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Tributyrin (CoreBiome®) enhances
butyrate levels and modulates the
gut microbiota, barrier function,
and immune response in vitro

Cindy Duysburgh?, Lynn Verstrepen?, Lieven Van Meulebroek®
and Massimo Marzorati'?*

!ProDigest, Zwijnaarde, Belgium, 2CMET, University of Ghent, Ghent, Belgium

Background/objectives: Oral butyrate is unstable during upper gastrointestinal
tract (GIT) transitand very little reaches the colon. Tributyrin, a butyrate precursor,
resists gastric acid and is converted to butyrate by pancreatic lipases. This study
aimed to quantify tributyrin stability during upper GIT passage and to uncover
the effects of tributyrin supplementation on the human gut microbiome and
cellular responses.

Methods: In vitro upper GIT simulations were used to evaluate the stability
of a capsule and softgel formulation of tributyrin (CoreBiome®). The effects
of tributyrin supplementation on the human gut microbiome and cellular
responses were evaluated using the Simulator of the Human Intestinal Microbial
Environment (SHIME®) model and Caco-2/THP1 co-cultures.

Results: The upper GIT simulations showed that 40.9 and 48.7% of the tributyrin
dose administered via the capsule or softgel, respectively, was hydrolyzed to
butyrate in the small intestine; 59.1 and 51.3% remained stable and was available
to enter the colon. Using the SHIME® model, it was shown that 3 weeks of
daily tributyrin supplementation increased butyrate levels and enhanced the
abundance of several bacterial species, including Bifidobacterium spp. and
Akkermansia mucinophila. Metabolic impacts on the gut microbiome were also
observed. Assessment of cellular responses revealed that tributyrin fermentation
had a protective effect on the intestinal barrier and exerted immunomodulatory
properties.

Conclusion: Enhanced butyrate concentrations and beneficial impacts on
the gut microbial community composition were observed in an in vitro
simulation of the human intestinal environment, suggesting that tributyrin could
be considered as a solid alternative to butyrate supplementation.

KEYWORDS

butyrate, gut barrier integrity, immunomodulation, gut microbiome, postbiotic,
SHIME, tributyrin

1 Introduction

Postbiotics have been defined by the International Scientific Association of Probiotics and
Prebiotics as a “preparation of inanimate microorganisms and / or their components that
confers a health benefit to the host” (1). Postbiotics have shown benefits similar to those of
probiotics, but in the absence of live microorganisms. Some characteristics ascribed to
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postbiotics include protective effects against pathogens, strengthening
the intestinal barrier, and immunomodulation (2).

Butyrate is an important postbiotic metabolite produced by the
bacteria in the colon. It is a major source of energy for colonocytes (3,
4) and is associated with a healthy intestinal barrier as well as
immunomodulatory and anti-inflammatory effects. It supports a
healthy gut microbiome (5), making it important for human health.
Considering its many beneficial effects, butyrate supplementation has
been evaluated in clinical studies in patients with a variety of conditions,
including inflammatory bowel disease, pediatric obesity, lead-induced
neuroinflammation, cancer, and chronic obstructive pulmonary disease
(6-12). When supplemented orally, the majority of butyrate is absorbed
in the small intestine, and relatively little butyrate reaches the colon (5,
13, 14). Tributyrin is a butyrate precursor that resists gastric acids to
allow more butyrate to reach the colon. Once in the intestine, pancreatic
lipases break the bond between the three molecules of butyrate and one
molecule of glycerol, allowing a more effective delivery of butyrate
within the gastrointestinal environment (15, 16).

Studies evaluating tributyrin as a feed supplement have found
positive impacts on the intestinal health of multiple species, including
cows, chickens, and pigs (17-21). A study with obese mice who were fed
a high fat diet demonstrated that tributyrin supplementation resulted in
less body weight gain, improved insulin responsiveness and glucose
metabolism, and reduced adipose tissue inflammation compared with
mice who received a placebo (22). Tributyrin supplementation in
antibiotic-treated mice provided protection against antibiotic-induced
reductions in short-chain fatty acid (SCFA) levels and resulted in
reduced intestinal tissue expression of inflammatory mediators and
increased expression of tight junction proteins compared with mice
who received a placebo, suggesting that tributyrin has a protective effect
on the intestinal barrier (23). Tributyrin supplementation has also been
reported to increase non-rapid-eye movement sleep in mice (24). A
pilot study in healthy humans reported that oral supplementation with
a tributyrin complex for 21 days resulted in reduced levels of high-
sensitivity C-reactive protein, suggesting a possible anti-inflammatory
effect (25). Considering the evidence of beneficial effects following
tributyrate supplementation along with the improved stability in the
digestive tract compared to butyrate, tributyrin may be a more effective
alternative to butyrate supplementation (26-28).

