

OPEN ACCESS

EDITED AND REVIEWED BY Elena Ibañez, Spanish National Research Council (CSIC), Spain

*CORRESPONDENCE Ignacio Cabezudo ⊠ icabezudo@fbioyf.unr.edu.ar

RECEIVED 08 October 2025 ACCEPTED 13 October 2025 PUBLISHED 18 November 2025

CITATION

Cabezudo I, Galante M, Brassesco ME, Beres C and Cavalcante Fai AE (2025) Editorial: Natural bioactive compounds in food preservation and safety. *Front. Nutr.* 12:1720905. doi: 10.3389/fnut.2025.1720905

COPYRIGHT

© 2025 Cabezudo, Galante, Brassesco, Beres and Cavalcante Fai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Natural bioactive compounds in food preservation and safety

Ignacio Cabezudo^{1*}, Micaela Galante², Maria Emilia Brassesco³, Carolina Beres⁴ and Ana Elizabeth Cavalcante Fai^{4,5}

¹Pharmacognosy, Faculty of Biochemical and Pharmaceutical Sciences (FBioyF), National University of Rosario (UNR) and National Council for Scientific and Technical Research (CONICET), Rosario, Argentina, ²Food Research, Development, and Evaluation Laboratory (LIDEA), Faculty of Biochemical and Pharmaceutical Sciences (FBioyF), National University of Rosario (UNR) and National Council for Scientific and Technical Research (CONICET), Rosario, Argentina, ³Portuguese Catholic University, CBQF - Center for Biotechnology and Fine Chemistry - Associated Laboratory, School of Biotechnology, Porto, Portugal, ⁴Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil, ⁵Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil

KEYWORDS

natural bioactive compounds, food preservation, antimicrobial agents, waste valorization, edible coatings

Editorial on the Research Topic

Natural bioactive compounds in food preservation and safety

Introduction

The global food industry faces unprecedented challenges in ensuring food safety while meeting consumer demands for natural, sustainable preservation solutions. With approximately 600 million cases of foodborne illnesses annually and growing concerns about synthetic additives, the search for natural bioactive compounds has become a priority. This Research Topic brings together innovative approaches that harness nature's arsenal of antimicrobial and antioxidant compounds, demonstrating how agricultural by-products, traditional plant extracts, and microbial metabolites can revolutionize food preservation while addressing sustainability goals.

Circular economy meets food preservation

A remarkable theme emerging from this Research Topic is the valorization of agricultural waste streams. The article "Assessment of chitosan based edible coatings containing bioactive compounds derived from agricultural residue for improving postharvest quality characteristics of tomato (Solanum lycopersicum L.)" exemplifies this approach by transforming rice and wheat straw—typically considered agricultural residue—into potent preservative extracts (Yadav et al.). When incorporated into chitosan-based edible coatings, these extracts significantly extended tomato shelf life, with wheat straw extracts reducing disease incidence from 100% in controls to just 2% after 30 days. Similarly, "Grape pomace as a natural source of antimicrobial agents for food preservation," provides a comprehensive

Cabezudo et al. 10.3389/fnut.2025.1720905

analysis of grape pomace utilization, revealing how this winemaking by-product, rich in phenolic compounds, offers multifaceted applications from direct antimicrobial additives to active packaging materials (Galante et al.). These studies demonstrate that waste valorization not only addresses environmental concerns but also provides practical and economically viable preservation solutions.

Synergistic formulations and novel delivery systems

sThe collection highlights the power of combining bioactive compounds for enhanced efficacy: "Effect of chitosan edible coating containing anthocyanins and tea polyphenols on cold storage of chilled pork" evidences this synergy by combining blackberry anthocyanins with tea polyphenols in chitosan coatings for chilled pork preservation (Chen et al.). The combined treatment achieved superior results compared to individual compounds, reducing total viable counts by 9.3% and lipid oxidation markers by 45.5%. Meanwhile, "Enhanced antibacterial potential of exopolysaccharide-stabilized spice oil emulsions against foodborne pathogens" introduces an innovative approach using exopolysaccharide-stabilized emulsions of African spice oils, demonstrating how traditional ingredients can be reformulated and modernized through advanced delivery systems (Kumari Singh et al.). The sonication-enhanced emulsions showed remarkable antibacterial activity against major foodborne pathogens including Listeria monocytogenes and Salmonella enterica.

Beyond traditional Preservation: Quality enhancement

A particularly novel contribution comes from " γ -Aminobutyric acid treatment maintains the quality and improve antioxidative activities of fresh-cut Euryale ferox stems during postharvest storage," which explores γ -aminobutyric acid treatment for fresh-cut vegetables (Wang et al.). Unlike conventional preservatives that merely inhibit deterioration, it actively enhanced quality parameters while maintaining antioxidant enzyme activities. This multifunctional approach, simultaneously improving sensory attributes, nutritional value, and shelf life, represents a paradigm shift in preservation strategies. The treatment extended the commercial viability of fresh-cut Euryale ferox stems from 16 to 20 days, demonstrating the compound's potential as a quality-enhancing preservative.

Future perspectives

This Research Topic highlights several promising directions for natural food preservation. The successful integration of waste-derived compounds into commercial preservation systems could transform both the food and agricultural sectors in line with circular economy principles. However, challenges remain in standardizing extraction protocols, understanding

structure-activity relationships, and scaling production. The demonstrated synergies between different bioactive compounds suggest that future research should focus on optimized combinations rather than single-compound solutions.

The convergence of sustainability imperatives, consumer preferences, and technological advances positions natural bioactive compounds at the forefront of food preservation innovation. This Research Topic provides compelling evidence that nature-based solutions can meet or exceed the performance of synthetic preservatives while offering additional benefits including waste reduction, enhanced nutritional value, and improved sustainability profiles. As we advance toward more resilient food systems, the integration of these bioactive compounds into mainstream preservation practices appears not just promising but essential.

Author contributions

IC: Writing – original draft, Writing – review & editing, Validation, Visualization. MG: Writing – review & editing, Writing – original draft, Validation, Visualization. MB: Writing – review & editing, Writing – original draft, Supervision, Validation, Visualization. CB: Writing – original draft, Writing – review & editing, Validation, Visualization. AC: Writing – review & editing, Writing – original draft, Validation, Visualization.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. CM received financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil (Finance Code 001). AC received funding from the Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Brazil (code E-26/211.985/2021; code E-26/201.428/2022; code SEI-260003/019614/2022). IC was a CONICET researcher and received funding from, CONICET (PIP 11220200102423CO), ACRE PPCT 2023 (80020220600144UR). MG was a CONICET researcher and received funding from PICT-2021-GRF-TII-00239, CONICET (PIP 11220210100490CO), ACRE PPCT 2022 (80020220600051UR).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us. Cabezudo et al. 10.3389/fnut.2025.1720905

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.