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Introduction: Osteosarcoma is the most common malignant tumor of bone
tissue in adolescents, and precise pathological diagnosis is the primary
foundation for establishing the most effective treatment plan. The
pathological evaluation of tumor necrosis after chemotherapy is crucial for
assessing therapeutic efficacy in osteosarcoma patients. However,
pathologists often face several challenges during the diagnosis and
evaluation process.
Methods: To address these needs, we designed and developed a multi-model
cascaded deep learning framework utilizing an advanced Vision Mamba (ViM)
model as the core network architecture. The study employed one of the most
comprehensive osteosarcoma datasets, sourced from: (1) real-world data from
68 osteosarcoma patients collected at Chongqing General Hospital, and (2)
publicly available osteosarcoma assessment data from the University of Texas
Southwestern/UT Dallas. Pathological images were annotated using the Palgo
pathology image artificial intelligence self-training platform according to
algorithm requirements. A triple verification mechanism of annotation, review,
and archiving was implemented, and Palgo’s integrated interactive algorithm
correction mechanism was used to continuously refine the data
annotation process.
Results and Discussion: Themodel demonstrated Dice coefficient values of 0.83
or higher in tumor segmentation, osteosarcoma osteoid matrix segmentation,
necrotic area segmentation, lung metastatic tumor segmentation, and lung
metastatic osteoid matrix segmentation. For necrosis classification, overall
osteosarcoma subtypes, and localized osteosarcoma subtypes, the area under
the receiver operating characteristics curve (AUC), sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) all exceeded 90%. The
proposed model exhibited excellent performance, indicating high potential for
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future clinical application in osteosarcoma patients. This framework shows promise
for enhancing the precision and efficiency of pathological diagnosis and evaluation
in osteosarcoma management.
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1 Introduction

Osteosarcoma is a rare cancer, but it is themost commonmalignant
bone cancer primarily affecting individuals between the ages of 10 and
30, making it the third most common cancer among children and
adolescents (1, 2). Annually, there are approximately 4.4 cases per
million children worldwide (3). The disease can be classified in various
ways, including primary and secondary types. Primary osteosarcoma
accounts for 75% of cases (3), typically occurring in children and young
adults and presenting as abnormal bone growth, while secondary
osteosarcoma is more common in adults with mature bones, usually
triggered by another disease. Primary osteosarcoma also varies in form,
with common types including intramedullary, parosteal, and periosteal
osteosarcomas (4). In addition, osteosarcomas can be categorized as
conventional central osteosarcoma (commonly featuring osteoblastic,
chondroblastic, and fibroblastic cells), vascular spread type, intrabony
type, and small cell osteosarcoma (5).

The most common sites for osteosarcoma are the femur (42%),
tibia (19%), and humerus (10%) (6). Those located at the distal
femur and proximal tibia have a survival rate of 50%–65%, however
25%–50% of patients with initial metastases succumb to pulmonary
metastasis (7). Although the progression of localized and distant
osteosarcoma metastases is slow, the presence or absence of
metastasis is an important prognostic factor (8). Additionally,
cancer cells often exhibit abnormal apoptotic mechanisms that
promote tumor development and pose challenges for the effective
treatment of tumors due to the resulting resistance to treatment (9).
Thus, early detection and accurate prediction of treatment responses
in osteosarcoma are crucial for improving patient prognosis.

Moreover, traditional pathological diagnosis relies heavily on
the experience and expertise of pathologists, which is not only time-
consuming but also susceptible to subjective judgment. With the
explosive growth of medical image data, the limitations of manual
analysis are becoming increasingly apparent. Computer-assisted
detection (CAD) is essential to aid clinicians in examining
histopathological images. CAD-based analysis of histopathological
images is also a challenging field within biomedical image analysis
(10). Recent studies based on medical data have shown that deep
learning (DL) can be used to extract and analyze medical image
information with great success (11, 12).

The use of artificial intelligence (AI) has revolutionized
osteosarcoma research, with both traditional machine learning
and DL techniques achieving significant advancements. For
instance, traditional methods, such as random forest (RF) and
support vector machines (SVMs) have demonstrated promising
accuracy in classifying osteosarcoma based on metabolomic and
histopathological data (26, 28). In addition, DL models, including
convolutional neural networks (CNNs) and generative adversarial
networks (GANs), have shown exceptional performance in tumor
classification and segmentation, achieving detection accuracies as

high as 96% (32, 40). Additionally, frameworks such as UNet [53]
and Deeplab [57] have further enhanced segmentation precision,
even with limited datasets.

`Recent advances in transformer-based models, such as the Vision
Transformer (ViT), have introduced self-attention mechanisms that
excel in capturing global image features (21). The VisionMamba (ViM)
model, a state-of-the-art alternative, reduces computational demands
whilemaintaining high performance, operating at 2.8 times the speed of
traditional ViT models and consuming 86.8% less GPU memory (23).
Prognostic studies incorporating AI have also identified critical
biomarkers and predictive models, such as DeepSurv, which
outperform classical methods like Cox regression analysis in survival
prediction (45). These advancements underscore the potential of AI in
improving both diagnostic accuracy and prognostic evaluation in
osteosarcoma studies.

In this study, we implemented the cutting-edge DL model Mamba
(13), using it across various domains, including classification and image
segmentation. Within the realm of DL, frameworks such as CNNs
(14–20) and ViT (21) have achieved remarkable outcomes. CNNs excel
at processing local patterns and textural details, but struggle with
capturing the broader context and long-range dependencies within
images. On the other hand, the transformer architecture (22),
particularly the ViT, has outperformed in numerous visual tasks,
leveraging its prowess in handling long-distance dependencies and
sequential data processing. However, ViT models usually require
extensive datasets for training and are computationally expensive. In
this study, we used the advanced ViM model as our core network
architecture, which operates at 2.8 times the speed of contemporaryViT
models while consuming approximately 86.8% less GPUmemory, thus
offering an efficient alternative that mitigates the heavy computational
demands of traditional transformer models (23).

