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Background: Preeclampsia (PE) is a leading cause of maternal and perinatal
morbidity and mortality. Choline, essential in one-carbon metabolism and
vascular function, may influence placental health. We examined associations
of total, subtype-, and source-specific dietary choline with PE odds in Chinese
women.

Methods: We conducted a 1:1 matched case—control study of 982 pregnant
women (491 PE cases; 491 controls) in Zhengzhou, China. Dietary intake over the
preceding three months was assessed using a validated semi-quantitative food-
frequency questionnaire. Conditional logistic regression calculated odds ratios
(ORs) and 95% confidence intervals (Cls) for total choline, lipid- vs. water-soluble
forms, and animal- vs. plant-derived sources, adjusting for covariates. Restricted
cubic splines explored possible non-linear dose—response associations.
Results: Among 982 participants (491 PE cases; 491 controls), mean total choline
intake was 335.8 mg/day, with eggs contributing 42.5%. In multivariable-adjusted
models, compared with the lowest quartile, those in the highest quartile of total
choline intake had 58% lower odds of PE (OR = 042; 95% Cl, 0.26-0.68), with
similar associations for lipid- (0.33; 0.22-0.48) and water-soluble forms (0.37;
0.25-0.54). Both animal- (0.43; 0.30-0.63) and plant-derived choline (0.31;
0.21-0.46) were protective, while their intake ratio was not. Each additional
25 g/day of egg (~half an egg) was linked to an 11% lower PE odds.
Conclusion: Higher habitual dietary choline intakes from animal and plant
sources were independently associated with significantly lower odds of PE,
suggesting that adequate, source-diverse choline intake in early pregnancy may
offer a practical dietary strategy for PE prevention.
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1 Introduction

Preeclampsia (PE) remains a major cause of maternal and
perinatal morbidity and mortality worldwide, affecting approximately
2-8% of pregnancies and contributing to around 46,000 maternal
deaths annually (1-3). Despite notable advances in obstetric care, its
incidence is increasing in many regions, including China—largely
driven by rising maternal age and a growing burden of cardiometabolic
risk factors (4, 5). Beyond its acute complications during pregnancy,
PE also confers substantial long-term risks for cardiovascular and
metabolic disorders in both mothers and their offspring (2, 6-9),
underscoring the urgent need to identify modifiable risk factors.

Emerging evidence implicates abnormal placentation, endothelial
dysfunction, and heightened oxidative stress as key mechanisms in PE
pathogenesis (10, 11). Among potentially modifiable factors,
nutritional exposures have received substantial attention (12).
Choline—a conditionally essential nutrient central to one-carbon
metabolism, methylation reactions, and membrane phospholipids—
has received comparatively less focus despite mounting data
implicating roles in placental function and vascular health (13, 14). In
many high-income populations, usual maternal choline intake often
falls short of pregnancy-appropriate recommendations (15, 16).
Although inadequate intake has been linked primarily to fetal/
neurodevelopmental concerns (16, 17), evidence connecting low
maternal choline intake or status to maternal clinical outcomes—
particularly PE—remains limited.

Experimental and epidemiological studies indicate that
fetal
neurodevelopment, increase the risk of neural tube defects, and

inadequate maternal choline intake may impair
adversely affect pregnancy outcomes (16, 18). Yet, the relationship
between dietary choline intake and PE risk remains poorly
understood (13), hindered by methodological limitations in the
existing literature. Large-scale prospective studies are lacking, and
most prior work has relied on cross-sectional or retrospective
designs, limiting causal inference (19). Moreover, little attention has
been paid to the heterogeneity of choline subtypes or their distinct
dietary sources, and few studies have considered the influence of
population-specific dietary patterns (13). Notably, recent Mendelian
randomization analyses implicate circulating choline metabolites
in PE development (20), but direct nutritional epidemiologic
evidence is needed to clarify these associations and inform
clinical practice.

To address these gaps, we conducted a matched case-control
study in China to examine the associations between total dietary
choline intake, specific chemical subtypes, and major dietary sources
with the odds of PE. To our knowledge, this is the first comprehensive
investigation of dietary choline and PE odds in an Asian population,
offering novel insights with potential implications for targeted

nutritional strategies and policy recommendations.

2 Methods
2.1 Study design and participants

We conducted a 1:1 matched case—control study nested within a
maternal nutrition surveillance program at the First Affiliated Hospital
of Zhengzhou University, China (March 2016-June 2019), designed
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to investigate the association between dietary choline intake and the
odds of preeclampsia (PE).

PE diagnosis followed the 2015 Chinese guidelines (21), requiring
new-onset hypertension (>140/90 mmHg) after 20 weeks’ gestation
accompanied by either proteinuria (>0.3 g/24 h) or evidence of organ
dysfunction. Eligible participants were pregnant women aged
18-45 years with singleton pregnancies and no history of gestational
hypertension. Each case was individually matched to a control based
on maternal age (+3 years), gestational age (+1 week), and gestational
diabetes mellitus (GDM) status. Exclusion criteria included chronic
hypertension, diabetes, renal or psychiatric disease, and implausible
energy intake (<500 or >5,000 kcal/day). Of the 1,218 women
screened, 491 matched pairs (n = 982) were included in the final
analysis (Supplementary Figure 1). Power calculations indicated that
the sample size provided 80% power (a = 0.05) to detect an odds ratio
0f 0.50 for high versus low choline intake (22). The study was approved
by the Ethics Committee of the First Affiliated Hospital of Zhengzhou
University (No. Scientific research-2016-LW-34), and all participants
provided written informed consent.

2.2 Assessment of dietary choline

Dietary intake was assessed during face-to-face interviews using
a validated 79-item semi-quantitative food-frequency questionnaire
(FFQ) capturing usual intake over the three months preceding
delivery. The FFQ’s accuracy for estimating energy and nutrient
intakes has been previously confirmed (23, 24). For each food item,
intake frequency (never, monthly, weekly, daily) and portion size were
recorded, aided by a standardized color photo booklet to improve
portion-size estimation.

Energy (kcal/day) and most nutrient intakes were calculated using
the Chinese Food Composition Tables (25). As choline and betaine
values were not available in this database, these nutrient contents were
obtained from the USDA FoodData Central (U.S. Department of
Agriculture, Agricultural Research Service) (26). Total dietary choline
was calculated as the sum of phosphatidylcholine (PtdCho),
sphingomyelin (SM), free choline, glycerophosphocholine (GPCho),
and phosphocholine (PCho). Choline was further classified into lipid-
soluble forms (PtdCho, SM) and water-soluble forms (free choline,
GPCho, PCho), and into animal- and plant-derived sources based on
food origin. Daily intakes of choline subtypes and betaine (mg/day)
were estimated by multiplying the consumption of each food by its
nutrient content per 100 g and summing across all foods.

