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Background: Preeclampsia (PE) is a leading cause of maternal and perinatal 
morbidity and mortality. Choline, essential in one-carbon metabolism and 
vascular function, may influence placental health. We  examined associations 
of total, subtype-, and source-specific dietary choline with PE odds in Chinese 
women.
Methods: We conducted a 1:1 matched case–control study of 982 pregnant 
women (491 PE cases; 491 controls) in Zhengzhou, China. Dietary intake over the 
preceding three months was assessed using a validated semi-quantitative food-
frequency questionnaire. Conditional logistic regression calculated odds ratios 
(ORs) and 95% confidence intervals (CIs) for total choline, lipid- vs. water-soluble 
forms, and animal- vs. plant-derived sources, adjusting for covariates. Restricted 
cubic splines explored possible non-linear dose–response associations.
Results: Among 982 participants (491 PE cases; 491 controls), mean total choline 
intake was 335.8 mg/day, with eggs contributing 42.5%. In multivariable-adjusted 
models, compared with the lowest quartile, those in the highest quartile of total 
choline intake had 58% lower odds of PE (OR = 0.42; 95% CI, 0.26–0.68), with 
similar associations for lipid- (0.33; 0.22–0.48) and water-soluble forms (0.37; 
0.25–0.54). Both animal- (0.43; 0.30–0.63) and plant-derived choline (0.31; 
0.21–0.46) were protective, while their intake ratio was not. Each additional 
25 g/day of egg (~half an egg) was linked to an 11% lower PE odds.
Conclusion: Higher habitual dietary choline intakes from animal and plant 
sources were independently associated with significantly lower odds of PE, 
suggesting that adequate, source-diverse choline intake in early pregnancy may 
offer a practical dietary strategy for PE prevention.
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1 Introduction

Preeclampsia (PE) remains a major cause of maternal and 
perinatal morbidity and mortality worldwide, affecting approximately 
2–8% of pregnancies and contributing to around 46,000 maternal 
deaths annually (1–3). Despite notable advances in obstetric care, its 
incidence is increasing in many regions, including China—largely 
driven by rising maternal age and a growing burden of cardiometabolic 
risk factors (4, 5). Beyond its acute complications during pregnancy, 
PE also confers substantial long-term risks for cardiovascular and 
metabolic disorders in both mothers and their offspring (2, 6–9), 
underscoring the urgent need to identify modifiable risk factors.

Emerging evidence implicates abnormal placentation, endothelial 
dysfunction, and heightened oxidative stress as key mechanisms in PE 
pathogenesis (10, 11). Among potentially modifiable factors, 
nutritional exposures have received substantial attention (12). 
Choline—a conditionally essential nutrient central to one-carbon 
metabolism, methylation reactions, and membrane phospholipids—
has received comparatively less focus despite mounting data 
implicating roles in placental function and vascular health (13, 14). In 
many high-income populations, usual maternal choline intake often 
falls short of pregnancy-appropriate recommendations (15, 16). 
Although inadequate intake has been linked primarily to fetal/
neurodevelopmental concerns (16, 17), evidence connecting low 
maternal choline intake or status to maternal clinical outcomes—
particularly PE—remains limited.

Experimental and epidemiological studies indicate that 
inadequate maternal choline intake may impair fetal 
neurodevelopment, increase the risk of neural tube defects, and 
adversely affect pregnancy outcomes (16, 18). Yet, the relationship 
between dietary choline intake and PE risk remains poorly 
understood (13), hindered by methodological limitations in the 
existing literature. Large-scale prospective studies are lacking, and 
most prior work has relied on cross-sectional or retrospective 
designs, limiting causal inference (19). Moreover, little attention has 
been paid to the heterogeneity of choline subtypes or their distinct 
dietary sources, and few studies have considered the influence of 
population-specific dietary patterns (13). Notably, recent Mendelian 
randomization analyses implicate circulating choline metabolites 
in PE development (20), but direct nutritional epidemiologic 
evidence is needed to clarify these associations and inform 
clinical practice.

To address these gaps, we  conducted a matched case–control 
study in China to examine the associations between total dietary 
choline intake, specific chemical subtypes, and major dietary sources 
with the odds of PE. To our knowledge, this is the first comprehensive 
investigation of dietary choline and PE odds in an Asian population, 
offering novel insights with potential implications for targeted 
nutritional strategies and policy recommendations.

2 Methods

2.1 Study design and participants

We conducted a 1:1 matched case–control study nested within a 
maternal nutrition surveillance program at the First Affiliated Hospital 
of Zhengzhou University, China (March 2016–June 2019), designed 

to investigate the association between dietary choline intake and the 
odds of preeclampsia (PE).

PE diagnosis followed the 2015 Chinese guidelines (21), requiring 
new-onset hypertension (≥140/90 mmHg) after 20 weeks’ gestation 
accompanied by either proteinuria (≥0.3 g/24 h) or evidence of organ 
dysfunction. Eligible participants were pregnant women aged 
18–45 years with singleton pregnancies and no history of gestational 
hypertension. Each case was individually matched to a control based 
on maternal age (±3 years), gestational age (±1 week), and gestational 
diabetes mellitus (GDM) status. Exclusion criteria included chronic 
hypertension, diabetes, renal or psychiatric disease, and implausible 
energy intake (<500 or >5,000 kcal/day). Of the 1,218 women 
screened, 491 matched pairs (n  = 982) were included in the final 
analysis (Supplementary Figure 1). Power calculations indicated that 
the sample size provided 80% power (α = 0.05) to detect an odds ratio 
of 0.50 for high versus low choline intake (22). The study was approved 
by the Ethics Committee of the First Affiliated Hospital of Zhengzhou 
University (No. Scientific research-2016-LW-34), and all participants 
provided written informed consent.

2.2 Assessment of dietary choline

Dietary intake was assessed during face-to-face interviews using 
a validated 79-item semi-quantitative food-frequency questionnaire 
(FFQ) capturing usual intake over the three months preceding 
delivery. The FFQ’s accuracy for estimating energy and nutrient 
intakes has been previously confirmed (23, 24). For each food item, 
intake frequency (never, monthly, weekly, daily) and portion size were 
recorded, aided by a standardized color photo booklet to improve 
portion-size estimation.