Additionally, since digital pathological images are obtained by
scanning histopathological images, whole slide imaging includes a
vast amount of data, with a single histopathological unit containing
numerous cells (24). Handling such big data with a single model
presents significant challenges. Our study uses a multi-model
cascading approach to effectively tackle this issue. In the low-
magnification view, the first-stage model completes a general feature
analysis and preliminary localization of tumor regions. Then, in the
high-magnification view, subsequent models perform a detailed
observation of specific tumor cell subtypes, enhancing diagnostic
precision. In addition, through a branching structure, it is possible
to parallel process additional pathological features, such as the diagnosis
of lung metastasis, thus achieving a more comprehensive disease
analysis and evaluation. This multi-model cascading and branching
approach not only fully leverages the strengths of different models to
enhance the efficiency and accuracy of processing large-scale
pathological images, but also allows for flexible adjustments
according to specific tasks, offering new possibilities for the
intelligent diagnosis of complex diseases like osteosarcoma.
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The structure of this article is as follows: After this introduction
section, Section 2 describes the data collection and labeling process used
in this study, and details how we use a multi-model cascading DL
framework to detect osteosarcoma; Section 3 describes the analysis of
the experimental results of osteosarcoma detection; finally, Section 4
discusses existing issues and directions for improvement.

2 Materials and methods

2.1 Materials

In this study, we used one of the most comprehensive datasets
of osteosarcoma patients, obtained from two key sources: 1. real-

world data from 68 osteosarcoma patients collected at the
Chongqing General Hospital (from May 2012 to March 2022),
and 2. publicly available osteosarcoma assessment data from the
University of Texas (UT) Southwestern/UT Dallas, which
includes records of 50 patients treated at Children’s Medical
Center Dallas between 1995 and 2015 (https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageId=
52756935, accessed January 10, 2023) (25).

The clinical characteristics of 68 osteosarcoma patients are
shown in Table 1, among whom 32 patients received
preoperative chemotherapy. The chemotherapy regimens are
summarized in Table 2. The inclusion and exclusion criteria for
tissue slides were as follows:

2.1.1 Inclusion criteria
1. Cases of osteosarcoma confirmed by histology and

treatment efficacy.
2. Complete clinical data available.
3. Adequate tissue samples obtained.
4. Decalcified tissue, with well-preserved fixation, and satisfactory

staining results.

2.1.2 Exclusion criteria
1. Specimens containing disputed elements where a diagnostic

consensus could not be reached.
2. Poor-quality slides due to issues during the preparation

process, such as overly thin or thick tissue sections, knife
marks, cell distortion, or unsatisfactory staining.

To ensure the adequacy of the training data and prevent
overfitting, we used not only conventional data augmentation
techniques, such as color perturbation, rotation, and scaling, but
also a pathology-specific large-tile random cropping method,
provided by the Palgo platform, during training.

Palgo Pathology Image Artificial Intelligence Self-Training
Platform (https://www.palgo.com.cn/) is an advanced AI tool for
automated pathology image analysis. It integrates deep learning
algorithms, annotation tools, and automated model optimization
processes, enabling efficient training and deployment of
customized AI models for pathology tasks. Pathology images
were uploaded to the platform in standardized formats (e.g.,
JPEG or TIFF) and preprocessed using built-in augmentation
tools. Model training was tailored to the specific task, employing
a transfer learning approach with a pre-trained model, further
fine-tuned on a labeled dataset to enhance task-specific

TABLE 1 Clinical characteristics in osteosarcoma patients (n = 68).

Characteristic Cases %

Sex

Male 41 60.3

Female 27 39.7

Age (years)

≤18 30 44.1

>18 38 55.9

Tumor size

≥5 cm 39 57.4

<5 cm 29 42.6

Clinical stages (Enneking stages)

IA 1 1.5

IB 2 2.9

IIA 25 36.8

IIB 26 38,2

III 14 20.6

Region

Thighbone 35 51.5

Tibia 13 19.1

Pelvis 8 11.8

Shoulder/Humerus 4 5.9

Jaw 3 4.4

Fibula 2 2.9

Vertebra 1 1.5

Extraosseous 2 2.9

TABLE 2 Chemotherapy regimens for osteosarcoma patients (n = 32).

Chemotherapy regimens Drug Cases (%)

MAP Methotrexate; Doxorubicin; Cisplatin 20 (62.5)

AP Doxorubicin; Cisplatin 6 (18.7)

AD Pirarubicin; Nedaplatin 2 (6.3)

GP Gemcitabine; cisplatin 2 (6.3)

IP Ifosfamide; cisplatin 1 (3.1)

IE Ifosfamide; etoposide 1 (3.1)
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performance. Automated hyperparameter tuning optimized
learning rates and batch sizes, reducing manual intervention.
Evaluation used a 20% hold-out test set with metrics including
Dice Similarity Coefficient and Intersection-over-Union (IoU).
The platform’s self-training capabilities enabled customization of
convolutional neural network (CNN) architectures for the
specific task. Its interactive annotation tool expedited high-
quality training data creation, while the visual analytics
dashboard allowed real-time monitoring of performance. The
Palgo platform was pivotal in achieving efficient and accurate
renal pathology image segmentation, reducing manual
annotation efforts while maintaining high performance. These
methods were crucial in ensuring the robustness and adequacy of
the training data, as detailed below.