In vitro models that accurately simulate the physiological conditions
of the human gastrointestinal tract (GIT) allow researchers to collect
samples from different regions without the need for invasive procedures.
This facilitates more detailed and mechanistic studies of the GIT and the
effect of test products on different aspects of gastrointestinal function.
Such detailed studies would not be possible in humans due to the need
for invasive sample collection procedures. While animal studies may act

Abbreviations: ANOVA, analysis of variance; BCFA, branched-chain fatty acids;
DAPC, Discriminant Analysis of Principal Components; FC, fold change; GIT,
gastrointestinal tract; IL, interleukin; LA-REIMS, Laser-Assisted Rapid Evaporative
lonization Mass Spectrometry; LOQ, limit of quantification; LPS, lipopolysaccharide;
OPLS-DA, Orthogonal Partial Least Squares Discriminant Analysis; PCA-X,
Unsupervised Principal Component Analysis; SCFA, Short-chain fatty acid; SHIME®,
Simulator of the Human Intestinal Microbial Environment; TEER, transepithelial

electrical resistance; TNF, tumor necrosis factor; TR 1/2/3, treatment week 1/2/3.
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as a surrogate, they are imperfect models in that the colonic background
and physiology of the GIT vary considerably between humans and
non-human animals. Studies using in vitro models of the human GIT
can be considered complementary to clinical trials.

During the current study, we assessed the stability of two
formulations of tributyrin, a capsule formulation and a softgel, during
passage through the upper GIT in vitro. Furthermore, we evaluated
the effect of tributyrin supplementation on the composition and
metabolic activity of the gut microbiome and cellular responses using
the validated Simulator of the Human Intestinal Microbial Ecosystem
(SHIME®) model combined with in vitro co-culture cell assays.

2 Materials and methods

2.1 Study design

In this study, several in vitro experiments were conducted to
assess different outcomes related to tributryin. First, in vitro upper
GIT simulations using the SHIME® model were employed to evaluate
the release of tributyrin and the conversion to butyrate. The model
evaluated its degradation products during passage through the
human upper GIT under fasted conditions. Second, the effects of
tributyrin supplementation on the community composition and
activity of the gut microbiota from three healthy human donors were
assessed using the Triple-L-SHIME® model. Finally, the effects of
tributyrin fermentation on intestinal barrier integrity and immune
markers were assessed using an in vitro Caco-2/THP1-Blue™
co-culture model.

2.2 Fecal samples

Fecal samples were collected from three healthy adult donors
(donor A: M, 31y; donor B: M, 26y; donor C: M, 33y). The donors had
no history of chronic disease, had not taken any antibiotics in the
4 months prior to sample donation, and had a western diet pattern. In
an anaerobic environment, phosphate buffered saline was added to the
freshly acquired samples which were homogenized to create a slurry.
The samples were briefly centrifuged to remove large particles and an
equal volume of optimized in-house cryoprotectant [modified from
Hoefman et al. (29)] was added. Finally, the samples were flash frozen
and placed at —80 °C prior to the experiment, the samples were
defrosted and added to the reactors. The collection and use of the fecal
samples was performed in accordance with the protocol approved by
the Ethics Committee of the University Hospital Ghent (reference
number ONZ-2022-0267; approved on 29 July 2022).

2.3 Tributyrin test products

Two formulations of tributyrin (CoreBiome®) were evaluated in
the upper GIT simulation. The first was a capsule formulation
containing tributyrin powder, resulting in a total concentration of
300 mg tributyrin per capsule. The second was a softgel formulation
containing liquid tributyrin, resulting in a total concentration of
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450 mg tributyrin per softgel. For the Triple-L-SHIME® study, pure
liquid tributyrin was dosed directly into the proximal colon in the
doses shown to reach the colon, circumventing the need for tributyrin
degradation during the small intestinal transit. The tributyrin capsules,
softgels, and pure liquid were provided by Compound Solutions Inc.
(Carlsbad, CA, USA).

2.4 In vitro simulations

2.4.1 Upper GIT simulation

The upper GIT simulation comprised gastric and small intestinal
incubation in a fasted state. It was based on the consensus protocol
developed within COST Action InfoGest (30) with modifications that
included the use of a dynamic pH profile that more closely mimics
in vivo conditions. The gastric and small intestinal incubations were
conducted subsequently in the same reactor. A capsule sinker was
used to insert the capsules/softgels into the reactor (2 capsules per
reactor [total of 600 mg tributyrin powder] or 1 softgel per reactor
[450 mg liquid tributyrin]) at the start of the gastric incubation. The
samples were then incubated for 45 min (37 °C with stirring) in
nutrient-depleted gastric fluid (3 g/L mucin, 7 mM KCI, 50 mM NaCl,
0.17mM phosphatidylcholine, 4,000 U/mL pepsin [Chem Lab,
Zedelgem, Belgium]) at pH 2.0. To transition to the small intestinal
phase, the reactor pH was increased from 2.0 to 5.5 over 5 min using
0.1 M sodium bicarbonate. During the 3 h small intestinal incubation,
the pH was further increased to 7.0 (gradual increase from 5.5 to 6.5
during the first hour, gradual increase to 7.0 during the second hour,
and remained constant at 7.0 during the final hour). At the same time,
3.33 mM bovine bile extract, 15.4 TAME U/mL trypsin (Carl Roth,
Karlsruhe, Germany), and 3.8 BTEE U/mL chymotrypsin (Carl Roth)
were added. Samples were collected at 0, 15, 30, and 45 min during the
gastric phase and at 30, 60, 90, 120, 150, and 180 min during the small
intestinal phase, then immediately frozen for further analysis. All
experiments were performed in biological triplicate.

