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Cervical cancer (CeCa) remains a significant global health burden, with complex
interactions between oxidative stress and immune response playing critical roles
in its pathogenesis and progression. This review synthesizes current knowledge
on the molecular mechanisms linking oxidative stress pathways and immune
evasion, particularly focusing on human papillomavirus oncogenes E6 and E7. We
highlight the dual roles of immune components such as Type 17 T helper (Th17)
cells and the antioxidant enzyme superoxide dismutase 2 (SOD2), which exhibit
context-dependent tumor-promoting and suppressive functions. While
extensive mechanistic insights have been gained, translation to clinical
practice remains limited, partly due to inconsistent biomarkers and
incomplete understanding of therapeutic resistance. Recent advances in
targeted therapies, including mitochondrial inhibitors, Immune checkpoint
inhibitors (ICIs) (e.g., pembrolizumab, nivolumab), and PARP inhibitors,
demonstrate promise but face translational hurdles such as assay variability
and immune-related adverse events. Future research must address gaps
including predictive biomarker development, noninvasive monitoring via liquid
biopsy, and rational combination therapies integrating redox modulation and
immunotherapy. Enhanced multi-omics integration and refined preclinical
models are essential to advance personalized treatment strategies for CeCa.
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1 Introduction

Cervical cancer (CeCa), despite being largely preventable, remains a leading cause of
cancer-related mortality among women worldwide. In 2022, an estimated 662,301 new
cases and 348,874 deaths were reported globally (1, 2). According to the American Cancer
Society, while long-term declines in the US have plateaued, there are notable age-specific
differences. Incidence has increased by about 1.7% per year among women 30–44 years old
from 2012 to 2019, while it has declined by approximately 11% per year among those
20–24 years old (3, 4).

In China, CeCa is a significant concern, accounting for 150,659 new cases and
55,694 deaths in 2022, which represents roughly 23% of global incidents and 16% of
global deaths (1). The situation is further compounded by urban-rural disparities,
inadequate screening, and uneven HPV vaccine uptake (5).
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The etiology of CeCa is strongly linked to persistent infection
with high-risk human papillomavirus (HPV) types, especially
human papillomavirus type 16 (HPV16) and human
papillomavirus 18 (HPV18). The viral oncogenes E6 and
E7 disrupt tumor suppressor pathways by inactivating p53 and
retinoblastoma protein (pRb), facilitating uncontrolled cellular
proliferation and tumor progression (6–8). Beyond oncogenic
transformation, HPV E6/E7 also contribute to immune evasion
by modulating antigen presentation and dampening immune
surveillance, creating an immunosuppressive microenvironment
conducive to tumor growth [(9); Figure 1A].

Oxidative stress, characterized by an imbalance between reactive
oxygen species (ROS) generation and antioxidant defenses, has
emerged as a critical factor in cervical carcinogenesis. Excess
ROS can induce DNA damage, lipid peroxidation, and protein
oxidation, promoting genetic instability and oncogenic signaling
(2). Interestingly, oxidative stress plays a dual role by also activating
immune responses, which can either suppress or promote tumor
progression depending on the context. The crosstalk between
oxidative stress pathways and immune regulation in CeCa is
complex and incompletely understood, necessitating further
exploration (10).

The tumor microenvironment (TME) in CeCa includes diverse
immune cells, such as tumor-associated macrophages (TAMs),
T cells, and regulatory T cells (Tregs), which influence cancer
development and response to therapy. Immune evasion
mechanisms mediated by HPV, coupled with oxidative stress-
induced inflammation, contribute to TME remodeling and tumor
immune escape (2). However, conflicting evidence exists regarding
the role of certain immune subsets, such as Type 17 T helper (Th17)
cells, which have been reported to exhibit both pro- and anti-
tumorigenic effects in different studies (10). This highlights the
need for more detailed investigation into immune dynamics
within CeCa.