From the Chongqing General Hospital, we collected data
from 68 osteosarcoma patients, including 40 cases of
osteoblastic osteosarcoma, 13 cases of chondroblastic
osteosarcoma, 7 cases of fibroblastic osteosarcoma, and 8 cases
of other rare osteosarcoma subtypes. In total, we obtained
128 whole slide images (WSIs) stained with hematoxylin and
eosin (H&E) staining, including 9 lung metastasis samples. The
data statistics used in each cascaded algorithm are provided in
Table 3. For example, in the tumor region segmentation

algorithm, the training set included annotations for
2,035 tumors, while the test set had annotations for
150 tumors. Similarly, in the tumor cell segmentation
algorithm, four types of cells were labeled: osteoblastic,
chondroblastic, fibroblastic, and other cells. Osteoblastic cells
were the most prevalent, with 23,799 labeled training targets and
327 test targets. For necrosis classification, the training set
contained 1,248 non-necrotic samples and 244 necrotic
samples, while the test set included 101 non-necrotic and
22 necrotic samples. More detailed statistics are given in Table 3.

All annotations were performed by three mid-level pathologists
from Chongqing General Hospital, each with over 5 years of
diagnostic experience. These annotations were then reviewed by
two senior pathologists with over 10 years of experience to ensure
accuracy. It is worth noting that each WSI has a resolution of
approximately 100,000 × 100,000 pixels, but for training purposes,
we used smaller image tiles, each with size of 1,024 × 1,024 pixels. To
further increase the dataset, we used the random scaling and cropping
method of Palgo, which generates around 100 random tiles from the
effective regions of each WSI during each round of training.
Compared to traditional fixed-tile methods, this approach ensures
that the characteristics of each tile differ throughout the training
process, while also allowing for multiple labeled regions to be

TABLE 3 Details of data annotation for each algorithm.

Algorithm Category No. of annotated patches

Training Testing

Tumor region segmentation tumor cell 2035 150

Osteoid matrix segmentation Osteoid matrix 3410 222

necrotic region segmentation necrosis 157 13

pulmonary metastatic tumor segmentation tumor cell 10 2

pulmonary metastatic osteoid matrix segmentation Osteoid matrix 2908 107

Tumor cell segmentation Osteoblastic osteosarcoma 23799 327

chondroblastic osteosarcoma 2320 62

Fibroblastic osteosarcoma 3718 360

others 612 11

necrosis necrosis 1248 101

No necrosis 244 22

non-tumor 420 86

OS overall subtypes Osteoblastic osteosarcoma 348 14

chondroblastic osteosarcoma 91 30

Fibroblastic osteosarcoma 68 2

others 175 74

OS local subtypes Osteoblastic osteosarcoma 231 31

chondroblastic osteosarcoma 179 23

Fibroblastic osteosarcoma 102 16

others 34 2
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processed in a single WSI. For example, in the tumor region
segmentation task, using 128 WSIs resulted in approximately
12,800 tiles per training round. The labeling process also used the
tiling approach, with annotations distributed randomly across
the tiles.

Additionally, we used the publicly available osteosarcoma dataset
from the UT Southwestern/UT Dallas to evaluate viable and necrotic
tumors. This dataset consists of H&E-stained osteosarcoma
histopathological images and includes records of 50 patients treated
at Children’s Medical Center Dallas between 1995 and 2015. It is one of
the most commonly used datasets in the research community. The
dataset comprises 1,144 images, each sized 1,024 × 1,024 pixels, and was
annotated by two clinical experts. In our study, we directly used the
fixed-tile method from this dataset.

2.2 Algorithms

The aim of this study was to develop and validate a multi-model
cascaded DL framework for the intelligent diagnosis of
osteosarcoma from pathological images. By combining state-of-
the-art DL models, particularly the ViM network and ViM UNet
(ViM-UNet) architecture, we have constructed a comprehensive
analysis system capable of accurately identifying and segmenting key
features in osteosarcoma pathology images, including viable tissue
regions, tumor areas, bone-like matrix, necrotic zones, as well as
performing fine classification of tumor cells and detecting lung
metastasis tumors.

2.2.1 Classification models
The analysis system developed in this study incorporates the

latest ViM network as a feature extractor for image classification.
As shown in Figure 1A, different from the original ViM model, in
this study the network structure is divided into four stages, using
patch merging between each stage to reduce the feature map size
and double the channel numbers from the original. Notably,
between the original input image and Stage 1, this study uses the
same patch embedding structure as that in a Swin transformer
network, which directly reduces the feature map to 1/4 of its
original size (26, 27). The Virtual Storage Software (VSS) block is
the core module in each stage, as depicted in Figure 1B, with the
most important two-dimensional (2D) Selective Scan (SS2D)
adopting a structure similar to that of ViM-UNet (28). In our
study, this structure effectively extracts classification features and
achieves good classification results. In addition, it serves as a
consistent backbone and encoder for the subsequent
segmentation model.

2.2.2 Segmentation models
In this study, the ViM network and ViM-UNet are combined

to form the image-based segmentation network, as shown in
Figure 2. The VSS block used in this study is the same as that used
in the classification model shown in Figure 1A. Unlike ViM-
UNet, in this study the commonly used skip connection structure
is used in UNet to achieve feature fusion between the encoder and
decoder, as shown in Figure 2B. Additionally, patch expanding is
used as the upsampling module, with the structure detailed in

FIGURE 1
Implementation of the classification algorithm using Vision Mamba (ViM) as the feature extraction network. (A) Complete classification network
structure of the ViM model. (B) Specific composition of the core VSS block module.

