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Hematologic malignancies pose significant global health burdens, with

programmed cell death protein-1 (PD-1)/programmed cell death ligand

1 (PD-L1) inhibitors revolutionizing treatment in subtypes like classical

Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma

(PMBCL), achieving high objective response rates (ORR). However, efficacy

varies widely, with limited success in multiple myeloma (< 10% ORR)

and leukemias, underscoring the need for better predictors beyond tumor-

intrinsic biomarkers. This review highlights pre-treatment endocrine–nutritional

signatures as key host factors influencing immunotherapy outcomes.

Dysregulated hormones (cortisol, thyroid, sex steroids, insulin/insulin-like

growth factor-1, adipokines) and nutritional status (vitamin D, zinc, protein-

energy malnutrition, iron metabolism) modulate T-cell exhaustion, myeloid

suppression, and tumor microenvironment dynamics, often leading to

resistance. Evidence from cohorts shows hypercortisolism, hypothyroidism,

insulin resistance, vitamin D deficiency, and hypoalbuminemia correlate with

inferior ORR, progression-free survival, and overall survival, while thyroid

immune-related adverse events and moderate obesity predict benefit. In

hematologic contexts, marrow infiltration exacerbates these imbalances,

explaining heterogeneous responses. Integrated signatures (e.g., Glasgow

Prognostic Score, Prognostic Nutritional Index) offer superior prognostic value,

enabling targeted interventions like vitamin D supplementation, metformin,

or nutritional support to enhance immune checkpoint inhibitor efficacy.

Mechanistic insights reveal convergence on mTOR/IFN-γ pathways and

microbiome modulation. Translating these to clinical panels could personalize

immunotherapy, addressing gaps in hematologic malignancies literature and

improving outcomes in relapsed/refractory settings.
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1 Introduction 

Hematologic malignancies encompassing lymphomas, 
leukemias, multiple myeloma (MM), and related disorders 
represent a major global health challenge, with approximately 
1.3 million new cases and 700,000 deaths annually according to 
GLOBOCAN 2022 estimates, projected to rise substantially by 
2050 due to population aging and environmental exposures (1, 
2). These cancers disproportionately aect younger populations in 
low- and middle-income countries and carry high morbidity 
from disease- and treatment-related immunosuppression 
(3). Traditional therapies (chemotherapy, targeted agents, 
hematopoietic stem cell transplantation) have improved survival 
but plateaued in relapsed/refractory (r/r) settings, prompting 
a paradigm shift toward immunotherapy, particularly immune 
checkpoint inhibitors (ICIs) targeting the programmed cell 
death protein-1 (PD-1)/programmed cell death ligand 1 (PD-
L1) axis (4). Since the landmark approvals of nivolumab and 
pembrolizumab for r/r classical Hodgkin lymphoma (cHL) in 
2016–2017, PD-1 blockade has transformed outcomes in select 
subtypes, achieving objective response rates (ORR) of 70–87% 
and durable remissions in cHL and primary mediastinal large 
B-cell lymphoma (PMBCL), with expanding roles in combinations 
for non-Hodgkin lymphomas and post-transplant relapse 
(5, 6). 

Despite these successes, responses to PD-1/PD-L1 inhibitors 
remain strikingly heterogeneous across hematologic malignancies: 
exquisite sensitivity in 9p24.1-altered cHL/PMBCL contrasts with 
modest activity in T-cell lymphomas (ORR 20–50%), negligible 
monotherapy eÿcacy in MM (< 10%), and limited benefit in 
leukemias outside niche indications (7, 8). Even within responsive 
diseases, 20–40% of patients exhibit primary resistance or early 
relapse, highlighting the inadequacy of tumor-centric biomarkers 
alone to explain variability (9). 

This inconsistency has fueled recognition that tumor-intrinsic 
features (PD-L1 expression, tumor mutational burden, genetic 
alterations) are insuÿcient predictors in many hematological 
contexts, directing attention to host systemic factors that establish a 
baseline “whole-body immunologic tone,” the integrated metabolic, 
endocrine, and inflammatory milieu shaping T-cell priming, 
traÿcking, and persistence (10). 

Hormones (cortisol, thyroid hormones, sex steroids, 
insulin/Insulin-like growth factor-1 (IGF-1), adipokines), 
micronutrients (vitamin D, zinc, selenium), and metabolic 
state (obesity, sarcopenia, protein-energy status) directly modulate 
T-cell metabolism, exhaustion, and cytokine networks, influencing 
whether PD-1/PD-L1 blockade can restore eective antitumor 
immunity (11, 12). Pre-treatment dysregulation, highly prevalent in 
hematologic patients due to disease cachexia, marrow infiltration, 
and prior therapies, correlates with inferior ICI outcomes across 
cancers, identifying a modifiable determinant of response (13). 
Assessing these signatures before therapy oers prognostic value 
and therapeutic opportunity through targeted interventions. 

This review synthesizes emerging evidence linking pre-
treatment endocrine–nutritional profiles to PD-1/PD-L1 blockade 
eÿcacy in hematologic malignancies, emphasizing mechanistic 
insights, clinical correlations, and translational potential beyond 
solid tumor-dominated literature. 

2 PD-1/PD-L1 blockade in 
hematologic malignancies: a clinical 
overview 

PD-1/PD-L1 inhibitors have revolutionized relapsed/refractory 
cHL and PMBCL with high, durable response rates, leading to 
regulatory approvals for nivolumab and pembrolizumab. Eÿcacy 
remains heterogeneous elsewhere: modest in select non-Hodgkin 
lymphomas [particularly T-cell or Epstein-Barr virus (EBV)-
associated], negligible in MM as monotherapy, and emerging but 
limited in leukemias (mainly post-transplant relapse). Predictive 
biomarkers such as PD-L1 expression (driven by 9p24.1 alterations 
in cHL/PMBCL), tumor mutational burden (TMB), and genetic 
features perform well in cHL but have major limitations in 
other hematologic settings due to low neoantigen burden, 
immunosuppressive microenvironments, assay variability, and 
confounding inflammation. 

2.1 Mechanistic basis of immune 
checkpoint inhibition 

The PD-1 receptor on T cells interacts with its ligands PD-
L1 (CD274) and PD-L2 (CD273) on tumor cells or antigen-
presenting cells, delivering inhibitory signals that induce T-cell 
exhaustion, energy, and apoptosis mechanisms that tumors 
exploit for immune evasion (14). PD-1/PD-L1 blockade with 
monoclonal antibodies (e.g., nivolumab, pembrolizumab targeting 
PD-1; atezolizumab, durvalumab targeting PD-L1) disrupts this 
axis, restoring eector T-cell function, cytokine production (IFN-
γ), and cytolytic activity (15). 

In hematologic malignancies, Reed-Sternberg (RS) cells in cHL 
and malignant B cells in PMBCL frequently harbor copy number 
alterations at chromosome 9p24.1 encompassing PD-L1/PD-L2 
and JAK2, leading to JAK/STAT-mediated overexpression of PD-
L1/PD-L2 and profound dependence on the pathway for survival 
(9). This genetic addiction renders these tumors exquisitely 
sensitive to PD-1 blockade, resulting in one of the highest response 
rates observed across oncology (ORR 69–87%) (5, 16). Additional 
mechanisms include EBV-driven PD-L1 expression in subsets of 
lymphomas and leukemias, and chronic antigenic stimulation in 
the bone marrow niche promoting exhaustion (17). 

In contrast to solid tumors, hematologic cancers often exhibit 
lower somatic mutational burden and fewer neoantigens, yet 
the amplified PD-L1 expression in specific subtypes overrides 
this limitation, explaining the outlier success in cHL/PMBCL 
(18). Preclinical models further demonstrate that PD-1 blockade 
enhances NK cell activity and reverses myeloid-derived suppressor 
cell suppression in the marrow microenvironment (19). 

2.2 Evidence across major hematologic 
cancers 

Classical Hodgkin lymphoma, PMBCL represents the flagship 
success of PD-1 blockade in hematologic oncology. Pivotal 
phase II trials established nivolumab (CheckMate 205) and 
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pembrolizumab (KEYNOTE-087) as standards for r/r disease post-
autologous transplant and brentuximab vedotin, with ORR 69– 
73%, complete response (CR) rates 16–29%, and median duration 
of response exceeding 16–24 months (16, 20). Long-term follow-
up of CheckMate 205 (6–7 years) reported 5-year progression-
free survival (PFS) with 72% in transplant-naïve patients and 
durable remissions beyond 5 years in ∼60% of responders (21). 
Pembrolizumab demonstrated 5-year OS ∼85% in KEYNOTE-
087 updated analyses (22). These agents received FDA accelerated 
approval in 2016–2017 and full approval thereafter, transforming 
third-line management and now incorporated earlier (e.g., with 
AVD chemotherapy in the frontline) with 3-year PFS > 90% in 
phase III trials (23, 24). 

Primary mediastinal large B-cell lymphoma shares the 9p24.1 
alteration profile with cHL. Pembrolizumab in KEYNOTE-170 (r/r 
PMBCL) achieved ORR 45% (CR 13%) with durable responses 
(median DOR not reached at 3 + years), leading to FDA approval 
in 2018 (25). Nivolumab has shown similar activity (ORR ∼40– 
50%) in smaller series (26). PD-1 blockade is now guideline-
preferred in r/r PMBCL. 

2.2.1 Non-Hodgkin lymphoma 
In aggressive B-cell lymphomas, monotherapy yields modest 

results. Nivolumab in r/r Diuse Large B-Cell Lymphoma (DLBCL) 
post-autologous transplant or ineligible for transplant showed 
ORR 10–36% in non-GCB subtypes, with CR rates < 10% (27). 
Pembrolizumab in KEYNOTE-013/170 achieved ORR ∼25% in 
Richter transformation but only 0–10% in standard DLBCL (28). 
Combination strategies (e.g., nivolumab + rituximab-gemcitabine-
oxaliplatin) or with BTK inhibitors have improved ORR to 50–70% 
in early-phase studies (29, 30). Follicular lymphoma shows even 
lower activity (ORR < 10%) due to sparse PD-L1 expression and 
immunosuppressive follicular dendritic networks (31). 

2.2.2 T-cell lymphomas exhibit greater 
heterogeneity 

Nivolumab/pembrolizumab monotherapy in r/r PTCL/NK-T-
cell lymphoma yields ORR 20–40%, with higher rates in AITL 
or EBV-associated subtypes (32). Sintilimab and tislelizumab have 
shown ORR > 50% in relapsed NK/T-cell lymphoma in Asian 
cohorts (33). Overall, PD-1 blockade has limited single-agent 
approval in NHL but is increasingly combined with chemotherapy, 
bispecific antibodies, or lenalidomide in ongoing trials (7). 

2.2.3 MM (limited efficacy) 
MM has proven largely refractory to PD-1/PD-L1 

monotherapy, with ORR consistently < 10% across KEYNOTE 
and CheckMate trials (34, 35). Phase III trials combining 
pembrolizumab with lenalidomide-dexamethasone or 
pomalidomide-dexamethasone (KEYNOTE-183/185) were halted 
by the FDA in 2017 due to increased mortality in the experimental 
arms, attributed to excessive immune-related toxicity and lack 
of eÿcacy (36). Subsequent trials with nivolumab ± elotuzumab 
or pomalidomide also failed to show benefit (CheckMate 602, 
2024) (37). Emerging data suggest modest activity when sequenced 
after BCMA-targeted therapies or combined with bispecific 
antibodies (talquetamab + cetrelimab ORR ∼60–70% in early 
reports), potentially by overcoming T-cell exhaustion post-BCMA 
redirection (38, 39). 

2.2.4 Leukemias (exceptions and ongoing trials) 
Acute leukemias show minimal single-agent activity 

(ORR < 5% in AML). However, post-allogeneic HCT relapse 
represents an exception: nivolumab or pembrolizumab can induce 
durable complete remissions in 30–50% of AML/MDS patients 
via graft-versus-leukemia enhancement, with mixed chimerism 
emerging as a predictive factor (40, 41). Hypomethylating 
agents + PD-1 blockade trials show ORR 20–30% in frontline 
unfit AML, but no randomized superiority yet (42). Chronic 
lymphocytic leukemia has negligible responses. 

2.3 Current predictive biomarkers and 
their limitations 

PD-L1 expression by IHC (22C3 or 28-8 assays) is the most 
established biomarker in cHL/PMBCL, where 9p24.1 amplification 
correlates with near-universal expression and superior ORR/CR 
rates (> 80–90%) (9, 43). Tumor mutational burden is generally 
low (< 5 mut/Mb) in hematologic malignancies compared to 
MSI-high solid tumors, limiting its predictive value outside 
rare hypermutated cases (44). EBV status (LMP1-driven PD-L1) 
predicts response in NK/T-cell and PTCL (45). 