Energy (kcal/day) and most nutrient intakes were calculated using 
the Chinese Food Composition Tables (25). As choline and betaine 
values were not available in this database, these nutrient contents were 
obtained from the USDA FoodData Central (U.S. Department of 
Agriculture, Agricultural Research Service) (26). Total dietary choline 
was calculated as the sum of phosphatidylcholine (PtdCho), 
sphingomyelin (SM), free choline, glycerophosphocholine (GPCho), 
and phosphocholine (PCho). Choline was further classified into lipid-
soluble forms (PtdCho, SM) and water-soluble forms (free choline, 
GPCho, PCho), and into animal- and plant-derived sources based on 
food origin. Daily intakes of choline subtypes and betaine (mg/day) 
were estimated by multiplying the consumption of each food by its 
nutrient content per 100 g and summing across all foods.

To account for total energy intake, we additionally derived energy-
adjusted choline (and subtypes) using the residual method (27); 
unadjusted values were used for descriptive analyses, and both 
unadjusted and energy-adjusted values were included in sensitivity 
analyses. Supplement use (e.g., folic acid, multivitamins) was recorded 
and included as covariates in multivariable analyses.

2.3 Assessment of preeclampsia

PE status was ascertained from medical records and confirmed by 
senior obstetricians according to the 2015 Chinese guidelines for 
hypertensive disorders of pregnancy. Diagnosis required new-onset 
hypertension—systolic blood pressure ≥140 mmHg or diastolic 
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≥90 mmHg—after 20 weeks’ gestation, plus either: (1) proteinuria 
(≥0.3 g/24 h, protein-to-creatinine ratio ≥0.3, or dipstick ≥ “+”), or 
(2) in the absence of proteinuria, evidence of maternal organ/system 
dysfunction (hepatic, renal, cardiovascular, respiratory, hematologic, 
neurologic, or placental–fetal involvement).

Blood pressure was measured twice, five minutes apart, with a 
calibrated automated sphygmomanometer; the mean value was used 
for classification. Urinary protein was measured using 24-h collections 
when feasible; otherwise, spot protein-to-creatinine ratio or dipstick 
tests were applied per guideline recommendations. All PE cases met 
these criteria, whereas controls remained normotensive with no 
evidence of organ dysfunction throughout pregnancy.

2.4 Assessment of covariates

Covariates were selected based on established links with dietary 
patterns and hypertensive disorders in pregnancy. The interviewer-
administered structured questionnaire was used only for non-dietary 
covariates. Sociodemographic variables included maternal age (years), 
monthly household income (≤2,000; 2,001–4,000; 4,001–6,000; 
>6,000 yuan), educational attainment (middle school or below, high 
school or equivalent, college or above), and employment status 
(employed/unemployed). Lifestyle factors included smoking and 
alcohol use (ever/never), physical activity (MET-hours/day, 
continuous), and self-reported sleep quality (poor/moderate/good). 
Reproductive history variables included parity (0, 1, ≥2), menstrual 
regularity (yes/no), and gestational age (weeks, continuous). 
Pre-pregnancy BMI (kg/m2, continuous) and supplement use (folic 
acid, multivitamins) were self-reported at baseline. Dietary energy 
intake (kcal/day, continuous) was calculated from the FFQ, and the 
dietary assessment period was categorized by season (spring, summer, 
autumn, winter). Clinical covariates included GDM status (yes/no) 
and family history of hypertension (yes/no). Psychological distress 
was assessed with standardized Zung Self-Rating Anxiety Scale (28) 
(SAS) and Self-Rating Depression Scale (29) (SDS) scores.

2.5 Statistical analysis

Continuous variables are presented as means (standard deviations 
[SD]) and categorical variables as counts (percentages). Differences 
between PE cases and controls were assessed using Student’s t test or 
Chi-square test, as appropriate. For variables with <25% missing data, 
multiple imputation (five imputations) was performed, and pooled 
estimates were calculated using Rubin’s rules (30).

The primary analyses examined associations between total 
choline, individual choline compounds (free choline, PCho, PtdCho, 
GPCho, SM), and betaine intake and the odds of PE using 
conditional logistic regression for matched pairs. Additional analyses 
evaluated choline subcategories (lipid-soluble, water-soluble, lipid-
to-water choline intake ratio), source-specific choline (animal-
derived, plant-derived, animal-to-plant intake ratio), and daily egg 
intake—the primary dietary source of choline in this case–control 
study. For each exposure, intakes were categorized into quartiles 
according to the control group distribution (lowest quartile as 
reference). Trends across quartiles were tested by modeling the 
median intake of each quartile as a continuous variable. Associations 

per 1-SD increment in intake were also estimated. Odds ratios (ORs) 
and 95% confidence intervals (CIs) were derived from three models: 
Model 1 adjusted for maternal age, gestational age, and 
pre-pregnancy BMI; Model 2 additionally adjusted for household 
income, educational attainment, physical activity, employment 
status, smoking, alcohol use, and sleep quality; and Model 3 further 
adjusted for energy intake, assessment season, parity, GDM, 
menstrual regularity, family history of hypertension, and supplement 
use. Restricted cubic spline models were used to explore potential 
non-linear associations between choline-related exposures and the 
odds of PE.

Stratified and interaction analyses assessed effect modification 
within prespecified subgroups, with interaction p values derived from 
likelihood ratio tests (unadjusted for multiple comparisons). A series 
of sensitivity analyses were performed to test the robustness of 
findings: (1) analyses restricted to complete cases; (2) further 
adjustment for psychological distress (anxiety and depression scores); 
(3) exclusion of participants diagnosed with GDM; (4) analyses 
without adjustment for daily energy intake to examine associations 
irrespective of total energy; and (5) analyses using residual energy-
adjusted choline intake.

3 Results

3.1 Baseline characteristics

A total of 982 pregnant women (mean age: 31.1 ± 5.0 years) were 
included, comprising 491 preeclampsia (PE) cases and 491 matched 
controls. The mean (SD) total dietary choline intake was 335.8 
(144.8) mg/day (range: 55.8–954.6 mg/day), with higher choline 
intakes generally observed among women with greater total energy 
and nutrient consumption (Table  1; Figure  1A; 
Supplementary Table  1). In terms of choline composition, lipid-
soluble forms—primarily phosphatidylcholine (PtdCho) and 
sphingomyelin (SM)—accounted for 67.3% of total choline intake, 
while water-soluble forms (free choline, glycerophosphocholine 
[GPCho], and phosphocholine [PCho]) contributed the remaining 
32.7% (Figure 1B; Supplementary Table 2). When examining dietary 
sources, eggs were the predominant dietary source, providing 42.5% 
of total choline, followed by red meat (12.9%), vegetables (11.1%), 
whole grains (10.0%), and dairy products (8.9%). The proportional 
contributions of these sources were similar between PE cases 
and controls.

