

OPEN ACCESS

EDITED BY Bastian Czogalla, LMU Munich University Hospital, Germany

REVIEWED BY Komsun Suwannarurk, Thammasat University, Thailand Xuehai Wang, Karolinska Institutet (KI), Sweden

*CORRESPONDENCE
Yuyang Zhang,

☑ zhangyuyang@wmu.edu.cn

RECEIVED 02 February 2025 ACCEPTED 03 September 2025 PUBLISHED 11 September 2025

CITATION

Mlambo A, Su S, Dhlamini Q and Zhang Y (2025) Patterns of immune cell infiltration and oxidative stress in cervical cancer. *Oncol. Rev.* 19:1570071. doi: 10.3389/or.2025.1570071

COPYRIGHT

© 2025 Mlambo, Su, Dhlamini and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Patterns of immune cell infiltration and oxidative stress in cervical cancer

Andrea Mlambo¹, Shuyue Su¹, Qhaweni Dhlamini² and Yuyang Zhang³*

¹The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China, ²Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China, ³Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Cervical cancer (CeCa) remains a significant global health burden, with complex interactions between oxidative stress and immune response playing critical roles in its pathogenesis and progression. This review synthesizes current knowledge on the molecular mechanisms linking oxidative stress pathways and immune evasion, particularly focusing on human papillomavirus oncogenes E6 and E7. We highlight the dual roles of immune components such as Type 17 T helper (Th17) cells and the antioxidant enzyme superoxide dismutase 2 (SOD2), which exhibit context-dependent tumor-promoting and suppressive functions. While extensive mechanistic insights have been gained, translation to clinical practice remains limited, partly due to inconsistent biomarkers and incomplete understanding of therapeutic resistance. Recent advances in targeted therapies, including mitochondrial inhibitors, Immune checkpoint inhibitors (ICIs) (e.g., pembrolizumab, nivolumab), and PARP inhibitors, demonstrate promise but face translational hurdles such as assay variability and immune-related adverse events. Future research must address gaps including predictive biomarker development, noninvasive monitoring via liquid biopsy, and rational combination therapies integrating redox modulation and immunotherapy. Enhanced multi-omics integration and refined preclinical models are essential to advance personalized treatment strategies for CeCa.

KEYWORDS

tumor microenvironment, oxidative stress, immune cell infiltration, HPV oncogenes, therapeutic strategies, cervical cancer

1 Introduction

Cervical cancer (CeCa), despite being largely preventable, remains a leading cause of cancer-related mortality among women worldwide. In 2022, an estimated 662,301 new cases and 348,874 deaths were reported globally (1, 2). According to the American Cancer Society, while long-term declines in the US have plateaued, there are notable age-specific differences. Incidence has increased by about 1.7% per year among women 30–44 years old from 2012 to 2019, while it has declined by approximately 11% per year among those 20–24 years old (3, 4).

In China, CeCa is a significant concern, accounting for 150,659 new cases and 55,694 deaths in 2022, which represents roughly 23% of global incidents and 16% of global deaths (1). The situation is further compounded by urban-rural disparities, inadequate screening, and uneven HPV vaccine uptake (5).

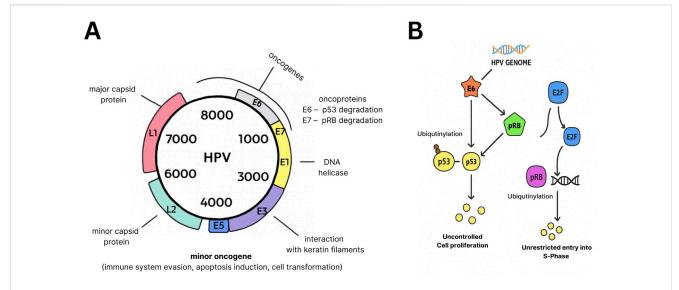
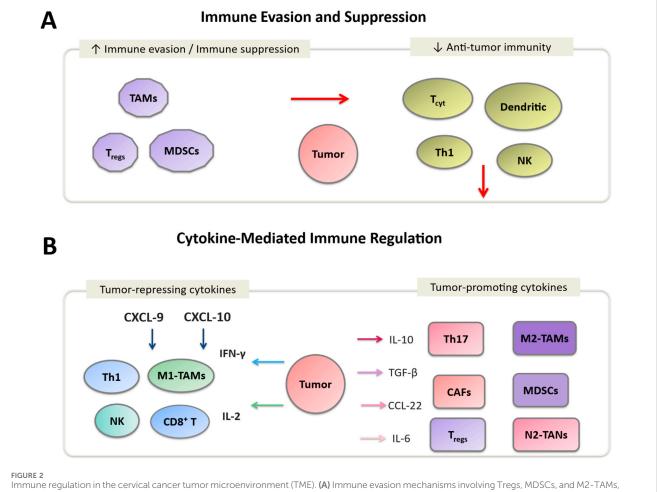


FIGURE 1
Oncogenic functions of HPV E6 and E7. (A) Genomic organization of the HPV genome, showing capsid proteins (L1, L2) and early genes (E1–E7). (B)
Mechanisms of oncogenesis: E6 promotes ubiquitination and degradation of p53, while E7 inactivates pRb to release E2F, driving S-phase entry and uncontrolled proliferation. Both proteins additionally facilitate immune evasion through downregulation of MHC-I and disruption of interferon signaling (not shown).

The etiology of CeCa is strongly linked to persistent infection with high-risk human papillomavirus (HPV) types, especially human papillomavirus type 16 (HPV16) and human papillomavirus 18 (HPV18). The viral oncogenes E6 and E7 disrupt tumor suppressor pathways by inactivating p53 and retinoblastoma protein (pRb), facilitating uncontrolled cellular proliferation and tumor progression (6–8). Beyond oncogenic transformation, HPV E6/E7 also contribute to immune evasion by modulating antigen presentation and dampening immune surveillance, creating an immunosuppressive microenvironment conducive to tumor growth [(9); Figure 1A].

Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) generation and antioxidant defenses, has emerged as a critical factor in cervical carcinogenesis. Excess ROS can induce DNA damage, lipid peroxidation, and protein oxidation, promoting genetic instability and oncogenic signaling (2). Interestingly, oxidative stress plays a dual role by also activating immune responses, which can either suppress or promote tumor progression depending on the context. The crosstalk between oxidative stress pathways and immune regulation in CeCa is complex and incompletely understood, necessitating further exploration (10).

The tumor microenvironment (TME) in CeCa includes diverse immune cells, such as tumor-associated macrophages (TAMs), T cells, and regulatory T cells (T_{regs}), which influence cancer development and response to therapy. Immune evasion mechanisms mediated by HPV, coupled with oxidative stress-induced inflammation, contribute to TME remodeling and tumor immune escape (2). However, conflicting evidence exists regarding the role of certain immune subsets, such as Type 17 T helper (Th17) cells, which have been reported to exhibit both pro- and antitumorigenic effects in different studies (10). This highlights the need for more detailed investigation into immune dynamics within CeCa.