2.4.2 Triple-L-SHIME®

A Triple-L-SHIME® setup was used for this study (Supplementary
Figure S1). This setup is based on the original SHIME® model described
by Molly et al. (31) with some modifications to allow for the simulation
of three investigational arms in parallel. In this case, the effects of test
product supplementation on the fecal microbiota collected from three
healthy donors were assessed. To allow for the additional test conditions,
the setup included two colon regions, the proximal colon and the distal
colon, as compared to the three regions in the standard SHIME® setup.
The proximal colon reactors had a pH of 5.7-5.9, a retention time of
20 h, and a volume of 500 mL and the distal colon reactors had a pH of
6.6-6.9, a retention time of 32 h, and a volume of 800 mL. Throughout
the experiment, the reactors were fed three times daily with standard
L-SHIME® nutritional medium (15.6 g/L. PDNMO001B, ProDigest,
Belgium). Following inoculation of the reactors with the fecal samples,
the microbial community was allowed to differentiate and adjust to the
conditions of the local environment for 2 weeks (stabilization period),
thereby reaching a stable microbial community (quality criterium:
>80%, with 96.3% stability reached in the current study). During the
control period (6 consecutive weekdays, spread over 2 weeks) samples
from the reactors were analyzed to determine the baseline microbial
community composition and activity in the different colonic regions.

Frontiers in Nutrition

10.3389/fnut.2025.1712993

The control period was followed by a three-week treatment period
where pure liquid tributyrin was added directly into the proximal colon
at a dose representative of the in vivo target dose of 300 mg/day. The
actual dosing was based on the finding from the upper GIT simulation
that 59.1% of the administered tributyrin reached the colon (i.e., 59.1%
of the target dose was supplied).

2.4.3 Caco-2/THP1-blue™ co-culture model

Co-culture experiments were performed using Caco-2 (HTB-37;
American Type Culture Collection) and phorbol-12-myristate-13-
acetate differentiated THP1-Blue™ cells (InvivoGen; San Diego, CA,
USA) as previously described (32, 33). Briefly, sterile filtered (0.22 pM)
colonic suspensions collected during the control and treatment week
3 (TR3) periods were added to the co-cultures and incubated for 24 h
(37 °C, 5% CO,, humidified atmosphere). The basolateral medium
was then discarded, and the cells were stimulated with 500 ng/mL
ultrapure lipopolysaccharide (LPS; Escherichia coli K12, InvivoGen)
for 6 h (37 °C, 5% CO,, humidified atmosphere). Samples from the
colonic incubations were used in the cell co-culture assay as
technical triplicates.

2.5 Study readouts

2.5.1 Tributyrin stability

Tributyrin stability was assessed using the samples collected
during the upper GIT simulation. Levels of tributyrin and butyrate
were assessed via liquid-liquid extraction using acetonitrile as solvent
(1:1) followed by capillary gas chromatography coupled with a flame
ionization detector according to the methods of De Boever et al. (34).
The limit of quantification (LOQ) for tributyrin and butyrate was
equal to 0.1 mM and 0.25 mM, respectively. Values below the LOQ
were replaced by zero.

2.5.2 Microbial activity

Samples for assessment of microbial activity were collected three
times per week from the control period onwards from both colonic
regions. Levels of SCFAs (acetate, propionate, butyrate) and branched-
chain fatty acids (BCFA) were assessed via liquid-liquid extraction
followed by capillary gas chromatography coupled with a flame
ionization detector according to the methods of De Boever et al. (34).
Lactate was quantified using the Enzytec™ kit (R-Biopharm,
Darmstadt, Germany), according to manufacturer’s instructions. An
AQ300 Discrete Analyzer (SEAL Analytical, WI, USA) was employed
to assess ammonium levels using the indophenol blue method (35).
Samples from the control and TR3 periods were compared for both
the proximal and distal colon.