Across intake quartiles, dietary and sociodemographic 
gradients were evident. Participants in the highest quartile of total 
choline intake (Q4, ≥375.0 mg/day) consumed substantially more 
daily energy (mean 2,454.6 kcal), egg consumption (94.8 g/day), 
and animal-derived choline (327.1 mg/day) than those in the 
lowest quartile (Q1, ≤210.3 mg/day; 1,602.2 kcal, 24.6 g/day, and 
84.3 mg/day, respectively). Moreover, higher choline intake was 
also associated with higher educational attainment, greater 
household income, and more diverse dietary patterns. Compared 
with controls, participants with PE had significantly lower total 
choline intake (305.7 vs. 366.0 mg/day), including both lipid- and 
water-soluble forms, and consumed fewer eggs and other animal-
derived foods (Figure 1C). Additionally, PE cases also exhibited 
higher pre-pregnancy BMI, a greater prevalence of family history 
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TABLE 1  Baseline characteristics of participants across quartiles of total dietary choline intake.

Characteristics Total (n = 982) Q1 (n = 329) Q2 (n = 256) Q3 (n = 204) Q4 (n = 193) P value

Maternal age, years 31.05 ± 5.02 31.05 ± 5.05 31.29 ± 5.03 30.52 ± 4.71 31.30 ± 5.29 0.35

Gestational age, weeks 34.19 ± 2.84 33.80 ± 2.83 34.38 ± 2.88 34.35 ± 2.72 34.44 ± 2.90 0.02

Pre-pregnancy BMI, kg/m2 23.11 ± 3.63 23.59 ± 4.15 22.95 ± 3.24 22.67 ± 3.14 22.95 ± 3.56 0.02

Physical activity (MET- h/d) 26.87 ± 4.31 26.97 ± 4.29 26.74 ± 4.08 26.67 ± 4.09 27.07 ± 4.86 0.74

Daily energy intake (kcal/

day) 1920.00 ± 547.69 1602.16 ± 376.90 1834.42 ± 386.05 2034.25 ± 485.04 2454.58 ± 599.38 <0.001

Anxiety score 38.25 ± 6.97 37.71 ± 6.42 37.74 ± 7.51 38.40 ± 6.74 39.69 ± 7.20 <0.01

Depression score 39.62 ± 8.95 39.98 ± 8.51 38.61 ± 9.54 39.06 ± 8.57 40.96 ± 9.14 0.03

Income (Yuan/month) 0.08

 � ≤2,000 128 (13.03) 59 (17.93) 28 (10.94) 16 (7.84) 25 (12.95)

 � 2,001–4,000 523 (53.26) 171 (51.98) 137 (53.52) 114 (55.88) 101 (52.33)

 � 4,001–6,000 180 (18.33) 60 (18.24) 47 (18.36) 38 (18.63) 35 (18.13)

 � >6,000 151 (15.38) 39 (11.85) 44 (17.19) 36 (17.65) 32 (16.58)

Educational attainment, % <0.001

 � Middle school or below 405 (41.24) 167 (50.76) 99 (38.67) 65 (31.86) 74 (38.34)

 � High school or equivalent 184 (18.74) 65 (19.76) 48 (18.75) 32 (15.69) 39 (20.21)

 � College or above 393 (40.02) 97 (29.48) 109 (42.58) 107 (52.45) 80 (41.45)

Employment status, % 0.31

 � Employed 332 (33.81) 100 (30.40) 94 (36.72) 75 (36.76) 63 (32.64)

 � Unemployed 650 (66.19) 229 (69.60) 162 (63.28) 129 (63.24) 130 (67.36)

Smoking status, % 0.70

 � Ever 149 (15.17) 49 (14.89) 35 (13.67) 36 (17.65) 29 (15.03)

 � Never 833 (84.83) 280 (85.11) 221 (86.33) 168 (82.35) 164 (84.97)

Drinking status, % 0.55

 � Ever 20 (2.04) 7 (2.13) 3 (1.17) 4 (1.96) 6 (3.11)

 � Never 962 (97.96) 322 (97.87) 253 (98.83) 200 (98.04) 187 (96.89)

Sleep quality, % 0.99

 � Poor 264 (26.88) 87 (26.44) 70 (27.34) 57 (27.94) 50 (25.91)

 � Moderate 396 (40.33) 133 (40.43) 107 (41.80) 80 (39.22) 76 (39.38)

 � Good 322 (32.79) 109 (33.13) 79 (30.86) 67 (32.84) 67 (34.72)

Survey season, % 0.20

 � Spring 267 (27.19) 90 (27.36) 63 (24.61) 71 (34.80) 43 (22.28)

 � Summer 211 (21.49) 68 (20.67) 56 (21.88) 37 (18.14) 50 (25.91)

 � Autumn 275 (28.00) 92 (27.96) 73 (28.52) 58 (28.43) 52 (26.94)

 � Winter 229 (23.32) 79 (24.01) 64 (25.00) 38 (18.63) 48 (24.87)

Parity, % 0.22

 � 0 365 (37.17) 128 (38.91) 89 (34.77) 78 (38.24) 70 (36.27)

 � 1 435 (44.30) 128 (38.91) 121 (47.27) 96 (47.06) 90 (46.63)

 � ≥2 182 (18.53) 73 (22.19) 46 (17.97) 30 (14.71) 33 (17.10)

Preeclampsia, % <0.001

 � No 491 (50.00) 123 (37.39) 123 (48.05) 122 (59.80) 123 (63.73)

 � Yes 491 (50.00) 206 (62.61) 133 (51.95) 82 (40.20) 70 (36.27)

GDM, % 136 (13.85) 33 (10.03) 35 (13.67) 34 (16.67) 34 (17.62) 0.05

Menstrual regularity, % 909 (92.57) 300 (91.19) 234 (91.41) 194 (95.10) 181 (93.78) 0.29

Family history of 

hypertension, %

285 (29.02) 101 (30.70) 80 (31.25) 55 (26.96) 49 (25.39) 0.44

(Continued)
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of hypertension, and poorer sleep quality. Correlations were 
strongest between PtdCho and SM (r = 0.89), with moderate 
correlations among water-soluble subtypes (Supplementary  
Figure 2).