These biomarkers fail in many hematological settings 
for several reasons: (i) low neoantigen load reduces baseline 
T-cell priming; (ii) dominant immunosuppressive marrow 
microenvironment [myeloid-derived suppressor cells (MDSCs), 
M2 macrophages, TGF-β] overrides PD-1 blockade; (iii) lack 
of standardized PD-L1 scoring in liquid tumors and assay 
discordance; (iv) confounding inflammation elevating PD-L1 
without functional significance; (v) rapid resistance via alternative 
checkpoints (TIM-3, LAG-3, TIGIT) or MHC loss (46, 47). 
Composite scores incorporating soluble PD-L1, IFN-γ signature, 
or circulating tumor DNA are under investigation but not yet 
clinically implemented (48). 

3 The immunologic role of 
endocrine and nutritional systems 

The immune system does not operate in isolation but is 
profoundly shaped by systemic endocrine and nutritional signals 
that constitute a “whole-body immunologic tone” determining the 
baseline readiness of antitumor immunity (49, 50). This immuno-
endocrine and immuno-nutritional crosstalk is bidirectional: 
immune activation feeds back to alter hormone secretion and 
nutrient partitioning, while endocrine/metabolic states reprogram 
immune cell fate, metabolism, and function (51). In cancer, chronic 
inflammation and tumor-derived factors frequently dysregulate 
these axes, fostering T-cell exhaustion, Treg/MDSC expansion, 
and impaired antigen presentation states that blunt the eÿcacy 
of PD-1/PD-L1 blockade (52). Emerging evidence across solid 
and hematologic malignancies demonstrates that pre-treatment 
endocrine–nutritional signatures represent modifiable host factors 
capable of predicting and potentially augmenting checkpoint 
inhibitor outcomes (10, 53). 
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FIGURE 1 

Mechanistic map of endocrine–nutritional pathways regulating PD-1/PD-L1 immunotherapy response. This schematic illustrates how systemic 
hormonal and nutritional signals converge on CD8+ effector T cells—the primary targets of PD-1 reinvigoration—to shape antitumor immunity. 
A central T cell displays PD-1 expression with IFN-γ–mediated tumor targeting. Surrounding endocrine regulators include: cortisol (adrenal axis), 
which drives PD-1 upregulation and T-cell exhaustion; thyroid hormones (T3/T4), enhancing T-cell activation and dendritic-cell maturation; 
insulin/IGF-1 signaling promoting mTOR overactivation and T-cell energy; and sex hormones, where estrogen supports IFN-γ production and CD8+ 

T cell cytotoxicity, whereas testosterone increases Treg activity and exhaustion. Nutritional cues include vitamin D maintenance of TCF1+ 

progenitors and reduced PD-1 levels, zinc enhancement of ZAP-70 signaling, iron overload/ferritin promoting M2 macrophage expansion, 
hypoalbuminemia impairing T-cell proliferation, and leptin–adiponectin imbalance skewing immune tone. These integrated inputs determine 
downstream PD-1/PD-L1 blockade efficacy, distinguishing potential responders from non-responders. 

3.1 Concept of immuno-endocrine and 
immuno-nutritional crosstalk 

Immune cells express receptors for virtually all hormones, 
adipokines, and nutrient-sensing pathways (mTOR, AMPK, IGF-
1R, VDR, AhR), allowing systemic metabolic cues to orchestrate 
leukocyte development, traÿcking, and eector dierentiation 
(54, 55). Conversely, cytokines (IFN-γ, IL-6, TNF-α) modulate 
hypothalamic–pituitary axes, adipocyte function, and nutrient 
transporter expression, creating feedback loops that can either 
amplify or suppress antitumor responses (50, 56). In the tumor 
microenvironment (TME), this crosstalk is hijacked: tumors induce 
chronic low-grade inflammation that elevates cortisol, leptin, and 
insulin while depleting micronutrients, driving T-cell dysfunction 
and resistance to PD-1/PD-L1 blockade (57). Preclinical models 
and clinical cohorts show that correcting these imbalances (e.g., 
vitamin D repletion, metformin-mediated insulin sensitization) 

restores CD8+ T-cell metabolism and synergizes with checkpoint 
inhibition (58, 59). The concept has particular relevance in 
hematologic malignancies, where marrow infiltration, cachexia, 
and prior therapies frequently induce profound endocrine– 
nutritional dysregulation (60). A mechanistic overview of how 
endocrine and nutritional pathways converge on T-cell immunity 
is shown in Figure 1. 

3.2 Endocrine regulation of antitumor 
immunity 

3.2.1 Hypothalamic–pituitary–adrenal axis and 
cortisol 

Chronic stress activates the HPA axis, elevating glucocorticoids 
(GCs) that potently suppress antitumor immunity. Endogenous 
and synthetic GCs upregulate PD-1 expression on CD8+ T cells 
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via GR-mediated transactivation, accelerate exhaustion, impair 
proliferation, and promote apoptosis (61, 62). In tumor-bearing 
mice and patients, elevated cortisol or dexamethasone use 
correlates with reduced CD8+ T-cell infiltration, higher TIM-
3/LAG-3 co-expression, and inferior response to PD-1 blockade 
(63, 64). Mechanistically, GCs inhibit mTORC1 signaling and 
glucose uptake in T cells while enhancing Treg suppressive function 
(65). Recent data show that tumor-intrinsic HSD11B1 reactivation 
of GCs limits IFN-γ signaling and ICI eÿcacy in melanoma (66). 

3.2.2 Thyroid hormones 
Triiodothyronine (T3) and thyroxine (T4) enhance T-cell 

activation, dendritic cell (DC) maturation, and Th1 polarization 
via thyroid hormone receptor β expressed on immune cells (67). 
Subclinical or overt hypothyroidism, common in cancer patients, 
is associated with reduced CD8+ T-cell cytotoxicity and increased 
Treg frequency (68). Paradoxically, ICI-induced thyroiditis 
strongly predicts favorable outcomes across malignancies (ORR ↑ 
2–3-fold), likely reflecting robust immune activation spilling into 
autoimmunity (69, 70). Low pre-treatment thyroid stimulating 
hormone (TSH) or free T4 correlates with poorer PFS/overall 
survival (OS) on PD-1 blockade, while thyroid hormone 
supplementation in hypothyroid models restores antitumor 
immunity (71). 

3.2.3 Sex hormones (estrogen, testosterone) 
Sex hormones drive marked disparities in immunotherapy 

outcomes. Estrogen (via ERα/β) enhances CD8+ T cell eector 
function, DC cross-presentation, and IFN-γ production while 
reducing PD-1 expression, contributing to superior ICI responses 
in females in several cancers (72, 73). Conversely, testosterone 
suppresses Th1 responses, promotes Treg/MDSC accumulation, 
and upregulates PD-1/CTLA-4; androgen deprivation in prostate 
cancer models dramatically boosts ICI eÿcacy (74, 75). Large 
meta-analyses confirm male sex as an independent negative 
predictor of PD-1/PD-L1 benefit in prostate cancer/NSCLC, 
with hormonal aging (declining testosterone/estrogen) further 
exacerbating immune senescence (76, 77). 

3.2.4 Insulin/IGF-1 axis 
Hyperinsulinemia and elevated IGF-1 signaling through 

PI3K/AKT/mTORC1 drives T-cell energy and exhaustion 
while promoting MDSC and M2 polarization (78). IGF-
1R blockade or metformin in preclinical models reverses 
exhaustion, increases CD8+ T-cell infiltration, and synergizes 
with PD-1 inhibition (79, 80). Metabolic syndrome and 
high pre-treatment C-peptide predict inferior outcomes with 
ICIs, reflecting chronic inflammation and impaired T-cell 
metabolism (81). 

3.2.5 Adipokines (leptin, adiponectin) 
Leptin, elevated in obesity, promotes T-cell exhaustion via 

mTOR activation and PD-1 upregulation while expanding Tregs; 
leptin-deficient mice show enhanced antitumor immunity (82). 
Conversely, adiponectin exerts anti-inflammatory eects, enhances 
CD8+ T-cell function, and correlates with better ICI responses 
(83). The obesity paradox improved ICI outcomes in overweight 
patients may partly reflect leptin-driven tonic signaling that 

paradoxically sustains eector T-cell survival during chronic 
stimulation (13, 84). 

3.3 Nutritional regulation of immunity 

3.3.1 Protein status (albumin, prealbumin) 
Hypoalbuminemia reflects chronic inflammation (IL-6-driven) 

and protein-energy malnutrition, impairing T-cell proliferation 
and cytokine production via reduced mTOR signaling and amino 
acid availability (85). Low albumin/prealbumin strongly predicts 
non-response to PD-1 blockade across cancers (86). 

3.3.2 Vitamins D, A, B12, folate 
Vitamin D (via VDR on T cells/DC) promotes Th1/Tc1 

dierentiation, inhibits Treg, and enhances PD-L1 blockade 
eÿcacy; deficiency correlates with poorer survival and reduced 
CD8+ T-cell infiltration (12, 87). Preclinical and clinical data 
show vitamin D repletion overcomes resistance by remodeling the 
microbiome and boosting IFN-γ signaling (88, 89). 

Vitamins A (retinoic acid), B12, and folate are essential for 
T-cell proliferation and thymic function; deficiencies common in 
hematologic patients impair DNA synthesis and cytotoxicity (90). 

3.3.3 Iron metabolism 
Dysregulated iron handling (high ferritin, low transferrin) fuels 

MDSC and M2 macrophages while starving T cells of iron required 
for proliferation (91). Anemia and high hepcidin predict inferior 
ICI outcomes (92). 

3.3.4 Zinc, selenium, and trace elements 
Zinc is critical for ZAP-70 signaling and NK/CD8+ T-cell 

cytotoxicity; deficiency increases PD-1+ exhausted T cells (93). 
Selenium (via selenoproteins) protects against oxidative stress 
during activation; low levels correlate with Treg expansion and 
reduced ICI benefit (93, 94). 

3.4 Metabolic reprogramming of immune 
cells 

3.4.1 Amino acid metabolism (arginine, 
tryptophan) 

Tumors and MDSCs deplete arginine (via ARG1) and 
tryptophan (via IDO1), inducing GCN2/mTOR inhibition, T-cell 
energy, and Treg dierentiation (95, 96). IDO1 expression strongly 
predicts ICI resistance; inhibitors restore eector function in 
models (97). 

3.4.2 Lipid metabolic pathways 
Eector T cells rely on fatty acid oxidation; obesity-associated 

hyperlipidemia paradoxically supports memory formation, but 
chronic cholesterol overload impairs TCR signaling via ER 
stress (98). 

3.4.3 Gut microbiome as a nutritional mediator 
Diet shapes microbiome composition, which systemically 

regulates ICI eÿcacy via microbial metabolites (SCFAs, inosine) 

Frontiers in Nutrition 05 frontiersin.org 

https://doi.org/10.3389/fnut.2025.1753660
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-12-1753660 February 2, 2026 Time: 17:23 # 6

Huang and Guan 10.3389/fnut.2025.1753660 

FIGURE 2 

Integrated “immunologic readiness” scoring model for predicting PD-1/PD-L1 blockade response. This conceptual model aggregates endocrine, 
nutritional, and body composition domains to generate a composite Systemic Immunologic Readiness Score. A three-ring radar-style layout 
illustrates the contributing axes: (1) Endocrine Axis, encompassing cortisol levels, thyroid hormones, IGF-1, and sex hormones; (2) Nutritional Axis, 
capturing albumin/PNI, vitamin D, zinc–selenium status, and ferritin/iron balance; and (3) Body Composition Axis, reflecting muscle mass 
(sarcopenia status), fat mass/leptin activity, and BMI. These parameters integrate into a color-graded scoring meter (green→red) that stratifies 
patients as likely responders or likely non-responders to PD-1/PD-L1 therapy. Accompanying notes highlight the biological underpinnings: high 
readiness supports resilient CD8+ T-cell metabolism and strong cytokine production, whereas low readiness is associated with T-cell exhaustion, 
myeloid-derived suppressor cell (MDSC) dominance, and reduced checkpoint inhibitor efficacy. 

that enhance DC maturation and CD8+ T-cell infiltration (99, 
100). High-fiber diets enrich responder taxa (Akkermansia, 
Faecalibacterium) and improve ORR/PFS; Western diets deplete 
them and promote resistance (100, 101). These endocrine– 
nutritional determinants integrate into a composite immunologic 
readiness score. Figure 2 illustrates a conceptual framework linking 
host systemic physiology to response to PD-1/PD-L1 immune 
checkpoint blockade. The model integrates three interrelated 
biological axes—endocrine, nutritional, and body composition that 
collectively shape a composite host fitness score. Key biomarkers 
within these axes include cortisol and thyroid hormones (endocrine 
axis), IGF-1, albumin/PNI, micronutrient balance (zinc, selenium, 
ferritin/iron), and indicators of nutritional status (nutritional axis), 
as well as BMI and skeletal muscle mass reflecting sarcopenia (body 
composition axis). These parameters converge to define the System 
Immunologic Readiness Score, which represents the host’s capacity 
to mount an eective antitumor immune response. Patients with 
preserved metabolic and nutritional status, adequate muscle mass, 
and balanced endocrine signaling are positioned toward higher 
readiness, characterized by robust CD8+ T-cell metabolism and 
eective cytokine responses. In contrast, dysregulation across these 
axes such as sarcopenia, micronutrient deficiency, chronic stress 
signaling, or iron imbalance correlates with lower immunologic 
readiness, immune exhaustion, MDSC dominance, and diminished 

response to PD-1 blockade. Overall, the figure emphasizes that 
response to immune checkpoint inhibition is not solely tumor-
intrinsic but is strongly influenced by systemic host factors, 
supporting the integration of metabolic, nutritional, and body 
composition assessments into immunotherapy stratification. 

