sophisticated approaches. These
methodologies range from radiomics model construction to the
integration of clinical parameters and peri-tumoral bone
characterization.

The 2021 study by Xu (15) revealed critical insights into feature
selection strategies. Their analysis demonstrated that incorporating
both tumor and peri-tumoral bone features significantly improved
pathological response prediction accuracy compared to tumor-only
analysis. Using leave-one-out cross-validation (LOOCV), the
combined-feature classifier achieved AUC values of 0.791 (95%
CL: 0.706-0.860) in the training set and 0.816 (95% CI:
0.662-0.920) in the validation set. Further enhancement was
observed when clinical parameters including age, sex, and tumor
location were integrated, boosting the validation AUC to 0.811.

Subsequent investigations have identified additional potent CT
biomarkers. Fu et al. (25) study of pediatric osteosarcoma patients
identified two exceptional predictors: the peri-tumoral fat
attenuation index (FAI) demonstrated perfect sensitivity (100%)
with an AUC of 0.950, while 6-h methotrexate serum concentration
showed perfect specificity (100%) with an AUC of 0.963. These
findings for and

suggest roles

pharmacological metrics in response prediction.

complementary imaging

The evolving field of radiomics received further validation
through F. Yang’s 2024 work (24), which distilled 1,233 high-
consistency CT features to three clinically relevant biomarkers via
LASSO logistic regression. While the standalone radiomics model
0.68), its

showed moderate performance (validation AUC
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integration with clinical factors improved predictive accuracy
(validation AUC
excellent calibration between predicted and observed Huvos

0.75). The resultant nomogram exhibited

grades, confirming the clinical utility of combined models.

These cumulative findings underscore CT imaging’s dual role in
osteosarcoma management providing both detailed anatomical
evaluation and quantitative biomarkers for treatment response
The
exceeding 0.75 across multiple study designs confirms CT’s

prediction. consistent demonstration of AUC values
robust predictive value when combined with advanced analytical
approaches, offering clinicians valuable tools for personalized
therapeutic decision-making.

The progressive improvement in predictive accuracy from
isolated radiomics (AUC = 0.70) to integrated models (AUC = 0.80)
highlights the importance of multimodal data synthesis, with CT
serving  as fundamental in comprehensive

a component

assessment protocols.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) has emerged as a
cornerstone in osteosarcoma management, offering unparalleled
capabilities in predicting neoadjuvant chemotherapy (NAC)
response through its multimodal imaging approach. Conventional
Tl-and T2-weighted sequences provide exceptional soft tissue
contrast, enabling precise delineation of tumor boundaries,
intramedullary extension,and soft tissue component size (42).
These anatomical assessments are significantly enhanced by
functional MRI techniques: DCE-MRI (47) quantifies tumor
vascular permeability and perfusion characteristics, while DWI
evaluates cellular density-both serving as critical biomarkers for
chemotherapy response monitoring (44, 46).

The predictive superiority of MRI manifests in several
key aspects:

Superior anatomical and functional assessment

MRP’s high spatial resolution and multiplanar capabilities allow
comprehensive evaluation of neurovascular bundle involvement and
joint infiltration, establishing crucial baseline data for treatment
planning. Numerous studies validate MRTI’s effectiveness in tracking
tumor aggressiveness, volumetric changes, and structural alterations
during therapy (43). The inherent contrast between tumor and
normal tissue on T1/T2-weighted imaging provides reliable
morphological assessment (42), while functional sequences offer
dynamic monitoring: DCE-MRI detects chemotherapy-induced
vascular changes, and DWI demonstrates particular utility in
differentiating responders from non-responders at mid-treatment
(9). Saleh et al. (9) emphasized the prognostic value of DWI-derived
apparent diffusion coefficient (ADC) measurements, noting
significant ADC increases in responders and establishing ADC
percentage change as a robust response indicator.