3.2 Dietary choline, betaine intake, and 
odds of preeclampsia

Higher total dietary choline intake was strongly associated 
with lower odds of PE (Table  2; Figure  2A). In fully adjusted 
models, women in Q4 had 58% lower odds of PE compared with 
those in Q1 (95% CI, 0.26–0.68; Ptrend < 0.001). Each 1-SD 
increment in total choline intake corresponded to a 31% lower 

odds of PE (95% CI, 0.57–0.84). These inverse associations were 
consistent across sequential models adjusting for 
sociodemographic, lifestyle, dietary, and reproductive factors 
(Model 1–Model 3). Restricted cubic spline analyses confirmed a 
significant linear inverse association (Poverall < 0.001; 
Pnonlinear = 0.260), with no evidence of a threshold effect 
(Figure 2A).

Similar inverse associations were observed for all individual 
choline subtypes (free choline, PCho, PtdCho, GPCho, and SM), with 
women in the highest quartile of each subtype consistently exhibiting 
markedly lower odds of PE compared to those in the lowest quartile. 
Fully adjusted ORs (95% CI) for the highest versus lowest quartile 
were: free choline (0.39; 95% CI, 0.27–0.57), PCho (0.45; 95% CI, 0.27–
0.73), GPCho (0.50; 95% CI, 0.30–0.83), PtdCho (0.40; 95% CI, 0.26–
0.61), and SM (0.28; 95% CI, 0.17–0.44); all Ptrend ≤ 0.004 (Table 2; 

TABLE 1  (Continued)

Characteristics Total (n = 982) Q1 (n = 329) Q2 (n = 256) Q3 (n = 204) Q4 (n = 193) P value

Dietary intake

 � Egg (g/day) 54.65 ± 34.62 24.60 ± 17.98 50.96 ± 18.53 69.75 ± 26.73 94.81 ± 30.48 <0.001

 � Vegetable (g/day) 355.83 ± 172.79 286.84 ± 122.68 353.14 ± 155.33 371.51 ± 160.08 460.41 ± 219.74 <0.001

 � Fruit (g/day) 363.84 ± 275.23 291.00 ± 221.67 313.90 ± 170.23 425.19 ± 309.37 489.39 ± 362.15 <0.001

 � Protein (g/day) 66.32 ± 23.00 47.86 ± 12.28 62.99 ± 13.65 73.87 ± 14.21 94.21 ± 23.29 <0.001

 � Fat (g/day) 74.77 ± 25.72 61.80 ± 19.12 70.89 ± 20.50 78.22 ± 21.57 98.38 ± 28.72 <0.001

 � Carbohydrate (g/day) 252.40 ± 82.35 219.20 ± 63.32 242.57 ± 62.49 266.40 ± 85.43 307.22 ± 98.25 <0.001

 � Total choline (mg/day) 335.84 ± 144.82 195.95 ± 50.71 307.64 ± 23.67 393.32 ± 27.04 550.96 ± 128.92 <0.001

 � Betaine (mg/day) 372.16 ± 231.62 324.02 ± 173.29 359.90 ± 231.06 403.97 ± 239.65 436.84 ± 285.87 <0.001

 � Lipid-soluble choline 

(mg/day)

226.02 ± 120.02 116.27 ± 45.51 204.63 ± 29.46 271.36 ± 43.83 393.57 ± 123.37 <0.001

 � Water-soluble choline 

(mg/day)

109.82 ± 45.18 79.68 ± 24.05 103.01 ± 24.72 121.97 ± 33.76 157.39 ± 58.11 <0.001

 � Animal−derived choline 

(mg/day)

180.82 ± 115.17 84.27 ± 46.37 164.14 ± 43.09 219.04 ± 60.08 327.12 ± 135.66 <0.001

 � Plant−derived choline 

(mg/day)

155.02 ± 67.52 111.68 ± 31.64 143.50 ± 41.69 174.28 ± 54.94 223.84 ± 86.79 <0.001

 � Free choline (mg/day) 54.96 ± 21.07 42.16 ± 12.39 51.79 ± 13.39 59.98 ± 16.98 75.69 ± 26.67 <0.001

  Phosphocholine (mg/day) 13.08 ± 6.28 9.07 ± 3.28 12.35 ± 3.68 14.50 ± 4.69 19.37 ± 8.48 <0.001

 � Glycerophosphocholine 

(mg/day)

41.78 ± 21.15 28.45 ± 11.30 38.87 ± 11.66 47.49 ± 17.05 62.34 ± 28.35 <0.001

 � Phosphatidylcholine (mg/

day)

212.24 ± 113.75 108.85 ± 43.24 192.02 ± 29.05 254.83 ± 42.94 370.30 ± 118.11 <0.001

  Sphingomyelin (mg/day) 13.78 ± 6.95 7.42 ± 2.98 12.61 ± 2.20 16.52 ± 3.14 23.27 ± 6.71 <0.001

  Folic acid supplement, % 792 (80.65) 254 (77.20) 207 (80.86) 172 (84.31) 159 (82.38) 0.20

 � Multivitamin  

supplement, %

128 (13.03) 44 (13.37) 38 (14.84) 23 (11.27) 23 (11.92) 0.67

Q, quartile; BMI, body mass index; GDM, gestational diabetes mellitus.
Quartile cut-offs for total dietary total choline intake were defined based on the sample distribution as follows: Q1: 55.8–210.3 mg/day; Q2: 210.3–288.3 mg/day; Q3: 288.3–375.0 mg/day; Q4: 
375.0–954.6 mg/day. The corresponding median intake for each quartile was 161.6 mg/day (Q1), 254.8 mg/day (Q2), 326.5 mg/day (Q3), and 454.6 mg/day (Q4). Each quartile comprised 
approximately 25% of the study population. Continuous variables are presented as mean ± standard deviation (SD), and categorical variables are expressed as number [percentage (%)]. The 
proportion of missing data was as follows: monthly household income (5.6%), educational attainment (0.1%), smoking status (0.1%), alcohol consumption (0.1%), menstrual regularity 
(0.41%), season of survey (1.12%), and family history of hypertension (0.81%). All other variables, including maternal age, gestational age, pre-pregnancy BMI, physical activity, daily energy 
intake, anxiety and depression scores, employment status, sleep quality, parity, GDM, and use of folic acid or multivitamin supplements, were complete with no missing values.
Two-sided p values are presented without adjustment for multiple comparisons, with p values below 0.001 reported as <0.001. Bold values indicating statistical significance, p < 0.05).
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Figures 2C–G). By contrast, no significant association was observed for 
dietary betaine in any model (ORQ4 versus Q1 = 1.18; 95% CI, 0.76–1.83; 
Ptrend = 0.71) (Table 2; Figure 2B).