Oncology Reviews frontiersin.org05

Yao et al. 10.3389/or.2025.1592408

https://www.frontiersin.org/journals/oncology-reviews
https://www.frontiersin.org
https://doi.org/10.3389/or.2025.1592408


Figure 2C. It must be noted that, in this study, in order to
maintain consistency with the input feature map size, in the
final stage of the decoder the patch expanding structure outputs
four times the channels in the linear layer compared to before,
thus transforming the feature map from (H ×W×2C -->H ×W ×
16C). Another difference from ViM-UNet (28) is that due to the
larger pixels of the pathology images compared to other medical
images, a tile-based segmentation approach is used for
prediction. This involves pre-scaling the images with fixed-
scale proportional scaling, then dividing the scaled images into
fixed-size tiles with overlap for full-image segmentation. Each tile
is individually analyzed using the aforementioned network for

prediction, and the results are then stitched back together. In
addition, a linear distance-weighted fusion method is applied to
the junctions for seamless integration.

2.2.3 Model cascading
The Palgo platform was used in this study to design the model

cascade strategy, as shown in Figure 3, achieving a gradual
refinement of the extraction of pathological features from coarse
to fine by performing the analysis at different resolutions and
perspectives. The initial model swiftly identifies and locates key
tissue regions at low magnifications, while subsequent models
perform more detailed analysis and classification at higher

FIGURE 2
Use of the Vision Mamba UNet (ViM-UNet) as the image-based segmentation network. (A) The complete UNet structure is shown, including the
encoder and decoder. (B) Diagram showing how the skip connection structure achieves feature fusion between the encoder and decoder. (C) Diagram
showing how the patch expanding structure, actually implemented, achieves sampling and feature recovery.

FIGURE 3
Structural diagram of the osteosarcoma cascadedmodel ensemble. The blue component represents the instance segmentation network, the yellow
component represents the semantic segmentation network, and the green component represents the image classification or filtering module. Different
stages operate at specific image resolutions (e.g., mpp = 5.0, 2.0, 0.23) and are connected via gated logic based on confidence and area thresholds.
Detailed parameters are provided in Supplementary Table S2.
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magnifications to ensure comprehensive and accurate pathological
diagnosis. The data flow within the cascade uses a “threshold + type
gating structure” to automatically control the downstream algorithm
data. For example, in the gate algorithm for excluding osteoid
matrix, positions judged to be osteoid matrix within tumors are
automatically removed before detailed analysis of tumor cells.
Details of magnification levels (e.g., mpp = 5.0, 2.0, 0.23), input
sizes, and gating thresholds used at each stage are comprehensively
summarized in Supplementary Table S2.

In this study, tissue region localization and tumor area
positioning are achieved at low magnifications, osteoid matrix
segmentation and necrotic area localization at medium
magnifications, and tumor cell identification and specific tumor
type classification at high magnifications. The overall subtype
classification for osteosarcoma is determined through a global
view, while the localized osteosarcoma subtypes (in the tumor
cell cascaded classification module) focus on the determination of
the subtype of the most prominent tumor regions at high
magnifications. Tumor cell segmentation further identifies and
locates tumor cells based on their specific types.

To account for the histological heterogeneity of osteosarcoma,
we designed two complementary subtype classification strategies in
the cascade:

1. Overall subtype classification, which determines the dominant
subtype by aggregating the total predicted area of each subtype
across the entire slide;

2. Localized subtype classification, which determines the
dominant subtype based on the number of positively
predicted tiles for each subtype within high-magnification
tumor cell regions.

The block-count-based localized subtype classification
emphasizes discrete, high-grade foci (e.g., chondroblastic or
fibroblastic areas) that, despite their small size, are clinically
significant. Compared to area-based methods easily biased by
large low-grade regions, this approach more accurately reflects
the focal heterogeneity of aggressive subtypes and aligns with
pathological assessment and clinical decision-making.

2.2.4 Training methods
In this study, a multi-round weakly supervised training

scheme with manual intervention was used, continuously
optimizing and adjusting model performance by incorporating
expert knowledge and feedback at different stages. Also, by
combining data augmentation, transfer learning, and fine-
grained annotation strategies, the limited pathological image
resources are fully utilized to enhance the generalization
ability and diagnostic accuracy of the model. Additionally, the
initial model undergoes transfer learning after training on a
large-scale dataset. The model uses the Adam optimizer and
implements a learning rate warm-up strategy. The loss function
used is the cross-entropy loss, applying the cross-entropy loss at
each pixel for the segmentation task.

To improve methodological transparency and ensure
reproducibility, the complete training configuration (including
optimizer settings, learning rate schedules, and pathology-specific
augmentation strategies) is described in Supplementary Text S1. In

addition, task-specific hyperparameters such as input resolution,
patch size, and batch size for each model are summarized in
Supplementary Table S1.

2.3 Statistical analysis

In this study, a comprehensive statistical analysis was
conducted to evaluate the performance of the proposed multi-
model cascaded DL framework in the detection and
classification of various pathological features of osteosarcoma.
The evaluation metrics included the Dice coefficient,
intersection over union (IoU), sensitivity, specificity,
precision, recall, false positive rate (FPR), true positive rate
(TPR), negative predictive value (NPV), positive predictive
value (PPV), false discovery rate (FDR), false omission rate
(FOR), and overall accuracy (ACC). These metrics provided a
holistic assessment of the capability of the model in localizing
and segmenting tumor regions, osteoid matrix, necrotic areas,
tumor cells, and pulmonary metastatic regions, as well as in
classifying necrosis and subtypes of osteosarcoma.

For segmentation tasks, the Dice coefficient values and IoU
values were the primary metrics used to measure the spatial overlap
between predicted regions and ground truth. Sensitivity, specificity,
and precision were used to assess the detection performance for each
segmented category, while the FPR and TPR quantified the trade-off
between false positives and true positives. For classification tasks,
metrics such as area under the receiver operating characteristics
(ROC) curve (AUC), precision-recall (PR) curves, and confusion
matrices were used to evaluate the accuracy of necrosis detection,
overall classification of osteosarcoma subtypes, and classification of
localized osteosarcoma subtypes.