Advanced radiomics and predictive modeling
MRTI’s multiparametric nature has propelled its dominance in

radiomics research (44). The 2022 study by Zhong et al. (10)

developed an automated pipeline using nnU-Net segmentation

(Dice coefficient 0.869) to extract radiomic features from
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F. Yang2024

Y. Zhang2024
Z. Luo2023

D. Fu2023

J. Zhong2022
K. Y. Teo2022
Xibin Xia2022
L. Xu2021

Kim, J.2021
L.Zhang2021
C. Wu2019

H. Song2019

S. Y. Jeong2019
J. Dufau2019

l. Lee, B2018
J. C. Davis2018
G. J. Djuri

Total 16 items 16 15 16 15 10 6 10 6 8 8 6 7 15 9 9 9 9 9 10 7 9 10 7 =5 9 9
(ideal score 36 = 100%)

1 | Image protocol quality (2 points) 2 2 2 2 1 1 1 1 2 0 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2 1

2 | Multiple segmentations (1 point) 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0

3 | Phantom study on all scanners 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1 point)

4 | Imaging at multiple time points 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0
(1 point)

5 | Feature reduction or adjustment for 3 3 3 3 -3 3 -3 3 -3 -3 3 3 3 3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

multiple testing (-3 or 3 points)

6 | Multivariable analysis with non- 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1
radiomics features (1 point)

7 | Detect and discuss biological 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
correlates (1 point)

8 | Cut-off analyses (1point) 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 | Discrimination statistics (2 points) 2 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1 1 2 2 1 2 2 2 1 2 2

10 | Calibration statistics (2 points) 1 1 1 1 2 1 2 1 0 2 1 1 0 0 0 0 0 2 2 0 2 2 0 0 0 1

11 | Prospective study registered in a trial 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0

database (7 points)

12 | Validation (-5, 2, 3, 4, or 5 points) 2 2 2 2 2 -5 2 -5 -5 2 -5 -5 2 -5 2 2 2 2 2 2 2 2 -5 -5 3 2

13 | Comparison to gold standard 0 0 0 0 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 0 2 2 0 0 0 2
(2 points)

14 | Potential clinical utility (2 points) 2 2 2 2 2 1 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 0 2 2

15 | Cost-effectiveness analysis (1 point) 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 = Open science and data (0-4 points) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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TABLE 3 Radiomics Quality Score (RQS) rating of included studies.

Range

Median

10.3389/0r.2025.1633211

Adherence rate,
n (%)

Percentage of ideal score,
n (%)

Total 16 items (ideal score 36 = 100%) —8-36 9 244/900 (27.1) 220/400 (55)
1 | Image protocol quality (2 points) 0-2 1 16/50 (32) 24/25 (96)
2 Multiple segmentations (1 point) 0-1 0 10/25 (40) 10/25 (40)
3 | Phantom study on all scanners (1 point) 0-1 0 0/25 (0) 0/25 (0)
4 | Imaging at multiple time points (1 point) 0-1 0 10/25 (40) 10/25 (40)
5 | Feature reduction or adjustment for multiple testing (-3 or -3to03 -3 30/75 (40) 10/25 (40)

3 points)

6 | Multivariable analysis with non-radiomics features (1 point) 0-1 1 18/25 (72) 18/25 (72)
7 | Detect and discuss biological correlates (1 point) 0-1 0 2/25 (8) 23/25 (92)
8 | Cut-off analyses (I1point) 0-1 1 22/25 (88) 22/25 (88)
9 | Discrimination statistics (2 points) 0-2 2 32/50 (64) 25/25 (100)
10 | Calibration statistics (2 points) 0-2 1 14/50 (28) 15/25 (60)
11 | Prospective study registered in a trial database (7 points) 0-7 0 14/175 (8) 2/25 (8)
12 | Validation (-5, 2, 3, 4, or 5 points) -5t05 2 0/125 (0) 17/25 (68)
13 | Comparison to gold standard (2 points) 0-2 2 32/50 (64) 16/25 (64)
14 | Potential clinical utility (2 points) 0-2 2 40/50 (80) 24/25 (96)
15 | Cost-effectiveness analysis (1 point) 0-1 0 4/25 (16) 4/25 (16)
16 | Open science and data (0-4 points) 0-4 0 0/100 (0) 0/25 (0)