2 Core pathogenesis: HPV-immunity-redox crosstalk

2.1 HPV-mediated immune evasion mechanisms

Persistent infection with high-risk HPV types drives cervical carcinogenesis through coordinated immune-evasion strategies. The viral oncoproteins E6 and E7 impair antigen presentation by downregulating major histocompatibility complex class I (MHC-I) molecules on infected cell surfaces, limiting recognition by CD8⁺ T cells (9). Furthermore, these oncogenes interfere with interferon (IFN) signaling pathways, reducing the production of type I IFNs that are crucial for antiviral immunity (11). This suppression of innate immune responses fosters an immunosuppressive TME that promotes viral persistence and tumor progression [(12), Figure 2A].

Innate immunity disruption: HPV employs multiple strategies to evade innate immune responses. β -HPV type 38 E6/E7 proteins have been shown to downregulate Toll-like receptor 9 (TLR9), a DNA sensor important for antiviral responses, in keratinocyte models (13, 14). While these findings are specific to HPV38 and should not be directly generalized to high-risk mucosal types such as HPV16/18, some evidence suggests similar mechanisms may occur. Cell-based experiments also demonstrate that HPV16 E6 interferes with the RIG-I pathway by binding the ubiquitin ligase TRIM25 (15, 16), causing TRIM25 degradation and preventing RIG-I activation via K63-linked ubiquitination (16). The impaired RIG-I pathway further suppresses downstream type I interferon signaling *in vitro* and requires clinical confirmation in CeCa patients (17–19).

Adaptive immunity suppression: HPV oncoproteins target the cGAS-STING DNA-sensing pathway (20). HPV16/18 oncoproteins downregulate STING transcription in experimental systems (21). This is in line with the lower level of STIING mRNA in HPV-positive cervical lesions compared with normal tissue. These

Immune regulation in the cervical cancer tumor microenvironment (TME). (A) Immune evasion mechanisms involving Tregs, MDSCs, and M2-TAMs, along with immunosuppressive cytokines (IL-10, TGF- β , IL- δ) that inhibit CD8⁺T cells and NK cells. (B) Cytokine-mediated modulation: tumor-repressing cytokines (IFN- γ , IL-2, CXCL-9) activate effector immune cells (CD8⁺T cells, NK cells, M1-TAMs), while tumor-promoting cytokines (IL-10, TGF- β , IL- δ) enhance angiogenesis, immune escape, and tumor progression.

observations are most consistent with transcriptional downregulation by viral proteins rather than established epigenetic silencing in patients (22, 23).

The immune escape facilitated by HPV oncogenes also involves modulation of immune checkpoint molecules such as programmed death ligand-1 (PD-L1), which further inhibits T-cell activation (24, 25). Elevated PD-L1 expression has been observed in CeCa tissues and correlates with poor prognosis and resistance to conventional therapies (26–28).

Clinically, durable responses to anti-PD-1 therapy have been observed in the cervical cancer cohort of the multi-cohort KEYNOTE-158 study, particularly in PD-L1-positive disease (29, 30). HPV oncogenes additionally induce chronic inflammation via COX-2 and PGE2, activating the COX-PG pathway (31, 32).

2.2 HPV-induced oxidative stress

Persistent HPV infection disrupts cellular redox balance through coordinated actions of viral oncoproteins (33). E6 degrades p53, impairing transcriptional activation of antioxidant genes (34, 35), while E7 inactivates pRb, promoting

cell-cycle progression under oxidative conditions (36–38). This dual assault creates a pro-oxidant state characterized by mitochondrial dysfunction, in which damaged electron-transport chains generate excessive reactive oxygen species (ROS) (6, 33, 39).

Metabolic reprogramming: HPV further amplifies oxidative stress through metabolic changes. The E4 protein can disrupt mitochondrial-cytoskeletal interactions, reducing membrane potential and promoting apoptosis resistance (40, 41). While E6/E7 upregulate glycolytic enzymes to sustain the Warburg effect (42, 43). This metabolic shift creates a feed-forward loop in which mitochondrial ROS generation perpetuates further oxidative damage (40, 44, 45).

DNA damage and mutagenesis: The resulting oxidative stress induces nuclear and mitochondrial DNA damage, including mutagenic 8-hydroxy-2'-deoxyguanosine (8-OHdG) lesions that contribute to oncogenic transformation. The resulting oxidative stress induces nuclear and mitochondrial DNA damage, including mutagenic 8-hydroxy-2'-deoxyguanosine (8-OHdG) lesions that drive oncogenic transformation (8, 43, 46). These immunosuppressive networks further correlate with both TAM polarization states and advanced disease progression (43, 47). Certain mitochondrial DNA polymorphisms (e.g., C150T) may

Subset	Compartment	Typical observation	Clinical readout	Direction
CD8 ⁺ T cells	Tumor nests vs. stroma	Intratumoral > peritumoral density	OS/PFS/response to ICI	Intratumoral $\uparrow \rightarrow$ better
Tregs	Peritumoral stroma	Enriched; high Treg:CD8	OS/PFS/ICI response	High ↑ → worse
TAMs (M2-skewed)	Stroma and nests	CD163 ⁺ /Arg1 ⁺ enrichment	Stage/LN+/OS	High ↑ → worse
Th17 (blood)	Peripheral blood	↑ Th17/Treg in CIN; ↑ with stage	Stage/LN+/response	Higher ↑ → worse (advanced)
Th17 (tissue)	Tumor tissue (TILs)	↑ with stage; heterogeneity	OS/PFS	Usually worse; squamous paradox

TABLE 1 Immune cell subsets in cervical cancer: compartmental distribution, stage-specific dynamics, clinical correlations, and direction of prognostic effect.

also exacerbate this process, increasing susceptibility to HPV persistence and cervical cancer development (48).

2.3 Context-dependent immune modulation

The TME in CeCa comprises diverse immune cells that influence tumor development and therapy response (Table 1). Conflicting evidence exists regarding Th17 cells: in early lesions Th17-associated IL-17 can participate in neutrophil recruitment (49). Whereas in advanced disease Th17 cells have been linked to angiogenesis, immunosuppression, and tumor progression (50, 51). Similarly, the antioxidant enzyme superoxide dismutase 2 (SOD2) demonstrates context-dependent functions, acting as both protective and tumor-supportive depending on redox status and treatment exposure (52, 53).

3 Immune landscape in cervical cancer

The cervical cancer tumor microenvironment (TME) is composed of diverse immune populations whose density, phenotype, and spatial organization influence prognosis and therapeutic response (Figure 1B). The balance between effector and suppressive subsets, as well as their localization within tumor nests, peritumoral stroma, or circulation, critically shapes clinical outcomes.

3.1 Cytotoxic T cells (CD8+)

CD8⁺ tumor-infiltrating lymphocytes (TILs) constitute a principal effector population in antitumor immunity (54). Their distribution within the TME has prognostic significance: high intratumoral (nest) density is generally associated with favorable outcomes, whereas exclusion to the peritumoral stroma correlates with immune escape and resistance to immune checkpoint inhibitors (ICIs) (55, 56). Spatial metrics, such as proximity to the tumor-stroma interface, are increasingly recognized as key determinants of therapeutic efficacy and should be systematically reported in clinical studies (57). High intratumoral CD8⁺ density has been shown to be an independent predictor of improved progression-free and overall survival in cervical cancer patients (58). Meta-analyses also confirm the prognostic value of CD8⁺ TILs, with increased

infiltration correlating with significantly better survival outcomes across cervical cohorts (59).