The statistical analysis was performed on both training and test
datasets, with multiple evaluations performed for each model to
ensure robustness and consistency. Special attention was given to the
challenges posed by the variability and complexity of datasets, such
as the segmentation of small-scale tumor regions and highly
overlapping cellular structures. To address these challenges, we
analyzed discrepancies in Dice scores for smaller objects and
investigated the impact of limited sample sizes on the
classification accuracy. All statistical calculations were performed
using Python libraries, including Scikit-learn, to ensure precise and
reproducible results.

3 Results

We performed a statistical analysis of the effectiveness of
detecting various features in osteosarcoma pathology images. The
detection tasks included the localization and segmentation of tumor
regions, osteoid matrix, necrotic areas, tumor cell regions within the
tumor, and pulmonary metastatic tumor regions. Additionally, we
also assessed the classification results for overall osteosarcoma
subtypes, localized osteosarcoma subtypes, and the presence of
necrosis. The performance of the models was comprehensively
evaluated using metrics such as Dice coefficient, IoU, sensitivity,
specificity, precision, recall, FPR, TPR, NPV, PPV, FDR,
FOR, and ACC.
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FIGURE 4
Cumulative distribution function (CDF) distribution of Dice coefficient values for various region segmentations. (A,B) tumor region segmentation;
(C,D) osteoid matrix segmentation; (E,F) necrotic region segmentation; (G,H) pulmonary metastatic tumor segmentation; (I,J) pulmonary metastasis
osteoid matrix segmentation; (K,L) tumor cell segmentation, along with boxplots of Dice coefficient scores for each algorithm.
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TABLE 4 Detailed values for tumor segmentation, osteosarcoma osseous matrix segmentation, necrotic area segmentation, lung metastasis tumor segmentation, lung metastasis osseous matrix segmentation, and
tumor cell segmentation.

Label DICE IOU Sensitivity Specificity Precision Recall FPR TPR NPV PPV FDR FOR ACC

tumor 0.9506 90.59% 94.00% 89.22% 96.15% 94.00% 10.78% 94.00% 83.84% 96.15% 3.85% 16.16% 92.76%

Osteoid matrix 0.8348 71.65% 76.74% 99.89% 91.53% 76.74% 0.11% 76.74% 99.63% 91.53% 8.47% 0.37% 99.52%

Necrosis 0.9420 89.04% 95.70% 97.44% 92.76% 95.70% 2.56% 95.70% 98.51% 92.76% 7.24% 1.49% 96.99%

tumor (Lung) 0.9525 90.93% 92.15% 99.23% 98.56% 92.15% 0.77% 92.15% 95.66% 98.56% 1.44% 4.34% 96.65%

Osteoid matrix (Lung) 0.9358 87.93% 95.46% 96.92% 91.77% 95.46% 3.08% 95.46% 98.34% 91.77% 8.23% 1.66% 96.53%

Osteoblastic 0.8332 71.42% 76.66% 99.20% 91.26% 76.66% 0.80% 76.66% 97.50% 91.26% 8.74% 2.50% 96.99%

Chondroblastic 0.7184 56.06% 60.51% 99.87% 88.39% 60.51% 0.13% 60.51% 99.38% 88.39% 11.61% 0.62% 99.26%

Fibroblastic 0.7270 57.11% 63.53% 99.75% 84.98% 63.53% 0.25% 63.53% 99.20% 84.98% 15.02% 0.80% 98.97%

Other 0.7166 55.83% 59.65% 99.98% 89.73% 59.65% 0.02% 59.65% 99.89% 89.73% 10.27% 0.11% 99.88%
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3.1 Localization and segmentation of tumor
regions, osteoid matrix, necrotic areas,
tumor cell regions within the tumor, and
pulmonary metastatic tumor regions

We used five segmentation models to determine the
localization and perform the segmentation of tumor regions,
osteoid matrix, necrotic areas, tumor cells within the tumor, and
pulmonary metastatic tumor regions (the performance of each
model is shown in Figure 4). All models used the ViM-UNet
architecture. The best results for tumor region segmentation
were achieved with both primary osteosarcoma and pulmonary
metastasis tumor segmentation attaining over 0.95 Dice
correlation value (see Table 4; Figure 4 for details). However,
the tumor segmentation results showed a relatively high FPR,
suggesting that some small targets were detected, which, despite
not significantly affecting overall detection, did increase the
FPR. To address this issue, we incorporated a small tumor
region filtering classification algorithm to filter out these
small targets (referred to as the tumor region filtering model

in Figure 3). Additionally, ViM-UNet showed excellent
performance in necrotic region segmentation, achieving a
Dice score of 0.942.

For osteoidmatrix segmentation, the performance in pulmonary
metastatic osteoid matrix (Dice score of 0.9358 was notably better
than that in primary osteosarcoma (Dice score 0.8348). As shown in
the upper part of Figure 5, the osteoid matrix features are highly
distinguishable in pulmonary metastatic samples, making them
easier to recognize. In primary osteosarcoma samples, where the
pathology is more complex and there are many interfering structures
like osteogenic tissue, periosteum, and cartilage, the segmentation
task is more challenging. However, despite these complexities, the
model still performed well in identifying osteoid matrix within
osteosarcoma.