2.5.3 Untargeted metabolic fingerprinting
Metabolomics of the gut ecosystem is concerned with the
comprehensive analysis of metabolites, providing a direct functional
read-out of the physiological status of the intestinal microbiome.
Untargeted metabolic fingerprinting is thereby used as in first-line
segregation of samples based on distinctive metabolic fingerprints, by
detecting m/z features and their relative abundances across samples.
Samples for untargeted metabolic fingerprinting were collected once per
week from the control period onwards from both colonic regions.
Untargeted metabolic fingerprints were obtained for each sample using
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the Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry
(LA-REIMS) platform (36, 37). Briefly, samples were thawed (4 °C) then
vortexed for 1 min (400 rpm, 20 °C) and 200 pL was transferred into
wells of a 96-well plate. The LA-REIMS platform comprised a MID
infrared laser system (OpoletteTM HE2940, OPOTEK, LLC, Carlsbad,
CA, USA) and a Xevo™ G2-XS Quadrupole Time-of-Flight mass
spectrometer (Waters Corporation, Wilmslow, UK) operated in negative
ionization mode with an #/z-scan range of 50-1,200 Da applied.

2.5.4 Metagenomic analysis

Samples for metagenomic sequencing were collected three times
per week during the control period and TR3 from both colonic
regions. DNA was extracted using the CTAB DNA extraction method
(38). Kneaddata v0.10.0 was employed for quality filtering, trimming,
and host decontamination (human genome [hg37] of raw reads with
the params:-SLIDINGWINDOW:5:22 MINLEN:100 AVGQUAL:22)
to determine the taxonomic classification of shallow shotgun
metagenomic samples. The obtained quality filtered reads were then
analyzed with Kraken2 v2.1.3 (confidence threshold, 0.1) and Bracken
v2.9 (read threshold, 50) using the Genome Taxonomy Database
(R214 along with Refseq genomes from fungi + protozoan + virus)
containing + 100,000 species for taxonomic classification. Flow
cytometry set to a high flow rate was used to quantify the total number
of bacterial cells in each sample (BD Accuri C6 Plus Flow Cytometer;
BD Biosciences, Franklin Lakes, NJ, USA). The SYTO channel was set
to a threshold level of 700 to separate bacterial cells from signal noise
and medium debris. Populations were determined by setting
appropriate parent and daughter gates. This allowed for the conversion
of the metagenomics data from relative abundances to absolute
abundances by multiplying relative abundances in a sample with the
total cell count.

2.5.5 Intestinal permeability and cytokine
responses

Samples for assessment of effects on intestinal permeability and
cytokine responses were collected once at the end of the control and
treatment period from both colonic regions. To assess permeability in
the Caco-2/THP1-Blue™ co-cultures, the transepithelial electrical
resistance (TEER) of the Caco-2 cells was measured at baseline (i.e.,
empty insert) and after 24 h incubation with supernatants collected
from the colonic reactors. Basolateral supernatants collected following
the 6 h LPS stimulation were used to assess cytokine levels (interleukin
[IL]-6, IL-1B, IL-10, and tumor necrosis factor [TNF]-a) which were
quantified using a Luminex® multiplex (ThermoFisher Scientific,
Waltham, MA, USA) according to manufacturer’s instructions.

2.6 Statistical analysis

Levels of released tributyrin and butyrate in the stomach and
small intestinal simulations were compared using a two-tailed
homoscedastic Student’s t-test. Levels of SCFAs, lactate, BCFA, and
ammonium in colonic supernatants from the Triple-L-SHIME®
experiments were compared using two-tailed homoscedastic Student’s
t-tests for the individual donors, and using paired Student’s t-tests
across donors. TEER values and cytokine levels obtained in the
Caco-2/THP1 experiment were compared using two-way analysis of
variance (ANOVA) with Sidak’s multiple comparisons tests in
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GraphPad Prism version 9.4.1 (GraphPad Software, San Diego, CA,
USA). A p-value of <0.05 was considered statistically significant.

For analysis of the metabolic fingerprinting (LA-REIMS), data
obtained from the Triple-L-SHIME® experiment were normalized and
subjected to multivariate statistical analysis using SIMCA 17
data
log-transformed to induce normal distributions and unit variance

(Sartorius, Germany). During pre-processing, were
scaling (1/standard deviation) to standardize the range of signal
intensities. The natural patterning of samples and identification of
potential outliers (based on the Hotelings T* criterion) was
accomplished using Unsupervised Principal Component Analysis
(PCA-X). Orthogonal Partial Least Squares Discriminant Analysis
(OPLS-DA) was used to differentiate samples by experimental
conditions in a supervised fashion. The validity of the OPLS-DA
models was verified by the quality parameter Q*(Y) (>0.5), cross-
validated ANOVA (p-value < 0.05), and permutation testing
(n=100) (39).