To account for total energy intake, we additionally derived energy-
adjusted choline (and subtypes) using the residual method (27);
unadjusted values were used for descriptive analyses, and both
unadjusted and energy-adjusted values were included in sensitivity
analyses. Supplement use (e.g., folic acid, multivitamins) was recorded
and included as covariates in multivariable analyses.

2.3 Assessment of preeclampsia

PE status was ascertained from medical records and confirmed by
senior obstetricians according to the 2015 Chinese guidelines for
hypertensive disorders of pregnancy. Diagnosis required new-onset
hypertension—systolic blood pressure >140 mmHg or diastolic
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>90 mmHg—after 20 weeks’ gestation, plus either: (1) proteinuria
(>0.3 g/24 h, protein-to-creatinine ratio >0.3, or dipstick > “+”), or
(2) in the absence of proteinuria, evidence of maternal organ/system
dysfunction (hepatic, renal, cardiovascular, respiratory, hematologic,
neurologic, or placental-fetal involvement).

Blood pressure was measured twice, five minutes apart, with a
calibrated automated sphygmomanometer; the mean value was used
for classification. Urinary protein was measured using 24-h collections
when feasible; otherwise, spot protein-to-creatinine ratio or dipstick
tests were applied per guideline recommendations. All PE cases met
these criteria, whereas controls remained normotensive with no
evidence of organ dysfunction throughout pregnancy.

2.4 Assessment of covariates

Covariates were selected based on established links with dietary
patterns and hypertensive disorders in pregnancy. The interviewer-
administered structured questionnaire was used only for non-dietary
covariates. Sociodemographic variables included maternal age (years),
monthly household income (<2,000; 2,001-4,000; 4,001-6,000;
>6,000 yuan), educational attainment (middle school or below, high
school or equivalent, college or above), and employment status
(employed/unemployed). Lifestyle factors included smoking and
alcohol use (ever/never), physical activity (MET-hours/day,
continuous), and self-reported sleep quality (poor/moderate/good).
Reproductive history variables included parity (0, 1, >2), menstrual
regularity (yes/no), and gestational age (weeks, continuous).
Pre-pregnancy BMI (kg/m?, continuous) and supplement use (folic
acid, multivitamins) were self-reported at baseline. Dietary energy
intake (kcal/day, continuous) was calculated from the FFQ, and the
dietary assessment period was categorized by season (spring, summer,
autumn, winter). Clinical covariates included GDM status (yes/no)
and family history of hypertension (yes/no). Psychological distress
was assessed with standardized Zung Self-Rating Anxiety Scale (28)
(SAS) and Self-Rating Depression Scale (29) (SDS) scores.

2.5 Statistical analysis

Continuous variables are presented as means (standard deviations
[SD]) and categorical variables as counts (percentages). Differences
between PE cases and controls were assessed using Student’s t test or
Chi-square test, as appropriate. For variables with <25% missing data,
multiple imputation (five imputations) was performed, and pooled
estimates were calculated using Rubin’s rules (30).

The primary analyses examined associations between total
choline, individual choline compounds (free choline, PCho, PtdCho,
GPCho, SM), and betaine intake and the odds of PE using
conditional logistic regression for matched pairs. Additional analyses
evaluated choline subcategories (lipid-soluble, water-soluble, lipid-
to-water choline intake ratio), source-specific choline (animal-
derived, plant-derived, animal-to-plant intake ratio), and daily egg
intake—the primary dietary source of choline in this case-control
study. For each exposure, intakes were categorized into quartiles
according to the control group distribution (lowest quartile as
reference). Trends across quartiles were tested by modeling the
median intake of each quartile as a continuous variable. Associations
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per 1-SD increment in intake were also estimated. Odds ratios (ORs)
and 95% confidence intervals (CIs) were derived from three models:
Model 1 adjusted for maternal age, gestational age, and
pre-pregnancy BMI; Model 2 additionally adjusted for household
income, educational attainment, physical activity, employment
status, smoking, alcohol use, and sleep quality; and Model 3 further
adjusted for energy intake, assessment season, parity, GDM,
menstrual regularity, family history of hypertension, and supplement
use. Restricted cubic spline models were used to explore potential
non-linear associations between choline-related exposures and the
odds of PE.

Stratified and interaction analyses assessed effect modification
within prespecified subgroups, with interaction p values derived from
likelihood ratio tests (unadjusted for multiple comparisons). A series
of sensitivity analyses were performed to test the robustness of
findings: (1) analyses restricted to complete cases; (2) further
adjustment for psychological distress (anxiety and depression scores);
(3) exclusion of participants diagnosed with GDM; (4) analyses
without adjustment for daily energy intake to examine associations
irrespective of total energy; and (5) analyses using residual energy-
adjusted choline intake.

3 Results
3.1 Baseline characteristics

A total of 982 pregnant women (mean age: 31.1 + 5.0 years) were
included, comprising 491 preeclampsia (PE) cases and 491 matched
controls. The mean (SD) total dietary choline intake was 335.8
(144.8) mg/day (range: 55.8-954.6 mg/day), with higher choline
intakes generally observed among women with greater total energy
(Table 1;
Supplementary Table 1). In terms of choline composition, lipid-

and nutrient  consumption Figure 1A;
soluble forms—primarily phosphatidylcholine (PtdCho) and
sphingomyelin (SM)—accounted for 67.3% of total choline intake,
while water-soluble forms (free choline, glycerophosphocholine
[GPCho], and phosphocholine [PCho]) contributed the remaining
32.7% (Figure 1B; Supplementary Table 2). When examining dietary
sources, eggs were the predominant dietary source, providing 42.5%
of total choline, followed by red meat (12.9%), vegetables (11.1%),
whole grains (10.0%), and dairy products (8.9%). The proportional
contributions of these sources were similar between PE cases
and controls.