In the tumor cell segmentation task, the ViM-UNet model
achieved accurate localization and subtype identification of
osteoblastic, chondroblastic, and fibroblastic cells. As shown in
Table 4 and Figure 4, the Dice scores for these subtypes were
relatively lower (minimum 0.7184) compared to other
segmentation tasks. This can be attributed to the small size of

FIGURE 5
Model segmentation performance. (A) Lung metastasis tumor segmentation and osteoid matrix segmentation localization (red curve indicates the
metastatic tumor area, blue curve indicates the osteoid matrix area). (B) Necrotic region segmentation and tumor cell identification (a: H&E staining
image, b: blue area on the left indicates tumor cells, red area on the right indicates necrosis, c: tumor cell identification).
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individual cells, which leads to higher sensitivity of the Dice metric
to minor boundary deviations. Nevertheless, the model
demonstrated high performance in terms of accuracy (minimum
97%), specificity, and precision. A detailed analysis of metric
behavior for small target volumes is provided in
Supplementary Text S2.

3.2 Classification results of overall
osteosarcoma subtypes, localized
osteosarcoma subtypes, and the presence
of necrosis

We used three models to classify necrosis, overall osteosarcoma
subtypes, and localized osteosarcoma subtypes. All these models
were based on the ViM architecture, with input images scaled to a
fixed size of 512 pixels. The PR curve, ROC curve, and confusion
matrix for each model are shown in Figure 6. As shown in Table 5,
the AUC, sensitivity, specificity, PPV, and NPV for necrosis
classification, overall osteosarcoma subtypes, and localized
osteosarcoma subtypes all exceeded 90%.

In particular, the tumor region filtering model, introduced
earlier, was used to classify necrosis. This model not only filters
out small targets (classified as “other”) but also identifies the
presence of necrosis within tumors. The ROC curve showed an
AUC of approximately 99.5%, while the PR curve showed an AP
value of around 98.4%. Additionally, the confusion matrix
revealed very few misclassifications between different
categories.

For the specific classification of osteosarcoma subtypes, due to
sample size limitations, we only examined three types, namely,
chondroblastic, fibroblastic, and osteoblastic subtypes. Other
subtypes, as well as non-tumor samples, were categorized as
“other”. We evaluated both overall subtype classification (based
on the entire segmented tumor region) and localized osteosarcoma
subtype classification (based on significant regions within the
tumor). A comparison of the results shown in Table 5 revealed
that the detection of localized osteosarcoma subtypes outperformed
that of overall osteosarcoma subtypes. The results in Figure 6 reveal
that fibroblastic osteosarcoma was more prone to be misclassified as
osteoblastic in overall subtype classification, but this error was
significantly reduced in localized osteosarcoma subtype

FIGURE 6
PR curves, ROC curves, and confusion matrices for necrosis classification, overall osteosarcoma subtypes, and localized osteosarcoma subtypes,
respectively. (A) necrosis classification; (B) overall osteosarcoma subtypes; (C) localized osteosarcoma subtypes.
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TABLE 5 FP, FN, AUC, sensitivity, specificity, PPV, and NPV values for necrosis classification, overall osteosarcoma subtypes, and localized osteosarcoma subtypes.

Algorithm Label Total TP FP FN TN Accur-
acy

Recall Precis-
ion

F1 AP AUC Specif-
icity

Sensiti-
vity

PPV NPV TPR FPR

Necrosis Necrosis 268 258 5 10 1848 98.1% 96.3% 98.1% 97.2% 98.4% 99.5% 99.7% 96.3% 98.1% 99.5% 96.3% 0.3%

Non-necrotic 1328 1308 15 20 778 98.1% 98.5% 98.9% 98.7% 99.8% 99.7% 98.1% 98.5% 98.9% 97.5% 98.5% 1.9%

Non-tumorous 525 514 21 11 1575 98.1% 97.9% 96.1% 97.0% 99.5% 99.8% 98.7% 97.9% 96.1% 99.3% 97.9% 1.3%

overall subtypes (OS) Chondroblastic 118 117 9 1 681 94.2% 99.2% 92.9% 95.9% 99.8% 100.0% 98.7% 99.2% 92.9% 99.9% 99.2% 1.3%

Fibroblastic 73 64 6 9 729 94.2% 87.7% 91.4% 89.5% 90.9% 98.9% 99.2% 87.7% 91.4% 98.8% 87.7% 0.8%

Osteoblastic 367 351 19 16 422 94.2% 95.6% 94.9% 95.3% 99.0% 99.0% 95.7% 95.6% 94.9% 96.3% 95.6% 4.3%

Other 250 229 13 21 545 94.2% 91.6% 94.6% 93.1% 97.2% 98.5% 97.7% 91.6% 94.6% 96.3% 91.6% 2.3%

localized subtypes (OS) Chondroblastic 143 141 0 2 310 98.7% 98.6% 100.0% 99.3% 99.9% 100.0% 100.0% 98.6% 100.0% 99.4% 98.6% 0.0%

Fibroblastic 88 85 2 3 363 98.7% 96.6% 97.7% 97.1% 99.6% 99.9% 99.5% 96.6% 97.7% 99.2% 96.6% 0.5%

Osteoblastic 199 198 2 1 252 98.7% 99.5% 99.0% 99.2% 99.9% 100.0% 99.2% 99.5% 99.0% 99.6% 99.5% 0.8%

Other 23 23 2 0 428 98.7% 100.0% 92.0% 95.8% 99.6% 100.0% 99.5% 100.0% 92.0% 100.0% 100.0% 0.5%
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classification. This finding indicates that incorporating local detail
significantly improves the accuracy of osteosarcoma subtype
classification.