3.2 Regulatory T cells (T_{regs})

Regulatory T cells (T_{regs}) are enriched in the peritumoral stroma of cervical tumors, where they exert suppressive effects on effector T cells via cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) signaling and secretion of inhibitory cytokines such as interleukin-10 (IL-10) and TGF- β : Transforming Growth Factor- β (Figure 1B). High $_{Treg}$ density and elevated T_{reg} :CD8 ratios are consistently associated with poor prognosis and diminished ICI efficacy. This reflects the creation of an exclusionary stromal niche that is unfavorable for effective antitumor immunity (47, 60).

3.3 Tumor-associated macrophages (TAMs)

Cervical tumors frequently exhibit polarization toward an M2-skewed macrophage phenotype (61). These tumor-associated macrophages (TAMs) are characterized by arginase-1 expression, pro-angiogenic activity, and suppression of T-cell effector function [(62, 63), Figure 2B]. Enrichment of M2-like TAMs correlates with advanced disease stage, lymph-node metastasis, and resistance to therapy (64–66). Accurate characterization requires specification of phenotypic markers such as CD68/CD163 and careful annotation of their anatomical compartment within tumor nests or stroma (67).

3.4 Th17 cells—stage- and compartmentspecific roles

T helper 17 (Th17) cells, defined by interleukin-17 (IL-17) secretion, display stage- and compartment-specific behaviors in CeCa.

Early disease (CIN/early tumors): Peripheral blood studies demonstrate an elevated Th17: T_{reg} ratio compared with healthy controls, reflecting early immune dysregulation. This imbalance persists into invasive disease, though without substantial systemic amplification (68, 69).

Advanced disease: Th17 accumulation in blood and tumor tissue correlates with higher clinical stage, lymph-node metastasis, and poor outcomes (68, 69). Increased Th17 frequencies under treatment pressure (e.g., chemoradiation) have been linked to poor therapeutic response and early relapse (70).

TABLE 2 Oxidative stress and immune biomarkers in cervical cancer; analytical platforms, evidence levels, clinical status, and key limitations,

Biomarker	Analytical Platform(s)	Evidence level	Clinical status	Key limitations
8-hydroxy-2'-deoxyguanosine (8-OHdG)	ELISA; LC-MS/MS	Investigational; correlates with progression and TAM polarization	Not clinically validated in CeCa	Variability; cross-reactivity; lack of standards; oxidation/storage issues
Cell-free mitochondrial DNA (cf-mtDNA)	qPCR/digital PCR; NGS	Exploratory; small cohorts link to treatment response	Early stage; not validated	Sensitive to tube type, processing delay, freeze-thaw cycles
PD-L1 expression	IHC (e.g., 22C3 pharmDx, SP263)	Predictive; supported by KEYNOTE- 158/826 trials	FDA-approved for pembrolizumab	Expression heterogeneity; assay and spatial variability
Tumor-infiltrating lymphocytes (CD8+ TILs)	IHC; multiplex IF; digital pathology	Prognostic; high CD8⁺ density → better OS/PFS	Investigational in CeCa	No standardized scoring; spatial context and assay variability

Abbreviations. Ceca, Cervical Cancer; ELISA, Enzyme-Linked Immunosorbent Assay; LC-MS/MS, Liquid Chromatography Tandem Mass Spectrometry; qPCR, quantitative polymerase chain reaction.

NGS, Next-Generation Sequencing; TAM, Tumor-Associated Macrophage; IHC, immunohistochemistry.

IF, Immunofluorescence; OS, Overall Survival; PFS, Progression-Free Survival; FDA, food and drug administration.

Notably, data remain heterogeneous. In squamous histologies, higher intratumoral IL-17⁺ cell density has been associated with improved survival (69), though much of this IL-17 signal has been derived from neutrophils rather than Th17 cells (71, 72). Thus, IL-17 alone cannot be employed as surrogate marker for Th17 activity. The impact of Th17 cells depends on the histological subtype of the tumor. In squamous cell carcinoma, Th17 responses may provide some protective or beneficial effects, whereas in adenocarcinoma they are mostly harmful and contribute to disease progression. In select niches, Th17 cells may also indirectly promote antitumor immunity by recruiting cytotoxic effector cells (69).

Overall, the evidence supports a pro-tumorigenic role for Th17 cells in advanced cervical cancer, while recognizing histological and spatial exceptions.

4 Biomarkers: evidence levels and clinical utility

Biomarkers reflecting oxidative stress and immune contexture are increasingly investigated in context of CeCa. While several biomarkers demonstrate biological and prognostic relevance, most remain exploratory due to methodological variability and lack of clinical validation. A tabulated summary of these methods can be found in Table 2.

4.1 Oxidative stress biomarkers

Among oxidative stress-related biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) is the most widely studied DNA lesion. It reflects ROS-mediated oxidative damage and has been linked to genomic instability, carcinogenesis, and macrophage polarization (8, 43, 46). Detection methods include enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, these platforms are not directly comparable, as pre-analytical oxidation, sample storage, and assay-specific cross-reactivity introduce variability. Such inter-assay inconsistency currently precludes standardized application in clinical practice (73, 74). Thus, 8-OHdG should therefore be regarded as investigational, with evidence best interpreted as correlational rather than as a validated decision-making tool.

Circulating cell-free mitochondrial DNA (cf-mtDNA) represents another emerging marker (75). Its potential utility lies in real-time monitoring of treatment response and disease dynamics. Yet cf-mtDNA quantification is also highly sensitive to technical variables, including collection tube type, processing delays, freeze–thaw cycles, extraction chemistry, and amplicon length. Readers are directed to (75) for a detailed review of these quantitative methods (75). Early cohort studies suggest that cf-mtDNA levels may reflect disease activity, but reproducibility challenges underscore its current exploratory status, pending prospective validation (73, 74).

4.2 Immune biomarkers

PD-L1 expression serves as a clinically established predictive biomarker in CeCa, guiding patient selection for immune checkpoint inhibitor (ICI) therapy (76, 77). Clinical benefit has been demonstrated in the CeCa cohort of KEYNOTE-158, though responses occur in only a subset of PD-L1-positive patients (78). PD-L1 utility is constrained by intratumoral heterogeneity, assay variability, and temporal dynamics of expression, which limit its standalone predictive accuracy (78). Consequently, multiplexed or composite biomarker strategies are increasingly advocated.

Tumor-infiltrating lymphocytes (TILs), particularly CD8⁺ T cells, do not also retain universally consistent prognostic value across studies and different types of cancers (79). Higher intratumoral CD8⁺ density is associated with improved overall survival (OS) and progression-free survival (PFS), reflecting a more favorable immune contexture (80–82). To maximize reproducibility, standardized immunohistochemistry or multiplex immunofluorescence assays with attention to spatial localization (tumor nests vs. stroma) are recommended (47, 83).