The ideal score was described as score and percentage of score to ideal score for each item. In the cases where a score of one point per item was obtained, the study was considered to have basic
adherence to each item. The adherence rate was calculated as proportion of the number of articles with basic adherence to number of total articles.

clinical-radiomic
0.793,
accuracy = 79.1%) compared to clinical-only (AUC = 0.699) or
radiomics-only (AUC = 0.759) models. Subsequent research by
Zhang et al. (2024) (20) demonstrated even more impressive

preoperative  T2-weighted Their

nomogram achieved superior performance (AUC =

images.

results, with a combined pre- and post-NAC model reaching
AUC values of 0.999 (training) and 0.915 (testing). Zheng et al.
(27) deep learning radiomics (DLR) approach further advanced the
field, achieving 93.8% accuracy and 0.961 AUC in NAC response
prediction, outperforming conventional models.

Multimodal integration and specialized techniques

The synergistic combination of MRI sequences provides
multidimensional tumor characterization. Some studies used
multimodal MRI before neoadjuvant chemotherapy to build
machine learning models, and achieved high AUC values in the
training set and test set (0.999 and 0.915, respectively) (28).
Multiparametric models incorporating DCE-MRI and intravoxel
incoherent motion (IVIM) DWI have shown particular promise,
with parameters like D-value and Kep demonstrating strong
predictive value for disease progression (33). Specialized analysis
methods, including fractal analysis and gray-level co-occurrence
matrix (GLCM) calculations, have identified novel biomarkers like
the shape factor ratio (SFR) with 82% prediction accuracy (31).
Analysis of pretreatment MRI parameters has identified several
predicting
resistance in osteosarcoma patients. Among these, tumor volume

robust imaging biomarkers for chemotherapy

Oncology Reviews

and maximum axial diameter demonstrate statistically significant
predictive value, with tumor size emerging as the most potent
independent predictor (p = 0.025 for volume, p = 0.045 for
maximum diameter) (11).

DCE-MRI's unique contributions

As a functional MRI technique, DCE-MRI provides distinct
advantages in chemotherapy response assessment. Its semi-
quantitative parameters (slope, time-to-peak, enhancement ratio)
have demonstrated remarkable predictive value, with Zeng et al. (32)
reporting 83.3%-91.7% sensitivity and 69.2%-92.3% specificity at
optimal thresholds. The radiomics model based on DCE-MRI data
established by machine learning has achieved excellent performance.
One study reported that the auc of training/testing was 0.94/0.95 and
the accuracy was more than 90% (34). Another pre-treatment model
incorporating DCE-MRI features reached AUCs of 0.95 (training)
and 0.97 (validation) with 91% sensitivity and 92% specificity (19).
These results surpass conventional imaging modalities in functional
assessment capability.

The accumulated evidence positions MRI as an indispensable
tool for personalized osteosarcoma management. Its ability to
integrate high-resolution anatomical imaging with functional and
radiomic biomarkers creates a comprehensive assessment platform
for chemotherapy response prediction. As deep learning technology
continues to improve acquisition protocols and analysis methods,
MRP’s role in optimizing treatment strategies and improving patient
outcomes will undoubtedly expand (9). The modality’s non-invasive
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Forest plot of AUC values for chemotherapy response prediction across imaging modalities.

nature, absence of ionizing radiation, and capacity for longitudinal
monitoring further solidify its position as the imaging technique of
choice for osteosarcoma NAC response evaluation.

Radionuclide bone imaging

Radionuclide bone scintigraphy remains a valuable imaging
modality for osteosarcoma evaluation, particularly in detecting
skeletal lesions that may be occult on conventional radiographs,
though its specificity is limited by similar uptake patterns in both
benign and malignant processes. This technique provides essential
whole-body screening capability for multifocal disease detection
and enables longitudinal monitoring of therapeutic response across
multiple lesions (48). In parallel, advanced MRI techniques have
revolutionized response assessment in osteosarcoma patients
undergoing neoadjuvant chemotherapy, with the interval change
in apparent diffusion coefficient (ADC) between baseline and mid-
treatment MRI (AADC2) emerging as a particularly promising
early response biomarker. AADC2 demonstrates superior accuracy
to later ADC measurements in forecasting treatment outcomes,
often revealing therapeutic effects weeks before morphological
The
AADC2 changes at mid-treatment evaluation may help identify