As demonstrated in Table 5, subtype classification achieved
generally satisfactory performance when evaluated using false
positive (FP) and false negative (FN) rates. Notably, the
fibroblastic subtype showed a disproportionately high false
negative rate (9 cases), representing approximately 12% of its
total samples in the classification analysis. The confusion matrix
in Figure 6 reveals that the majority of these misclassified fibroblastic
cases were incorrectly categorized as osteoblastic. This observation
underscores a particular diagnostic challenge in distinguishing
between fibroblastic and osteoblastic subtypes, which may stem
from their shared morphological characteristics. These results
indicate that future studies should prioritize 1. enhanced feature
representation for fibroblastic subtypes and 2. expanded training
datasets to mitigate classification errors.

3.3 Patient-level analysis

To determine the final osteosarcoma subtype at the patient level,
we used two aggregation strategies: one based on the total area of
each subtype and the other on the block count of each subtype. For
the overall osteosarcoma subtype analysis, the total area of each
subtype was summed up across all slides for each patient, and the
subtype with the largest area proportion was assigned as the overall
subtype of the patient. Conversely, the localized osteosarcoma
subtype analysis summed up the block counts of each subtype
across all slides, classifying the subtype with the highest block
proportion as the localized osteosarcoma subtype of the patient.

A comparative evaluation revealed notable differences in the
classification performance. The overall osteosarcoma subtype
analysis achieved a classification accuracy of 91.7%, but higher

misclassification rates were observed, particularly between
chondroblastic and fibroblastic subtypes. In contrast, the analysis
of localized osteosarcoma subtypes demonstrated superior
performance, with a classification accuracy of 96.7%. The finer
granularity of block-level aggregation provided a more precise
representation of tumor heterogeneity, significantly reducing
subtype misclassification.

To validate these findings, we constructed confusion matrices
for both methods (Figure 7), which revealed the classification
performance of these methods. Patient-level aggregation, while
integrating data from multiple slides for a holistic diagnosis, had
a slightly lower accuracy than slide-level analysis. This discrepancy is
due to the presence in certain cases of multiple coexisting subtypes
within local regions, complicating subtype determination. Despite
this, patient-level methods showed robust performance,
emphasizing the importance of integrating multi-slide
information for clinical workflows and offering potential for
further refinement in osteosarcoma diagnostics.

4 Discussion

Osteosarcoma, a highly malignant and heterogeneous tumor
primarily affecting children and adolescents, presents significant
challenges in diagnosis and classification. Although current
treatment modalities, such as neoadjuvant chemotherapy
(NAC) and surgery, are the gold standard, evaluating
therapeutic outcomes remains labor-intensive and complex.
This study addresses these challenges by developing a
comprehensive multimodal cascaded DL framework. By
integrating advanced models, including the ViM network and
ViM-UNet architecture, the framework systematically analyzes
viable, necrotic, and non-tumor regions, alongside classifying
tumor subtypes and identifying metastatic features. These

FIGURE 7
Confusionmatrices for patient-level classification of osteosarcoma subtypes (Chondroblastic, Fibroblastic, andOsteoblastic) using two aggregation
strategies. (A) Results obtained by aggregating tile-level predictions based on the overall area proportion of each subtype within a patient’s whole slide
image. (B) Results obtained by aggregating tile-level predictions based on the local block count (majority voting of subdivided regions).
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advancements represent substantial improvements in diagnostic
accuracy and efficiency.

4.1 Comparative analysis with previous work

Unlike previous studies that predominantly focused on isolated
tasks, such as segmentation or classification at the patch level, this
study uniquely combines case-level, whole-slide, and localized
analyses within a unified pipeline. Earlier studies, such as those
by Mishra et al. and Aziz et al. (29, 30), achieved commendable
accuracy, but operated within constrained scopes—focusing on
either segmentation or classification without addressing the
whole complexity of osteosarcoma pathology. On the other hand,
our cascading workflow integrates these tasks hierarchically,
enabling a comprehensive and clinically actionable evaluation.
This structured methodology significantly outperforms traditional
patch-based models, setting a new standard for AI application in
pathology (Table 6).

4.2 Limitations and challenges

Despite its advancements, this study has several limitations:

1. Limited case-level samples: Osteosarcoma is a rare and
heterogeneous malignancy, and both institutional and
publicly available datasets are extremely limited. Our study
combined a retrospective cohort from Chongqing General
Hospital (2012–2022) and the public UT Southwestern
dataset (1995–2015) to maximize sample diversity. We
recognize that such pooling may introduce batch effects due
to differences in staining protocols, scanning devices, and
patient demographics. This remains one of the limitations
of our work.

2. Regression model feasibility: Although the framework
provides valuable quantitative outputs, building intelligent
regression models for case-level analysis demands extensive
sample sizes. The current dataset is insufficient to support
the development of robust regression models.

TABLE 6 Summary of similar sarcoma research studies.

Author Year Methodology Accuracy
(%)

Key features

B. S. Vandana et al. (36) 2020 Enhanced GraphCut-based clustering 90 Automated segmentation, multiclass classification
using Random Forest

B. S. Vandana et al. (37) 2018 Object and color-based segmentation methods with SVM
classification

93.7 Feature extraction, automated segmentation of tissue
cells

Z. Li et al. (38) 2017 Machine learning classifiers (Random Forest, SVM,
Logistic Regression)

95 Metabolomic data analysis with AUC 0.99

P. Bansal et al. (39) 2023 Multi-feature non-seed-based region growing
segmentation

N/A Improved ROI extraction using Marine Predators
algorithm

K. V. Deepak et al. (40) 2023 Ensemble machine learning (color and texture feature
extraction)

98.5 Accurate classification of bone tumors

B. Karthicsonia et al. (41) 2024 Multilayer grid XGBoost architecture combining ML
and DL

N/A High accuracy differentiation of normal and necrotic
tissues

D. M. Anisuzzaman
et al. (42)

2021 Deep learning with CNNs and transfer learning 96 Pre-trained CNNs (e.g., VGG19, Inception V3) for
histological analysis