Analysis of choline subcategories showed that both lipid- and 
water-soluble choline intakes were independently and inversely 
associated with the odds of PE (Figure 3; Supplementary Table 3). In 
fully adjusted models, ORQ4 versus Q1 was 0.33 (95% CI, 0.22–0.48; 
Ptrend < 0.001) for lipid-soluble and 0.37 (95% CI, 0.25–0.54; 
Ptrend < 0.001) for water-soluble choline. Dose–response analyses 
confirmed a significant linear association for lipid-soluble choline 
(Poverall < 0.001; Pnonlinear = 0.191; Figure 3A) and a modest nonlinearity 
for water-soluble choline (Poverall = 0.002; Pnonlinear = 0.036; Figure 3B). 
For the lipid-to-water choline intake ratio, an L-shaped association 
was observed, with the greatest odds reduction at moderate ratios 

(ORQ3 versus Q1 = 0.56; 95% CI, 0.39–0.82), but no further reduction at 
the highest quartile (ORQ4 versus Q1 = 0.72; 95% CI, 0.51–1.03; 
Ptrend = 0.02; Figure 3C).

Source-specific analyses indicated that both animal-derived and 
plant-derived choline were inversely associated with PE odds (ORQ4 

versus Q1 = 0.43, 95% CI, 0.30–0.63 and 0.31, 95% CI, 0.21–0.46, 
respectively; both Ptrend < 0.001; Supplementary Table  4), with no 
significant association for the animal-to-plant choline intake ratio 
(ORQ4 versus Q1 = 0.96; 95% CI, 0.67–1.37; Ptrend = 0.98). Egg 
consumption—the predominant dietary source of choline—was also 
inversely associated with PE odds (ORQ4 versus Q1 = 0.48; 95% CI, 0.32–
0.72; Ptrend < 0.001), with each 25 g/day increment corresponding to an 
OR of 0.89 (95% CI, 0.82–0.98; p = 0.01; Supplementary Table 5). 
Dose–response modeling indicated a consistent linear inverse 

FIGURE 1

Distribution and food source composition of dietary choline and betaine intake among preeclampsia cases and controls. PE, preeclampsia; PtdCho, 
phosphatidylcholine; SM, sphingomyelin; GPCho, glycerophosphocholine; PCho, phosphocholine. (A) Composition of total dietary choline intake 
among all participants. In this study population, the average total choline intake was 335.1 mg/day. (B) Relative contributions of major food groups to 
total dietary choline and betaine intake. Eggs constituted the predominant dietary source of choline, accounting for 42.48% of total intake. 
(C) Comparative distribution of lipid-soluble and water-soluble choline, as well as betaine intake, between women with preeclampsia and controls. 
Lipid-soluble choline includes PtdCho and SM; water-soluble choline includes free choline, GPCho, and PCho. Values are presented as means, with 
error bars denoting standard deviations (± SD). *p < 0.05, **p < 0.01, ***p < 0.001 for group comparisons.
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TABLE 2  Associations of total dietary choline and betaine intake with odds of preeclampsia.

Dietary 
choline

Cases/
controls

Intake (mg/
day)

Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Total choline intake

 � Q1 206/123

161.55 (55.82–

210.32) 1 (reference) 1 (reference) 1 (reference)

 � Q2 133/123

254.81 (210.33–

288.28) 0.7 (0.50, 0.98) 0.04 0.74 (0.52, 1.04) 0.08 0.79 (0.54, 1.14) 0.21

 � Q3 82/122

326.5 (288.29–

374.99) 0.43 (0.30, 0.62) <0.001 0.46 (0.32, 0.67) <0.001 0.54 (0.36, 0.82) 0.004

 � Q4 70/123

454.62 

(>375.00) 0.36 (0.25, 0.53) <0.001 0.37 (0.25, 0.54) <0.001 0.42 (0.26, 0.68) <0.001

P for trend <0.001 <0.001 <0.001

Per SD 

increment 0.65 (0.56, 0.75) <0.001 0.66 (0.57, 0.76) <0.001 0.69 (0.57, 0.84) <0.001

Free choline

 � Q1 192/123

34.27 (11.68–

38.98) 1 (reference) 1 (reference) 1 (reference)

 � Q2 110/123

43.13 (38.99–

48.26) 0.57 (0.41, 0.81) 0.001 0.59 (0.42, 0.84) 0.003 0.62 (0.43, 0.88) 0.01

 � Q3 116/122

54.52 (48.27–

61.36) 0.61 (0.43, 0.86) 0.004 0.63 (0.45, 0.89) 0.01 0.65 (0.46, 0.93) 0.02

 � Q4 73/123 74.29 (>61.36) 0.38 (0.26, 0.55) <0.001 0.39 (0.27, 0.57) <0.001 0.39 (0.27, 0.57) <0.001

P for trend <0.001 <0.001 <0.001

Per SD 

increment 0.71 (0.62, 0.81) <0.001 0.72 (0.62, 0.83) <0.001 0.72 (0.62, 0.83) <0.001

Phosphocholine

 � Q1 204/123 6.73 (1.84–8.43) 1 (reference) 1 (reference) 1 (reference)

 � Q2 115/123 9.5 (8.44–11.14) 0.59 (0.42, 0.83) 0.003 0.64 (0.45, 0.91) 0.01 0.69 (0.48, 1.01) 0.06

 � Q3 103/122

12.71 (11.15–

14.75) 0.55 (0.39, 0.78) <0.001 0.57 (0.40, 0.82) 0.002 0.56 (0.38, 0.85) 0.01

 � Q4 69/123 17.95 (>14.75) 0.36 (0.25, 0.52) <0.001 0.39 (0.26, 0.57) <0.001 0.45 (0.27, 0.73) 0.001

P for trend <0.001 <0.001 <0.001

Per SD 

increment 0.69 (0.60, 0.80) <0.001 0.71 (0.61, 0.83) <0.001 0.75 (0.61, 0.92) 0.01