Across intake quartiles, dietary and sociodemographic
gradients were evident. Participants in the highest quartile of total
choline intake (Q4, >375.0 mg/day) consumed substantially more
daily energy (mean 2,454.6 kcal), egg consumption (94.8 g/day),
and animal-derived choline (327.1 mg/day) than those in the
lowest quartile (Q1, <210.3 mg/day; 1,602.2 kcal, 24.6 g/day, and
84.3 mg/day, respectively). Moreover, higher choline intake was
also associated with higher educational attainment, greater
household income, and more diverse dietary patterns. Compared
with controls, participants with PE had significantly lower total
choline intake (305.7 vs. 366.0 mg/day), including both lipid- and
water-soluble forms, and consumed fewer eggs and other animal-
derived foods (Figure 1C). Additionally, PE cases also exhibited
higher pre-pregnancy BMI, a greater prevalence of family history
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TABLE 1 Baseline characteristics of participants across quartiles of total dietary choline intake.

Characteristics Total (n =982) Q1 (n = 329) Q2 (n = 256) Q3 (n = 204) Q4 (n = 193) P value
Maternal age, years 31.05+5.02 31.05 + 5.05 31.29 +5.03 30.52+4.71 31.30£5.29 0.35
Gestational age, weeks 34.19 +£2.84 33.80 +2.83 34.38 +£2.88 34.35+2.72 34.44 +£2.90 0.02
Pre-pregnancy BMI, kg/m’ 23.11 £3.63 23.59+4.15 22.95+3.24 22.67 £3.14 22.95 £ 3.56 0.02
Physical activity (MET- h/d) 26.87 £4.31 26.97 £4.29 26.74 £ 4.08 26.67 £ 4.09 27.07 £4.86 0.74
Daily energy intake (kcal/
day) 1920.00 + 547.69 1602.16 + 376.90 1834.42 + 386.05 2034.25 + 485.04 2454.58 +599.38 <0.001
Anxiety score 38.25+£6.97 37.71 £ 6.42 37.74+7.51 38.40 £ 6.74 39.69 £7.20 <0.01
Depression score 39.62 £ 8.95 39.98 £8.51 38.61 +9.54 39.06 + 8.57 40.96 £9.14 0.03
Income (Yuan/month) 0.08
<2,000 128 (13.03) 59 (17.93) 28 (10.94) 16 (7.84) 25 (12.95)
2,001-4,000 523 (53.26) 171 (51.98) 137 (53.52) 114 (55.88) 101 (52.33)
4,001-6,000 180 (18.33) 60 (18.24) 47 (18.36) 38 (18.63) 35(18.13)
>6,000 151 (15.38) 39 (11.85) 44 (17.19) 36 (17.65) 32 (16.58)
Educational attainment, % <0.001
Middle school or below 405 (41.24) 167 (50.76) 99 (38.67) 65 (31.86) 74 (38.34)
High school or equivalent 184 (18.74) 65 (19.76) 48 (18.75) 32 (15.69) 39 (20.21)
College or above 393 (40.02) 97 (29.48) 109 (42.58) 107 (52.45) 80 (41.45)
Employment status, % 0.31
Employed 332 (33.81) 100 (30.40) 94 (36.72) 75 (36.76) 63 (32.64)
Unemployed 650 (66.19) 229 (69.60) 162 (63.28) 129 (63.24) 130 (67.36)
Smoking status, % 0.70
Ever 149 (15.17) 49 (14.89) 35 (13.67) 36 (17.65) 29 (15.03)
Never 833 (84.83) 280 (85.11) 221 (86.33) 168 (82.35) 164 (84.97)
Drinking status, % 0.55
Ever 20 (2.04) 7(2.13) 3(1.17) 4 (1.96) 6(3.11)
Never 962 (97.96) 322(97.87) 253 (98.83) 200 (98.04) 187 (96.89)
Sleep quality, % 0.99
Poor 264 (26.88) 87 (26.44) 70 (27.34) 57 (27.94) 50 (25.91)
Moderate 396 (40.33) 133 (40.43) 107 (41.80) 80 (39.22) 76 (39.38)
Good 322 (32.79) 109 (33.13) 79 (30.86) 67 (32.84) 67 (34.72)
Survey season, % 0.20
Spring 267 (27.19) 90 (27.36) 63 (24.61) 71 (34.80) 43 (22.28)
Summer 211 (21.49) 68 (20.67) 56 (21.88) 37 (18.14) 50 (25.91)
Autumn 275 (28.00) 92 (27.96) 73 (28.52) 58 (28.43) 52 (26.94)
Winter 229 (23.32) 79 (24.01) 64 (25.00) 38 (18.63) 48 (24.87)
Parity, % 0.22
0 365 (37.17) 128 (38.91) 89 (34.77) 78 (38.24) 70 (36.27)
1 435 (44.30) 128 (38.91) 121 (47.27) 96 (47.06) 90 (46.63)
>2 182 (18.53) 73(22.19) 46 (17.97) 30 (14.71) 33(17.10)
Preeclampsia, % <0.001
No 491 (50.00) 123 (37.39) 123 (48.05) 122 (59.80) 123 (63.73)
Yes 491 (50.00) 206 (62.61) 133 (51.95) 82 (40.20) 70 (36.27)
GDM, % 136 (13.85) 33 (10.03) 35(13.67) 34 (16.67) 34 (17.62) 0.05
Menstrual regularity, % 909 (92.57) 300 (91.19) 234 (91.41) 194 (95.10) 181 (93.78) 0.29
Family history of 285 (29.02) 101 (30.70) 80 (31.25) 55 (26.96) 49 (25.39) 0.44
hypertension, %

(Continued)
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TABLE 1 (Continued)