changes become apparent. absence of favorable

non-responders, potentially earlier transition to

chemotherapy

enabling

alternative regimens or surgical planning
adjustments while avoiding unnecessary treatment toxicity.
These ADC

chemotherapy-induced alterations in tumor cellular density and

quantitative changes  reflect meaningful

tissue microstructure. The integration of radionuclide imaging’s
whole-body disease burden evaluation with functional MRI’s

precise quantitative monitoring creates a comprehensive
assessment  framework that supports more informed,
personalized treatment decisions in osteosarcoma

management (49).

Oncology Reviews

18F-Fluorodeoxglglucose Positron Emission
Tomography (**F-FDG-PET)

Research on FDG-PET for predicting
chemotherapy response in osteosarcoma has made significant

neoadjuvant

progress. As early as the 1990s, initial studies explored the
relationship between FDG-PET parameters and chemotherapy
efficacy. Between 2010 and 2015, researchers found that a
significant decrease in standardized uptake value (SUV) of
osteosarcoma lesions on FDG-PET after chemotherapy correlated
with better treatment response. In 2015, Byung Hyun Byun et al.
(41) demonstrated that the mean SUV change (RImeanl) in dual-
phase 18F-FDG PET/CT (early and delayed imaging) before
chemotherapy could predict favorable histological response, with
an optimal threshold of <10%, sensitivity of 92%, specificity of 57%,
and diagnostic accuracy of 71%.

Multiparametric FDG-PET analysis, including SUVmax, total
lesion glycolysis (TLG), metabolic tumor volume (MTV), and total
tumor glycolysis, has further improved the accuracy of predicting
neoadjuvant chemotherapy response, providing stronger support
for precision medicine. Predictive models based on 18F-FDG uptake
heterogeneity features (e.g., gray-level size zone matrix, GLSZM)
achieved an AUC of 0.626 at baseline (PET0) (36). Additionally,
texture features such as coarse-grained neighborhood gray-tone
difference matrix (NGTDM) were
factors, significantly associated with event-free survival (p =
0.005), confirming the potential of baseline 18F-FDG PET texture
analysis in predicting chemotherapy response (37).

For example, in 2019, Song et al. (37) identified MTV as the best
predictor of chemotherapy response, with an AUC of 0.918 (p <
0.0001), indicating high predictive accuracy. In 2018, Lee et al. (39)
found that both 9mTc-MDP bone scintigraphy and 18F-FDG PET/
CT had high accuracy in predicting osteosarcoma treatment

independent prognostic

response, with no significant difference between the two (P =
0.44). For predicting good pathological response (=90% tumor
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FIGURE 3
Pooled AUC values across imaging modalities.

necrosis), 99mTc-MDP bone scintigraphy (D%T/NTmax) showed
83.3% sensitivity and 75.0% specificity, while 18F-FDG PET/CT (D
%SUVmax) demonstrated 80.0% sensitivity and 81.3% specificity,
suggesting their complementary role in clinical decision-making.
FDG-PET parameter changes at different treatment time points
also have predictive value. Davis et al. (40) found that SUVmax at
5 weeks (P = 0.034) and 10 weeks (P = 0.022), as well as the
percentage change in SUVmax from baseline to week 10 (P = 0.021),
were strong predictors of pathological response, with sensitivities of
0.93, 093, and 0.79 and specificities of 0.53, 0.71, and 0.76,

Oncology Reviews

respectively. Early PET/CT assessment at 5 weeks could help
adjust subsequent treatment strategies.

breakthroughs
technologies such as machine learning (e.g., linear SVM, random

Recent involve  integrating  advanced
forest, gradient boosting) and deep learning (e.g., 2D CNN) with
FDG-PET texture features to enhance predictive performance. In
2019, Jeong et al. (38) analyzed baseline 18F-FDG PET texture
features in 70 high-grade osteosarcoma patients and found that
machine learning models achieved AUCs of 0.72 (linear SVM), 0.78

(random forest), and 0.82 (gradient boosting). Changes in texture
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features post-chemotherapy, such as SUVmax percentage change
(AUC = 0.863), first entropy (AUC = 0.767), and GLCM entropy
(AUC = 0.775), also predicted treatment response. In 2021, Kim
et al. (36) reported that a 2D CNN deep learning model
outperformed traditional machine learning in  pre-
chemotherapy prediction, with test accuracy ranging from
0.625 to 0.760.