2 Core pathogenesis:
HPV–immunity–redox crosstalk

2.1 HPV-mediated immune evasion
mechanisms

Persistent infection with high-risk HPV types drives cervical
carcinogenesis through coordinated immune-evasion strategies. The
viral oncoproteins E6 and E7 impair antigen presentation by
downregulating major histocompatibility complex class I (MHC-
I) molecules on infected cell surfaces, limiting recognition by CD8+

T cells (9). Furthermore, these oncogenes interfere with interferon
(IFN) signaling pathways, reducing the production of type I IFNs
that are crucial for antiviral immunity (11). This suppression of
innate immune responses fosters an immunosuppressive TME that
promotes viral persistence and tumor progression [(12), Figure 2A].

Innate immunity disruption: HPV employs multiple strategies
to evade innate immune responses. β-HPV type 38 E6/E7 proteins
have been shown to downregulate Toll-like receptor 9 (TLR9), a
DNA sensor important for antiviral responses, in keratinocyte
models (13, 14). While these findings are specific to HPV38 and
should not be directly generalized to high-risk mucosal types such as
HPV16/18, some evidence suggests similar mechanisms may occur.
Cell-based experiments also demonstrate that HPV16 E6 interferes
with the RIG-I pathway by binding the ubiquitin ligase TRIM25 (15,
16), causing TRIM25 degradation and preventing RIG-I activation
via K63-linked ubiquitination (16). The impaired RIG-I pathway
further suppresses downstream type I interferon signaling in vitro
and requires clinical confirmation in CeCa patients (17–19).

Adaptive immunity suppression: HPV oncoproteins target the
cGAS–STING DNA-sensing pathway (20). HPV16/18 oncoproteins
downregulate STING transcription in experimental systems (21).
This is in line with the lower level of STIING mRNA in HPV-
positive cervical lesions compared with normal tissue. These

FIGURE 1
Oncogenic functions of HPV E6 and E7. (A)Genomic organization of the HPV genome, showing capsid proteins (L1, L2) and early genes (E1–E7). (B)
Mechanisms of oncogenesis: E6 promotes ubiquitination and degradation of p53, while E7 inactivates pRb to release E2F, driving S-phase entry and
uncontrolled proliferation. Both proteins additionally facilitate immune evasion through downregulation of MHC-I and disruption of interferon signaling
(not shown).
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observations are most consistent with transcriptional
downregulation by viral proteins rather than established
epigenetic silencing in patients (22, 23).

The immune escape facilitated by HPV oncogenes also involves
modulation of immune checkpoint molecules such as programmed
death ligand-1 (PD-L1), which further inhibits T-cell activation (24,
25). Elevated PD-L1 expression has been observed in CeCa tissues
and correlates with poor prognosis and resistance to conventional
therapies (26–28).

Clinically, durable responses to anti-PD-1 therapy have been
observed in the cervical cancer cohort of the multi-cohort
KEYNOTE-158 study, particularly in PD-L1–positive disease (29,
30). HPV oncogenes additionally induce chronic inflammation via
COX-2 and PGE2, activating the COX–PG pathway (31, 32).

2.2 HPV-induced oxidative stress

Persistent HPV infection disrupts cellular redox balance
through coordinated actions of viral oncoproteins (33).
E6 degrades p53, impairing transcriptional activation of
antioxidant genes (34, 35), while E7 inactivates pRb, promoting

cell-cycle progression under oxidative conditions (36–38). This dual
assault creates a pro-oxidant state characterized by mitochondrial
dysfunction, in which damaged electron-transport chains generate
excessive reactive oxygen species (ROS) (6, 33, 39).

Metabolic reprogramming: HPV further amplifies oxidative
stress through metabolic changes. The E4 protein can disrupt
mitochondrial–cytoskeletal interactions, reducing membrane
potential and promoting apoptosis resistance (40, 41). While E6/
E7 upregulate glycolytic enzymes to sustain the Warburg effect (42,
43). This metabolic shift creates a feed-forward loop in which
mitochondrial ROS generation perpetuates further oxidative
damage (40, 44, 45).