10.3389/fnut.2025.1703117

Characteristics Total (n =982) Q1 (n = 329) Q2 (n = 256) Q3 (n =204) Q4 (n =193) P value
Dietary intake
Egg (g/day) 54.65 + 34.62 24.60 £ 17.98 50.96 + 18.53 69.75 + 26.73 94.81 +30.48 <0.001
Vegetable (g/day) 355.83 £172.79 286.84 + 122.68 353.14 £ 155.33 371.51 £160.08 460.41 £ 219.74 <0.001
Fruit (g/day) 363.84 £275.23 291.00 £ 221.67 313.90 £ 170.23 425.19 = 309.37 489.39 £ 362.15 <0.001
Protein (g/day) 66.32 +23.00 47.86 +12.28 62.99 + 13.65 73.87 £ 14.21 94.21 £23.29 <0.001
Fat (g/day) 74.77 £ 25.72 61.80 £ 19.12 70.89 + 20.50 78.22 £ 21.57 98.38 £ 28.72 <0.001
Carbohydrate (g/day) 252.40 £ 82.35 219.20 £ 63.32 242.57 £ 62.49 266.40 + 85.43 307.22 £ 98.25 <0.001
Total choline (mg/day) 335.84 +144.82 195.95 +50.71 307.64 + 23.67 393.32 £27.04 550.96 + 128.92 <0.001
Betaine (mg/day) 372.16 £ 231.62 324.02 +173.29 359.90 + 231.06 403.97 = 239.65 436.84 + 285.87 <0.001
Lipid-soluble choline 226.02 £ 120.02 116.27 + 45.51 204.63 +29.46 271.36 £43.83 393.57 £123.37 <0.001
(mg/day)
Water-soluble choline 109.82 +45.18 79.68 + 24.05 103.01 £ 24.72 121.97 + 33.76 157.39 £ 58.11 <0.001
(mg/day)
Animal—derived choline 180.82 + 115.17 84.27 £ 46.37 164.14 + 43.09 219.04 £ 60.08 327.12 £ 135.66 <0.001
(mg/day)
Plant—derived choline 155.02 + 67.52 111.68 + 31.64 143.50 + 41.69 174.28 + 54.94 223.84 £ 86.79 <0.001
(mg/day)
Free choline (mg/day) 54.96 £ 21.07 42.16 £ 12.39 51.79 £ 13.39 59.98 +£16.98 75.69 £ 26.67 <0.001
Phosphocholine (mg/day) 13.08 +6.28 9.07 +3.28 12.35 +3.68 14.50 + 4.69 19.37 + 8.48 <0.001
Glycerophosphocholine 41.78 £21.15 28.45+11.30 38.87 £ 11.66 47.49 = 17.05 62.34 +28.35 <0.001
(mg/day)
Phosphatidylcholine (mg/ 212.24 £113.75 108.85 + 43.24 192.02 £ 29.05 254.83 £42.94 370.30 £ 118.11 <0.001
day)
Sphingomyelin (mg/day) 13.78 + 6.95 7.42 £2.98 12.61 £2.20 16.52 +3.14 2327 +£6.71 <0.001
Folic acid supplement, % 792 (80.65) 254 (77.20) 207 (80.86) 172 (84.31) 159 (82.38) 0.20
Multivitamin 128 (13.03) 44 (13.37) 38 (14.84) 23 (11.27) 23 (11.92) 0.67
supplement, %

Q, quartile; BMI, body mass index; GDM, gestational diabetes mellitus.

Quartile cut-offs for total dietary total choline intake were defined based on the sample distribution as follows: Q1: 55.8-210.3 mg/day; Q2: 210.3-288.3 mg/day; Q3: 288.3-375.0 mg/day; Q4:
375.0-954.6 mg/day. The corresponding median intake for each quartile was 161.6 mg/day (Q1), 254.8 mg/day (Q2), 326.5 mg/day (Q3), and 454.6 mg/day (Q4). Each quartile comprised
approximately 25% of the study population. Continuous variables are presented as mean + standard deviation (SD), and categorical variables are expressed as number [percentage (%)]. The
proportion of missing data was as follows: monthly household income (5.6%), educational attainment (0.1%), smoking status (0.1%), alcohol consumption (0.1%), menstrual regularity
(0.41%), season of survey (1.12%), and family history of hypertension (0.81%). All other variables, including maternal age, gestational age, pre-pregnancy BMI, physical activity, daily energy
intake, anxiety and depression scores, employment status, sleep quality, parity, GDM, and use of folic acid or multivitamin supplements, were complete with no missing values.

Two-sided p values are presented without adjustment for multiple comparisons, with p values below 0.001 reported as <0.001. Bold values indicating statistical significance, p < 0.05).

of hypertension, and poorer sleep quality. Correlations were
strongest between PtdCho and SM (r=0.89), with moderate
correlations among water-soluble subtypes (Supplementary
Figure 2).

3.2 Dietary choline, betaine intake, and
odds of preeclampsia

Higher total dietary choline intake was strongly associated
with lower odds of PE (Table 2; Figure 2A). In fully adjusted
models, women in Q4 had 58% lower odds of PE compared with
those in Q1 (95% CI, 0.26-0.68; Pyenq < 0.001). Each 1-SD
increment in total choline intake corresponded to a 31% lower
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odds of PE (95% CI, 0.57-0.84). These inverse associations were

consistent  across  sequential models adjusting for
sociodemographic, lifestyle, dietary, and reproductive factors
(Model 1-Model 3). Restricted cubic spline analyses confirmed a
significant  linear  inverse  association  (Pyyern < 0.001;
Pooniinear = 0.260), with no evidence of a threshold effect
(Figure 2A).

Similar inverse associations were observed for all individual
choline subtypes (free choline, PCho, PtdCho, GPCho, and SM), with
women in the highest quartile of each subtype consistently exhibiting
markedly lower odds of PE compared to those in the lowest quartile.
Fully adjusted ORs (95% CI) for the highest versus lowest quartile
were: free choline (0.39; 95% CI, 0.27-0.57), PCho (0.45; 95% CI, 0.27-
0.73), GPCho (0.50; 95% CI, 0.30-0.83), PtdCho (0.40; 95% CI, 0.26—

0.61), and SM (0.28; 95% CI, 0.17-0.44); all Py < 0.004 (Table 2;
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FIGURE 1
Distribution and food source composition of dietary choline and betaine intake among preeclampsia cases and controls. PE, preeclampsia; PtdCho,
phosphatidylcholine; SM, sphingomyelin; GPCho, glycerophosphocholine; PCho, phosphocholine. (A) Composition of total dietary choline intake
among all participants. In this study population, the average total choline intake was 335.1 mg/day. (B) Relative contributions of major food groups to
total dietary choline and betaine intake. Eggs constituted the predominant dietary source of choline, accounting for 42.48% of total intake.
(C) Comparative distribution of lipid-soluble and water-soluble choline, as well as betaine intake, between women with preeclampsia and controls.
Lipid-soluble choline includes PtdCho and SM; water-soluble choline includes free choline, GPCho, and PCho. Values are presented as means, with
error bars denoting standard deviations (+ SD). *p < 0.05, **p < 0.01, ***p < 0.001 for group comparisons.

Figures 2C-G). By contrast, no significant association was observed for
dietary betaine in any model (ORqy versus 1 = 1.18; 95% CI, 0.76-1.83;
Pirena = 0.71) (Table 2; Figure 2B).