Metagenomics data obtained from the Triple-L-SHIME®
experiment were used for the following analyses. Beta-diversity was
analyzed using Discriminant Analysis of Principal Components
(DAPC) with a priori defined groups (40). TreeclimbR analysis (41)
were used to identify the taxa most likely to explain the differences
between the control and treatment period. Bacterial enrichments were
considered statistically significant if they had a -log(p-value) > 1.3.
Volcano plots were used to visualize the statistical significance versus
magnitude of change for each taxon. This effectively classifies taxa into
four different categories based on abundance in compared conditions
(i-e., control versus treatment): (1) not significant and not biologically
relevant (—2 < log, fold change [FC] < +2, and -log,,[p-value] < 1.3),
(2) biologically relevant, but not statistically significant (log,FC < —2
or log,FC > +2, and -log,o[p-value] < 1.3), (3) statistically relevant, but
not biologically relevant (-2 < log,FC < +2, and -log,,[p-value] > 1.3),
and (4) biologically and statistically significant (log,FC < -2 or
log,FC > +2, and -log,o[p-value] > 1.3). TreeclimbR analysis was run
using treeclimbR v0.1.5 and edgeR v3.42.421. Benjamini-Hochberg
multiple testing correction was used, and the alpha-level was set
at 0.05.

3 Results

3.1 Release and stability of tributyrin in the
upper GIT

The levels of tributyrin and its degradation product, butyrate,
during the stomach and small intestinal incubations are shown in
Figure 1. During gastric transit, full dissolution of the capsule
formulation was not obtained yet, though an initial release of
tributyrin was observed during stomach incubation (reaching
significance after 30 min compared to the previous timepoint), which
decreased to very low levels at the start of the small intestinal
incubation (Figure 1A). Butyrate levels increased at the start of the
small intestinal incubation (reaching significance at 30 min and
60 min compared to previous timepoints), indicating that tributyrin
was hydrolyzed to butyrate in the small intestine. With the softgel
formulation, full dissolution was again not observed during gastric
transit, though tributyrin levels significantly increased 30 min after
initiating the stomach incubation and remained high at 45 min,
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FIGURE 1

GIT, gastrointestinal tract; SI, small intestine; ST, stomach.
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Line graphs visualizing the average concentration of tributyrin and butyrate during passage through the upper GIT under fasted conditions for the
capsule (A) and softgel (B) formulations of tributyrin. Administered concentrations of tributyrin were 300 mg and 450 mg for the capsule and softgel
formulation, respectively. Data are plotted as mean + standard deviation (n = 3). *p < 0.05 versus the preceding timepoint for tributyrin measurements.
#p < 0.05 versus the preceding timepoint for butyrate measurements. p-values were determined using a two-tailed homoscedastic Student's t-test.

decreasing to low levels after the small intestinal incubation was
initiated (showing a significant reduction after 30 min compared to
the previous timepoint) (Figure 1B). Evidence of tributyrate
degradation (i.e., increased butyrate levels) was observed at the start
of the small intestinal incubation (reaching significance after 30 min
compared to the previous timepoint). At the end of the small intestinal
incubation, 1.22 (+0.13) and 2.17 (+0.08) mmol butyrate was present
with the capsule and softgel formulations, respectively, demonstrating
that 40.9% (+4.2%) and 48.7% (+1.9%) of the initial tributyrin dose of
each of the test products was hydrolyzed to butyrate in the small
intestine and that 59.1% (+4.2%) and 51.3% (+1.9%) of the
administered tributyrin remained stable and was available to enter
the colon.

3.2 Microbial metabolic activity

Microbial metabolite levels during the control period and
following repeated tributyrin supplementation (TR3) in the Triple-L-
SHIME® colonic supernatants are shown in Figure 2. For each
individual donor and across donors, both the acetate and propionate
levels were not stimulated by tributyrin supplementation, with similar
or even significantly lower levels observed at the end of the treatment
period compared to the control period in both the proximal and distal
colon compartments (Figures 2A,B). In contrast, the levels of butyrate
were significantly increased with tributyrin supplementation for each
individual donor and across donors in both colon compartments
(control vs. TR3, p < 0.05 for all) (Figure 2C). Lactate levels were not
affected by tributyrin supplementation, with similar levels detected
during the TR3 and control periods for all donors and across donors
in both colon compartments (except for a significant reduction in the
distal colon of donor A following product administration) (Figure 2D).

BCFA levels were significantly increased with tributyrin
supplementation for all donors and across donors in both the proximal
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and distal colon compartments (control vs. TR3, p < 0.05 for all)
(Figure 2E). Levels of ammonium were significantly increased with
tributyrin supplementation for donors B and C and across donors in the
proximal colon compartment and for donor A and across donors in the
distal colon compartment (control vs. TR3, p < 0.05 for all) (Figure 2F).

3.3 Untargeted metabolomics

Upon LA-REIMS analysis, a total of 1,621 unique metabolic
features were listed as constituents of the metabolic fingerprints.
PCA-X and supervised OPLS-DA modeling revealed no significant
metabolic impact of tributyrin supplementation in the proximal colon
compartment at any timepoint (Figure 3). In the distal colon, no
significant metabolic effects were observed between the control period
and either the treatment week 1 (TR1) or treatment week 2 (TR2)
periods; however, comparison between the control period and the TR3
period revealed significant metabolic alterations. This was
demonstrated by segregation of the control and TR3 samples in PCA-X
modeling (Figure 3) and a valid result for OPLS-DA modeling (control
vs. TR3: Q*[Y], 0.709; permutation test result, passed; p = 0.024).