5 Therapeutics: current standards and emerging combinations

The therapeutic landscape of CeCa has evolved with the advent of immune checkpoint inhibitors (ICIs, e.g., PDL-1) and exploratory redox-targeting agents. However, clinical benefit remains

heterogeneous, underscoring the need for biomarker-guided selection and rational combinations.

5.1 Current standards: immune checkpoint inhibitors

Immune checkpoint blockade has transformed the management of recurrent and metastatic CeCa, though responses remain confined to subsets of patients.

The KEYNOTE-158 trial established pembrolizumab as a therapeutic option in recurrent/metastatic CeCa. In the dedicated cervical cohort (n:98), the overall response rate (ORR) was 12.2%, with a modest increase to 14.6% among PD-L1-positive tumors. Responses were not frequent in PD-L1-negative disease. While durable responses were achieved in some patients, most non-responders progressed, reflecting the persistence of an immunosuppressive TME. Immune-related adverse events occurred in ~12% of patients, consistent with the broader safety profile of pembrolizumab (84).

The phase III KEYNOTE-826 trial redefined the standard of care for persistent, recurrent, or metastatic disease. Pembrolizumab combined with platinum-based chemotherapy \pm bevacizumab significantly improved both overall survival (OS) and progression-free survival (PFS). At 22 months of median follow-up, OS reached 24.4 months compared with 16.5 months in the control arm, with a hazard ratio for death of 0.64 (95% CI 0.50–0.81) in PD-L1–positive patients. These results established pembrolizumab plus chemotherapy (with or without bevacizumab) as the global first-line standard for PD-L1–positive advanced CeCa (85).

5.2 Other immunotherapeutic approaches

Therapeutic HPV vaccines represent an area of ongoing development. The ISA101 peptide vaccine combined with nivolumab demonstrated an ORR of ~33% in a cohort of HPV16-positive solid tumors, predominantly head-and-neck squamous cell carcinoma. Only a minority of patients had CeCa, limiting generalizability of the results (86). Additional vaccine modalities, including DNA- and viral vector–based platforms, are under early-phase evaluation, but no vaccine has yet achieved regulatory approval forCeCa.

5.3 Redox-targeting agents and repurposed drugs

Given the role of oxidative stress in HPV-driven carcinogenesis, redox modulators are under investigation. BMX-001, a manganese porphyrin radiomodulator, has entered clinical trials primarily in glioblastoma and head-and-neck cancer (87). Its application in CeCa remains investigational with no disease-specific data available (39).

Mdivi-1, a mitochondrial division inhibitor widely employed in preclinical studies, has demonstrated mechanistic utility but possesses off-target effects precluding clinical suitability (88, 89, 102).

Drug repurposing represents an additional therapeutic avenue. For instance, Metformin has exhibited antiproliferative and redox-modulating effects in CeCa cell lines and xenograft models (90, 91), though randomized clinical evidence in CeCa is lacking. Similarly, imipramine and nelfinavir have shown ROS-modulating and anti-HPV effects in preclinical models (92, 93), with early-phase trials underway in other malignancies (Table 3). However, cervical-specific clinical validation remains absent, which positions these agents as hypothesis-generating rather than clinically actionable (94, 95).

5.4 Mechanistic rationale for combinations

Resistance to ICIs arises from multiple mechanisms, including activation of the adenosine/CD73 axis, compensatory upregulation of inhibitory receptors (LAG-3, TIM-3, TIGIT), and cancer-associated fibroblasts (CAFs)-CXCL12 signaling (96, 97). Preclinical studies suggest that redox normalization can reduce PD-L1 expression, restore antigen presentation, and enhance tumor immunogenicity (98, 99). These insights provide a rationale for combining redox-targeted therapies with ICIs (100). However, no patient-level CeCa data currently validates this approach, highlighting a key translational gap.

6 Future directions and conclusion

Despite significant progress in elucidating the molecular underpinnings of cervical cancer (CeCa), translation of mechanistic insights into clinical benefit remains limited. The interplay between HPV oncogenes, oxidative stress, and immune dysregulation presents both challenges and opportunities for therapeutic innovation. Several key priorities emerge for future research.

- 1. Development of predictive biomarkers. Reliable biomarkers are essential to stratify patients and guide therapy. While PD-L1 expressions and tumor-infiltrating lymphocytes (TILs) offer partial predictive value, their wider application is restricted following lack of multiplexed or composite biomarker strategies. Integration of oxidative stress markers (e.g., 8-OHdG, cf-mtDNA) with immune profiling may improve patient selection for immune checkpoint inhibitors (ICIs) and combination therapies. Nonetheless, standardization of assay platforms and pre-analytical workflows is critical for reproducibility and clinical translation.
- Advancement of noninvasive monitoring. Liquid biopsy approaches, particularly cf-mtDNA and circulating immune signatures, represent promising tools for real-time monitoring of disease progression and therapeutic response. Rigorous prospective validation in large, clinically annotated cohorts is required before clinical adoption.
- 3. Rational therapeutic combinations. Evidence suggests that redox modulation may enhance immunotherapy efficacy by restoring antigen presentation and reducing PD-L1 expression. Rational design of trials integrating ICIs with redox-targeted agents, therapeutic HPV vaccines, or repurposed drugs could

TABLE 3 Therapeutic landscape in advanced cervical cancer: mechanisms, clinical trial phases, endpoints, and outcomes of current and investigational agents.

Agent/Approach	Mechanism	Phase/ Trial	Population	End points	Outcome/Status
Pembrolizumab (KEYNOTE-158)	PD-1 blockade	Phase II (multi- cohort)	R/M CeCa, n = 98	ORR, safety	ORR 12.2% overall; 14.6% PD-L1 ⁺ ; durable, manageable irAEs
Pembrolizumab + chemo ± bevacizumab (KEYNOTE-826)	PD-1 blockade + chemo + anti-VEGF	Phase III	1st line persistent/recurrent/ metastatic CeCa	OS, PFS	Median OS 24.4 vs. 16.5 months; HR death 0.64 (PD-L1+); new standard
ISA101 + nivolumab	HPV16 peptide vaccine + PD-1 blockade	Phase II	HPV16 ⁺ tumors (mostly HNSCC, some CeCa)	ORR	ORR ~33% overall; CeCa efficacy not established (101)
BMX-001	Mn porphyrin redox modulator	Early-phase (non-CeCa)	Glioblastoma, HNSCC	Safety, radiosens	Investigational; no CeCa-specific data
Mdivi-1	Mitochondrial division inhibitor	Preclinical	Cell/animal models	Mechanistic	Tool compound; not clinically viable
Metformin/Imipramine/Nelfinavir	Repurposed metabolic/ redox mod	Preclinical/early phase	Cell/animal ± non-CeCa trials	Exploratory	CeCa-specific data absent; hypothesis-generating

Abbreviations: CeCa, Cervical Cancer; R/M, Recurrent/Metastatic; PD-1, Programmed Death-1; PD-L1⁺, Programmed Death Ligand-1, positive; ORR, Objective Response Rate; irAEs,Immune-related Adverse Events; Chemo, Chemotherapy; Anti-VEGF, Anti-Vascular Endothelial Growth Factor; OS, Overall Survival; PFS, Progression-Free Survival; HPV16⁺, Human Papillomavirus type 16 positive; HNSCC, Head and Neck Squamous Cell Carcinoma; Mn, Manganese.