Analysis of choline subcategories showed that both lipid- and
water-soluble choline intakes were independently and inversely
associated with the odds of PE (Figure 3; Supplementary Table 3). In
fully adjusted models, ORqy versus 1 Was 0.33 (95% CI, 0.22-0.48;
Piena < 0.001) for lipid-soluble and 0.37 (95% CI, 0.25-0.54;
Piena < 0.001) for water-soluble choline. Dose-response analyses
confirmed a significant linear association for lipid-soluble choline
(Poveranl < 0.0015 Pyoptinear = 0.191; Figure 3A) and a modest nonlinearity
for water-soluble choline (Pyyeran = 0.002; Pontinear = 0.036; Figure 3B).
For the lipid-to-water choline intake ratio, an L-shaped association
was observed, with the greatest odds reduction at moderate ratios
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(ORqs versus 1 = 0.56; 95% CI, 0.39-0.82), but no further reduction at
the highest quartile (ORgs versus o1 = 0.72; 95% CI, 0.51-1.03;
Pirena = 0.02; Figure 3C).

Source-specific analyses indicated that both animal-derived and
plant-derived choline were inversely associated with PE odds (OR,
versus 1 = 043, 95% CI, 0.30-0.63 and 0.31, 95% CI, 0.21-0.46,
respectively; both Pyeq < 0.001; Supplementary Table 4), with no
significant association for the animal-to-plant choline intake ratio
(ORgs versws o0 =0.96; 95% CI, 0.67-1.37; Pyepg=0.98). Egg
consumption—the predominant dietary source of choline—was also
inversely associated with PE odds (ORq yersus qu = 0.48; 95% CI, 0.32-
0.72; Pyena < 0.001), with each 25 g/day increment corresponding to an
OR of 0.89 (95% CI, 0.82-0.98; p = 0.01; Supplementary Table 5).
Dose-response modeling indicated a consistent linear inverse
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TABLE 2 Associations of total dietary choline and betaine intake with odds of preeclampsia.

Model 1
OR (95% ClI)

Model 2
OR (95% Cl)

Model 3
OR (95% ClI)

Cases/
controls

Dietary

Intake (mg/

choline day)

P value P value P value

Total choline intake

161.55 (55.82—

Q1 206/123 210.32) 1 (reference) 1 (reference) 1 (reference)
254.81 (210.33-
Q2 133/123 288.28) 0.7 (0.50, 0.98) 0.04 0.74 (0.52, 1.04) 0.08 0.79 (0.54, 1.14) 0.21
326.5 (288.29-
Q3 82/122 374.99) 0.43 (0.30, 0.62) <0.001 0.46 (0.32, 0.67) <0.001 0.54 (0.36, 0.82) 0.004
454.62
Q4 70/123 (>375.00) 0.36 (0.25, 0.53) <0.001 0.37 (0.25, 0.54) <0.001 0.42 (0.26, 0.68) <0.001
P for trend <0.001 <0.001 <0.001
Per SD
increment 0.65 (0.56, 0.75) <0.001 0.66 (0.57, 0.76) <0.001 0.69 (0.57, 0.84) <0.001
Free choline
34.27 (11.68-
Q1 192/123 38.98) 1 (reference) 1 (reference) 1 (reference)
43.13 (38.99-
Q2 110/123 48.26) 0.57 (0.41, 0.81) 0.001 0.59 (0.42, 0.84) 0.003 0.62 (0.43, 0.88) 0.01
54.52 (48.27-
Q3 116/122 61.36) 0.61 (0.43, 0.86) 0.004 0.63 (0.45, 0.89) 0.01 0.65 (0.46, 0.93) 0.02
Q4 73/123 74.29 (>61.36) 0.38 (0.26, 0.55) <0.001 0.39 (0.27,0.57) <0.001 0.39 (0.27, 0.57) <0.001
P for trend <0.001 <0.001 <0.001
Per SD
increment 0.71 (0.62, 0.81) <0.001 0.72 (0.62, 0.83) <0.001 0.72 (0.62, 0.83) <0.001
Phosphocholine
Q1 204/123 6.73 (1.84-8.43) 1 (reference) 1 (reference) 1 (reference)
Q2 115/123 9.5 (8.44-11.14) 0.59 (0.42, 0.83) 0.003 0.64 (0.45, 0.91) 0.01 0.69 (0.48, 1.01) 0.06
12.71 (11.15-
Q3 103/122 14.75) 0.55 (0.39, 0.78) <0.001 0.57 (0.40, 0.82) 0.002 0.56 (0.38, 0.85) 0.01
Q4 69/123 17.95 (>14.75) | 0.36(0.25,0.52) <0.001 0.39 (0.26,0.57) <0.001 0.45 (0.27, 0.73) 0.001
P for trend <0.001 <0.001 <0.001
Per SD
increment 0.69 (0.60, 0.80) <0.001 0.71 (0.61, 0.83) <0.001 0.75(0.61, 0.92) 0.01
Glycerophosphocholine
19.72 (7.78-
Q1 200/123 25.36) 1 (reference) 1 (reference) 1 (reference)
30.58 (25.37-
Q2 122/123 35.95) 0.64 (0.46, 0.90) 0.01 0.69 (0.49, 0.98) 0.04 0.71 (0.49, 1.04) 0.08
41.23 (35.96-
Q3 100/122 47.40) 0.52 (0.36, 0.74) <0.001 0.55 (0.38, 0.79) 0.001 0.59 (0.39, 0.89) 0.01
Q4 69/123 58.52 (>47.40) 0.38 (0.26, 0.56) <0.001 0.4 (0.27, 0.59) <0.001 0.5(0.30, 0.83) 0.01
P for trend <0.001 <0.001 0.004
Per SD
increment 0.66 (0.57, 0.77) <0.001 0.68 (0.58, 0.79) <0.001 0.72 (0.58, 0.90) 0.003
Phosphatidylcholine
80.32 (13.96-
Q1 229/123 117.80) 1 (reference) 1 (reference) 1 (reference)
(Continued)
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TABLE 2 (Continued)