Glycerophosphocholine

 � Q1 200/123

19.72 (7.78–

25.36) 1 (reference) 1 (reference) 1 (reference)

 � Q2 122/123

30.58 (25.37–

35.95) 0.64 (0.46, 0.90) 0.01 0.69 (0.49, 0.98) 0.04 0.71 (0.49, 1.04) 0.08

 � Q3 100/122

41.23 (35.96–

47.40) 0.52 (0.36, 0.74) <0.001 0.55 (0.38, 0.79) 0.001 0.59 (0.39, 0.89) 0.01

 � Q4 69/123 58.52 (>47.40) 0.38 (0.26, 0.56) <0.001 0.4 (0.27, 0.59) <0.001 0.5 (0.30, 0.83) 0.01

P for trend <0.001 <0.001 0.004

Per SD 

increment 0.66 (0.57, 0.77) <0.001 0.68 (0.58, 0.79) <0.001 0.72 (0.58, 0.90) 0.003

Phosphatidylcholine

 � Q1 229/123

80.32 (13.96–

117.80) 1 (reference) 1 (reference) 1 (reference)

(Continued)
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association across the observed range of egg intake (Poverall = 0.005; 
Pnonlinear = 0.841; Supplementary Figure 3).

3.3 Stratified and sensitivity analyses

We conducted stratified analyses and found that the inverse 
association between total dietary choline intake and the odds of PE 
was largely consistent across sociodemographic, lifestyle, reproductive, 

and clinical subgroups (Figure 4; Supplementary Table 6). For each 
1-SD increment in choline intake, significant reductions in odds were 
observed for both age groups (<30 years: OR = 0.75; 95% CI, 0.61–
0.92; ≥30 years: OR = 0.54; 95% CI, 0.44–0.66). Notably, the 
associations appeared stronger among women aged ≥30 years, those 
with higher income, and those without GDM. Significant interactions 
were detected in Figure  4 for age, income, and GDM (all 
Pinteraction < 0.05), but not for other variables (all Pinteraction > 0.05); no 
significant effect modification was found in Supplementary Table 6. 

TABLE 2  (Continued)

Dietary 
choline

Cases/
controls

Intake (mg/
day)

Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

 � Q2 90/123

157.13 (117.81–

178.52) 0.42 (0.30, 0.60) <0.001 0.45 (0.31, 0.64) <0.001 0.5 (0.34, 0.73) <0.001

 � Q3 101/122

209.11 (178.53–

246.02) 0.47 (0.33, 0.66) <0.001

0.5 (0.35, 0.71) <0.001 0.55 (0.37, 0.80) 0.002

 � Q4 71/123 312.81 

(>246.02)

0.33 (0.23, 0.48) <0.001 0.33 (0.23, 0.49) <0.001 0.4 (0.26, 0.61) <0.001

P for trend <0.001 <0.001 <0.001

Per SD 

increment

0.69 (0.59, 0.79) <0.001 0.7 (0.60, 0.80) <0.001 0.76 (0.64, 0.89) <0.001

Sphingomyelin

 � Q1 220/123 5.62 (0.51–7.90) 1 (reference) 1 (reference) 1 (reference)

 � Q2 123/123 9.7 (7.91–11.65) 0.6 (0.43, 0.84) 0.003 0.63 (0.45, 0.89) 0.01 0.63 (0.43, 0.91) 0.01

 � Q3 92/122 13.5 (11.66–

15.60)

0.45 (0.32, 0.64) <0.001 0.48 (0.33, 0.69) <0.001 0.55 (0.37, 0.81) 0.003

 � Q4 56/123 19.34 (>15.60) 0.27 (0.18, 0.40) <0.001 0.28 (0.19, 0.41) <0.001 0.28 (0.17, 0.44) <0.001

P for trend <0.001 <0.001 <0.001

Per SD 

increment

0.61 (0.53, 0.70) <0.001 0.62 (0.53, 0.72) <0.001 0.64 (0.54, 0.77) <0.001

Betaine

 � Q1 121/123 165.67 (20.69–

226.46)

1 (reference) 1 (reference) 1 (reference)

 � Q2 157/124 270.82 (226.47–

316.22)

1.22 (0.86, 1.73) 0.27 1.19 (0.83, 1.70) 0.35 1.38 (0.94, 2.03) 0.10

 � Q3 108/121 374.71 (316.23–

432.21)

0.89 (0.62, 1.29) 0.55 0.86 (0.59, 1.25) 0.43 1.12 (0.74, 1.68) 0.60

 � Q4 105/123 587.12 

(>432.21)

0.79 (0.54, 1.14) 0.21 0.75 (0.51, 1.10) 0.14 1.18 (0.76, 1.83) 0.47

P for trend 0.08 0.05 0.71

Per SD 

increment

0.89 (0.78, 1.02) 0.09 0.88 (0.77, 1.00) 0.05 1 (0.86, 1.17) 0.96

Q, quartile; OR, odds ratio; CI, confidence interval; BMI, body mass index; GDM, gestational diabetes mellitus.
Multivariable logistic regression models were used to estimate ORs and 95% CIs for the association between quartiles of individual choline subtypes and betaine intake and the odds of 
preeclampsia. The lowest quartile (Q1) was used as the reference group. P for trend was derived by modeling the median value of each quartile as a continuous variable. Per standard deviation 
(SD) increment estimates represent the change in odds of preeclampsia per one SD increase in the intake values.
Model 1 was adjusted for maternal age (years), gestational age at survey (weeks), and pre-pregnancy BMI (kg/m2).
Model 2 was further adjusted for socioeconomic and lifestyle factors, including monthly household income, educational attainment, physical activity (MET-hours/day), employment status, 
smoking status, alcohol consumption, and sleep quality.
Model 3 was additionally adjusted for dietary and reproductive variables, including daily energy intake (kcal/day), season of dietary assessment, parity, GDM, menstrual regularity, family 
history of hypertension, and supplement use (folic acid and multivitamins).
Two-sided P values are presented without adjustment for multiple comparisons, with P values below 0.001 reported as <0.001.
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Similarly, egg consumption showed consistent inverse associations 
across subgroups (Supplementary Figure  4), with significant 
interactions for age, income, and GDM, but not for other factors (all 
Pinteraction < 0.05).