- provide synergistic benefit. However, careful attention must be paid to potential antagonistic interactions and context-dependent effects.
- 4. Preclinical model refinement. Current *in vitro* and *in vivo* models incompletely recapitulate the complexity of the CeCa tumor microenvironment (TME). Integration of multi-omics platforms, single-cell technologies, and spatial profiling will be essential to capture the dynamic crosstalk between HPV-driven pathways, oxidative stress, and immune regulation. Such models will accelerate discovery of therapeutic vulnerabilities and facilitate translational research.

7 Conclusion

Cervical cancer remains a major global health challenge, with pathogenesis shaped by intricate interactions between HPV oncogenes, oxidative stress, and immune modulation. While immune checkpoint inhibitors and emerging redox-targeting strategies provide new therapeutic avenues, clinical benefit is limited to subsets of patients. Current evidence underscores the context-dependent duality of immune subsets such as Th17 cells and antioxidant enzymes like superoxide dismutase 2 (SOD2), reflecting the complexity of redox–immunity crosstalk.

Future progress hinges on the development of predictive biomarkers, noninvasive monitoring strategies, and rationally designed therapeutic combinations. Integration of multi-omics data with advanced preclinical models will be pivotal in bridging mechanistic insights into personalized treatment. By addressing these gaps, it may be possible to translate biological understanding into durable clinical benefit and improve outcomes for women with CeCa.

Author contributions

AM: Conceptualization, Writing – original draft, Writing – review and editing. SS: Writing – review and editing.

QD: Writing – review and editing. YZ: Writing – original draft, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Vargas-Cardona HD, Rodriguez-Lopez M, Arrivillaga M, Vergara-Sanchez C, García-Cifuentes JP, Bermúdez PC, et al. Artificial intelligence for cervical cancer screening: scoping review, 2009-2022. *Int J Gynecol and Obstet* (2024) 165:566–78. doi:10.1002/ijgo.15179
- 2. Wang L, Yi S, Teng Y, Li W, Cai J. Role of the tumor microenvironment in the lymphatic metastasis of cervical cancer (review). *Exp Ther Med* (2023) 26:486. doi:10. 3892/etm.2023.12185
- 3. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA: A Cancer J Clinicians (2024) 74:12–49. doi:10.3322/caac.21820
- 4. Cervical cancer statistics. Available online at: https://www.cancer.org/cancer/types/cervical-cancer/about/key-statistics.html (Accessed August 22, 2025).
- 5. Hu S, Xu X, Zhang Y, Liu Y, Yang C, Wang Y, et al. A nationwide post-marketing survey of knowledge, attitude and practice toward human papillomavirus vaccine in general population: implications for vaccine roll-out in mainland China. *Vaccine* (2021) 39:35–44. doi:10.1016/j.vaccine.2020.11.029
- 6. Brooks LA, Sullivan A, O'Nions J, Bell A, Dunne B, Tidy JA, et al. E7 proteins from oncogenic human papillomavirus types transactivate p73: role in cervical intraepithelial neoplasia. *Br J Cancer* (2002) 86:263–8. doi:10.1038/sj.bjc.6600033
- 7. Allison SJ, Jiang M, Milner J. Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. *Aging (Albany NY)* (2009) 1: 316–27. doi:10.18632/aging.100028
- 8. Pal A, Kundu R. Human Papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. *Front Microbiol* (2020) 10:3116. doi:10.3389/fmicb.2019.03116
- 9. Evans M, Borysiewicz LK, Evans AS, Rowe M, Jones M, Gileadi U, et al. Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. *The J Immunol* (2001) 167:5420–8. doi:10.4049/jimmunol.167.9.5420
- 10. Ma B, Ren C, Yin Y, Zhao S, Li J, Yang H. Immune cell infiltration and prognostic index in cervical cancer: insights from metabolism-related differential genes. *Front Immunol* (2024) 15:1411132. doi:10.3389/fimmu.2024.1411132
- 11. Karsten CB, Buettner FFR, Cajic S, Nehlmeier I, Neumann B, Klippert A, et al. Exclusive decoration of simian immunodeficiency virus env with high-mannose type N-glycans is not compatible with mucosal transmission in rhesus macaques. *J Virol* (2015) 89:11727–33. doi:10.1128/JVI.01358-15
- Georgescu SR, Mitran CI, Mitran MI, Caruntu C, Sarbu MI, Matei C, et al. New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: the role of chronic inflammation and oxidative stress. *J Immunol Res* (2018) 2018:1–10. doi:10.1155/2018/5315816
- 13. Pacini L, Savini C, Ghittoni R, Saidj D, Lamartine J, Hasan UA, et al. Downregulation of toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control. *J Virol* (2015) 89:11396–405. doi:10.1128/JVI.02151-15
- 14. Pacini I., Ceraolo MG, Venuti A, Melita G, Hasan UA, Accardi R, et al. UV radiation activates toll-like receptor 9 expression in primary human keratinocytes, an event inhibited by human papillomavirus 38 E6 and E7 oncoproteins. *J Virol* (2017) 91: e01123-17. doi:10.1128/JVI.01123-17
- 15. Okamoto M, Kouwaki T, Fukushima Y, Oshiumi H. Regulation of RIG-I activation by K63-linked polyubiquitination. *Front Immunol* (2018) 8:1942. doi:10. 3389/fimmu.2017.01942
- 16. Chiang C, Pauli E-K, Biryukov J, Feister KF, Meng M, White EA, et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol (2018) 92:e01737-17. doi:10.1128/JVI.01737-17
- 17. Hemmat N, Bannazadeh Baghi H. Association of human papillomavirus infection and inflammation in cervical cancer. *Pathog Dis* (2019) 77:ftz048. doi:10.1093/femspd/ftz048
- 18. Li J-X, Zhang J, Li C-H, Zhang Q, Kong B, Wang P-H. Human papillomavirus E2 proteins suppress innate antiviral signaling pathways. *Front Immunol* (2025) 16: 1555629. doi:10.3389/fimmu.2025.1555629
- 19. Moody CA. Regulation of the innate immune response during the human papillomavirus life cycle. *Viruses* (2022) 14:1797. doi:10.3390/v14081797
- 20. Lou M, Huang D, Zhou Z, Shi X, Wu M, Rui Y, et al. DNA virus oncoprotein HPV18 E7 selectively antagonizes cGAS-STING-triggered innate immune activation. *J Med Virol* (2023) 95:e28310. doi:10.1002/jmv.28310
- 21. Miyauchi S, Kim SS, Jones RN, Zhang L, Guram K, Sharma S, et al. Human papillomavirus E5 suppresses immunity via inhibition of the immunoproteasome and STING pathway. *Cell Rep* (2023) 42:112508. doi:10.1016/j.celrep.2023.112508
- 22. MacLennan SA, Marra MA. Oncogenic viruses and the epigenome: how viruses hijack epigenetic mechanisms to drive cancer. *Int J Mol Sci* (2023) 24:9543. doi:10.3390/ijms24119543
- 23. Da Silva MLR, De Albuquerque BHDR, Allyrio TADMF, De Almeida VD, Cobucci RNDO, Bezerra FL, et al. The role of HPV-induced epigenetic changes in cervical carcinogenesis (review). *Biomed Rep* (2021) 15:60. doi:10.3892/br. 2021.1436