Radiogenomics, combining imaging features with gene
expression (e.g., KI67 and EZRIN), further improved predictive
accuracy. A random forest model achieved a test accuracy of 0.83,
which increased to 0.85 (AUC = 0.89) when integrated with AUC_
max, KI67, and EZRIN (35).

Additionally, 99mTc-MIBI scintigraphy is a useful tool for
assessing neoadjuvant chemotherapy response in osteosarcoma. A
2019 study by Wu et al. (26) on 30 osteosarcoma patients showed
that pre-chemotherapy tumor washout rate negatively correlated
with necrosis rate, while post-chemotherapy uptake change rate
positively correlated with necrosis rate, confirming its
predictive value.

Although FDG-PET has limitations in primary bone tumor
diagnosis, its role in detecting non-osseous metastatic lesions
provides critical information for tumor staging and treatment
planning. With further multidisciplinary research, FDG-PET is
expected to play an even greater role in optimizing osteosarcoma
management.

From a clinical perspective, these findings can transform patient
management in three key ways:

Treatment personalization: Preoperative radiomics models
can identify patients unlikely to respond to standard NAC,
enabling early switch to alternative therapies (e.g., targeted
agents in clinical trials) and avoiding unnecessary toxicity (2,
19); Trial design optimization: By stratifying patients based on
predicted response, radiomics can reduce sample sizes in
clinical trials and improve the efficiency of novel therapy
evaluation (10); Workflow integration: MRI radiomics can be
incorporated into routine preoperative assessments, with
model

with

automated segmentation and prediction

taking <30 minutes—compatible standard clinical
timelines (2, 19).

Despite these strengths, limitations exist. Most studies are
single-center with small sample sizes, limiting generalizability (6,
50). Additionally, variability in imaging protocols (e.g., MRI
sequence parameters) institutions hinders model
(46).

Standardizing imaging acquisition and radiomics pipelines

across

reproducibility Future research should prioritize:
across centers to ensure model robustness; Validating models
in prospective cohorts, with focus on real-world clinical utility
(e.g., reducing unplanned surgeries due to poor response);
Integrating radiomics with genomic and clinical data to
develop “multi-omics” prediction systems, further refining
patient stratification (5, 35).

In summary, radiomics-driven prediction of NAC response in
osteosarcoma is transitioning from a research tool to a clinically
technology. ~ With

standardization, it will play a central role in personalized

actionable rigorous  validation  and

oncology, improving patient outcomes and optimizing healthcare
resource allocation (6, 50).
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Conclusion

Predicting chemotherapy response in osteosarcoma remains a
critical challenge for optimizing treatment and improving outcomes.
While conventional imaging techniques—X-ray, CT, MRI, bone
scintigraphy, and FDG-PET—each provide valuable insights,
limitations persist. MRI shows particular promise in assessing
neoadjuvant chemotherapy response, whereas FDG-PET offers
metabolic profiling advantages.

Current limitations include variability in imaging protocols,
analytical methods, and the predominance of single-center
studies with small sample sizes, which may affect generalizability.
Moving forward, standardizing imaging protocols, expanding
multicenter collaborations, and refining deep learning models will
be essential. Incorporating clinicopathological and molecular data
may further improve predictive performance. Future research
artificial
intelligence, and multimodal imaging to enhance predictive

should focus on integrating novel biomarkers,
accuracy and enable personalized treatment strategies. With these
advancements, more precise and clinically actionable predictive
systems can be developed, ultimately improving osteosarcoma

management and patient outcomes.
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