Multiple sensitivity analyses consistently confirmed the 
robustness of our primary findings. When analyses were restricted to 
participants with complete data (excluding imputed values), higher 
total dietary choline intake remained strongly and inversely 
associated with the odds of PE (ORQ4 versus Q1 = 0.46, 95% CI: 0.28–
0.76; Ptrend = 0.001), and consistent inverse associations were observed 
for all major choline subtypes (Supplementary Table 7). Moreover, 
additional adjustment for psychological distress (anxiety and 
depression scores) did not meaningfully change the results (ORQ4 versus 

Q1 = 0.39, 95% CI: 0.24–0.64; Ptrend < 0.001; Supplementary Table 8). 
Similarly, excluding participants with gestational diabetes yielded 
comparable associations (ORQ4 versus Q1 = 0.46, 95% CI: 0.28–0.78; 

Ptrend < 0.001; Supplementary Table  9). In addition, analyses 
conducted without adjusting for total energy intake, as well as those 
using residual energy-adjusted choline intake, provided similar 
findings, further supporting the stability of our results (ORQ4 versus 

Q1 = 0.37–0.42, all Ptrend < 0.001; Supplementary Tables 10, 11).
Furthermore, dose–response analyses based on restricted cubic 

spline models showed a significant linear inverse association between 
total choline intake and the odds of PE (Poverall < 0.001; 
Pnonlinear = 0.795), whereas no significant association was detected for 
betaine intake (Poverall = 0.200; Pnonlinear = 0.076; 
Supplementary Figure  5). Notably, similar linear trends were 
consistently observed for all choline subtypes. Collectively, these 
comprehensive sensitivity analyses reinforce the reliability and 
robustness of the observed inverse association between dietary 
choline intake and the odds of PE, regardless of analytic approach or 
potential confounding factors.

FIGURE 2

Dose–response associations between choline and betaine intake and odds of preeclampsia. (A)Total choline; (B) Betaine; (C) Free choline; (D) PCho; 
(E) PtdCho; (F) GPCho; (G) SM; OR, odds ratio; CI, confidence interval; BMI, body mass index; GDM, gestational diabetes mellitus; PCho, 
phosphocholine; GPCho, glycerophosphocholine; PtdCho, phosphatidylcholine; SM, sphingomyelin. Restricted cubic spline regression models 
illustrating multivariable-adjusted dose–response relationships between various forms of dietary choline and betaine intake and the odds of PE among 
pregnant women. All models were adjusted for maternal age (years), gestational age at survey (weeks), pre-pregnancy BMI (kg/m2), monthly household 
income, educational attainment, physical activity (MET-hours/day), employment status, smoking status, alcohol consumption, sleep quality, daily 
energy intake (kcal/day), season of dietary assessment, parity, GDM, menstrual regularity, family history of hypertension, and supplement use (folic acid 
and multivitamins).
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4 Discussion

In this matched case–control study of pregnant women in China, 
higher habitual intake of total dietary choline was associated with 
lower odds of preeclampsia (PE), after multivariable adjustment. 
Inverse associations were observed across major choline subtypes—
including lipid-soluble phosphatidylcholine (PtdCho) and 
sphingomyelin (SM), as well as water-soluble free choline, 
glycerophosphocholine (GPCho), and phosphocholine (PCho)—and 
for both animal- and plant-derived sources. To our knowledge, within 
an Asian population, this is among the first studies to jointly assess 
amount, subtype distribution, dietary sources, and intake ratios of 
choline—including key contributors such as eggs—in relation to 
PE. These findings extend current evidence and suggest that adequate 
and diverse choline intake in early pregnancy may be  relevant to 
PE prevention.

Choline is an essential nutrient with critical roles in membrane 
integrity, neurotransmitter synthesis, and one-carbon metabolism 
(13). In non-pregnant populations, higher intake has been linked to 
reduced cardiovascular, cognitive, and hepatic risks, including the 
Framingham Heart Study, which reported lower dementia and 
Alzheimer’s disease risk with moderate intake (31), and National 
Health and Nutrition Examination Survey analyses showing inverse 
associations with cardiovascular disease and stroke (32). Pregnancy-
specific evidence is limited: in a prospective Iranian cohort, higher 
choline intake was associated with lower hypertension risk in women 

(33), whereas a large U.S. birth cohort found no association with 
gestational diabetes (34). Few studies have examined PE directly, and 
most have focused on total choline without differentiating chemical 
subtypes, sources, or intake ratios—particularly in Asian populations.

Our case–control study bridged these gaps by investigating lipid- 
and water-soluble subtypes, subtype proportions, and source-based 
intakes. Both subtype groups were inversely and individually 
associated with PE, and dose–response relationships revealed 
approximately linear patterns for lipid-soluble types and modest 
nonlinearity for water-soluble types (Pnonlinear = 0.036). The balance 
between lipid:water was L-shaped, and the relative maximum 
reduction was observed for a moderate balance. Our findings are 
consistent with prior evidence that plant-based, water-soluble choline 
is co-consumed with phytochemicals and unsaturated fats that may 
confer anti-inflammatory benefits (35, 36), whereas egg-derived 
PtdCho shows higher bioavailability than some synthetic forms (37) 
and may have higher membrane structure and methyl-donor economy 
impacts (38).

In our source-specific models, both plant- and animal-derived 
choline were inversely associated with PE risk, yet animal-to-plant 
ratio did not achieve significance in terms of outcome. This trend is 
consistent with nearly equivalent contribution from both sources, 
potentially easing complementing nutrient patterns. A South African 
birth cohort concluded that dairy- and egg-derived choline 
contributing >40% total choline had an associated 32% lower risk of 
PE (39). In another instance, among Norwegian stable angina patients, 