- 24. Zhang L, Zhao Y, Tu Q, Xue X, Zhu X, Zhao K-N. The roles of programmed cell death ligand-1/programmed cell death-1 (PD-L1/PD-1) in HPV-Induced cervical cancer and potential for their use in blockade therapy. *Curr Med Chem* (2021) 28: 893–909. doi:10.2174/0929867327666200128105459
- 25. Aghbash PS, Hemmat N, Baradaran B, Mokhtarzadeh A, Poortahmasebi V, Oskuee MA, et al. The effect of Wnt/ β -catenin signaling on PD-1/PDL-1 axis in HPV-Related cervical cancer. *Oncol Res* (2022) 30:99–116. doi:10.32604/or.2022.026776
- $26.~{\rm Gu~X},~{\rm Dong~M},~{\rm Liu~Z},~{\rm Mi~Y},~{\rm Yang~J},~{\rm Zhang~Z},~{\rm et~al.}$ Elevated PD-L1 expression predicts poor survival outcomes in patients with cervical cancer. Cancer Cell Int (2019) 19:146. doi:10.1186/s12935-019-0861-7
- 27. Meng Y, Liang H, Hu J, Liu S, Hao X, Wong MSK, et al. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. *J Cancer* (2018) 9:2938–45. doi:10.7150/jca.22532
- 28. Ishikawa M, Nakayama K, Nakamura K, Yamashita H, Ishibashi T, Minamoto T, et al. High PD-1 expression level is associated with an unfavorable prognosis in patients with cervical adenocarcinoma. *Arch Gynecol Obstet* (2020) 302:209–18. doi:10.1007/s00404-020-05589-0
- 29. Rischin D, Gil-Martin M, González-Martin A, Braña I, Hou JY, Cho D, et al. PD-1 blockade in recurrent or metastatic cervical cancer: data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. *Gynecol Oncol* (2020) 159:322–8. doi:10.1016/j.ygyno.2020.08.026
- 30. Li G, Li X, Yin R, Feng M, Zuo J, Wei S, et al. Phase II study of enlonstobart (SG001), a novel PD-1 inhibitor in patients with PD-L1 positive recurrent/metastatic cervical cancer. *Gynecol Oncol* (2024) 191:165–71. doi:10.1016/j.ygyno.2024.10.001
- 31. Parida S, Mandal M. Inflammation induced by human papillomavirus in cervical cancer and its implication in prevention. *Eur J Cancer Prev* (2014) 23:432–48. doi:10. 1097/cej.0000000000000023
- 32. Kan X, Zhou Z, Liu L, Aiskikaer R, Zou Y. Significance of non-steroidal anti-inflammatory drugs in the prevention and treatment of cervical cancer. *Heliyon* (2025) 11:e42055. doi:10.1016/j.heliyon.2025.e42055
- 33. Cruz-Gregorio A, Aranda-Rivera AK. Redox-sensitive signalling pathways regulated by human papillomavirus in HPV-Related cancers. *Rev Med Virol* (2021) 31:e2230. doi:10.1002/rmv.2230
- 34. Li Q, Xie B, Chen X, Lu B, Chen S, Sheng X, et al. SNORD6 promotes cervical cancer progression by accelerating E6-mediated p53 degradation. *Cell Death Discov* (2023) 9:192. doi:10.1038/s41420-023-01488-w
- 35. Hadami K, Saby C, Dakka N, Collin G, Attaleb M, Khyatti M, et al. Degradation of p53 by HPV16-E6 variants isolated from cervical cancer specimens of Moroccan women. *Gene* (2021) 791:145709. doi:10.1016/j.gene.2021.145709
- 36. Marullo R, Werner E, Zhang H, Chen GZ, Shin DM, Doetsch PW. HPV16 E6 and E7 proteins induce a chronic oxidative stress response *via* NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells. *Carcinogenesis* (2015) 36:1397–406. doi:10.1093/carcin/bgv126
- 37. Xu A, Yang X, Zhao J, Kong S, Tang Q, Li X, et al. KAT8 facilitates the proliferation of cancer cells through enhancing E7 function in HPV-Associated cervical cancer. *Acta Biochim. Biophys. Sin.* (2025). doi:10.3724/abbs.2025022
- 38. Engeland K. Cell cycle regulation: P53-P21-RB signaling. Cell Death Differ (2022) 29:946–60. doi:10.1038/s41418-022-00988-z
- 39. Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. HPV proteins as therapeutic targets for phytopharmaceuticals related to redox state in HPV-Related cancers. Future Pharmacol (2024) 4:716–30. doi:10.3390/futurepharmacol4040038
- 40. Cruz-Gregorio A, Aranda-Rivera AK, Roviello GN, Pedraza-Chaverri J. Targeting mitochondrial therapy in the regulation of HPV infection and HPV-Related cancers. *Pathogens* (2023) 12:402. doi:10.3390/pathogens12030402
- 41. Chen B, Wang Y, Wu Y, Xu T. Effect of HPV oncoprotein on carbohydrate and lipid metabolism in tumor cells. *Curr Cancer Drug Targets* (2024) 24:987–1004. doi:10. 2174/0115680096266981231215111109
- 42. Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, et al. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-Associated tumor. Cancer Gene Ther (2024) 31:9–17. doi:10.1038/s41417-023-00682-3
- 43. Zahra K, Patel S, Dey T, Pandey U, Mishra SP. A study of oxidative stress in cervical cancer-an institutional study. *Biochem Biophys Rep* (2021) 25:100881. doi:10. 1016/j.bbrep.2020.100881
- 44. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. *Free Radic Biol Med* (2009) 47:333–43. doi:10.1016/j. freeradbiomed.2009.05.004
- 45. Letafati A, Taghiabadi Z, Zafarian N, Tajdini R, Mondeali M, Aboofazeli A, et al. Emerging paradigms: unmasking the role of oxidative stress in HPV-Induced carcinogenesis. *Infect Agents Cancer* (2024) 19:30. doi:10.1186/s13027-024-00581-8
- 46. Ebrahimi S, Soltani A, Hashemy SI. Oxidative stress in cervical cancer pathogenesis and resistance to therapy: EBRAHIMI et al. *J Cell Biochem* (2019) 120: 6868–77. doi:10.1002/jcb.28007