4 Evidence linking endocrine 
abnormalities to checkpoint 
inhibitor outcomes 

Accumulating observational and mechanistic data demonstrate 
that pre-treatment endocrine abnormalities, particularly 
dysregulation of the HPA axis, thyroid function, sex hormones, 
insulin/IGF-1 signaling, vitamin D axis, and adipokine balance, 
significantly modulate clinical benefit from PD-1/PD-L1 blockade. 
These host factors influence baseline T-cell fitness, exhaustion state, 
and tumor microenvironment permissiveness, often explaining 
part of the heterogeneous responses observed across malignancies. 
Although most evidence derives from large cohorts in melanoma, 
NSCLC, and renal cell carcinoma, the immunologic mechanisms 
are conserved and increasingly corroborated in hematologic 
cancers (cHL, non-Hodgkin lymphomas, MM), where chronic 
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inflammation and marrow niche eects amplify endocrine-
immune crosstalk. Key endocrine biomarkers influencing 
PD-1/PD-L1 responses are summarized in Table 1. 

4.1 Cortisol and stress-axis dysregulation 

Chronic activation of the HPA axis and resultant 
hypercortisolism exerts profound systemic immunosuppression 
by directly inducing T-cell exhaustion and apoptosis while 
expanding immunosuppressive myeloid populations (105). 
Glucocorticoids (GCs) upregulate PD-1, CTLA-4, and TIM-3 on 
CD8+ T-cells via glucocorticoid receptor-mediated transactivation 
and transrepression of pro-inflammatory transcription factors (NF-
κB, AP-1), simultaneously inhibiting IL-2 and IFN-γ production 
(61, 62). 

Observational findings consistently link baseline GC use 
(≥ 10 mg prednisone equivalent daily, often for symptom 
control or comorbidities) with markedly inferior outcomes on 
PD-1/PD-L1 therapy. A landmark study in NSCLC showed 
that baseline corticosteroids were associated with reduced 
ORR (ORR: 8.5% vs. 32.3%), PFS (HR = 1.93), and OS 
(HR = 2.34) independent of performance status or brain 
metastases (106). Meta-analyses confirm this detrimental 
eect across tumor types, with dose- and duration-dependent 
impairment (107, 108). Endogenous hypercortisolism (e.g., 
Cushing syndrome or chronic stress-elevated morning 
cortisol > 500–600 nmol/L) similarly predicts resistance, 
as shown in preclinical models where tumor-derived GC 
reactivation via HSD11B1 limits IFN-γ signaling and CD8+ 

T -cell infiltration (66). 
In hematologic malignancies, data are sparser but supportive: 

real-world cHL cohorts treated with nivolumab/pembrolizumab 
demonstrate shorter response duration in patients requiring GCs 
for symptom control or immune-related adverse events (irAEs) (5). 
Hypophysitis-induced secondary adrenal insuÿciency (common 
irAE, incidence 5–15% with combination CTLA-4/PD-1 blockade) 
paradoxically does not worsen prognosis when promptly replaced 
with physiologic hydrocortisone, suggesting that supra-physiologic 
GC doses, not cortisol deficiency per se, drive immunosuppression 
(109, 110). The redistribution of circulating memory T cells 
under hypercortisolism and CXCR4 signaling is illustrated in 
Figure 3. 

4.2 Thyroid dysfunction and T-cell 
activation 

Thyroid hormones (T3/T4) are essential for T-cell 
development, proliferation, and Th1 polarization via thyroid 
receptor expression on lymphocytes and dendritic cells (67). 
PD-1/PD-L1 inhibitors frequently induce thyroid irAEs (irAE-
thyroiditis, incidence 10–40%, highest with combination 
therapy), manifesting as transient thyrotoxicosis followed by 
hypothyroidism, reflecting destructive autoimmunity against 
thyroperoxidase/glutamate decarboxylase antibodies (69). 

Multiple large cohorts and meta-analyses (> 10,000 patients) 
establish that development of thyroid dysfunction is a robust 
positive predictor of ICI benefit that compared to patients 
without thyroid irAEs (70, 111, 112). This association holds across 
melanoma, NSCLC, and renal cancer and appears independent of 
other irAEs, likely reflecting systemic immune activation spilling 
into thyroid autoimmunity (113). Mechanistically, ICI-induced 
thyroiditis correlates with increased CD8+ T-cell reinvigoration, 
reduced Treg frequency, and lower PD-1 expression on peripheral 
T cells (114). 

Conversely, pre-existing hypothyroidism (often autoimmune 
Hashimoto’s) is associated with poorer outcomes, possibly via 
baseline Treg expansion and impaired T-cell priming (68). 
Subclinical hyperthyroidism or low TSH at baseline may also 
predict resistance in some series (115). In hematologic cancers, 
thyroid irAEs occur in 15–25% of cHL patients on PD-1 blockade 
and similarly predict prolonged responses, while untreated 
baseline hypothyroidism correlates with early progression in small 
DLBCL/MM cohorts (22, 31). The cell-specific eects of thyroid 
hormones on immune activation and dierentiation are shown in 
Figure 4. 

4.3 Sex hormones and immunotherapy 
response 

Sex hormones profoundly shape antitumor immunity, with 
estrogen enhancing CD8+ T-cell eector function, dendritic 
cell cross-presentation, and IFN-γ signaling via ERα/β, while 
testosterone suppresses Th1 responses and promotes Treg/MDSC 
accumulation through androgen receptor signaling (72, 75). 

TABLE 1 Endocrine biomarkers and their immunologic effects. 

Endocrine marker Immunologic effect/mechanism References 

Cortisol (glucocorticoids) Broadly immunosuppressive. Increases PD-1 expression on T and NK cells, suppresses T-cell proliferation, 
and skews cytokine milieu (e.g., ↑IL-6). High baseline cortisol correlates with poor ICI response. 

(102) 

Thyroid hormones (T3/T4) Modulate both innate and adaptive immunity. T3 drives dendritic cell maturation (↑MHC-II and 

costimulatory molecules) and pro-inflammatory cytokines (IL-12, IL-6, IL-23, IL-1β), promoting 

Th1/Th17 responses and reducing Tregs. T3-conditioned DCs also downregulate PD-L1 on DCs and PD-1 

on T cells 

(103) 

Insulin Immunomodulatory hormone. Immune cells express insulin receptors; insulin generally has 
anti-inflammatory eects and can modulate immune cell dierentiation and polarization. It also enhances 
eector functions (e.g., ROS production by phagocytes). 

(104) 

IGF-1 (insulin-like growth factor 1) Promotes immunosuppression. IGF-1 enhances FOXP3+ Treg function and IL-10 secretion (driving 

anti-inflammatory M2 macrophages), while suppressing antigen processing/presentation and upregulating 

PD-L1 on tumor/immune cells. High IGF-1 levels are linked to resistance to ICI. 

(104) 
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FIGURE 3 

Schematic representation of how circulating memory T cells (T_CM and T_EM) redistribute between the spleen, blood, and bone marrow in 
response to tumor signals and corticosteroid treatment. Increased CXCR4 expression promotes the homing of circulating memory T cells to the 
bone marrow, where corticosteroids further enhance their retention. The diagram illustrates the movement of these T-cell subsets toward tumor 
tissue and their dynamic localization within hematopoietic and adipose niches of the bone marrow. 

A seminal 2018 meta-analysis of > 20 randomized trials 
(n > 11,000) found that males derive greater benefit from PD-
1/PD-L1 inhibitors than females, a dierence most pronounced 
in monotherapy versus chemotherapy controls (116). Subsequent 
analyses confirmed male advantage in melanoma, NSCLC, and 
head and neck cancer, with hazard ratios favoring males 
by 20–40% (76, 117). Mechanistically, androgen deprivation 
in prostate cancer models dramatically boosts CD8+ T-cell 
infiltration and synergizes with PD-1 blockade, while estrogen 
in females may upregulate alternative checkpoints (LAG-3, TIM-
3) (118). 

Hormonal aging exacerbates immune senescence: post-
menopausal estrogen decline and age-related hypogonadism 
both correlate with reduced ICI eÿcacy (73). In hematologic 
malignancies, male sex is an adverse prognostic factor in some cHL 
real-world series treated with nivolumab (shorter PFS), consistent 
with testosterone-driven immunosuppression (119). 

4.4 Insulin resistance and metabolic 
syndrome 

Insulin resistance, type 2 diabetes, and metabolic syndrome 
drive chronic low-grade inflammation (elevated IL-6, TNF-α) 
that promotes T-cell exhaustion, MDSC expansion, and PD-
L1 upregulation on tumor cells (78). Hyperinsulinemia activates 

PI3K/AKT/mTORC1 in T cells, inducing energy while impairing 
memory formation (79). 

Retrospective studies and meta-analyses show that diabetes 
at baseline confers a 30–70% increased risk of progression or 
death on PD-1/PD-L1 therapy (HR 1.3–1.7), with hyperglycemia 
(> 200 mg/dL) during treatment independently predicting 
resistance (81, 120). Metabolic syndrome components 
(obesity + hypertension + dyslipidemia) compound this eect 
(121). Metformin, by ameliorating hyperinsulinemia and 
activating AMPK, has shown synergistic eects with ICIs 
in preclinical models and observational cohorts (improved 
ORR/PFS in diabetic patients) (122). Data in hematologic 
cancers are emerging: insulin resistance correlates with 
inferior responses in myeloma and DLBCL treated with PD-1 
combinations (123). 

4.5 Vitamin D endocrine axis 

Vitamin D (via VDR on immune cells) promotes CD8+ 

T-cell activation, dendritic cell maturation, chemokine production 
(CXCL10), and gut microbiome diversity while inhibiting Treg and 
PD-1 expression (12, 124). 

Multiple cohorts demonstrate that vitamin D deficiency 
(< 20 ng/mL) at baseline is associated with significantly 
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FIGURE 4 

The local effects of thyroid hormones on the immune system. (A) Several immune cell types have been reported to express distinct thyroid hormone 
transporters (THTs), which mediate the uptake of thyroid hormones (THs) into the cells. Within the cell, deiodinases (DIOs) facilitate the conversion 
of thyroid hormones (THs), thereby either fostering or restricting TH activation. Intracellular T3 can subsequently bind to thyroid hormone receptors 
(THRs) in the cytoplasm or nucleus, thereby initiating non-canonical or canonical signaling pathways, respectively. In addition to the non-canonical 
thyroid hormone receptor action, which involves, among other mechanisms, PI3K signaling pathways, T4 can also bind to integrin αVβ3 on the cell 
surface, thereby initiating multiple pathways, including PI3K signaling. (B) The local effects of THs were observed in various innate and adaptive 
immune cells, including neutrophils, natural killer (NK) cells, macrophages, monocytes, dendritic cells, T cells, and B cells. Here, T3 and T4 were 
characterized as directly governing various functional processes, including activation, differentiation, proliferation, and/or migration. Furthermore, 
TH signaling in monocytes and dendritic cells indirectly influences the responses of macrophages and dendritic cells, respectively, as well as T cell 
activity. 

worse ORR, PFS, and OS across ICI-treated cancers (125– 

127). A 2023 prospective study showed that systematic 

vitamin D supplementation (≥ 2,000 IU/day) increased ORR 

from 36 to 56% and median PFS from 5.8 to 11.3 months, 
with reduced severe irAEs (127). Genetic polymorphisms 
in VDR and CYP27B1 also predict outcomes (128). In 

hematologic cohorts, low vitamin D is prevalent (> 60% 

in lymphoma/MM) and correlates with poorer survival on 

PD-1-based regimens (129). 