Dietary Cases/ Intake (mg/ Model 1 Model 2 Model 3
choline COntrols 9y OR(95%Cl Pvalue OR(95%Cl Pvalue OR(95%Cl) Pvalue
157.13 (117.81-
Q2 90/123 178.52) 0.42 (0.30, 0.60) <0.001 0.45 (0.31, 0.64) <0.001 0.5 (0.34, 0.73) <0.001
209.11 (178.53— 0.5(0.35,0.71) <0.001 0.55 (0.37, 0.80) 0.002
Q3 101/122 246.02) 0.47 (0.33, 0.66) <0.001
Q4 71/123 312.81 0.33(0.23, 0.48) <0.001 0.33(0.23, 0.49) <0.001 0.4 (0.26, 0.61) <0.001
(>246.02)
P for trend <0.001 <0.001 <0.001
Per SD 0.69 (0.59, 0.79) <0.001 0.7 (0.60, 0.80) <0.001 0.76 (0.64, 0.89) <0.001
increment
Sphingomyelin
Q1 220/123 5.62 (0.51-7.90) 1 (reference) 1 (reference) 1 (reference)
Q2 123/123 9.7 (7.91-11.65) 0.6 (0.43, 0.84) 0.003 0.63 (0.45, 0.89) 0.01 0.63 (0.43,0.91) 0.01
Q3 92/122 13.5 (11.66— 0.45 (0.32, 0.64) <0.001 0.48 (0.33, 0.69) <0.001 0.55 (0.37,0.81) 0.003
15.60)
Q4 56/123 19.34 (>15.60) 0.27 (0.18, 0.40) <0.001 0.28 (0.19, 0.41) <0.001 0.28 (0.17, 0.44) <0.001
P for trend <0.001 <0.001 <0.001
Per SD 0.61 (0.53, 0.70) <0.001 0.62 (0.53, 0.72) <0.001 0.64 (0.54, 0.77) <0.001
increment
Betaine
Q1 121/123 165.67 (20.69- 1 (reference) 1 (reference) 1 (reference)
226.46)
Q2 157/124 270.82 (22647 | 1.22(0.86, 1.73) 0.27 1.19 (0.83, 1.70) 0.35 1.38 (0.94, 2.03) 0.10
316.22)
Q3 108/121 374.71 (316.23— 0.89 (0.62, 1.29) 0.55 0.86 (0.59, 1.25) 0.43 1.12 (0.74, 1.68) 0.60
432.21)
Q4 105/123 587.12 0.79 (0.54, 1.14) 0.21 0.75(0.51, 1.10) 0.14 1.18 (0.76, 1.83) 0.47
(>432.21)
P for trend 0.08 0.05 0.71
Per SD 0.89 (0.78, 1.02) 0.09 0.88 (0.77, 1.00) 0.05 1(0.86, 1.17) 0.96
increment

Q, quartile; OR, odds ratio; CI, confidence interval; BMI, body mass index; GDM, gestational diabetes mellitus.

Multivariable logistic regression models were used to estimate ORs and 95% ClIs for the association between quartiles of individual choline subtypes and betaine intake and the odds of
preeclampsia. The lowest quartile (Q1) was used as the reference group. P for trend was derived by modeling the median value of each quartile as a continuous variable. Per standard deviation
(SD) increment estimates represent the change in odds of preeclampsia per one SD increase in the intake values.

Model 1 was adjusted for maternal age (years), gestational age at survey (weeks), and pre-pregnancy BMI (kg/m?).

Model 2 was further adjusted for socioeconomic and lifestyle factors, including monthly household income, educational attainment, physical activity (MET-hours/day), employment status,

smoking status, alcohol consumption, and sleep quality.

Model 3 was additionally adjusted for dietary and reproductive variables, including daily energy intake (kcal/day), season of dietary assessment, parity, GDM, menstrual regularity, family

history of hypertension, and supplement use (folic acid and multivitamins).

Two-sided P values are presented without adjustment for multiple comparisons, with P values below 0.001 reported as <0.001.

association across the observed range of egg intake (Pyye;n = 0.005;
Ponlinear = 0.841; Supplementary Figure 3).

3.3 Stratified and sensitivity analyses
We conducted stratified analyses and found that the inverse

association between total dietary choline intake and the odds of PE
was largely consistent across sociodemographic, lifestyle, reproductive,
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and clinical subgroups (Figure 4; Supplementary Table 6). For each
1-SD increment in choline intake, significant reductions in odds were
observed for both age groups (<30 years: OR = 0.75; 95% CI, 0.61-
0.92; >30years: OR=0.54; 95% CI, 0.44-0.66). Notably, the
associations appeared stronger among women aged >30 years, those
with higher income, and those without GDM. Significant interactions
were detected in Figure 4 for age, income, and GDM (all
Pieraction < 0.05), but not for other variables (all Peraction > 0.05); no
significant effect modification was found in Supplementary Table 6.
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FIGURE 2
Dose-response associations between choline and betaine intake and odds of preeclampsia. (A)Total choline; (B) Betaine; (C) Free choline; (D) PCho;
(E) PtdCho; (F) GPCho; (G) SM; OR, odds ratio; Cl, confidence interval; BMI, body mass index; GDM, gestational diabetes mellitus; PCho,
phosphocholine; GPCho, glycerophosphocholine; PtdCho, phosphatidylcholine; SM, sphingomyelin. Restricted cubic spline regression models
illustrating multivariable-adjusted dose—-response relationships between various forms of dietary choline and betaine intake and the odds of PE among
pregnant women. All models were adjusted for maternal age (years), gestational age at survey (weeks), pre-pregnancy BMI (kg/m?), monthly household
income, educational attainment, physical activity (MET-hours/day), employment status, smoking status, alcohol consumption, sleep quality, daily
energy intake (kcal/day), season of dietary assessment, parity, GDM, menstrual regularity, family history of hypertension, and supplement use (folic acid
and multivitamins).

Similarly, egg consumption showed consistent inverse associations
across subgroups (Supplementary Figure 4), with significant
interactions for age, income, and GDM, but not for other factors (all
Pinieraction < 0.05).