- 47. Adurthi S, Mukherjee G, Krishnamurthy H, Sudhir K, Bafna UD, Umadevi K, et al. Functional tumor infiltrating TH1 and TH2 effectors in large early-stage cervical cancer are suppressed by regulatory T cells. *Int J Gynecol Cancer* (2012) 22:1130–7. doi:10.1097/igc.0b013e318262aa53
- 48. Zhai K, Chang L, Zhang Q, Liu B, Wu Y. Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. *Mitochondrion* (2011) 11: 559–63. doi:10.1016/j.mito.2011.02.005
- 49. Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, et al. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? *Cancer Cell Int* (2024) 24:355. doi:10.1186/s12935-024-03525-9
- 50. Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, et al. The paradox of Th17 cell functions in tumor immunity. *Cell Immunol* (2017) 322:15–25. doi:10.1016/j.cellimm.2017.10.015
- 51. Joshi N, Hajizadeh F, Ansari Dezfouli E, Zekiy AO, Nabi Afjadi M, Mousavi SM, et al. Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. *Life Sci* (2021) 275:119369. doi:10.1016/j.lfs.2021.119369
- 52. Rabelo-Santos SH, Termini L, Boccardo E, Derchain S, Longatto-Filho A, Andreoli MA, et al. Strong SOD2 expression and HPV-16/18 positivity are independent events in cervical cancer. *Oncotarget* (2018) 9:21630–40. doi:10.18632/oncotarget.24850
- 53. Talarico MCR, Nunes RAL, Silva GÁF, Costa LBEda, Cardoso MR, Esteves SCB, et al. High expression of SOD2 protein is a strong prognostic factor for stage IIIB squamous cell cervical carcinoma. *Antioxidants (Basel)* (2021) 10:724. doi:10.3390/antiox10050724
- 54. Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8+ T cell antitumor efficacy and exhaustion: molecular insights. *Drug Discov Today* (2021) 26:951–67. doi:10.1016/j.drudis.2021.01.002
- 55. Trontzas IP, Syrigos KN. Immune biomarkers for checkpoint blockade in solid tumors: transitioning from tissue to peripheral blood monitoring and future integrated strategies. *Cancers (Basel)* (2025) 17:2639. doi:10.3390/cancers17162639
- 56. Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, et al. Stromal and immune cell dynamics in tumor associated tertiary lymphoid structures and anti-tumor immune responses. *Front Cell Dev Biol* (2022) 10:933113. doi:10.3389/fcell.2022.933113
- 57. Feng Y, Ma W, Zang Y, Guo Y, Li Y, Zhang Y, et al. Spatially organized tumor-stroma boundary determines the efficacy of immunotherapy in colorectal cancer patients. *Nat Commun* (2024) 15:10259. doi:10.1038/s41467-024-54710-3
- 58. Shen X, Wang C, Li M, Wang S, Zhao Y, Liu Z, et al. Identification of CD8+ T cell infiltration-related genes and their prognostic values in cervical cancer. *Front Oncol* (2022) 12:1031643. doi:10.3389/fonc.2022.1031643
- 59. Ohno A, Iwata T, Katoh Y, Taniguchi S, Tanaka K, Nishio H, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy. *Gynecol Oncol* (2020) 159:329–34. doi:10. 1016/j.ygyno.2020.07.106
- $60.\,\mathrm{Ao}$ C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. Infect Genet Evol (2018) 65: 406–13. doi:10.1016/j.meegid.2018.08.014
- 61. Choi Y, Lee D, Kim NY, Seo I, Park NJ-Y, Chong GO. Role of tumor-associated macrophages in cervical cancer: integrating classical perspectives with recent technological advances. *Life (Basel)* (2024) 14:443. doi:10.3390/life14040443
- 62. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. *Acta Pharmaceutica Sinica B* (2020) 10:2156–70. doi:10.1016/j.apsb.2020.04.004
- 63. Li A-Q, Huang F, Talaiti S, Yang X, Bi H, Fang J-H. Understanding the complexity of tumor-associated macrophages: druggable and therapeutic insights. *Acta Pharmaceutica Sinica B* (2025). doi:10.1016/j.apsb.2025.07.021
- 64. Petrillo M, Zannoni GF, Martinelli E, Pedone Anchora L, Ferrandina G, Tropeano G, et al. Polarisation of tumor-associated macrophages toward M2 phenotype correlates with poor response to chemoradiation and reduced survival in patients with locally advanced cervical cancer. *PLoS One* (2015) 10:e0136654. doi:10.1371/journal.pone.0136654
- 65. Guo F, Kong W, Zhao G, Cheng Z, Ai L, Lv J, et al. The correlation between tumor-associated macrophage infiltration and progression in cervical carcinoma. *Biosci Rep* (2021) 41:BSR20203145. doi:10.1042/BSR20203145
- 66. Qing W, Fang W-Y, Ye L, Shen L-Y, Zhang X-F, Fei X-C, et al. Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. *Thyroid* (2012) 22:905–10. doi:10.1089/thy.2011.0452
- 67. Battaglia A, Buzzonetti A, Baranello C, Ferrandina G, Martinelli E, Fanfani F, et al. Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. *Cancer Immunol Immunother* (2009) 58:1363–73. doi:10.1007/s00262-008-0646-7
- 68. Zhang J, Zhan J, Guan Z, Lin X, Li T, Li M, et al. The prognostic value of Th17/*Treg* cell in cervical cancer: a systematic review and meta-analysis. *Front Oncol* (2024) 14: 1442103. doi:10.3389/fonc.2024.1442103
- Guo W, Dai L, Qiu L. T cell subsets in cervical cancer tumor microenvironment: advances and therapeutic opportunities. Front Immunol (2025) 16:1612032. doi:10. 3389/fimmu.2025.1612032

70. Theobald L, Stroeder R, Melchior P, Iordache II, Tänzer T, Port M, et al. Chemoradiotherapy-induced increase in Th17 cell frequency in cervical cancer patients is associated with therapy resistance and early relapse. *Mol Oncol* (2021) 15:3559–77. doi:10.1002/1878-0261.13095