4.6 Adipokine imbalance as an immune 
checkpoint modulator 

Adipose tissue secretes adipokines that bidirectionally 

regulate immunity: leptin promotes T-cell exhaustion via mTOR 

activation and PD-1 upregulation while expanding Tregs, whereas 

adiponectin exerts anti-inflammatory, CD8+ T-enhancing eects 

(82, 83). 
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Leptin levels are elevated in obesity and directly induce 
PD-1 on CD8+ T-cells in mouse models and human tumors, 
accelerating exhaustion; leptin signaling blockade restores ICI 
eÿcacy (82, 84). Yet a robust “metabolic obesity paradox” 
emerges: overweight/obese patients (BMI ≥ 25–30) consistently 
show superior ORR, PFS, and OS on PD-1/PD-L1 therapy 
across melanoma, NSCLC, and renal cancer in meta-
analyses (> 30,000 patients) (13, 130). Proposed mechanisms 
include leptin-driven tonic signaling preventing terminal 
exhaustion, increased CD8+ T-cell infiltration, and altered 
pharmacokinetics (131). This paradox extends to hematologic 
malignancies: higher BMI predicts longer response duration 
in cHL treated with nivolumab/pembrolizumab in real-
world series, though sarcopenic obesity negates the benefit 
(132, 133). 

5 Nutritional and micronutrient 
profiles as predictors of PD-1/PD-L1 
outcomes 

Pre-treatment nutritional status and micronutrient profiles 
exert a profound influence on the eÿcacy of PD-1/PD-L1 
blockade by directly modulating T-cell metabolism, proliferation, 
exhaustion state, antigen-presenting cell function, and the 
composition of the gut microbiome. In hematologic malignancies, 
where disease-related cachexia, chronic inflammation, marrow 
infiltration, and prior therapies frequently induce malnutrition, 
these host factors may be especially relevant to the heterogeneous 
responses observed with ICIs. While most robust evidence 
derives from cohorts of patients with solid tumors (melanoma, 
NSCLC, renal cell carcinoma, and gastrointestinal cancers the 
underlying immunologic mechanisms are shared and likely apply 
to lymphomas, MM, and leukemias. Emerging real-world data 
in cHL and diuse large B-cell lymphoma (DLBCL) support 
similar trends. An overview of nutritional and micronutrient 

markers linked to checkpoint inhibitor eÿcacy is provided in 
Table 2. 

5.1 Protein-energy malnutrition and 
survival 

Protein-energy malnutrition (PEM) is highly prevalent 
in hematologic malignancies, aecting 30–60% of patients 
with aggressive lymphomas and MM, and is characterized 
by involuntary weight loss, hypoalbuminemia (<35 g/L), low 
prealbumin (<20 mg/dL), and reduced lean body mass. Multiple 
large retrospective cohorts have demonstrated that low baseline 
serum albumin and low Prognostic Nutritional Index (PNI) 
(PNI = 10 × albumin [g/dL] + 0.005 × lymphocyte count [/mm3]) 
are independent predictors of inferior objective response rate 
(ORR, PFS), and OS in patients receiving anti-PD-1/PD-L1 
therapy (13, 82, 130, 136). 

Mechanistically, hypoalbuminemia reflects chronic systemic 
inflammation (elevated IL-6, TNF-α) that drives T-cell exhaustion 
through persistent PD-1 upregulation and reduced mTOR pathway 
suppression, limiting the amino acid availability required for 
eector T-cell expansion and memory formation (137). In a 
multicenter Italian study of > 1 000 patients treated with anti-PD-
1/PD-L1 agents, albumin < 35 g/L conferred a hazard ratio of 1.92 
for death (82). Similar findings have been reported with the PNI, 
where PNI < 45 predicted significantly lower ORR (≈15–20% vs. 
40–50% in high PNI) and shorter median OS in NSCLC and other 
cancers (136, 138). 

In hematologic malignancies, low albumin is incorporated into 
established prognostic scores (e.g., International Prognostic Score 
for Hodgkin lymphoma, R-IPI for DLBCL) and retains prognostic 
significance in the immunotherapy era. Real-world cohorts of 
relapsed/refractory cHL treated with nivolumab or pembrolizumab 
have shown that albumin < 35 g/L is associated with markedly 
shorter duration of response and increased risk of early progression 
(139, 140). Prealbumin may be even more sensitive, reflecting 

TABLE 2 Nutritional and micronutrient markers linked to immunotherapy. 

Nutritional/micronutrient 
marker 

Role in ICI response/immune role References 

Vitamin D (25(OH)D) Important immunomodulator (enhances innate immunity, regulates T-cell function). Higher baseline 

VitD correlates with better PD-1 responses and survival. VitD suÿciency is associated with higher 

response rates and fewer severe irAEs. 

(134) 

Zinc Essential for thymic function and T-cell development. Adequate zinc supports T-cell and NK-cell function. 
High serum zinc predicts improved ICI outcomes (↑OS), possibly via NF-κB/MAPK pathways. Zinc 

deficiency impairs antitumor immunity. 

(127) 

Body mass index (BMI) General nutritional status. In solid tumors, obesity often paradoxically correlates with better ICI outcomes 
(“obesity paradox”), but in hematologic malignancies, this is not consistent. In one cHL study, BMI 
(under/overweight vs. normal) did not aect nivolumab PFS/OS 

(119) 

Albumin Marker of nutrition/inflammation. Hypoalbuminemia (malnutrition/inflammation) strongly predicts poor 

ICI outcomes. Pretreatment low albumin (e.g. < lower limit) was associated with much worse OS/PFS (HR 

∼4) in melanoma. High albumin is linked to better survival on PD-1 therapy. 

(119) 

Ferritin (iron storage) Acute-phase reactant and iron store. High ferritin often reflects inflammation and has been reported as a 

poor prognostic factor in ICI-treated patients (e.g., in lung cancer, high ferritin predicted worse 

outcomes). (Mechanism: may indicate chronic inflammation or immune exhaustion.) 

(135) 
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acute changes in visceral protein status and predicting non-
response in a small series of myeloma patients receiving PD-1-
based combinations (141). These data strongly suggest that routine 
pre-treatment nutritional screening with albumin or PNI could 
identify patients requiring aggressive supportive care to optimize 
immunotherapy benefit. 

5.2 Iron metabolism, anemia, and 
immunotherapy response 

Anemia aects up to 70% of patients with lymphoma or 
myeloma at diagnosis and is exacerbated by disease progression or 
prior therapies. Baseline anemia (Hb < 10–11 g/dL) consistently 
predicts poorer outcomes with PD-1/PD-L1 blockade across 
tumor types, with meta-analyses showing hazard ratios of 1.5– 
2.0 for death (99, 100). High serum ferritin (> 300–500 
ng/mL, context-dependent) as an acute-phase reactant reflects 
systemic inflammation and correlates with resistance to checkpoint 
inhibition, increased risk of hyperprogressive disease (142, 143). 

Mechanistically, elevated hepcidin in inflammatory states 
sequesters iron in macrophages, depriving T cells of the iron 
required for proliferation and eector dierentiation while 
simultaneously promoting M2-polarized immunosuppressive 
macrophages and myeloid-derived suppressor cells (144). In 
NSCLC cohorts, ferritin > 400 ng/mL was independently 
associated with reduced OS (HR 1.6–2.1) and lower ORR (145). 
In hematologic malignancies, hyperferritinemia is a well-known 
adverse factor in cHL and DLBCL and likely contributes to the 
immunosuppressive marrow microenvironment that limits PD-1 
blockade eÿcacy in myeloma or leukemia (131). Careful correction 
of anemia (preferably with transfusion or erythropoietin-sparing 
approaches) and avoidance of iron overload may represent low-risk 
interventions to improve immunotherapy outcomes. 

5.3 Micronutrients and antioxidant trace 
elements 

Zinc and selenium deficiencies are frequent in hematologic 
malignancies due to poor intake, malabsorption, and increased 
utilization. Zinc is essential for thymic function, ZAP-70 signaling, 
and cytotoxic T-cell activity; low serum zinc levels (< 70 µg/dL) 
have been associated with significantly lower response rates and 
shorter PFS/OS in NSCLC patients receiving PD-1 inhibitors 
(84, 93). Selenium, incorporated into selenoproteins (e.g., GPx-
4), protects T cells from oxidative stress during chronic antigen 
stimulation; low selenium status correlates with higher Treg 
frequency and reduced eector T-cell function in DLBCL and other 
cancers (146). 

Supplementation studies, though limited, suggest that restoring 
zinc or selenium levels can enhance CD8+ T-cell cytotoxicity 
and synergize with PD-1 blockade in preclinical models (92). 
In DLBCL, low selenium was associated with increased PD-1+ 

Treg populations, suggesting a direct mechanism of immune 
evasion that could be reversed by supplementation (93). Routine 
micronutrient screening and correction may therefore represent a 

simple, low-cost strategy to augment checkpoint inhibitor eÿcacy 
in hematologic patients. 

5.4 Diet patterns and metabolomics 
signatures 

Dietary patterns profoundly shape the gut microbiome, 
which in turn systemically modulates response to PD-1/PD-
L1 blockade. High-fiber, plant-rich diets are associated 
with enrichment of responder-associated taxa (Akkermansia 
muciniphila, Faecalibacterium prausnitzii, Bifidobacterium spp.) 
and significantly higher ORR and PFS in melanoma and NSCLC 
patients treated with anti-PD-1 therapy (147, 148). Conversely, 
Western-style high-fat/processed food diets correlate with 
unfavorable microbiome composition and reduced benefit (147). 
Metabolomic profiling has identified pre-treatment elevations in 
short-chain fatty acids (butyrate, propionate) and certain amino 
acid metabolites as predictors of response, reflecting microbial 
fermentation products that enhance dendritic cell function and 
T-cell infiltration (132). 

Although direct evidence in hematologic malignancies 
is limited, dysbiosis is common in lymphoma and myeloma 
patients (often exacerbated by antibiotics or chemotherapy), 
and the gut microbiome’s influence on systemic immunity 
and GVHD after transplant suggests similar relevance for 
checkpoint inhibitor eÿcacy (149). Dietary interventions 
promoting favorable microbiome composition represent a 
promising adjunctive strategy. 

5.5 Obesity, sarcopenia, and body 
composition analyses 

An “obesity paradox” has been repeatedly demonstrated 
in immunotherapy, with overweight/obese patients (BMI ≥ 25 
or ≥ 30 kg/m2) exhibiting superior ORR (up to 2-fold higher), PFS, 
and OS compared to normal-weight patients in large multicenter 
cohorts and meta-analyses. The eect is particularly striking in 
melanoma, NSCLC, and renal cell carcinoma, with hazard ratios for 
death of 0.6–0.7 in obese patients (150, 151). Proposed mechanisms 
include increased leptin signaling enhancing CD8+ T-cell function, 
greater energy reserves supporting prolonged immune activation, 
and altered adipokine profiles favoring Th1 polarization (152). 
Preliminary data in classical Hodgkin lymphoma treated with PD-1 
inhibitors also suggest a similar trend, with higher BMI associated 
with improved response duration (153). Representative clinical 
studies examining endocrine and nutritional predictors of ICI 
outcomes are summarized in Table 3. 

6 Integrated endocrine–nutritional 
signatures: a new predictive 
paradigm 

Single biomarkers (e.g., albumin, vitamin D, BMI) frequently 
fail to reliably predict PD-1/PD-L1 blockade outcomes due 
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TABLE 3 Studies evaluating endocrine/nutritional predictors of ICI outcomes. 

Study characteristics Biomarker(s) 
analyzed 

Key findings References 

(Retrospective cohort; 133 patients 
with relapsed/refractory classical 
Hodgkin lymphoma on nivolumab) 

BMI categories (underweight, 
normal, overweight, obese) 

No significant association between BMI and ICI eÿcacy: PFS/OS and 

response rates were similar across BMI groups; underweight 
individuals had worse outcomes, but trends were non-significant. BMI 
did not predict irAE risk in cHL. 