DNA damage and mutagenesis: The resulting oxidative stress
induces nuclear and mitochondrial DNA damage, including
mutagenic 8-hydroxy-2′-deoxyguanosine (8-OHdG) lesions that
contribute to oncogenic transformation. The resulting oxidative
stress induces nuclear and mitochondrial DNA damage,
including mutagenic 8-hydroxy-2′-deoxyguanosine (8-OHdG)
lesions that drive oncogenic transformation (8, 43, 46). These
immunosuppressive networks further correlate with both TAM
polarization states and advanced disease progression (43, 47).
Certain mitochondrial DNA polymorphisms (e.g., C150T) may

FIGURE 2
Immune regulation in the cervical cancer tumormicroenvironment (TME). (A) Immune evasionmechanisms involving Tregs, MDSCs, andM2-TAMs,
alongwith immunosuppressive cytokines (IL-10, TGF-β, IL-6) that inhibit CD8+ T cells andNK cells. (B)Cytokine-mediatedmodulation: tumor-repressing
cytokines (IFN-γ, IL-2, CXCL-9) activate effector immune cells (CD8+ T cells, NK cells, M1-TAMs), while tumor-promoting cytokines (IL-10, TGF-β, IL-6)
enhance angiogenesis, immune escape, and tumor progression.
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also exacerbate this process, increasing susceptibility to HPV
persistence and cervical cancer development (48).

2.3 Context-dependent immune
modulation

The TME in CeCa comprises diverse immune cells that
influence tumor development and therapy response (Table 1).
Conflicting evidence exists regarding Th17 cells: in early lesions
Th17-associated IL-17 can participate in neutrophil recruitment
(49).Whereas in advanced disease Th17 cells have been linked to
angiogenesis, immunosuppression, and tumor progression (50, 51).
Similarly, the antioxidant enzyme superoxide dismutase 2 (SOD2)
demonstrates context-dependent functions, acting as both
protective and tumor-supportive depending on redox status and
treatment exposure (52, 53).

3 Immune landscape in cervical cancer

The cervical cancer tumor microenvironment (TME) is
composed of diverse immune populations whose density,
phenotype, and spatial organization influence prognosis and
therapeutic response (Figure 1B). The balance between effector
and suppressive subsets, as well as their localization within tumor
nests, peritumoral stroma, or circulation, critically shapes
clinical outcomes.

3.1 Cytotoxic T cells (CD8+)

CD8+ tumor-infiltrating lymphocytes (TILs) constitute a
principal effector population in antitumor immunity (54). Their
distribution within the TME has prognostic significance: high
intratumoral (nest) density is generally associated with
favorable outcomes, whereas exclusion to the peritumoral
stroma correlates with immune escape and resistance to
immune checkpoint inhibitors (ICIs) (55, 56). Spatial metrics,
such as proximity to the tumor–stroma interface, are increasingly
recognized as key determinants of therapeutic efficacy and should
be systematically reported in clinical studies (57). High
intratumoral CD8+ density has been shown to be an
independent predictor of improved progression-free and overall
survival in cervical cancer patients (58). Meta-analyses also
confirm the prognostic value of CD8+ TILs, with increased

infiltration correlating with significantly better survival
outcomes across cervical cohorts (59).

3.2 Regulatory T cells (Tregs)

Regulatory T cells (Tregs) are enriched in the peritumoral stroma
of cervical tumors, where they exert suppressive effects on effector
T cells via cytotoxic T-lymphocyte–associated protein 4 (CTLA-4)
signaling and secretion of inhibitory cytokines such as interleukin-
10 (IL-10) and TGF-β: Transforming Growth Factor-β (Figure 1B).
High Treg density and elevated Treg:CD8 ratios are consistently
associated with poor prognosis and diminished ICI efficacy. This
reflects the creation of an exclusionary stromal niche that is
unfavorable for effective antitumor immunity (47, 60).

3.3 Tumor-associated macrophages (TAMs)

Cervical tumors frequently exhibit polarization toward an M2-
skewed macrophage phenotype (61). These tumor-associated
macrophages (TAMs) are characterized by arginase-1 expression,
pro-angiogenic activity, and suppression of T-cell effector function
[(62, 63), Figure 2B]. Enrichment of M2-like TAMs correlates with
advanced disease stage, lymph-node metastasis, and resistance to
therapy (64–66). Accurate characterization requires specification of
phenotypic markers such as CD68/CD163 and careful annotation of
their anatomical compartment within tumor nests or stroma (67).