- 71. Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES, et al. Angels and demons: th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. *Oncoimmunology* (2015) 4:e984539. doi:10.4161/2162402X.2014.984539
- 72. Punt S, Houwing-Duistermaat JJ, Schulkens IA, Thijssen VL, Osse EM, de Kroon CD, et al. Correlations between immune response and vascularization qRT-PCR gene expression clusters in squamous cervical cancer. *Mol Cancer* (2015) 14:71. doi:10.1186/s12943-015-0350-0
- 73. Cafforio P, Palmirotta R, Lovero D, Cicinelli E, Cormio G, Silvestris E, et al. Liquid biopsy in cervical cancer: hopes and pitfalls. *Cancers (Basel)* (2021) 13:3968. doi:10. 3390/cancers13163968
- 74. Shrivastava A, Mishra SP, Pradhan S, Choudhary S, Singla S, Zahra K, et al. An assessment of serum oxidative stress and antioxidant parameters in patients undergoing treatment for cervical cancer. *Free Radic Biol Med* (2021) 167:29–35. doi:10.1016/j. freeradbiomed.2021.02.037
- 75. Peng F, Wang S, Feng Z, Zhou K, Zhang H, Guo X, et al. Circulating cell-free mtDNA as a new biomarker for cancer detection and management. *Cancer Biol Med* (2023) 21:105–10. doi:10.20892/j.issn.2095-3941.2023.0280
- 76. Hu T, Wan X, Wu H, Cheng X, Xu S. Predictive values of PD-L1 expression for survival outcomes in patients with cervical cancer: a systematic review and meta-analysis. *Ginekol Pol* (2022) 93:767–74. doi:10.5603/GP.a2022.0071
- 77. Wang R, Zhang Y, Shan F. PD-L1: can it be a biomarker for the prognosis or a promising therapeutic target in cervical cancer? *Int Immunopharmacology* (2022) 103: 108484. doi:10.1016/j.intimp.2021.108484
- 78. Kouhen F, El Ghanmi A, Inghaoun H, Miftah H, Ghazi B, Badou A. The promise of PD1/PDL1 targeted immunotherapy in locally advanced cervical cancer: a game-changer for patients outcome? *Front Immunol* (2025) 16:1573576. doi:10.3389/fimmu. 2025.1573576
- 79. Clarke B, Tinker AV, Lee C-H, Subramanian S, van de Rijn M, Turbin D, et al. Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. *Mod Pathol* (2009) 22:393–402. doi:10.1038/modpathol. 2008.191
- 80. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. *Proc Natl Acad Sci U S A* (2007) 104: 3360–5. doi:10.1073/pnas.0611533104
- 81. Yang Y, Attwood K, Bshara W, Mohler JL, Guru K, Xu B, et al. High intratumoral CD8+ T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. *The Prostate* (2021) 81:20–8. doi:10.1002/pros.24068
- 82. Hao J, Yu H, Zhang T, An R, Xue Y. Prognostic impact of tumor-infiltrating lymphocytes in high grade serous ovarian cancer: a systematic review and meta-analysis. *Ther Adv Med Oncol* (2020) 12:1758835920967241. doi:10.1177/1758835920967241
- 83. Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM, Huang SC. Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. *The J Immunol* (2001) 167:2972–8. doi:10.4049/jimmunol.167.5.2972
- 84. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord J-P, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. *J Clin Oncol* (2020) 38:1–10. doi:10.1200/JCO.19.02105
- 85. Monk BJ, Colombo N, Tewari KS, Dubot C, Caceres MV, Hasegawa K, et al. First-line pembrolizumab + chemotherapy *versus* placebo + chemotherapy for persistent, recurrent, or metastatic cervical cancer: final overall survival results of KEYNOTE-826. *J Clin Oncol* (2023) 41:5505–11. doi:10.1200/JCO.23.00914
- 86. Wu S-Y, Lai H-T, Sanjib Banerjee N, Ma Z, Santana JF, Wei S, et al. IDR-Targeting compounds suppress HPV genome replication *via* disruption of phospho-BRD4 association with DNA damage response factors. *Mol Cell* (2024) 84:202–20.e15. doi:10.1016/j.molcel.2023.11.022
- 87. Gad SC, Sullivan DW, Jr, Spasojevic I, Mujer CV, Spainhour CB, Crapo JD. Nonclinical safety and toxicokinetics of MnTnBuOE-2-PyP5+ (BMX-001). *Int J Toxicol* (2016) 35:438–53. doi:10.1177/1091581816642766
- 88. Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, et al. Drug-induced oxidative stress in cancer treatments: Angel or devil? *Redox Biol* (2023) 63:102754. doi:10.1016/j.redox.2023.102754
- 89. Ahn SI, Choi SK, Kim MJ, Wie J, You JS. Mdivi-1: effective but complex mitochondrial fission inhibitor. *Biochem Biophysical Res Commun* (2024) 710: 149886. doi:10.1016/j.bbrc.2024.149886
- 90. Xia C, Liu C, He Z, Cai Y, Chen J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. *J Exp Clin Cancer Res* (2020) 39:127. doi:10.1186/s13046-020-01627-6
- 91. Chen Y-H, Wang P-H, Chen P-N, Yang S-F, Hsiao Y-H. Molecular and cellular mechanisms of metformin in cervical cancer. *Cancers (Basel)* (2021) 13:2545. doi:10. 3390/cancers13112545

- 92. Reddy R, Gaiwak V, Goda JS, Teni T. 'nelfinavir sensitizes a clinically relevant chemoradioresistant cervical cancer *in-vitro* model by targeting the AKT-USP15/USP11-HPV16 E6/E7 axis. *Biochem Biophys Rep* (2025) 42:101987. doi:10.1016/j.bbrep.2025.101987
- 93. Asensi-Cantó A, Rodríguez-Braun E, Beltrán-Videla A, Hurtado AM, Conesa-Zamora P. Effects of imipramine on cancer patients over-expressing Fascin1; description of the HITCLIF clinical trial. *Front Oncol* (2023) 13:1238464. doi:10. 3389/fonc.2023.1238464
- 94. Singh M, Singh R, Bhui K, Tyagi S, Mahmood Z, Shukla Y. Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear Factor-κB and akt activation in human cervical cancer cells. *Oncol Res* (2011) 19:245–57. doi:10.3727/096504011x13021877989711
- 95. Subeha MR, Telleria CM. The anti-cancer properties of the HIV protease inhibitor nelfinavir. Cancers~(Basel)~(2020)~12:3437.~doi:10.3390/cancers12113437
- 96. Zhang Z, Yu Y, Zhang Z, Li D, Liang Z, Wang L, et al. Cancer-associated fibroblasts-derived CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic degradation of PDL1. *J Exp Clin Cancer Res* (2023) 42:316. doi:10.1186/s13046-023-02900-0
- 97. Xiao Y, Li Z-Z, Zhong N-N, Cao L-M, Liu B, Bu L-L. Charting new frontiers: co-Inhibitory immune checkpoint proteins in therapeutics, biomarkers, and drug delivery

- systems in cancer care. *Translational Oncol* (2023) 38:101794. doi:10.1016/j.tranon. 2023.101794
- 98. Glorieux C, Xia X, Huang P. The role of oncogenes and redox signaling in the regulation of PD-L1 in cancer. *Cancers (Basel)* (2021) 13:4426. doi:10.3390/cancers13174426
- 99. Glorieux C, Xia X, He Y-Q, Hu Y, Cremer K, Robert A, et al. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-Mediated FGFR1 signaling. *Redox Biol* (2021) 38:101780. doi:10.1016/j.redox.2020.101780
- 100. Martinez-Cannon BA, Colombo I. The evolving role of immune checkpoint inhibitors in cervical and endometrial cancer. Cancer Drug Resist (2024) 7:23. doi:10. 20517/cdr.2023.120
- 101. Sousa LGde, Rajapakshe K, Rodriguez Canales J, Chin RL, Feng L, Wang Q, et al. ISA101 and nivolumab for HPV-16+ cancer: updated clinical efficacy and immune correlates of response. *J Immunother Cancer* (2022) 10:e004232. doi:10.1136/jitc-2021-004232
- 102. Rai R, Chandra V, Kennedy AL, Zuna RE, Benbrook DM. Distinct mechanism of cervical cancer cell death caused by the investigational new drug SHetA2. Front Oncol (2022) 12:958536. doi:10.3389/fonc. 2022.958536