(119) 

(Prospective cohort; 77 advanced 

non-small cell lung cancer patients on 

PD-1/PD-L1 inhibitors) 

Serum 25(OH) vitamin D Higher baseline VitD was independently associated with better 

objective response (PR rate) and longer survival. Patients with 

25(OH)D > 15.7 ng/mL had ∼3 × higher odds of response (OR 2.93) 
and improved OS. VitD insuÿciency predicted poorer ICI benefit. 

(119) 

(Retrospective study; 98 

advanced/metastatic cancer patients 
[lung, esophageal, gastric, colorectal] 
on ICIs) 

Serum zinc level Elevated baseline zinc (> 14.2 µg/L) strongly predicted improved OS 

and clinical benefit on PD-1/L1 therapy. Patients with higher zinc had 

longer OS (20 vs. 10 months). Zinc was proposed as a novel positive 

biomarker, potentially via modulating NF-κB/MAPK immune 

pathways. 

(93) 

(Retrospective multi-omic; metastatic 

melanoma patients on 

anti-PD-1 ± CTLA-4) 

Serum albumin Pretreatment hypoalbuminemia emerged as the strongest predictor of 
poor outcome. Low albumin (< LLN) was associated with much 

worse OS (HR∼4.0) and PFS (HR∼3.7). Even after adjusting for LDH, 
IFN-γ signature, TMB, etc. Normal albumin predicted durable benefit. 

(93) 

(Retrospective; 179 mixed cancer 

patients on ICIs) 
Albumin–globulin ratio 

(AGR) 
Lower AGR (< 1.21) (reflecting low albumin/high inflammation) was 
associated with significantly reduced OS (HR 1.53) and PFS (HR 1.39) 
on ICI therapy. AGR may capture combined 

nutritional/inflammatory status predicting ICI outcomes. 

(135) 

to biological redundancy, confounding by disease-related 
inflammation, and limited capture of multifaceted immuno-
endocrine-nutritional crosstalk. Integrated multi-marker 
signatures combining inflammatory (CRP, NLR), nutritional 
(albumin, PNI), metabolic (vitamin D, sarcopenia), and adipokine 
measures oer superior prognostic stratification across cancers 
treated with ICIs. These composite scores reflect a holistic “systemic 
immunologic readiness profile” that gauged host capacity to mount 
and sustain antitumor T-cell responses. Systemic immunologic 
readiness is the integrated host physiological state determined 
by endocrine balance, nutritional status, metabolic health, and 
systemic inflammation that collectively shapes baseline immune 
competence and the capacity of T cells to be reinvigorated by 
PD-1/PD-L1 blockade. This concept reflects a whole-body immune 
context that exists before therapy and modulates treatment 
responsiveness independently of tumor-intrinsic features. 
Although most evidence stems from solid tumors, translational 
data in hematologic malignancies (particularly cHL, diuse large 
B-cell lymphoma [DLBCL], and MM) support applicability, with 
unique marrow-driven metabolic features warranting tailored 
panels (154). The integrated endocrine–nutritional signatures 
proposed for hematologic malignancies are summarized in Table 4. 

6.1 Why single biomarkers are insufficient 

Individual endocrine or nutritional markers demonstrate 
inconsistent predictive performance for ICI eÿcacy due to high 
inter-patient variability, overlapping confounders (comorbidities, 
steroids, cachexia), and inability to capture synergistic interactions 
across immuno-metabolic pathways (155, 156). For example, 
while hypoalbuminemia robustly predicts inferior outcomes, 
its specificity is limited by non-nutritional causes (hepatic 

dysfunction, nephrotic syndrome) and failure to account for 
compensatory mechanisms like adipokine signaling in obesity 
(85). Similarly, vitamin D deficiency correlates with resistance 
but shows heterogeneous eect sizes across cohorts, modulated 
by baseline inflammation or microbiome status (157). BMI alone 
yields paradoxical results (obesity benefit in many settings) yet 
ignores muscle quality, where sarcopenia independently drives 
exhaustion (82). Meta-analyses confirm modest hazard ratios 
(1.3–1.8) for single markers versus > 2.5–4.0 for composites, 
underscoring the need for integrated approaches that better 
reflect the complex “whole-body immunologic tone” governing 
T-cell fitness (136, 137). Table 5 synthesizes the current clinical 
evidence linking endocrine and nutritional parameters with PFS 
and OS in cancer patients receiving ICIs. Collectively, the 
studies summarized in this table highlight that host metabolic 
and hormonal status is not merely a background variable but 
a biologically active determinant of immunotherapy eÿcacy. 
Across multiple tumor types and treatment settings, endocrine 
alterations such as dysregulated thyroid function, cortisol excess, 
insulin resistance, and sex hormone imbalance emerge as 
modulators of antitumor immune responses, influencing T-cell 
activation, exhaustion dynamics, and immune-related adverse 
event profiles. In parallel, nutritional indices including BMI, 
sarcopenia, cachexia, serum albumin, PNI, and inflammatory-
nutritional composites (e.g., CONUT, GPS, NLR-based scores) 
consistently correlate with survival outcomes, underscoring 
the role of systemic energy availability and muscle–immune 
crosstalk in sustaining eective immune surveillance. Notably, 
several studies report paradoxical findings such as improved 
outcomes in overweight patients supporting the concept of an 
“immunometabolic reserve” that may buer immune cells against 
ICI-induced metabolic stress. 
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TABLE 4 Proposed multi-marker signature for hematologic malignancies. 

Signature components Rationale/interactions Supporting evidence References 

“Stress–Inflammation” signature: High 

cortisol + ↑IL-6 + low albumin 

HPA axis activation + malnutrition/inflammation. 
Elevated cortisol (stress) drives immunosuppression 

(up PD-1) and systemic inflammation (↑IL-6). Low 

albumin reflects a poor nutritional/inflammatory state. 
Together, this profile indicates an immunosuppressed, 
catabolic state unlikely to respond to ICI. 

Cortisol↔poor PFS/OS; Cortisol↑ linked to 

↑IL-6; Hypoalbumin↔poor ICI outcome. 
(102) 

“Thyroid-DC activation” signature: 
High T3 (active TH signaling) + low 

PD-1/PD-L1 checkpoint 

Enhanced antigen presentation and adaptive 

immunity. High T3 promotes dendritic cell maturation 

and pro-inflammatory cytokine production (IL-12, 
IL-6, IL-1β), driving Th1/Th17 and cytotoxic T-cell 
responses. T3 conditions DCs to downregulate PD-L1 

and reduce PD-1 on T cells, lowering immune 

checkpoints. This endocrine-driven signature suggests 
a more responsive immune milieu. 

T3-DC axis yields proinflammatory 

Th1/Th17 bias\ and lowers PD-1/PD-L1 in 

DC-T interactions. 

(135) 

“Micronutrient suÿciency” signature: 
High vitamin D + high zinc (+ normal 
albumin) 

Supportive immune milieu. Adequate VitD and zinc 

are both required for eective innate and adaptive 

immunity. Suÿcient VitD enhances T-cell regulation 

and anti-tumor immunity. High zinc supports 
T-cell/NK function and promotes favorable NF-κB 

signaling. Together (with normal albumin), this 
signature implies good nutritional status and immune 

competence, correlating with robust ICI response. 

Baseline VitD suÿciency is linked to higher 

ICI ORR/OS; High zinc predicts longer ICI 
survival. 

(103, 127) 

“IGF/metabolic” signature: High IGF-1 

(± high insulin or obesity) 
Tumor immune evasion. Elevated IGF-1 drives 
regulatory/Treg-mediated immunosuppression and 

impairs antigen presentation. It upregulates PD-L1 and 

downregulates antigen-processing machinery in tumor 

cells. In a multi-marker model, high IGF-1 (often in 

metabolic syndrome) may identify patients with TME 

resistant to PD-1 blockade. 

IGF-1 promotes FOXP3∧ + Tregs and 

IL-10; IGF-1 upregulates 
PD-L1/downregulates antigen presentation. 

(93) 

TABLE 5 Summary of key studies evaluating endocrine-nutritional predictors and their associations with progression-free survival (PFS) and overall 
survival (OS) in patients treated with immune checkpoint inhibitors (ICIs). 

Author references Cancer type Predictor HR for PFS 
(95% CI) 

HR for OS (95% CI) 

Li et al. (158) Advanced cancers (including some 

Hodgkin lymphoma) on PD-1/PD-L1 

inhibitors 

Low PNI (vs. high) 1.75 (1.40–2.18) 2.31 (1.81–2.94) 

Jiang et al. (159) Hematological malignancies (general, not 
ICI-specific) 

High GPS (vs. low) ∼2.0 (exact CI not 
specified in abstract) 

∼2.0 (exact CI not specified in 

abstract) 

Bersanelli et al. (125) Advanced solid tumors on ICIs Vitamin D 

supplementation (vs. 
none) 

0.61 (0.40–0.91) for 

TTF 

0.55 (0.34–0.90) 

Guo et al. (160) Lung cancer (NSCLC and SCLC) on ICIs Presence of irTD (vs. 
absence) 

Not significant 
overall 

0.65 (0.49–0.88) 

Kopanos et al. (161) Melanoma, NSCLC, urothelial cancer on 

ICIs 
Presence of endocrine 

irAEs (vs. absence) 
0.61 (0.54–0.68) 0.60 (0.54–0.67) 

Witte et al. (162) Multiple myeloma (general, not 
ICI-specific) 

Higher GPS (vs. lower) 1.405 (1.058–1.867) 2.127 (1.431–3.162) 

Shi et al. (163) Advanced NSCLC on immunotherapy High PNI (> 45 vs. ≤ 45) 0.405 (0.184–0.892) 0.294 (0.123–0.703) 

While the search focused on hematologic malignancies and ICI, many studies are from solid tumors or general hematologic contexts due to limited specific data. Endocrine-nutritional 
predictors like PNI and GPS show consistent prognostic value across cancers, with low values indicating worse outcomes. For hematologic-specific ICI, data are emerging but sparse; e.g., PNI 
included Hodgkin lymphoma in mixed cohorts. Further research is needed for targeted hematologic applications. 

6.2 Concept of a “systemic immunologic 
readiness profile” 

The systemic immunologic readiness profile conceptualizes 
pre-treatment host status as a composite continuum from “fit” 

(optimal nutrient reserves, balanced hormones, low inflammation 

supporting robust CD8+ T cell reinvigoration) to “unfit” 

(malnutrition, endocrine dysregulation, chronic inflammation 

enforcing exhaustion and Treg/MDSC dominance) (51, 164). This 
paradigm shifts focus from tumor-intrinsic features (PD-L1, TMB) 
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to modifiable host factors that determine whether PD-1/PD-
L1 blockade can restore eective immunity. Preclinical models 
demonstrate that combined insults (e.g., cortisol elevation + zinc 
deficiency + arginine depletion) synergistically impair mTOR 
signaling and IFN-γ production beyond any single factor (57). 
Clinically, patients with “fit profiles exhibit higher ORR (50–80% 
vs. < 20%), longer PFS/OS, and fewer severe irAEs, likely via 
enhanced T-cell metabolism and reduced alternative checkpoint 
upregulation (165). In hematologic malignancies, where systemic 
disease and prior therapies amplify host dysregulation, this 
profile may explain outlier successes (cHL) versus failures (MM 
monotherapy) (166). 

6.3 Multi-marker signatures studied to 
date 

6.3.1 Albumin + CRP indices 
The Glasgow Prognostic Score (GPS) (GPS: CRP > 10 mg/L 

and albumin < 35 g/L) and modified GPS (mGPS) are 
among the most validated composites, integrating acute-phase 
response with visceral protein status. In metastatic cancers 
treated with ICIs, high GPS/mGPS independently predicts 
poorer ORR, PFS, and OS across melanoma, NSCLC, and 
RCC in large cohorts and meta-analyses (167–169). The PNI 
(PNI = 10 × albumin + 0.005 × lymphocytes) similarly 
outperforms single markers, with low PNI (< 45) associated with 
HR 2.0–3.5 for progression in ICI-treated gastric, lung, and mixed 
cancers (138, 139). Controlling Nutritional Status (CONUT) score 
adds cholesterol, further refining risk stratification (170). 

6.3.2 Vitamin D + inflammatory markers 
Combining vitamin D (< 20 ng/mL deficiency) with high 

CRP, NLR (> 3–5), or GPS enhances predictive accuracy. In 
NSCLC and melanoma cohorts, deficient vitamin D + elevated 
inflammation confers the worst outcomes (median PFS < 4 months 
vs. > 24 months in suÿcient/low-inflammation), reflecting 
impaired DC maturation and microbiome dysbiosis (127, 171). 
Prospective trials of vitamin D supplementation in high-risk 
(inflammatory) patients show ORR improvement from ∼35 to 
∼55%, supporting dynamic interplay (172). 