3.4 Th17 cells—stage- and compartment-
specific roles

T helper 17 (Th17) cells, defined by interleukin-17 (IL-17)
secretion, display stage- and compartment-specific
behaviors in CeCa.

Early disease (CIN/early tumors): Peripheral blood studies
demonstrate an elevated Th17: Treg ratio compared with healthy
controls, reflecting early immune dysregulation. This imbalance
persists into invasive disease, though without substantial systemic
amplification (68, 69).

Advanced disease: Th17 accumulation in blood and tumor tissue
correlates with higher clinical stage, lymph-node metastasis, and
poor outcomes (68, 69). Increased Th17 frequencies under
treatment pressure (e.g., chemoradiation) have been linked to
poor therapeutic response and early relapse (70).

TABLE 1 Immune cell subsets in cervical cancer: compartmental distribution, stage-specific dynamics, clinical correlations, and direction of prognostic
effect.

Subset Compartment Typical observation Clinical readout Direction

CD8+ T cells Tumor nests vs. stroma Intratumoral > peritumoral density OS/PFS/response to ICI Intratumoral ↑ → better

Tregs Peritumoral stroma Enriched; high Treg:CD8 OS/PFS/ICI response High ↑ → worse

TAMs (M2-skewed) Stroma and nests CD163+/Arg1+ enrichment Stage/LN+/OS High ↑ → worse

Th17 (blood) Peripheral blood ↑ Th17/Treg in CIN; ↑ with stage Stage/LN+/response Higher ↑ → worse (advanced)

Th17 (tissue) Tumor tissue (TILs) ↑ with stage; heterogeneity OS/PFS Usually worse; squamous paradox
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Notably, data remain heterogeneous. In squamous histologies,
higher intratumoral IL-17+ cell density has been associated with
improved survival (69), though much of this IL-17 signal has been
derived from neutrophils rather than Th17 cells (71, 72). Thus, IL-17
alone cannot be employed as surrogate marker for Th17 activity.
The impact of Th17 cells depends on the histological subtype of the
tumor. In squamous cell carcinoma, Th17 responses may provide
some protective or beneficial effects, whereas in adenocarcinoma
they are mostly harmful and contribute to disease progression. In
select niches, Th17 cells may also indirectly promote antitumor
immunity by recruiting cytotoxic effector cells (69).

Overall, the evidence supports a pro-tumorigenic role for
Th17 cells in advanced cervical cancer, while recognizing
histological and spatial exceptions.

4 Biomarkers: evidence levels and
clinical utility

Biomarkers reflecting oxidative stress and immune contexture
are increasingly investigated in context of CeCa. While several
biomarkers demonstrate biological and prognostic relevance,
most remain exploratory due to methodological variability and
lack of clinical validation. A tabulated summary of these methods
can be found in Table 2.

4.1 Oxidative stress biomarkers

Among oxidative stress–related biomarkers, 8-hydroxy-2′-
deoxyguanosine (8-OHdG) is the most widely studied DNA lesion. It
reflects ROS-mediated oxidative damage and has been linked to genomic
instability, carcinogenesis, and macrophage polarization (8, 43, 46).
Detection methods include enzyme-linked immunosorbent assay
(ELISA) and liquid chromatography–tandem mass spectrometry (LC-
MS/MS). However, these platforms are not directly comparable, as pre-
analytical oxidation, sample storage, and assay-specific cross-reactivity
introduce variability. Such inter-assay inconsistency currently precludes
standardized application in clinical practice (73, 74). Thus, 8-OHdG
should therefore be regarded as investigational, with evidence best
interpreted as correlational rather than as a validated decision-making tool.