H. B. Arunachalam
et al. (35)

2019 Machine learning and deep learning for tumor region
assessment

N/A Viable vs. necrotic tumor discrimination on WSIs

S. J. Badashah et al. (43) 2021 Fractional-Harris Hawks Optimization-based GAN 95.65 Improved accuracy, sensitivity, specificity

R. Mishra et al. (30) 2018 Convolutional Neural Network (CNN) 92 Efficient tumor classification using CNN architectures

R. A. Nabid et al. (44) 2020 Sequential Recurrent CNN with GRU N/A Handles heterogeneity and noisy data

M. D’Acunto et al. (45) 2019 Deep learning on microscopy images N/A Cell detection and classification

S. Alsubai et al. (46) 2024 Group Teaching Optimization with Capsule Network N/A Feature extraction with CapsNet and SA-BiLSTM

M. T. Aziz et al. (29) 2023 Hybrid CNN and MLP framework 95.2 Binary and multiclass classification with decision tree-
based RFE

Y. Fu et al. (47) 2020 Deep model with Siamese Network (DS-Net) 95.1 Viable and necrotic tumor classification

S. Prabakaran et al. (48) 2023 Hyperparameter-tuned Elman Neural Network
(HTDENN)

95.31 High precision, sensitivity, and accuracy

M. A. A. Walid et al. (49) 2023 Deep ensemble learning with CNN models N/A High Kappa score with voting classifier

J. Wu et al. (50) 2023 Semantic segmentation with ENMViT N/A Precise segmentation in resource-limited settings
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3. Limitations of the pathological subtype classification: This
study included some post-chemotherapy samples.
Chemotherapy can lead to changes in the morphology of
tumor cells, including alterations in size, shape, nuclear
condensation, and reduced cytoplasm. At the same time,
chemotherapy drugs can also affect the tumor stroma. After
chemotherapy, the tumor stroma often exhibits fibrosis, foam
cell reaction, and lymphocyte infiltration. In some cases, large
areas of necrosis can be observed in tumors following
chemotherapy. We study primarily focused on the three
main subtypes of osteosarcoma. The number of pathological
samples is limited, and some patients received preoperative
chemotherapy, which influenced themorphology of tumor cells
and introduced bias to the results. Additionally, a detailed
analysis of less common subtypes was not performed,
leading to an insufficient examination of the heterogeneity
of osteosarcoma. However, fortunately, a significant area of
necrosis was observed in the tumors of some patients who
underwent chemotherapy. Our model identified the necrotic
areas, which will be helpful for future assessments of
chemotherapy effectiveness in these patients.

4. Subtype-specific classification strategy: To address
osteosarcoma heterogeneity, this study employed both area-
weighted and tile-level classification approaches. The tile-level
method—based on majority voting of fixed-size patches proved
more effective in detecting small, spatially confined subtypes.
Compared to area-weighted statistics that may overlook focal
high-grade components, the tile-based strategy enhances
sensitivity to local variations and better reflects mixed
histological patterns. This was especially evident in
chondroblastic and fibroblastic subtypes, where improved
classification performance was observed.

5. Limitations of metastatic samples: This study included some
lung metastasis samples. Osteosarcoma primarily metastasizes
through the bloodstream, with the lungs being the most
common site of metastasis. During the metastatic process, it
is possible that only a portion of the tumor cells spread. Due to
the heterogeneity within the tumor, the metastatic tumor may
exhibit different histological features compared to the primary
tumor. Additionally, the microenvironment surrounding the
metastatic tumor differs from that of the primary tumor. A
combination of various factors contributes to the distinct
pathological characteristics of the metastatic tumor.
However, this study aimed to demonstrate the superiority of
the cascade model within a workflow; whether lung metastasis
has occurred is one of the branch outputs. Additionally, this
study compared the effect of osteoid matrix between bone
samples and lung metastasis samples and found that the
model can still accurately identify osteoid matrix in lung
metastasis samples. Therefore, lung metastasis samples were
ultimately retained.

6. Clinical Integration: The absence of extensive clinical trials and
real-world validation restricts the immediate applicability of
the framework in medical practice. Prospective studies in
clinical environments are critical to bridge this gap.

4.3 Future directions

To overcome the above limitations and expand the scope of the
current study, the following areas will be prioritized in
future research:

1. Dataset expansion: Acquiring larger and more diverse datasets
will enhance model robustness and enable more generalized
conclusions. This will also facilitate the development of
regression models for predicting clinical outcomes based on
case-level quantitative indicators.

2. Comprehensive subtype analysis: Broadening the analysis to
include additional rare osteosarcoma subtypes will provide a
more holistic understanding of the disease and its variations.

3. Prognostic modeling: Enhancing the accuracy of the model in
identifying necrotic areas, and integrating this framework with
prognostic tools like DeepSurv to predict patient outcomes and
guide treatment strategies (31–35).

4. Clinical validation and workflow integration: Conducting
extensive clinical trials to validate the performance of the
framework in real-world settings and integrating it into
clinical workflows to streamline diagnostic processes.

5. Self-supervised learning approaches: Reducing reliance on
manual annotations by using unsupervised or self-supervised
learning techniques, thereby enhancing scalability and
adaptability.

4.4 Conclusion

This study represents a significant advancement in leveraging AI
for the pathological analysis of osteosarcoma. By addressing the
heterogeneity and complexity issues of osteosarcoma through a
multimodal cascaded framework, this study enhances diagnostic
precision while setting the stage for integrating AI-driven solutions
into clinical workflows. Future work focusing on dataset expansion,
subtype diversity, and clinical validation will ensure these
advancements translate effectively into improving patient care
and outcomes.
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