3.4 Metagenomic analysis

DAPC plots to assess beta-diversity revealed a shift in the
microbial communities for all donors following tributyrin
supplementation in both the proximal and distal colon compartments
(Figures 4A,B). The shifts were particularly pronounced in the
proximal colon compartment.

As shown in the volcano plots (Figure 5), supplementation with
tributyrin resulted in biologically and statistically significant
enrichments of several bacterial species. In the proximal colon, levels
of several primary degraders were enhanced, e.g., Bifidobacterium
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Bar graphs visualizing the level of acetate (A), propionate (B), butyrate (C), lactate (D), BCFA (E), and ammonium (F) during the control period and after
3 weeks of daily administration of tributyrin for each individual donor and across donors in the proximal and distal colon reactors of the Triple-L-
SHIME® experiment. No test products were administered to the colon reactors during the control period, tributyrin was administered daily to the colon
reactors during the three-week treatment period. Data are plotted as mean + standard error of the mean (each donor, n = 3; average, n = 9). *p < 0.05
versus control. p-Values were determined using a two-tailed homoscedastic Student's t-test. BCFA, branched-chain fatty acid; CTRL, control; NH4-N,
ammonium; SHIME®, Simulator of the Human Intestinal Microbial Environment; TR3, treatment week 3.
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longum (biologically and statistically significant), Bacteroides fragilis
(biologically and statistically significant, with similar effects in the
distal colon), and several Alistipes spp. (biologically significant)
(Figure 5A). Tributyrin stimulated some butyrate-producing bacteria
in an apparent positive feedback loop. Other notable bacterial
enrichments included Megasphaera micronuciformis in both colon
compartments (proximal colon, statistically significant; distal colon,
biologically significant), Anaeroglobus geminatus and Veillonella dispar
in the proximal colon compartment (biologically and statistically
significant, and biologically significant, respectively), and unspecified
Microbacterium spp. in both colon compartments (proximal colon,
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biologically significant; distal colon, biologically and statistically
significant) (Figures 5A,B). Statistically reduced microbial species
following product supplementation included Phocaeicola dorei,
Phocaeicola vulgatus and unspecified Bacteroides spp. in the proximal
colon, and Veillonella atypica and unspecificied Veillonella spp. (the
latter not reaching biological significance) in the distal colon.

Absolute abundances of Akkermansia muciniphila were highly
enriched in the distal colon compartments for donors A and C
following tributyrin supplementation (Figure 6); Akkermansia
muciniphila levels were below the limit of detection for donor B (data
not shown).
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FIGURE 3
PCA-X score plots based on LA-REIMS data (negative ionization mode) obtained using biological samples (n = 15) from the proximal colon (top) and
distal colon (bottom) during the Triple-L-SHIME® experiment. No test products were administered to the colon reactors during the control period,
tributyrin was administered daily to the colon reactors during the three-week treatment period. Samples were collected from the indicated colon
reactor during the control period (n = 6), TR1 (n = 3), TR2 (n = 3), and TR3 (n = 3) and subjected to LA-REIMS. LA-REIMS, Laser-Assisted Rapid
Evaporative lonization Mass Spectrometry; PCA-X, unsupervised principal component analysis; SHIME®, Simulator of the Human Intestinal Microbial
Environment; TR1, treatment week 1; TR2, treatment week 2; TR3, treatment week 3.

3.5 Intestinal permeability and cytokine
responses

The increase in TEER value following LPS exposure (% of initial
value) was significantly higher versus control with tributyrin-
supplemented proximal colonic supernatants for donors B and C and
across donors, and with tributyrin-supplemented distal colon
supernatants for donor C and across donors (control vs. TR3, p < 0.05)
(Figure 7).

In the Caco-2/THP co-culture model, IL-6 levels following
exposure to colonic supernatants from the control and TR3 periods
were not consistent among donors for both proximal and distal
colon supernatants, thus not reaching any statistical significance
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across donors (Figure 8A). IL-10 levels were significantly increased
with tributyrin-supplemented supernatants from both the proximal
colon (donors A and C and across donors; control vs. TR3,
p <0.05) and distal colon (donors A and B and across donors;
control vs. TR3, p<0.05) (Figure 8B). IL-1p levels were
significantly increased with tributyrin-supplemented proximal
colon supernatants (donors A and C and across donors; control vs.
TR3, p < 0.05) but not with distal colon supernatants (Figure 8C).
Levels of TNF-a were significantly decreased with tributyrin-
supplemented proximal colon supernatants from donor A and
across donors (control vs. TR3, p <0.05) and no significant
differences were observed with tributyrin-supplemented distal
colon supernatants (Figure 8D).
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the control and treatment periods of the Triple-L-SHIME® experiment. No test products were administered to the colon reactors during the control
period, tributyrin was administered daily to the colon reactors during the three-week treatment period. Samples were collected at the end of the
control and treatment periods from each reactor representing three human donors (n = 3 per donor) and subjected to metagenomics analysis. Each
dot represents one sample. The arrows represent shifts between the control and treatment conditions for each donor. CTRL, control; DAPC,
discriminant analysis of principal components; LD, linear discriminant; SHIME®, Simulator of the Human Intestinal Microbial Environment; TR,
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4 Discussion