Circulating cell-free mitochondrial DNA (cf-mtDNA)
represents another emerging marker (75). Its potential utility lies
in real-time monitoring of treatment response and disease
dynamics. Yet cf-mtDNA quantification is also highly sensitive to
technical variables, including collection tube type, processing delays,
freeze–thaw cycles, extraction chemistry, and amplicon length.
Readers are directed to (75) for a detailed review of these
quantitative methods (75). Early cohort studies suggest that cf-
mtDNA levels may reflect disease activity, but reproducibility
challenges underscore its current exploratory status, pending
prospective validation (73, 74).

4.2 Immune biomarkers

PD-L1 expression serves as a clinically established predictive
biomarker in CeCa, guiding patient selection for immune
checkpoint inhibitor (ICI) therapy (76, 77). Clinical benefit has
been demonstrated in the CeCa cohort of KEYNOTE-158, though
responses occur in only a subset of PD-L1–positive patients (78).
PD-L1 utility is constrained by intratumoral heterogeneity, assay
variability, and temporal dynamics of expression, which limit its
standalone predictive accuracy (78). Consequently, multiplexed or
composite biomarker strategies are increasingly advocated.

Tumor-infiltrating lymphocytes (TILs), particularly CD8+

T cells, do not also retain universally consistent prognostic value
across studies and different types of cancers (79). Higher
intratumoral CD8+ density is associated with improved overall
survival (OS) and progression-free survival (PFS), reflecting a
more favorable immune contexture (80–82). To maximize
reproducibility, standardized immunohistochemistry or multiplex
immunofluorescence assays with attention to spatial localization
(tumor nests vs. stroma) are recommended (47, 83).

5 Therapeutics: current standards and
emerging combinations

The therapeutic landscape of CeCa has evolved with the advent
of immune checkpoint inhibitors (ICIs, e.g., PDL-1) and exploratory
redox-targeting agents. However, clinical benefit remains

TABLE 2 Oxidative stress and immune biomarkers in cervical cancer: analytical platforms, evidence levels, clinical status, and key limitations.

Biomarker Analytical
Platform(s)

Evidence level Clinical status Key limitations

8-hydroxy-2′-deoxyguanosine
(8-OHdG)

ELISA; LC-MS/MS Investigational; correlates with
progression and TAM polarization

Not clinically validated in
CeCa

Variability; cross-reactivity; lack of
standards; oxidation/storage issues

Cell-free mitochondrial DNA
(cf-mtDNA)

qPCR/digital PCR; NGS Exploratory; small cohorts link to
treatment response

Early stage; not validated Sensitive to tube type, processing
delay, freeze–thaw cycles

PD-L1 expression IHC (e.g., 22C3 pharmDx,
SP263)

Predictive; supported by KEYNOTE-
158/826 trials

FDA-approved for
pembrolizumab

Expression heterogeneity; assay and
spatial variability

Tumor-infiltrating lymphocytes
(CD8+ TILs)

IHC; multiplex IF; digital
pathology

Prognostic; high CD8+ density →
better OS/PFS

Investigational in CeCa No standardized scoring; spatial
context and assay variability

Abbreviations. Ceca, Cervical Cancer; ELISA, Enzyme-Linked Immunosorbent Assay; LC-MS/MS, Liquid Chromatography TandemMass Spectrometry; qPCR, quantitative polymerase chain

reaction.

NGS, Next-Generation Sequencing; TAM, Tumor-Associated Macrophage; IHC, immunohistochemistry.

IF, Immunofluorescence; OS, Overall Survival; PFS, Progression-Free Survival; FDA, food and drug administration.
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heterogeneous, underscoring the need for biomarker-guided
selection and rational combinations.

5.1 Current standards: immune checkpoint
inhibitors

Immune checkpoint blockade has transformed the management
of recurrent and metastatic CeCa, though responses remain
confined to subsets of patients.

The KEYNOTE-158 trial established pembrolizumab as a
therapeutic option in recurrent/metastatic CeCa. In the dedicated
cervical cohort (n:98), the overall response rate (ORR) was 12.2%,
with a modest increase to 14.6% among PD-L1–positive tumors.
Responses were not frequent in PD-L1–negative disease. While
durable responses were achieved in some patients, most non-
responders progressed, reflecting the persistence of an
immunosuppressive TME. Immune-related adverse events
occurred in ~12% of patients, consistent with the broader safety
profile of pembrolizumab (84).