Multiple sensitivity analyses consistently confirmed the
robustness of our primary findings. When analyses were restricted to
participants with complete data (excluding imputed values), higher
total dietary choline intake remained strongly and inversely
associated with the odds of PE (ORq yersus i = 0.46, 95% CI: 0.28-
0.76; Pyena = 0.001), and consistent inverse associations were observed
for all major choline subtypes (Supplementary Table 7). Moreover,
additional adjustment for psychological distress (anxiety and
depression scores) did not meaningfully change the results (ORq versus
a1 = 0.39, 95% CI: 0.24-0.64; Pyena < 0.001; Supplementary Table 8).
Similarly, excluding participants with gestational diabetes yielded
comparable associations (ORqy yersus q1 = 046, 95% CI: 0.28-0.78;
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Piena < 0.001; Supplementary Table 9). In addition, analyses
conducted without adjusting for total energy intake, as well as those
using residual energy-adjusted choline intake, provided similar
findings, further supporting the stability of our results (ORqy versus
a1 = 0.37-0.42, all P,¢pq < 0.001; Supplementary Tables 10, 11).
Furthermore, dose-response analyses based on restricted cubic
spline models showed a significant linear inverse association between
intake and the odds of PE (P, < 0.001;
Ponlinear = 0.795), whereas no significant association was detected for
(Puvera]l =0.200; Poninear = 0.0765
Supplementary Figure 5). Notably, similar linear trends were

total choline

betaine intake
consistently observed for all choline subtypes. Collectively, these
comprehensive sensitivity analyses reinforce the reliability and
robustness of the observed inverse association between dietary
choline intake and the odds of PE, regardless of analytic approach or
potential confounding factors.
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hypertension, and supplement use (folic acid and multivitamins).

Plant—derived choline intake, mg/d

Dose-response associations between choline subtypes and sources and odds of preeclampsia. (A) Lipid-soluble choline (sum of PtdCho and SM);
(B) Water-soluble choline (sum of free choline, GPCho, and PCho); (C) Ratio of lipid- to water-soluble choline intake; (D) Animal-derived choline
intake; (E) Plant-derived choline intake; (F) Animal-to-plant choline intake ratio. OR, odds ratio; Cl, confidence interval; BMI, body mass index; GDM,
gestational diabetes mellitus; PCho, phosphocholine; GPCho, glycerophosphocholine; PtdCho, phosphatidylcholine; SM, sphingomyelin. Restricted
cubic spline regression models depicting multivariable-adjusted dose—response relationships between various forms and dietary sources of choline
intake and the odds of PE among pregnant women. All models were adjusted for maternal age (years), gestational age at survey (weeks), pre-
pregnancy BMI (kg/m?), monthly household income, educational attainment, physical activity (MET-hours/day), employment status, smoking status,
alcohol consumption, sleep quality, daily energy intake (kcal/day), season of dietary assessment, parity, GDM, menstrual regularity, family history of
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4 Discussion

In this matched case—control study of pregnant women in China,
higher habitual intake of total dietary choline was associated with
lower odds of preeclampsia (PE), after multivariable adjustment.
Inverse associations were observed across major choline subtypes—
including lipid-soluble (PtdCho)
sphingomyelin (SM), as well as water-soluble free choline,
glycerophosphocholine (GPCho), and phosphocholine (PCho)—and
for both animal- and plant-derived sources. To our knowledge, within

phosphatidylcholine and

an Asian population, this is among the first studies to jointly assess
amount, subtype distribution, dietary sources, and intake ratios of
choline—including key contributors such as eggs—in relation to
PE. These findings extend current evidence and suggest that adequate
and diverse choline intake in early pregnancy may be relevant to
PE prevention.

Choline is an essential nutrient with critical roles in membrane
integrity, neurotransmitter synthesis, and one-carbon metabolism
(13). In non-pregnant populations, higher intake has been linked to
reduced cardiovascular, cognitive, and hepatic risks, including the
Framingham Heart Study, which reported lower dementia and
Alzheimer’s disease risk with moderate intake (31), and National
Health and Nutrition Examination Survey analyses showing inverse
associations with cardiovascular disease and stroke (32). Pregnancy-
specific evidence is limited: in a prospective Iranian cohort, higher
choline intake was associated with lower hypertension risk in women
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(33), whereas a large U.S. birth cohort found no association with
gestational diabetes (34). Few studies have examined PE directly, and
most have focused on total choline without differentiating chemical
subtypes, sources, or intake ratios—particularly in Asian populations.

Our case—control study bridged these gaps by investigating lipid-
and water-soluble subtypes, subtype proportions, and source-based
intakes. Both subtype groups were inversely and individually
associated with PE, and dose-response relationships revealed
approximately linear patterns for lipid-soluble types and modest
nonlinearity for water-soluble types (Pyonlinear = 0.036). The balance
between lipid:water was L-shaped, and the relative maximum
reduction was observed for a moderate balance. Our findings are
consistent with prior evidence that plant-based, water-soluble choline
is co-consumed with phytochemicals and unsaturated fats that may
confer anti-inflammatory benefits (35, 36), whereas egg-derived
PtdCho shows higher bioavailability than some synthetic forms (37)
and may have higher membrane structure and methyl-donor economy
impacts (38).

In our source-specific models, both plant- and animal-derived
choline were inversely associated with PE risk, yet animal-to-plant
ratio did not achieve significance in terms of outcome. This trend is
consistent with nearly equivalent contribution from both sources,
potentially easing complementing nutrient patterns. A South African
birth cohort concluded that dairy- and egg-derived choline
contributing >40% total choline had an associated 32% lower risk of
PE (39). In another instance, among Norwegian stable angina patients,
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Characters OR (95% CI) P value P for interaction
Age | 0.03
<30 0.75(0.61,0.92) . : 0.01
>30 0.54(0.44,0.66) - : <0.0001

BMI 1 0.24
Underweight 0.85(0.54,1.27) . 0.44
Normal 0.59(0.47,0.72) g : <0.0001
Overweight 0.58(0.44,0.76) . ! <0.0001
Obesity 0.81(0.55,1.10) — 0.21

Income : 0.01
<2000 0.97(0.74,1.28) 0: 0.83
2000-4000 0.59(0.48,0.72) . 1 <0.0001
4001-6000 0.49(0.33,0.70) . : <0.001
>6000 0.55(0.36,0.80) . : 0.003

Education attainment ! 0.24
Middle school or below 0.65(0.52,0.80) . : <0.0001
High school or equivalent ~ 0.80(0.58,1.10) o : 0.18
College or above 0.56(0.44,0.72) - : <0.0001

Employment status 1 0.87
Employed 0.64(0.49,0.83) . : <0.001
Unemployed 0.62(0.53,0.74) . : <0.0001

Physical activity ! 0.53
Low 0.64(0.49,0.81) . : <0.001
Moderate 0.70(0.55.,0.89) : 0.005
High 0.57(0.44,0.74) - ! <0.0001

Sleep quality : 0.78
Bad 0.68(0.52,0.87) : 0.004
Moderate 0.61(0.48.,0.76) . : <0.0001
Good 0.60(0.46,0.77) . 1 <0.0001