This study evaluated the effects of tributyrin (CoreBiome®)
supplementation on the metabolic activity and community
composition of the gut microbiome from three healthy donors using
the Triple-L-SHIME® model. Effects on intestinal barrier integrity
and host immune response were also assessed. We found that
tributyrin supplementation increased levels of butyrate and caused
a shift in the microbial community, with enrichments in several
beneficial bacterial species. Metabolic impacts were observed later
in the treatment period, demonstrating the importance of long-term
administration. Evaluation of host microbiome interactions revealed
that tributyrin-supplemented colonic fermentations provided
protection from inflammation-induced intestinal barrier disruption
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and modulated cytokine secretion, increasing IL-10 levels and
decreasing TNF-o levels.

The upper GIT simulation demonstrated that while some
tributyrin was hydrolyzed to butyrate in the small intestine, over half
of the initial dose was available to transit to the colon. Indeed,
tributyrin supplementation strongly increased butyrate levels in both
the proximal and distal colon compartments in the Triple-L-SHIME®
experiment. Considering the 1:3 conversion ratio of tributyrin to
butyrate (i.e., one molecule of tributyrin is hydrolyzed into three
molecules of butyrate), the observed increase in butyrate levels was
most likely a direct result of the metabolism of tributyrin to butyrate
by the gut microbiota.

Untargeted metabolomic analysis revealed significant metabolic
alterations in the distal colon after 3 weeks of tributyrin supplementation,

frontiersin.org


https://doi.org/10.3389/fnut.2025.1712993
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Duysburgh et al.

10.3389/fnut.2025.1712993

significance_group
o S—Phocaeicola dorei ® Biologically & statistically significant
20 * Biologjca!ly significant (FC)
¢ Non-significant
— ° . S
S Statistically significant (p-values)
& 15
o
=
v
=
T 10 s__Phocaeicola vulgatus s__Pseudomonas aeruginosa
3 ° s__Megasphaera micronuciformis
o s__Enterocloster bolteae
°
s s__Bacteroides_u_s s__Anaeroglobus geminatus
°
¥ . s__Bacteroides fragilis
s_Lachnospiraceae_u_s o @ ege_S_Bifidobacterium longum
o ) °0 @ tagyem % © ® ..'
__Microbacterium_u_s
__Alistipes onderdonkii
=15 -10 -5 0 5 s__Alistipes_u_s
Fold Change (Log2) s__Veillonella dispar
f__Enterobacteriaceae
N significance_group
o S_Bacteroides fragilis ® Biologically & statistically significant
© Biologically significant (FC)
25 ¢ Non-significant
— Veillonell i P PR
3 5 Veillonella atypica ® Statistically significant (p-values)
%o 2
o
=
- s__Veillonella_u_s . .
5 ° s__Microbacterium_u_s
= o
[
7 .
o ° N s__Megasphaera micronuciformis
s__Oscillospiraceae_u_s ® Y
° °
s__Alistipes shahii N
0.5 [} o S_Blautia®_sg ° o
e o> o J
s__Gemmiger formicilis T e 0, o ¢
o
-3 -2 -1 0 1 3 4
Fold change (Log2)
FIGURE 5

Differential abundance analysis in the proximal colon (A) and distal colon (B) obtained at the end of the control and treatment periods of the Triple-L-
SHIME® experiment. No test products were administered to the colon reactors during the control period, tributyrin was administered daily to the colon
reactors during the three-week treatment period. Samples were collected at the end of the control and treatment periods from each reactor
representing three human donors (n = 3 per donor) and subjected to metagenomics analysis followed by treeclimbR analysis. Statistical significance is
plotted as a function of FC, classifying taxa into four categories: (1) not significant and not biologically relevant (-2 < log,FC < +2, and —log;clp-

value] < 1.3), (2) biologically relevant, but not statistically significant (log,FC < —2 or log,FC > +2, and —loglp-value] < 1.3), (3) statistically significant,
but not biologically relevant (-2 < log,FC < +2, and -log;elp-value] > 1.3), and (4) biologically and statistically significant (log,FC < —2 or log,FC > +2,
and -log;elp-value] > 1.3). FC, fold change; SHIME®, Simulator of the Human Intestinal Microbial Environment.

which were not observed at TR1 or TR2. This suggests that prolonged
administration of tributyrin is necessary to achieve maximal effects on
microbial metabolism. Future studies utilizing ultra-high-performance
liquid chromatography-high resolution mass spectrometry to identify
the specific metabolites that are enriched with tributyrin supplementation
will build upon this finding.