FIGURE 3

Dose–response associations between choline subtypes and sources and odds of preeclampsia. (A) Lipid-soluble choline (sum of PtdCho and SM); 
(B) Water-soluble choline (sum of free choline, GPCho, and PCho); (C) Ratio of lipid- to water-soluble choline intake; (D) Animal-derived choline 
intake; (E) Plant-derived choline intake; (F) Animal-to-plant choline intake ratio. OR, odds ratio; CI, confidence interval; BMI, body mass index; GDM, 
gestational diabetes mellitus; PCho, phosphocholine; GPCho, glycerophosphocholine; PtdCho, phosphatidylcholine; SM, sphingomyelin. Restricted 
cubic spline regression models depicting multivariable-adjusted dose–response relationships between various forms and dietary sources of choline 
intake and the odds of PE among pregnant women. All models were adjusted for maternal age (years), gestational age at survey (weeks), pre-
pregnancy BMI (kg/m2), monthly household income, educational attainment, physical activity (MET-hours/day), employment status, smoking status, 
alcohol consumption, sleep quality, daily energy intake (kcal/day), season of dietary assessment, parity, GDM, menstrual regularity, family history of 
hypertension, and supplement use (folic acid and multivitamins).
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FIGURE 4

Association between total dietary choline intake and odds of preeclampsia across subgroups of maternal characteristics (n = 982). OR, odds ratio; CI, 
confidence interval; BMI, body mass index; GDM, gestational diabetes mellitus. Multivariable-adjusted ORs and corresponding 95% CIs for 
preeclampsia are presented per one standard deviation increase in total dietary choline intake, stratified by key maternal and lifestyle characteristics. All 
models were adjusted for maternal age group, gestational age at survey (weeks), pre-pregnancy BMI group, monthly household income, educational 
attainment, physical activity (MET-hours/day), employment status, smoking status, alcohol consumption, sleep quality, daily energy intake (kcal/day), 
season of dietary assessment, parity, GDM, menstrual regularity, family history of hypertension, and supplement use (folic acid and multivitamins), with 
the stratification variable excluded from each respective model. Point estimates (squares) indicate adjusted ORs, with error bars representing 95% CIs. p 
values for interaction were derived from likelihood ratio tests and are presented without adjustment for multiple comparisons.
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animal-derived choline provided 55%, whereas plant-derived 
provided 45%, to total choline, and specific molecular forms had 
distinct metabolic fates (40). Although prior evidence comes from 
non-pregnant populations, those findings are directionally consistent 
with our results and with mechanistic data indicating that adequate, 
source-diverse choline intake may influence cardiometabolic 
pathways. In our data, this intake was associated with lower odds of 
PE. Eggs, the leading contributor in our study population, had a dose–
response association: 25 g/day increment (approximately one-half an 
egg) had 11% lower odds of PE. In agreement with previous studies, 
daily egg consumption significantly increases plasma choline and may 
promote fetal neuromaturation (41, 42), and experimental evidence 
further suggests that egg-derived choline attenuates PE-like features 
via α7-nAChR-mediated inhibition of NF-κB (43). Additionally, a 
recent Mendelian randomization analysis shows an inverse association 
between genetically proxied circulating choline levels and the risk of 
PE (20), providing genetic evidence consistent with a potential 
protective effect.

A variety of biologically reasonable mechanisms can support the 
observed inverse association between dietary choline intake and PE risk. 
First, epigenetic regulation via one-carbon metabolism. Choline, through 
betaine, supplies methyl groups for homocysteine remethylation and 
S-adenosylmethionine production (44, 45). Experimental studies show 
that maternal choline supplementation can reverse placental DNA 
hypomethylation, restore angiogenic gene expression, and modulate 
imprinted genes critical for placentation (46, 47). Furthermore, human 
evidence also links elevated choline intake to desirable placental 
methylation patterns (48). The superior bioavailability of egg-based 
PtdCho could increase methylation capacity, and plant-based, water-
soluble sources could supply phytochemicals modifying 
methyltransferase activity. Second, antioxidant, anti-inflammatory, and 
vascular pathways. Choline participates in one-carbon metabolism and 
membrane phospholipid synthesis, processes that can influence redox 
balance and endothelial function (43). For example, PtdCho–enriched 
HDL supports endothelial homeostasis, whereas endothelial dysfunction 
in PE is linked to oxidative and inflammatory stress (49). Experimental 
data indicate that higher dietary choline can modulate placental 
angiogenic signaling—including vascular endothelial growth factor 
(VEGF)—and attenuate apoptotic and inflammatory responses, while 
choline deficiency shows opposite effects (46, 50). From a dietary 
perspective, plant-based, water-soluble choline may confer anti-
inflammatory benefits, whereas egg-derived PtdCho supports membrane 
phospholipid integrity and lipoprotein structure (42, 51). Taken together 
with observational and genetic evidence, these findings support the 
biological plausibility that adequate, source-diverse choline intake may 
favorably influence epigenetic and vascular pathways relevant to PE.

Our study has a number of strengths. Most notably, our carefully 
matched case–control study design and validated food frequency 
questionnaire (FFQ) allowed careful measurement of total, subtype, 
ratio-based, and source-based choline intakes. Extensive use of sensitivity 
and subgroup analysis further strengthens the validity and 
generalizability of these findings. However, a number of limitations 
should be carefully considered. First, the study is necessarily of a case–
control design, and causal inference is ruled out; reverse causation 
cannot be excluded. Second, FFQ-based measurement of exposure is 
susceptible to recall and misclassification error, and use of food-
composition values, in part drawn from non-Chinese sources, may 
contribute additional measurement uncertainty. Third, although 

vigorous adjustment was made for a comprehensive array of known and 
suspected confounders, residual confounding by undiagnosed or 
imprecisely measured variables (e.g., genetic susceptibility, other dietary 
exposures, composition of gut microbiota) may be a factor. Fourth, the 
moderately sized sample size and associated sample size limitations may 
reduce statistical power to detect modest relationships or subtle 
interaction, and generalizability to other groups with different dietary 
patterns or racial/ethnic backgrounds may be attenuated. As a partial 
offset, during data collection, strict quality-assurance procedures were 
undertaken, and a complete range of sensitivity and subgroup analyses 
was undertaken, and these yielded results congruent and broadly 
supportive across all measures examined. Prospective studies, repeated 
dietary measures, and biomarker standardization will be critical future 
investigations to confirm these relationships. Overall, despite these 
challenges, our rigorous and detailed examination of choline 
subcategories and dietary sources offers strong and new mechanistic 
insight into dietary choline optimization as a preventative strategy for PE.

5 Conclusion

Higher total and subtype-specific dietary intakes of choline, both 
from animals and vegetables, were inversely associated with odds of 
PE in pregnant Chinese women. These findings point to the potential 
relevance of appropriate and diversified choline nutrition early in 
pregnancy, although prospective and interventional studies are needed 
to define causality and optimal levels of intake.
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