Survey season : 0.26
Spring 0.50(0.35,0.68) - : <0.0001
Summer 0.58(0.43,0.76) - ! <0.001
Autumn 0.70(0.53,0.90) ; 0.01
Winter 0.72(0.54,0.94) : 0.02

Parity : 0.55
0 0.64(0.51,0.80) * | <0.001
1 0.58(0.46,0.72) . : <0.0001
>2 0.71(0.51,0.95) ! 0.03

GDM 1 0.01
Yes 0.91(0.67,1.20) : 051
No 0.58(0.49,0.68) - : <0.0001

Family history of hypertension : 0.88
Yes 0.64(0.48,0.85) -+ | 0.002
No 0.62(0.52,0.74) . : <0.0001

0.I4 0.I6 0.I8 ll 1.12
FIGURE 4

Association between total dietary choline intake and odds of preeclampsia across subgroups of maternal characteristics (n = 982). OR, odds ratio; Cl,
confidence interval; BMI, body mass index; GDM, gestational diabetes mellitus. Multivariable-adjusted ORs and corresponding 95% Cls for
preeclampsia are presented per one standard deviation increase in total dietary choline intake, stratified by key maternal and lifestyle characteristics. All
models were adjusted for maternal age group, gestational age at survey (weeks), pre-pregnancy BMI group, monthly household income, educational
attainment, physical activity (MET-hours/day), employment status, smoking status, alcohol consumption, sleep quality, daily energy intake (kcal/day),
season of dietary assessment, parity, GDM, menstrual regularity, family history of hypertension, and supplement use (folic acid and multivitamins), with
the stratification variable excluded from each respective model. Point estimates (squares) indicate adjusted ORs, with error bars representing 95% Cls. p
values for interaction were derived from likelihood ratio tests and are presented without adjustment for multiple comparisons.
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animal-derived choline provided 55%, whereas plant-derived
provided 45%, to total choline, and specific molecular forms had
distinct metabolic fates (40). Although prior evidence comes from
non-pregnant populations, those findings are directionally consistent
with our results and with mechanistic data indicating that adequate,
source-diverse choline intake may influence cardiometabolic
pathways. In our data, this intake was associated with lower odds of
PE. Eggs, the leading contributor in our study population, had a dose-
response association: 25 g/day increment (approximately one-half an
egg) had 11% lower odds of PE. In agreement with previous studies,
daily egg consumption significantly increases plasma choline and may
promote fetal neuromaturation (41, 42), and experimental evidence
further suggests that egg-derived choline attenuates PE-like features
via a7-nAChR-mediated inhibition of NF-kB (43). Additionally, a
recent Mendelian randomization analysis shows an inverse association
between genetically proxied circulating choline levels and the risk of
PE (20), providing genetic evidence consistent with a potential
protective effect.

A variety of biologically reasonable mechanisms can support the
observed inverse association between dietary choline intake and PE risk.
First, epigenetic regulation via one-carbon metabolism. Choline, through
betaine, supplies methyl groups for homocysteine remethylation and
S-adenosylmethionine production (44, 45). Experimental studies show
that maternal choline supplementation can reverse placental DNA
hypomethylation, restore angiogenic gene expression, and modulate
imprinted genes critical for placentation (46, 47). Furthermore, human
evidence also links elevated choline intake to desirable placental
methylation patterns (48). The superior bioavailability of egg-based
PtdCho could increase methylation capacity, and plant-based, water-
modifying
methyltransferase activity. Second, antioxidant, anti-inflammatory, and

soluble sources could supply phytochemicals
vascular pathways. Choline participates in one-carbon metabolism and
membrane phospholipid synthesis, processes that can influence redox
balance and endothelial function (43). For example, PtdCho-enriched
HDL supports endothelial homeostasis, whereas endothelial dysfunction
in PE is linked to oxidative and inflammatory stress (49). Experimental
data indicate that higher dietary choline can modulate placental
angiogenic signaling—including vascular endothelial growth factor
(VEGF)—and attenuate apoptotic and inflammatory responses, while
choline deficiency shows opposite effects (46, 50). From a dietary
perspective, plant-based, water-soluble choline may confer anti-
inflammatory benefits, whereas egg-derived PtdCho supports membrane
phospholipid integrity and lipoprotein structure (42, 51). Taken together
with observational and genetic evidence, these findings support the
biological plausibility that adequate, source-diverse choline intake may
favorably influence epigenetic and vascular pathways relevant to PE.
Our study has a number of strengths. Most notably, our carefully
matched case-control study design and validated food frequency
questionnaire (FFQ) allowed careful measurement of total, subtype,
ratio-based, and source-based choline intakes. Extensive use of sensitivity
and subgroup analysis further strengthens the validity and
generalizability of these findings. However, a number of limitations
should be carefully considered. First, the study is necessarily of a case—
control design, and causal inference is ruled out; reverse causation
cannot be excluded. Second, FFQ-based measurement of exposure is
susceptible to recall and misclassification error, and use of food-
composition values, in part drawn from non-Chinese sources, may
contribute additional measurement uncertainty. Third, although
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vigorous adjustment was made for a comprehensive array of known and
suspected confounders, residual confounding by undiagnosed or
imprecisely measured variables (e.g., genetic susceptibility, other dietary
exposures, composition of gut microbiota) may be a factor. Fourth, the
moderately sized sample size and associated sample size limitations may
reduce statistical power to detect modest relationships or subtle
interaction, and generalizability to other groups with different dietary
patterns or racial/ethnic backgrounds may be attenuated. As a partial
offset, during data collection, strict quality-assurance procedures were
undertaken, and a complete range of sensitivity and subgroup analyses
was undertaken, and these yielded results congruent and broadly
supportive across all measures examined. Prospective studies, repeated
dietary measures, and biomarker standardization will be critical future
investigations to confirm these relationships. Overall, despite these
challenges, our rigorous and detailed examination of choline
subcategories and dietary sources offers strong and new mechanistic
insight into dietary choline optimization as a preventative strategy for PE.

5 Conclusion

Higher total and subtype-specific dietary intakes of choline, both
from animals and vegetables, were inversely associated with odds of
PE in pregnant Chinese women. These findings point to the potential
relevance of appropriate and diversified choline nutrition early in
pregnancy, although prospective and interventional studies are needed
to define causality and optimal levels of intake.
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