Beta-diversity analysis showed that tributyrin supplementation
resulted in a shift in the microbial community composition for all donors
in both colonic compartments, with stronger effects observed in the
proximal colon. Specifically, several primary substrate degraders were
enriched with tributyrin supplementation (Bifdobacterium longum,
Bacteroides fragilis, Alistipes spp.), mainly in the proximal colon,
confirming previous findings (18, 23). Primary degraders break down
complex carbohydrates, producing SCFAs and other bacterial
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metabolites that have beneficial effects on the host (42). Additionally,
Bifidobacterium longum has been studied as a probiotic (43) and has
demonstrated health-promoting effects such as lowering cholesterol and
reducing inflammation in a high fat diet mouse model (44), and
improving cognitive function in older adults (45). An increase in the
abundance of Veillonellaceae family members was also observed with
product supplementation, which could be attributed to a significant
enrichment of Megasphaera micronuciformis and Anaeroglobus
geminatus. Megasphaera micronuciformis, a lactate consumer and
propionate producer, has been negatively associated with total cholesterol
and fasting glucose levels in healthy individuals (46), while Anaeroglobus
geminatus is a potent butyrate producer, also able to produce acetate and
propionate following substrate fermentation (47). Finally, tributyrin
induced an enrichment of Akkermansia muciniphila in the distal colon
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for two of the three healthy donors tested. Akkermansia muciniphila
produces acetate and propionate, and its abundance is inversely
correlated with several diseases including inflammatory bowel disease,
diabetes, and obesity (48). Preclinical models have suggested several
beneficial effects of Akkermansia muciniphila on host metabolism (49).
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For example, a study in mice demonstrated that Akkermansia muciniphila
improved the metabolic profile of obese mice fed a high-fat diet and
reduced high-fat-diet-induced metabolic disorders (50). It was recently
reported that Akkermansia muciniphila produces a glucagon-like-
peptide-1 inducing protein that improves glucose homeostasis and has
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Effect of colonic suspensions on IL-6 (A), IL-10 (B), IL-1p (C), and TNF-a (D). Cytokine levels were measured 6 h after LPS treatment on the basolateral
side of the Caco-2/THP1 co-cultures after pre-treatment of the apical side for 24 h with the colonic suspensions collected from the Triple-L-SHIME®
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beneficial effects in a mouse model of metabolic disease (51). Overall,
based on the above findings, it could be interesting in future studies to
unravel the specific mechanism-of-action in which the lipophilic
tributyrin stimulates specific saccharolytic bacterial groups in the human
gut microbiome.

The intestinal barrier plays an important role in preventing
harmful substances from entering the systemic circulation and
potentially causing inflammation (52). Chronic disruption of the
intestinal barrier is termed “leaky gut” and is associated with several
health conditions, including irritable bowel syndrome, inflammatory
bowel disease, autoimmune conditions, and obesity. Thus, maintaining
the intestinal barrier function is important for health. Butyrate is
involved in both intestinal barrier function and immunomodulation.
It is a primary energy source for intestinal epithelial cells (53) and
numerous studies have reported beneficial effects of butyrate on the
intestinal barrier which are mediated by its effects on tight junctions,
the mucus layer, and the production of antimicrobial peptides (5, 54,
55). Butyrate also has immunomodulatory effects in the colon, such
as reducing levels of pro-inflammatory genes and inducing anti-
inflammatory genes (55-57). Tributyrin-supplemented colonic
fermentations from both the proximal and distal colon had a
protective effect on inflammation-induced intestinal barrier
disruption. Cytokine responses to an inflammatory signal (LPS) were
also impacted by tributyrin supplementation. Secretion of the anti-
inflammatory cytokine IL-10 was increased in the presence of
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tributyrin-supplemented proximal and distal colonic fermentations
following LPS exposure. Under the same conditions, secretion of the
pro-inflammatory cytokine TNF-a was decreased in the presence of
proximal colon fermentations.

This study had some limitations to consider. First, while in vitro
simulations allow for in-depth study of both the effects of test products on
the gut microbiome and the mechanisms behind these effects, findings
from these studies do not translate directly to in vivo effects. As such,
further studies in humans are needed to confirm these findings, where an
interesting approach could be to include ‘pure’ butyrate supplementation as
a control. Second, this study included three healthy donors, which allowed
for the assessment of interindividual responses to tributyrin
supplementation. However, the small number of donors limits the statistical
power of the analysis.

5 Conclusion

Over 50% of tributyrin (CoreBiome®) remained stable during
upper GIT transit in both capsule and softgel formulations. Daily
supplementation with tributyrin demonstrated beneficial effects to
both the gut microbiome community composition and metabolic
activity in the Triple-SHIME® model. Further, supplementation had
a protective effect on intestinal barrier integrity and demonstrated
immunomodulatory effects.
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