The phase III KEYNOTE-826 trial redefined the standard of care
for persistent, recurrent, or metastatic disease. Pembrolizumab
combined with platinum-based chemotherapy ± bevacizumab
significantly improved both overall survival (OS) and progression-
free survival (PFS). At 22 months of median follow-up, OS reached
24.4 months compared with 16.5 months in the control arm, with a
hazard ratio for death of 0.64 (95% CI 0.50–0.81) in PD-L1–positive
patients. These results established pembrolizumab plus chemotherapy
(with or without bevacizumab) as the global first-line standard for
PD-L1–positive advanced CeCa (85).

5.2 Other immunotherapeutic approaches

Therapeutic HPV vaccines represent an area of ongoing
development. The ISA101 peptide vaccine combined with
nivolumab demonstrated an ORR of ~33% in a cohort of
HPV16-positive solid tumors, predominantly head-and-neck
squamous cell carcinoma. Only a minority of patients had CeCa,
limiting generalizability of the results (86). Additional vaccine
modalities, including DNA- and viral vector–based platforms, are
under early-phase evaluation, but no vaccine has yet achieved
regulatory approval forCeCa.

5.3 Redox-targeting agents and
repurposed drugs

Given the role of oxidative stress in HPV-driven carcinogenesis,
redox modulators are under investigation. BMX-001, a manganese
porphyrin radiomodulator, has entered clinical trials primarily in
glioblastoma and head-and-neck cancer (87). Its application in
CeCa remains investigational with no disease-specific data
available (39).

Mdivi-1, a mitochondrial division inhibitor widely employed in
preclinical studies, has demonstrated mechanistic utility but
possesses off-target effects precluding clinical suitability (88,
89, 102).

Drug repurposing represents an additional therapeutic avenue.
For instance, Metformin has exhibited antiproliferative and redox-
modulating effects in CeCa cell lines and xenograft models (90, 91),
though randomized clinical evidence in CeCa is lacking. Similarly,
imipramine and nelfinavir have shown ROS-modulating and anti-
HPV effects in preclinical models (92, 93), with early-phase trials
underway in other malignancies (Table 3). However, cervical-
specific clinical validation remains absent, which positions these
agents as hypothesis-generating rather than clinically actionable
(94, 95).

5.4 Mechanistic rationale for combinations

Resistance to ICIs arises from multiple mechanisms, including
activation of the adenosine/CD73 axis, compensatory upregulation
of inhibitory receptors (LAG-3, TIM-3, TIGIT), and cancer-
associated fibroblasts (CAFs)-CXCL12 signaling (96, 97).
Preclinical studies suggest that redox normalization can reduce
PD-L1 expression, restore antigen presentation, and enhance
tumor immunogenicity (98, 99). These insights provide a
rationale for combining redox-targeted therapies with ICIs (100).
However, no patient-level CeCa data currently validates this
approach, highlighting a key translational gap.

6 Future directions and conclusion

Despite significant progress in elucidating the molecular
underpinnings of cervical cancer (CeCa), translation of
mechanistic insights into clinical benefit remains limited. The
interplay between HPV oncogenes, oxidative stress, and immune
dysregulation presents both challenges and opportunities for
therapeutic innovation. Several key priorities emerge for
future research.

1. Development of predictive biomarkers. Reliable biomarkers
are essential to stratify patients and guide therapy. While PD-
L1 expressions and tumor-infiltrating lymphocytes (TILs) offer
partial predictive value, their wider application is restricted
following lack of multiplexed or composite biomarker
strategies. Integration of oxidative stress markers (e.g., 8-
OHdG, cf-mtDNA) with immune profiling may improve
patient selection for immune checkpoint inhibitors (ICIs)
and combination therapies. Nonetheless, standardization of
assay platforms and pre-analytical workflows is critical for
reproducibility and clinical translation.