6.3.3 Sarcopenia + adipokine levels 
Body composition analyses reveal sarcopenic obesity (low 

muscle + high fat) as a high-risk phenotype, combining leptin-
driven exhaustion with reduced myokine support for T cells. 
Meta-analyses (> 5,000 ICI patients) report HR 2.0–3.5 for death 
in sarcopenic obesity vs. obesity alone (protective HR 0.6–0.7), 
with leptin/adiponectin ratio emerging as a mechanistic link (173– 
175). Low adiponectin + sarcopenia predicts severe irAEs and 
resistance, while high leptin in non-sarcopenic obesity correlates 
with benefit (83). 

6.4 Translating these signatures to 
hematologic cancers 

Hematologic malignancies exhibit unique metabolic 
vulnerabilities: aggressive lymphomas and myeloma frequently 

induce protein-energy wasting (30–60% prevalence), 
hypercatabolism, and marrow adipose tissue remodeling that 
amplifies MDSC and impair hematopoiesis (19, 176). In cHL, 
the obesity paradox is pronounced higher BMI/leptin associates 
with superior duration of response to nivolumab/pembrolizumab, 
possibly via sustained CD8+ T-cell metabolism overriding 9p24.1-
driven evasion (119). DLBCL shows similar trends, with low 
PNI/GPS predicting early relapse post-ICI combinations (177). 
MM’s refractory nature to PD-1 monotherapy may stem from 
profound cachexia, vitamin D deficiency (bone disease), and IGF-1 
dysregulation in the marrow niche, fostering T-cell energy (178). 

The marrow microenvironment rich in adipocytes, cytokines 
(IL-6), and hepcidin—amplifies endocrine-nutritional eects: 
leptin from marrow fat promotes Treg, while iron dysregulation 
starves T cells (179). Real-world cHL series incorporating PNI 
report low scores in 40–50% of relapsed patients, correlating with 
reduced CR rates (139). Emerging data in CAR-T (analogous 
immune activation) validate CONUT/PNI as predictors in MM, 
suggesting relevance for ICI combinations (180). 

6.5 Potential for composite 
pre-treatment predictive panels 

Composite panels integrating 3–6 markers (e.g., 
PNI/GPS + vitamin D + sarcopenia index + leptin/adiponectin 
ratio ± cortisol) could achieve > 80% accuracy in stratifying 
ICI responders, enabling precision supportive care (nutrition 
repletion, exercise, metformin, vitamin D) to convert “unfit” 
to “fit” hosts (180, 181). Machine learning-derived scores (e.g., 
combining SII + CONUT + BMI) outperform traditional tools 
in solid tumors and are being validated in lymphoma trials. In 
hematologic settings, proposed panels might add marrow-specific 
factors (e.g., ferritin, free light chains) for personalized prediction, 
potentially augmenting low baseline eÿcacy in MM or leukemias 
(182). Prospective trials are essential to standardize cut-os, timing 
(circadian variability in cortisol), and interventions. 

7 Mechanistic insights: how 
endocrine and nutritional status 
alter immune checkpoint response 

Endocrine and nutritional status profoundly reprograms 
immune cell metabolism, signaling, and gene expression, thereby 
modulating the depth and durability of response to PD-1/PD-L1 
blockade. Dysregulated states (hypercortisolism, insulin resistance, 
leptin excess, vitamin D/zinc deficiency, arginine/tryptophan 
depletion) converge on pathways that accelerate T-cell exhaustion, 
suppress antigen presentation, enrich immunosuppressive myeloid 
cells, and blunt cytokine-driven reinvigoration mechanisms 
that directly undermine checkpoint inhibitor eÿcacy (11, 55, 
183). Conversely, optimal endocrine–nutritional balance sustains 
eector T-cell metabolism (glycolysis, OXPHOS, fatty acid 
oxidation), prevents terminal exhaustion, and enhances IFN-
γ-dependent PD-L1 upregulation on tumors, creating a permissive 
milieu for PD-1/PD-L1 blockade (58, 184). These eects are 
amplified in hematologic malignancies by the bone marrow niche, 
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FIGURE 5 

Endocrine-nutritional modulation of T-cell fate and immune checkpoint therapy response. This schematic illustrates how metabolic, endocrine, and 
nutritional states shape T-cell functionality and influence clinical outcomes during PD-1/PD-L1 checkpoint inhibition. (A) Track A (Favorable State) 
shows conditions associated with better therapeutic response including sufficient vitamin D, normal albumin, balanced adipokines, low ferritin, and 
reduced cortisol promoting PD-1low effector activity, preserved TCF1+ progenitor pools, robust IFN-γ production, and efficient antigen presentation. 
(B) Track B (Unfavorable State) depicts deficiencies and dysregulations such as hypoalbuminemia, vitamin D deficiency, hypercortisolism, adipokine 
imbalance, and iron overload, which drive PD-1high T-cell exhaustion, elevated TOX/NR4A expression, reduced IFN-γ, and a suppressive myeloid 
milieu dominated by M2 macrophages and MDSCs. (C) Track C (Clinical Implications) summarizes downstream consequences, linking these states to 
poor PD-1 inhibitor efficacy, rapid disease progression, and higher incidence of immune-related adverse events due to overall immunosuppression. 

where adipocytes, cytokines, and nutrient competition impose 
additional metabolic constraints (179). 

7.1 Impact on T-cell exhaustion, 
proliferation, and memory 

T-cell exhaustion, a hypofunctional state characterized 
by hierarchical loss of eector cytokines, high co-inhibitory 
receptor expression (PD-1, TIM-3, LAG-3), and epigenetic 
remodeling, is metabolically regulated (185). Glucocorticoids, 
via GR-mediated transactivation, directly upregulate PD-1 and 
TOX/TOX2 transcription factors while inhibiting mTORC1 and 
glucose uptake, locking CD8+ T-cells in exhaustion and preventing 
proliferation/memory formation; blockade of GC signaling restores 
ICI responsiveness in preclinical models (61, 66). 

Leptin, elevated in obesity, activates STAT3/mTORC1 in T 
cells, leptin-neutralization reinvigorates exhausted T cells and 
synergizes with PD-1 blockade (82, 84). Hyperinsulinemia/IGF-1 
similarly hyperactivates PI3K/AKT/mTORC1, inducing exhaustion 
while impairing CD8+ memory T precursors; metformin-mediated 
AMPK activation reverses this and boosts ICI eÿcacy (186). 

Vitamin D/VDR signaling inhibits exhaustion genes (PDCD1, 
HAVCR2) via direct binding to super-enhancers and promotes 
stem-like TCF1 + PD-1int progenitors capable of reinvigoration 

upon PD-1 blockade (12, 124). Zinc deficiency impairs ZAP-
70/LCK signaling and IL-2 production, accelerating exhaustion; 
zinc supplementation restores cytotoxicity and reduces PD-1 
expression (187). Arginine and tryptophan availability are critical: 
tumor/MDSC-derived ARG1/IDO1 deplete these amino acids, 
activating GCN2/ATF4 stress pathways that upregulate PD-1 and 
inhibit memory formation; arginine supplementation or IDO 
inhibitors prevent exhaustion and enhance PD-1 blockade (95, 96). 
Figure 5 summarizes how endocrine and nutritional factors shape 
T-cell states and influence PD-1/PD-L1 therapy outcomes. 

7.2 Effects on antigen-presenting cells 
and myeloid compartment 

Endocrine–nutritional cues reprogram APCs and MDSCs, 
determining co-stimulatory capacity and immunosuppressive 
polarization. Vitamin D is a master regulator of DC maturation: 
1,25(OH)2D induces tolerogenic phenotype (↑CD14, ↓CD80/86, 
↑IL-10) in steady state but enhances cross-presentation and 
CXCL10 production in inflammatory contexts, promoting CD8+ 

priming and ICI eÿcacy (188, 189). Zinc and selenium support 
lysosomal function and ROS detoxification in DCs, preserving 
MHC-II expression and co-stimulatory molecule expression; 
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deficiency impairs antigen presentation and favors MDSC 
expansion (94). 

Cortisol and leptin drive M2/macrophage polarization via 
PPARγ/STAT6 and suppress MHC-II/CD86 on APCs, limiting 
T-cell priming (65). In obesity, leptin-rich marrow adipocytes 
secrete IL-6/TGF-β that expand PMN-MDSCs expressing PD-
L1 and ARG1, directly inhibiting CD8+ T-cell function (19). 
Iron dysregulation (high ferritin/hepcidin) promotes MDSC 
accumulation and M2 polarization while starving T cells; 
ferroptosis induction in MDSCs enhances ICI responses (179). 
These myeloid shifts create a “cold” pre-treatment state resistant 
to PD-1/PD-L1 blockade. 

7.3 Modulation of tumor 
microenvironment in hematologic 
cancers 

The bone marrow TME in lymphomas and myeloma is 
uniquely sensitive to endocrine–nutritional inputs due to high 
adipocyte content, chronic IL-6 signaling, and nutrient competition 
for glucose/amino acids (190). Marrow adipose tissue (MAT) 
expands dramatically in MM and aggressive lymphomas, secreting 
leptin, adiponectin (often reduced), and free fatty acids that 
reprogram resident immune cells (191). Leptin from MAT drives 
PD-L1 expression on myeloma cells via JAK2/STAT3 and promotes 
MDSC/Treg infiltration, while adiponectin deficiency removes 
CD8+-supportive signals (192). 

Vitamin D deficiency, prevalent in MM due to bone disease, 
exacerbates marrow immunosuppression by reducing CXCL10-
mediated T-cell traÿcking and enhancing RANKL-driven 
osteoclastogenesis that releases TGF-β (193). Insulin/IGF-1 
hyperactivation in obese myeloma patients upregulates PD-L1 
on plasma cells and fosters “exhausted-like” marrow-resident T 
cells with high TOX expression (194). Zinc/selenium depletion— 
common from poor intake/malabsorption—impairs NK-cell 
degranulation against RS cells in cHL, contributing to the 
immunosuppressive niche (93). Thus, unfavorable endocrine– 
nutritional profiles reinforce marrow as an immune-privileged 
sanctuary, explaining limited PD-1 monotherapy success in MM 
vs. cHL (where 9p24.1 amplification overrides some constraints). 

7.4 Interplay with cytokine and 
chemokine networks 

Endocrine–nutritional status orchestrates cytokine networks 
that determine whether PD-1 blockade triggers productive IFN-
γ-driven tumor control or futile inflammation. IFN-γ induces PD-
L1 on tumor/APCs to enable adaptive resistance; however, chronic 
IL-6 (driven by obesity, stress, malnutrition) trans-signals STAT3 
to upregulate alternative checkpoints (TIM-3, LAG-3) and anti-
apoptotic genes, blunting IFN-γ eÿcacy (97). Cortisol suppresses 
IFN-γ/IL-2 while elevating IL-10/TGF-β, shifting from Th1 to 
Treg-polarizing milieu (105). 

Vitamin D and short-chain fatty acids (from fiber-rich diets 
enhance IFN-γ/CXCL9/10/11 production by DCs, promoting 
CD8+ T-cell traÿcking and PD-1 blockade sensitivity (100). 

Leptin amplifies IL-6/TNF-α loops that sustain exhaustion, whereas 
adiponectin dampens them (83). Arginine depletion inhibits iNOS-
derived NO needed for chemokine receptor expression, impairing 
T-cell migration; restoration reinvigorates cytokine networks (95). 

7.5 Influence on immune-related adverse 
events 

Paradoxically, endocrine–nutritional factors that impair 
antitumor eÿcacy often protect against severe irAEs by limiting 
systemic immune activation. Thyroid irAEs (most common 
endocrine toxicity, 10–40%) reflect breakthrough autoimmunity: 
patients developing thyroiditis exhibit higher baseline T-cell 
reactivity and IFN-γ signatures, translating to both superior tumor 
control and autoimmunity risk (69, 195). Vitamin D suÿciency 
correlates with increased irAE incidence (particularly colitis, 
pneumonitis) but improved survival, likely via enhanced T-cell 
reinvigoration (125). 

Obesity/leptin excess is associated with higher rates of 
severe irAEs, possibly via tonic mTOR activation, lowering 
activation threshold (196). Conversely, malnutrition (low albumin, 
PNI) predicts fewer irAEs but worse oncologic outcomes, 
reflecting globally suppressed immunity (197). Baseline GC use 
or endogenous hypercortisolism dramatically reduces irAE risk 
but abolishes ICI benefit (106). Thus, the same mechanisms 
driving resistance (exhaustion promotion) often confer irAE 
protection, while “fit” profiles yield both better tumor responses 
and manageable toxicity. 

8 Clinical applications and future 
directions 

Pre-treatment endocrine–nutritional optimization represents a 
low-cost, low-toxicity strategy to enhance PD-1/PD-L1 blockade 
eÿcacy, with emerging prospective data supporting vitamin 
D repletion, metformin for insulin resistance, and structured 
nutritional support. Although most evidence derives from solid 
tumors, mechanistic overlap and real-world hematologic cohorts 
suggest translatability, particularly in cachexia-prone lymphomas 
and myeloma. Integration of simple blood-based composites (e.g., 
PNI + vitamin D + ferritin) with tumor biomarkers could 
enable precision supportive care, converting “unfit” hosts into 
better responders. 

8.1 Developing clinically feasible 
endocrine–nutritional assessments 

Routine, low-cost blood tests (albumin, prealbumin, CRP, 
vitamin D, ferritin, zinc, selenium, morning cortisol, TSH/free 
T4, fasting glucose/insulin or C-peptide, leptin/adiponectin ratio) 
combined with CT-based body composition (skeletal muscle index, 
subcutaneous/visceral fat) provide a feasible “immuno-nutritional 
panel” implementable in standard oncology practice (183, 198). 
PNI, CONUT score, and GPS require only CBC and chemistry, 
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achieving high stratification power in ICI cohorts (136). Point-
of-care or multiplex assays for adipokines and micronutrients are 
emerging, with turnaround < 48 h. In hematologic settings, adding 
serum-free light chains or hepcidin may refine marrow-specific 
risk (199). 

8.2 Can we intervene before therapy? 

Prospective trials increasingly support pre-emptive correction 
of deficiencies to augment ICI outcomes. 

8.2.1 Vitamin D correction 
Vitamin D deficiency (<20 ng/mL) is correctable with 

50,000 IU weekly loading followed by 2,000–4,000 IU daily 
maintenance. A 2023 prospective cohort (n = 200 + ICI patients) 
showed systematic supplementation improved ORR from 36 to 
56% and median PFS from 5.8 to 11.3 months, with greater 
CD8+ T-cell reinvigoration and reduced severe irAEs (125). 
A multicenter analysis confirmed that higher serum 25(OH)D 
and supplementation independently predicted superior survival 
in PD-1-treated solid tumors, with similar trends in lymphoma 
subsets (87). 

8.2.2 Iron balance 
High ferritin and functional iron deficiency predict resistance 

via MDSC expansion. Careful IV iron in true deficiency or 
hepcidin inhibitors (preclinical) may help, but excess iron 
worsens outcomes; guidelines recommend avoiding overload and 
monitoring transferrin saturation (200, 201). 

8.2.3 Nutrition support 
High-protein oral supplementation + resistance exercise 

reverses sarcopenia and improves PNI in 4–8 weeks. Mediterranean 
or high-fiber diets enrich responder microbiomes (Akkermansia, 
Faecalibacterium), with a 2025 phase II trial showing high-fiber 
intervention increased ORR by 20–30% in ICI patients (100, 
202). Enteral/parenteral nutrition in severe malnutrition stabilizes 
weight and albumin pre-ICI (203). 

8.2.4 Hormonal optimization 
Metformin in insulin-resistant patients activates AMPK, 

reduces MDSCs, and potentiates PD-1 blockade; phase II trials 
in NSCLC/melanoma report ORR ↑20–40% and PFS HR 0.6–0.7 
when added to nivolumab/pembrolizumab (59, 204, 205). Thyroid 
replacement in hypothyroidism and physiologic hydrocortisone in 
adrenal insuÿciency are standard; androgen deprivation in males 
is under investigation (75). 

8.3 Precision supportive care to augment 
immunotherapy 

Risk-stratified supportive algorithms, intensive intervention for 
high-risk profiles (low PNI + vitamin D deficiency + sarcopenia) 
could increase population-level ICI benefit by 15–30% at minimal 
cost (13). Ongoing trials combine metformin + high-protein 
diet + vitamin D in “unfit” patients starting PD-1 therapy. 

8.4 Integration with genomic/immune 
biomarkers 

Composite scores merging host (PNI/GPS + vitamin D) with 
tumor factors (PD-L1 TPS, TMB, 9p24.1 status in cHL) outperform 
either alone, achieving > 85% accuracy in predicting durable 
response in retrospective validation (206, 207). Machine learning 
models incorporating sarcopenia, leptin, and IFN-γ signature are 
in development for hematologic ICI combinations (208). 

8.5 Proposed algorithm for clinical 
translation 

1. Baseline assessment (day 14 to day 0): blood panel + CT 
body composition. 

2. Risk stratification: low-risk (PNI > 45, vit D > 30, no 
sarcopenia) → proceed to ICI; high-risk → intervene 4– 
8 weeks (vitamin D repletion, metformin if HOMA-IR > 2.5, 
high-protein ONS + exercise, consider short-course nutrition 
if CONUT ≥ 5. 

3. Re-assess panel pre-cycle 1; initiate ICI ± continued support. 
4. Monitor response and irAEs; escalate nutrition if 

progression/cachexia (209). 

This pragmatic framework, adaptable to resource settings, 
warrants prospective validation in phase III adjuvant/neo-adjuvant 
ICI trials in lymphoma and myeloma. Figure 6 outlines the 
proposed clinical workflow for endocrine–nutritional optimization 
before initiating PD-1/PD-L1 therapy. To operationalize the 
proposed assessment model, we provide a structured framework 
summarizing endocrine and nutritional biomarkers that can 
be incorporated into standard pre-treatment evaluation for 
ICI candidates (Table 6). These markers are chosen based 
on availability, clinical relevance, and potential to inform risk 
stratification and supportive interventions. 

Table 6 presents a structured pre-treatment endocrine 
and nutritional assessment framework designed to optimize 
patient selection and risk stratification prior to initiation of 
ICI therapy. This framework integrates routinely accessible 
hormonal, metabolic, and nutritional parameters to capture 
baseline host immunometabolic competence, which is increasingly 
recognized as a determinant of ICI responsiveness and toxicity. 
Pre-existing endocrine abnormalities such as subclinical thyroid 
dysfunction, adrenal axis dysregulation, glucose intolerance, 
and sex hormone imbalance—may predispose patients to 
altered immune activation thresholds, exaggerated immune-
related adverse events, or premature immune exhaustion, 
thereby influencing both therapeutic eÿcacy and tolerability. 
Concurrently, nutritional and body composition metrics including 
BMI, sarcopenia indices, serum albumin, prealbumin, PNI, and 
inflammation-linked nutritional scores serve as surrogates for 
systemic energy reserve, muscle-derived immunomodulatory 
signaling, and chronic inflammatory burden. By synthesizing these 
dimensions, the framework outlined in Table 6 moves beyond 
single biomarker evaluation toward a holistic, host-centered 
stratification model, enabling identification of patients who 
may benefit from prehabilitation strategies such as nutritional 
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FIGURE 6 

Clinical workflow for endocrine–nutritional optimization before PD-1/PD-L1 immunotherapy. This algorithm summarizes a structured 
pre-treatment approach designed to enhance immune checkpoint inhibitor efficacy. Step 1 (Baseline Testing Panel): Comprehensive assessment 
including serum vitamin D, albumin, ferritin, zinc/selenium, morning cortisol, thyroid function (TSH, free T4), fasting insulin–glucose, and 
imaging-derived muscle mass evaluation. Step 2 (Risk Stratification): Patients are categorized as Fit (e.g., PNI > 45, vitamin D > 30 ng/mL, normal 
albumin) or Unfit based on markers of malnutrition, inflammation, micronutrient deficiencies, and sarcopenia. Step 3 (Pre-habilitation Interventions): 
Targeted corrective strategies—vitamin D repletion, metformin use for metabolic optimization, high-protein dietary support, structured exercise, and 
cautious management of iron overload or deficiency. Step 4 (Therapy Initiation): Commencement of PD-1/PD-L1 blockade with antibody–receptor 
interaction illustrated. Step 5 (Monitoring): Ongoing evaluation through repeat laboratory testing, toxicity screening, and immunologic response 
tracking to ensure optimal therapeutic benefit. 

TABLE 6 Pre-treatment endocrine and nutritional assessment framework for ICI candidates. 

Assessment category Specific 
markers/indices 

Method/measurement Clinical interpretation and actions 

Baseline nutritional status Serum albumin Routine CMP ↓ Albumin → risk of poor outcomes; consider 

dietetics referral and nutritional support 

Prealbumin Routine lab panel Rapid indicator of protein status; monitor trends 

BMI/weight change Clinical measurement Significant weight loss → malnutrition; tailored 

intervention 

Inflammation/immune Status Neutrophil–lymphocyte ratio 

(NLR) 
CBC dierential ↑ NLR → systemic inflammation; enhanced 

surveillance 

Prognostic Nutritional Index 

(PNI) 
Albumin + lymphocyte count Low PNI → higher risk; supportive care 

recommended 

C-reactive protein (CRP) Serum assay ↑ CRP → inflammation; monitor and interpret in 

context 

Endocrine parameters Fasting glucose/insulin Serum assays Hyperglycemia/insulin resistance → metabolic risk; 
optimize glycemic control 

Thyroid function (TSH, free T4) Serum assays Hypo/hyperthyroidism → endocrine correction 

before ICI 

Cortisol (morning) Serum assay Abnormal → evaluate HPA axis; adjust therapy 

accordingly 

Vitamin D Serum 25-OH vit D Deficiency → replete; supportive immune function 

Composite scoring Glasgow Prognostic Score (GPS) CRP + albumin Risk stratification and prognostic grouping 

CONUT score Albumin + lymphocytes + cholesterol Low score → favorable prognosis; guide nutrition 

focus 

Dynamic monitoring Repeat key markers at 6–8 weeks CBC, CMP, CRP, albumin Changes may signal response or toxicity; adapt care 

plan 
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supplementation, endocrine correction, or metabolic optimization 
before ICI exposure. Importantly, this approach supports a shift 
from reactive management of immune-related complications 
to proactive personalization of immunotherapy, positioning 
endocrine–nutritional profiling as a pragmatic and scalable tool for 
improving clinical outcomes. 

8.6 Clinical feasibility and 
implementation considerations 

Although endocrine–nutritional signatures show strong 
biological plausibility and prognostic relevance, their clinical utility 
depends on feasibility, standardization, and cost-eectiveness. 
Importantly, many of the proposed biomarkers are already 
routinely measured in standard oncology practice, facilitating 
near-term translation without the need for specialized assays 
(210, 211). 

8.6.1 Biomarker availability and cost 
Core nutritional and inflammatory markers such as serum 

albumin, CRP, complete blood count, ferritin, and glucose are 
inexpensive, widely available, and standardized across laboratories. 
Composite indices derived from these parameters, including 
the PNI, GPS, and CONUT score, require no additional 
testing and can be calculated retrospectively or prospectively 
at minimal cost. Endocrine parameters such as TSH, free T4, 
fasting glucose, and insulin are similarly routine and inexpensive, 
while vitamin D testing is increasingly standardized and cost-
eective in many healthcare systems (212). In contrast, certain 
biomarkers such as leptin/adiponectin ratios, selenium levels, 
or morning cortisol may be less routinely available and incur 
higher costs or longer turnaround times. These markers may 
therefore be best reserved for research settings or high-risk 
patients, rather than universal screening, until stronger prospective 
validation is achieved. 

8.6.2 Inter-laboratory variability and 
standardization 

Variability in assay platforms and reference ranges 
represents a key challenge, particularly for biomarkers such 
as vitamin D, ferritin, cortisol, and adipokines. Circadian 
variation (e.g., cortisol), acute inflammatory states, and 
concurrent medications (e.g., corticosteroids, thyroid hormone 
replacement) can further confound interpretation. To mitigate 
these issues, standardized timing (e.g., morning sampling for 
cortisol), repeated baseline measurements, and use of clinically 
established cut-os rather than institution-specific percentiles 
are recommended. 

Importantly, composite indices that integrate multiple 
parameters (e.g., PNI or GPS) are inherently more robust to single-
measurement variability and may oer superior reproducibility 
across institutions compared with single biomarkers. 