2. Advancement of noninvasive monitoring. Liquid biopsy
approaches, particularly cf-mtDNA and circulating immune
signatures, represent promising tools for real-time monitoring
of disease progression and therapeutic response. Rigorous
prospective validation in large, clinically annotated cohorts
is required before clinical adoption.

3. Rational therapeutic combinations. Evidence suggests that
redox modulation may enhance immunotherapy efficacy by
restoring antigen presentation and reducing PD-L1 expression.
Rational design of trials integrating ICIs with redox-targeted
agents, therapeutic HPV vaccines, or repurposed drugs could
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provide synergistic benefit. However, careful attention must be
paid to potential antagonistic interactions and context-
dependent effects.

4. Preclinical model refinement. Current in vitro and in vivo
models incompletely recapitulate the complexity of the CeCa
tumor microenvironment (TME). Integration of multi-omics
platforms, single-cell technologies, and spatial profiling will be
essential to capture the dynamic crosstalk between HPV-
driven pathways, oxidative stress, and immune regulation.
Such models will accelerate discovery of therapeutic
vulnerabilities and facilitate translational research.

7 Conclusion

Cervical cancer remains a major global health challenge, with
pathogenesis shaped by intricate interactions between HPV
oncogenes, oxidative stress, and immune modulation. While
immune checkpoint inhibitors and emerging redox-targeting
strategies provide new therapeutic avenues, clinical benefit is
limited to subsets of patients. Current evidence underscores the
context-dependent duality of immune subsets such as Th17 cells and
antioxidant enzymes like superoxide dismutase 2 (SOD2), reflecting
the complexity of redox–immunity crosstalk.

Future progress hinges on the development of predictive
biomarkers, noninvasive monitoring strategies, and rationally
designed therapeutic combinations. Integration of multi-omics data
with advanced preclinicalmodels will be pivotal in bridgingmechanistic
insights into personalized treatment. By addressing these gaps, itmay be
possible to translate biological understanding into durable clinical
benefit and improve outcomes for women with CeCa.
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TABLE 3 Therapeutic landscape in advanced cervical cancer: mechanisms, clinical trial phases, endpoints, and outcomes of current and investigational
agents.

Agent/Approach Mechanism Phase/
Trial

Population End
points

Outcome/Status

Pembrolizumab (KEYNOTE-158) PD-1 blockade Phase II (multi-
cohort)

R/M CeCa, n = 98 ORR, safety ORR 12.2% overall; 14.6% PD-L1+;
durable, manageable irAEs

Pembrolizumab + chemo ±
bevacizumab (KEYNOTE-826)

PD-1 blockade + chemo +
anti-VEGF

Phase III 1st line persistent/recurrent/
metastatic CeCa

OS, PFS Median OS 24.4 vs. 16.5 months; HR
death 0.64 (PD-L1+); new standard

ISA101 + nivolumab HPV16 peptide vaccine +
PD-1 blockade

Phase II HPV16+ tumors (mostly
HNSCC, some CeCa)

ORR ORR ~33% overall; CeCa efficacy
not established (101)

BMX-001 Mn porphyrin redox
modulator

Early-phase
(non-CeCa)

Glioblastoma, HNSCC Safety,
radiosens

Investigational; no CeCa-specific
data

Mdivi-1 Mitochondrial division
inhibitor

Preclinical Cell/animal models Mechanistic Tool compound; not clinically viable

Metformin/Imipramine/Nelfinavir Repurposed metabolic/
redox mod

Preclinical/early
phase

Cell/animal ± non-CeCa
trials

Exploratory CeCa-specific data absent;
hypothesis-generating

Abbreviations: CeCa, Cervical Cancer; R/M, Recurrent/Metastatic; PD-1, Programmed Death-1; PD-L1+, Programmed Death Ligand-1, positive; ORR, Objective Response Rate;

irAEs,Immune-related Adverse Events; Chemo, Chemotherapy; Anti-VEGF, Anti-Vascular Endothelial Growth Factor; OS, Overall Survival; PFS, Progression-Free Survival; HPV16+, Human

Papillomavirus type 16 positive; HNSCC, Head and Neck Squamous Cell Carcinoma; Mn, Manganese.
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