8.6.3 Clinical workflow integration 
From a practical standpoint, endocrine–nutritional assessment 

can be incorporated into routine pre-immunotherapy evaluation 
without delaying treatment initiation. Most markers can be 

obtained within standard pre-treatment laboratory panels, allowing 
risk stratification within days. Patients identified as “high-risk” 
based on these profiles may benefit from early supportive 
interventions (nutritional optimization, vitamin D repletion, 
metabolic control) without altering oncologic treatment selection 
(213–215). 

8.6.4 Regulatory and translational considerations 
Unlike tumor genomic biomarkers, endocrine–nutritional 

markers do not require regulatory approval as companion 
diagnostics, lowering barriers to implementation. However, 
prospective validation studies and harmonized reporting 
standards are needed before these signatures can be adopted 
as decision-modifying tools. Future clinical trials incorporating 
immune checkpoint inhibitors in hematologic malignancies 
should prospectively collect these parameters to define 
optimal cut-os, timing, and intervention strategies. Overall, 
the low cost, wide availability, and biological relevance of 
endocrine–nutritional biomarkers make them attractive 
candidates for real-world clinical application, particularly as 
adjunctive tools to complement tumor-intrinsic predictors rather 
than replace them. 

8.7 Prospective cohort design, 
integrative biomarker panels, and 
AI-based prediction models 

Advancing endocrine–nutritional signatures for predicting 
PD-1/PD-L1 blockade eÿcacy in hematologic malignancies 
requires robust prospective cohort designs to overcome 
retrospective limitations, such as selection bias and incomplete 
data. Prospective studies enable standardized baseline 
assessments of hormones (e.g., cortisol, thyroid), nutrients 
(e.g., vitamin D, zinc), and composites like the PNI, alongside 
longitudinal monitoring of ORR, PFS, and irAEs. The 
PROVIDENCE study (2023), a prospective observational 
trial in advanced cancer patients on ICIs, demonstrated that 
systematic vitamin D supplementation improved ORR from 
36 to 56% and median PFS from 5.8 to 11.3 months, while 
reducing thyroid irAEs. In hematologic contexts, adapting 
this approach could involve cohorts of relapsed/refractory 
cHL or MM patients, stratifying by marrow infiltration 
and prior therapies, which often induce cachexia and 
dysregulate the immuno-endocrine axis. Challenges include 
heterogeneity in disease subtypes and high attrition, but 
powering for endpoints like 12-month PFS could yield level I 
evidence, informing guidelines for pre-treatment interventions 
(125, 216–218). 

Integrative biomarker panels enhance predictive accuracy 
by combining endocrine (e.g., insulin/IGF-1), nutritional (e.g., 
albumin, ferritin), inflammatory (e.g., CRP/neutrophil-lymphocyte 
ratio), and body composition metrics (e.g., sarcopenia via CT). 
Panels like the Systemic Immune-Inflammation Index predict 
poorer OS/PFS in ICI-treated cancers, reflecting T-cell exhaustion 
and myeloid suppression. In hematologic malignancies, the 
Systemic Immunologic Readiness Score integrating GPS, PNI, 
and microbiome data stratifies "fit" vs. "unfit" patients, with high 
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scores correlating to superior ORR in cHL. Preclinical models 
validate synergy: hypercortisolism plus hypoalbuminemia triples 
resistance via mTOR/IFN-γ inhibition. Hematology-tailored 
panels could incorporate hepcidin for iron dysregulation in 
MM, enabling targeted therapies like metformin or nutritional 
support to boost eÿcacy (219–223). AI-based prediction 
models revolutionize personalization by integrating multi-
omics (genomics, metabolomics) with endocrine–nutritional data. 
Machine learning algorithms, such as random forests, predict ICI 
response with > 85% accuracy using routine blood parameters in 
pan-cancer cohorts. In 2025 updates, AI models for PD-1/PD-L1 
eÿcacy in hematologic malignancies incorporate PD-L1 expression 
estimation from H&E slides, forecasting PFS in NSCLC analogs 
adaptable to lymphomas. Federated learning across registries (e.g., 
LYSA) handles real-time inputs like cortisol rhythms, identifying 
non-responders for adjunctives. Ethical issues like bias require 
validation in trials (e.g., NCT05352750), but these models could 
optimize r/r settings, addressing gaps in tumor-centric biomarkers 
(224–228). 

8.8 Future directions and global 
applicability 

Future studies should address ethnic and geographic variability 
in pre-treatment endocrine–nutritional signatures to enhance 
the global applicability of these predictive biomarkers for 
PD-1/PD-L1 blockade. Baseline levels of key components 
such as vitamin D, iron stores, thyroid hormones, cortisol, 
and nutritional indices vary substantially across populations 
due to dierences in latitude, sunlight exposure, dietary 
patterns, genetic polymorphisms, socioeconomic factors, 
and healthcare access. For example, vitamin D deficiency is 
highly prevalent in populations residing at higher latitudes 
and among individuals with increased skin pigmentation, 
cultural sun-avoidance practices, or limited dietary fortification, 
potentially influencing immune competence and immunotherapy 
responsiveness. Similarly, regional dierences in iron deficiency 
or overload, micronutrient availability (e.g., zinc and selenium), 
and sarcopenia prevalence may dierentially shape systemic 
immunologic readiness across ethnic groups. Prospective, 
multi-ethnic cohorts are therefore needed to define population-
specific reference ranges and thresholds for these signatures, 
as well as to determine whether their predictive value is 
consistent across diverse hematologic malignancies and 
treatment settings. Incorporating geographic, lifestyle, and 
genetic modifiers into predictive models may enable more accurate 
patient stratification and support the development of tailored 
nutritional or endocrine interventions to optimize immunotherapy 
outcomes worldwide. 

9 Challenges 

Translating endocrine–nutritional signatures into reliable 
predictors of PD-1/PD-L1 blockade outcomes faces substantial 
hurdles that currently limit clinical adoption (229). Disease 
heterogeneity poses a primary challenge: hematologic malignancies 

exhibit profound inter- and intra-patient variability in metabolic 
phenotypes, e.g., Reed-Sternberg cells in classical Hodgkin 
lymphoma drive unique leptin-rich microenvironments, 
while MM features IGF-1-dominated marrow niches, making 
universal cut-os elusive and requiring disease-specific 
validation (190). Confounders further complicate interpretation: 
concomitant corticosteroids (used in 20–40% of patients for 
symptom palliation or irAE management) potently suppress 
T-cell function and confound inflammatory/nutritional 
indices, with baseline use independently worsening PFS/OS 
(HR 1.5–2.5) yet often unavoidable in lymphoproliferative 
disorders (106, 108). Cancer cachexia, aecting 50–80% of 
advanced patients, drives hypoalbuminemia and sarcopenia 
through IL-6-mediated hypercatabolism rather than pure 
malnutrition, masking true immunologic readiness (168). 
Comorbidities (diabetes, obesity, autoimmune disease) introduce 
bidirectional bias, as insulin resistance promotes exhaustion 
while obesity paradoxically protects via leptin-sensitive subsets 
(81, 230). 

9.1 Knowledge gaps 

Endocrine markers display marked circadian variability, 
with cortisol peaks at 06:00–08:00 and nadirs at midnight, with 
flattened rhythms prognostic of poorer survival in multiple 
cancers necessitating standardized morning sampling that 
is rarely enforced in retrospective cohorts (231, 232). The 
evidence base remains predominantly observational, with 
few prospective interventional trials: vitamin D repletion 
studies show promise but are limited by small size and lack 
of randomization, while nutritional prehabilitation lacks phase 
III data in ICI settings (233, 234). Finally, the absence of 
consensus cut-os hampers comparability. Albumin thresholds 
range 30–35 g/L, PNI 40–50, vitamin D 20–30 ng/mL across 
studies reflecting population-specific inflammation burdens and 
assay dierences (235). These gaps underscore the need for 
large, prospective, biomarker-driven trials incorporating serial 
sampling, confounder adjustment, and harmonized thresholds 
to establish causative links and enable routine clinical use 
(236, 237). 

10 Limitations 

While this review synthesizes current evidence on endocrine– 
nutritional signatures and their relevance in hematologic 
malignancies, several limitations should be acknowledged. 

10.1 Heterogeneity of evidence 

The mechanistic frameworks we describe draw from studies 
with diverse designs, patient populations, and endpoints. 
Biomarker associations identified in retrospective cohorts may 
not fully capture causal relationships and may reflect underlying 
confounders. Moreover, dierent studies employ varying assay 
platforms, cut-os, and composite index definitions, which 
complicates direct comparisons and quantitative synthesis. 
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10.2 Small and selective cohorts 

Several mechanistic insights and prognostic associations 
derive from small or single-institution cohorts. These studies 
may be underpowered to detect modest eects, and findings 
may not generalize across broader demographic or disease 
subgroups. The limited sample sizes also restrict our ability to 
evaluate interactions among biomarkers, treatment regimens, and 
clinical outcomes. 

10.3 Speculative biological pathways 

Although many endocrine–nutritional pathways have 
plausible roles in modulating immune function and treatment 
response, some proposed mechanisms remain speculative 
due to incomplete experimental validation. For example, 
the interplay between adipokines, systemic metabolism, 
and antitumor immunity has strong preclinical support but 
requires further confirmation in longitudinal clinical studies with 
standardized sampling. 

10.4 Measurement variability and timing 

As discussed above, biomarker measurements may vary with 
circadian rhythms, acute illness, and assay methodology. Most 
published studies do not report standardized timing or repeated 
measures, which could influence observed associations. This 
limitation is particularly relevant for hormones with diurnal 
variation or for markers influenced by concurrent medications 
(e.g., corticosteroids). 

The manuscript’s reliance on retrospective cohorts introduces 
significant biases, including selection bias from non-randomized 
patient inclusion, confounding by unmeasured variables (e.g., 
comorbidities or prior therapies), and incomplete data on 
endocrine-nutritional profiles, potentially overestimating 
associations with PD-1/PD-L1 outcomes. For instance, real-
world studies in hematologic malignancies often lack standardized 
biomarker assessments, leading to inconsistent findings on 
predictors like hypoalbuminemia or vitamin D deficiency. 
Small sample sizes further compound issues, limiting statistical 
power and increasing the risk of spurious results or type 
II errors, as seen in early-phase ICI trials where cohorts 
under 100 patients fail to detect subgroup eects in diverse 
hematologic subtypes. Overrepresentation of Asian populations 
in cited studies (e.g., higher EGFR mutation rates influencing 
immunotherapy responses) may reduce generalizability to 
Western cohorts, where genetic and environmental factors 
dier, potentially skewing eÿcacy estimates for endocrine 
signatures (238–242). Future research should prioritize 
prospective, multicenter trials with larger, diverse cohorts 
to mitigate biases and validate biomarkers like PNI or GPS. 
Strategies include integrating multi-omics (e.g., metabolomics 
with nutritional data), machine learning for predictive models, 
and global collaborations to ensure ethnic representation, 
enhancing translational applicability in hematologic settings 
(226, 243–245). 

10.5 Future directions to mitigate 
limitations 

Prospective, multicenter studies with standardized protocols 
are needed to validate promising signatures and to clarify causal 
mechanisms. Harmonized reporting standards and collaborative 
consortia will facilitate meta-analyses that overcome individual 
cohort limitations. Integration of mechanistic studies with clinical 
outcomes will strengthen the biological rationale and translational 
potential of endocrine–nutritional markers. By acknowledging 
these constraints, our review aims to present a balanced 
interpretation of current evidence while highlighting opportunities 
for future research. 

11 Conclusion 

In summary, pre-treatment endocrine–nutritional signatures 
emerge as pivotal, modifiable predictors of PD-1/PD-L1 blockade 
eÿcacy in hematologic malignancies, extending beyond tumor-
centric biomarkers. Dysregulations in cortisol, thyroid hormones, 
sex steroids, insulin/IGF-1, adipokines, vitamin D, zinc, and 
protein status converge to impair T-cell reinvigoration, antigen 
presentation, and marrow microenvironment permissiveness, 
driving heterogeneous responses. Integrated multi-marker 
panels, such as GPS or PNI combined with vitamin D and 
sarcopenia indices, provide robust prognostic stratification, 
with potential to guide personalized interventions like hormone 
modulation, micronutrient repletion, metformin, or dietary 
optimization. While evidence is strongest in cHL and PMBCL, 
applicability to refractory MM and leukemias warrants prospective 
trials to validate signatures, standardize cut-os, and test 
adjunctive strategies. By addressing these host factors, we 
can convert immunologically "unfit" patients to responders, 
enhancing durable remissions and reducing resistance in this 
challenging landscape. Future research should incorporate 
machine learning for dynamic profiling and microbiome 
integration to fully harness endocrine–nutritional crosstalk 
for immunotherapy success. 
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