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Introduction: White tea is known for its health benefits, especially its strong 
antioxidant activity.
Methods: Based on previous studies showing white tea extract (WTE) has 
antioxidant effects in vitro, this research further evaluated its potential to delay 
aging in Drosophila melanogaster.
Results: The results showed that dietary supplementation with WTE significantly 
(p < 0.05) increased both the mean lifespan (Tm) and longest survival time (Tmax) 
of Drosophila melanogaster. Tm levels rose by 15.41% in males and 30.39% in 
females at 3 mg/mL concentration, while the Tmax showed increases of 21.05 
and 32.27%, respectively. WTE also improved the flies’ climbing ability and their 
resistance to hydrogen peroxide-induced stress. It markedly (p < 0.05) decreased 
malondialdehyde (MDA) concentrations while enhancing the activities of 
antioxidant enzymes, such as total superoxide dismutase (T-SOD) and catalase 
(CAT), in a dose-responsive manner. Gene expression analysis indicated that 
WTE significantly upregulated the antioxidant-related genes SOD1, SOD2, and 
CAT, while suppressing the expression of the aging-related MTH gene.
Discussion: Overall, WTE helps delay aging in fruit flies by boosting antioxidant 
defenses and reducing oxidative damage. These results suggest its potential use 
as a natural antioxidant and anti-aging ingredient in food and health products.
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1 Introduction

Aging is a complex and inevitable biological process marked by a gradual decline in 
physiological functions across molecular, cellular, tissue, and organ levels (1, 2). Key features 
include reduced cellular activity, weakened immunity, metabolic slowdown, structural 
deterioration of organs, and genetic damage (3). These changes impair mobility, reproduction, 
and lifespan, largely driven by free radicals—reactive by-products of oxidative stress that 
contribute to aging and disease development (4, 5). The antioxidant defense mechanism of the 
body involves essential enzymes such as superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPx), and glutathione reductase (GR), along with dietary antioxidants 
like vitamin C, polyphenols, flavonoids, and carotenoids, plays a vital role in neutralizing free 
radicals and maintaining redox balance (6). However, excessive ROS production can overwhelm 
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this system, resulting in cellular damage and accelerated aging (7–9). 
Given the role of oxidative stress in aging, strategies to reduce ROS and 
enhance antioxidant defenses are of growing interest. Natural 
antioxidant-rich foods are increasingly valued for their potential to 
delay aging. Among them, white tea flavonoids have demonstrated 
promising antioxidant properties and may offer protective effects 
against oxidative stress. White tea contains a variety of bioactive 
components that are advantageous to human health, such as flavonoids, 
amino acids, polyphenols, polysaccharides, and vitamins. Previous 
research has shown that flavonoids exert diverse pharmacological effects 
by targeting multiple biological pathways, contributing to anti-
inflammatory, antioxidant, glycemic-regulating, anti-fatigue, and 
antidepressant activities (10–13). As a primary bioactive component 
among tea polyphenols—making up approximately one-quarter of tea’s 
dry weight—flavonoids play a critical role in tea’s health-promoting 
properties (14). Consequently, beyond their traditional use in beverages, 
tea leaves hold strong potential as plant-derived functional ingredients 
for delaying aging. Despite this, the longevity-enhancing effects and 
underlying mechanisms of white tea flavonoids remain insufficiently 
explored. This suggests that white tea flavonoid compounds may serve 
as promising candidates for mitigating senescence and combating 
age-related disorders.

Fruit flies (Drosophila melanogaster) are a distinct invertebrate 
model that exhibits a functional heart. Notably, their cardiac 
performance, akin to that of humans, diminishes as they age (15). 
Genetically, approximately 70% of genes associated with human 
diseases possess homologs in D. melanogaster, rendering it an 
effective model for investigating aging and age-related diseases at 
the genetic level (16, 17). Due to its short lifespan, well-
characterized genome, and conserved signaling pathways, 
D. melanogaster has been extensively used to evaluate the impact 
of dietary interventions on longevity. Previous studies have 
demonstrated that certain plant extracts can effectively promote 
lifespan in D. melanogaster. For example, supplementation with 
Aronia berry extract was shown to enhance locomotor function 
and extend lifespan by increasing antioxidant enzyme activities 
and upregulating stress response genes (18). Similarly, purple 
nutsedge (Cyperus rotundus) extract was reported to prolong 
lifespan through reducing oxidative damage, enhancing stress 
resistance, and mitigating heavy metal toxicity (19). These findings 
highlight the suitability of D. melanogaster as a model organism for 
assessing the anti-aging potential of natural compounds.

Dietary interventions are widely recognized as key modulators 
of aging and longevity. Various nutritional strategies, including 
specific dietary components and time-restricted feeding, have been 
shown to significantly influence lifespan across species (20–22). In 
this context, D. melanogaster has emerged as a widely accepted 
model for studying dietary effects on aging and related physiological 
processes. For instance, polysaccharides derived from poplar 
mushroom (Agrocybe aegerita) exert anti-aging effects in fruit flies 
by modulating oxidative imbalance and intestinal microbiota (23). 
Similarly, Astragalus water extract has been reported to enhance 
degradation functions and extend lifespan through antioxidant 
pathways, protecting against oxidative agents such as hydrogen 
peroxide and paraquat (24, 25). Despite growing interest, in vivo 
studies on natural antioxidants and their anti-aging mechanisms 
remain limited. To our knowledge, white tea, abundant in flavonoids 

with potent antioxidant properties, is postulated to contribute to 
longevity. However, its in  vivo efficacy has not yet been 
comprehensively elucidated. Therefore, the present study aims to 
investigate the antioxidant activity and anti-aging effects of white 
tea extract (WTE) in D. melanogaster. This research provides 
foundational insight into the mechanisms by which WTE may 
mitigate oxidative stress and delay aging in vivo.

2 Materials and methods

2.1 Sample solutions preparation

White tea was procured from Fujian Province Jiulong White 
Tea Co., Ltd. (Fujian, China), identified as the Camellia sinensis 
cultivar ‘Shui Xian’ cultivated in Zhenghe County, Fujian Province. 
The white tea extract (WTE) was obtained through an optimized 
procedure combining ultrasound-assisted extraction of flavonoids 
and purification with macroporous resin (60). In brief, ultrasonic 
extraction was carried out by dispersing 1 g of tea powder in 60% 
ethanol (v/v) at a solid-to-liquid ratio of 1:42 (g/mL), using an 
ultrasonic water bath (Shumei Ultrasonic Instrument, KQ3200DE, 
Kunshan, China) operating at 180 W for 1 h. Following extraction, 
the mixture was centrifuged at 2,795 × g for 10 min (Zhongke 
Zhongjia Instrument, HC-2514, Anhui, China). The supernatant 
was concentrated under reduced pressure with a rotary evaporating 
apparatus (Zhuocheng Instrument, RE-201D, Shanghai, China) set 
at 60 °C and 15 rpm, then freeze-dried (Buchi Instrument, L-200, 
Switzerland, Switzerland) to yield a unrefined WTE powder.

The unrefined extract was dissolved in distilled water and then 
purified using a column packed with AB-8 macroporous resin 
(diameter: 1.6 cm; length: 30 cm; resin bed height: 20 cm) at 25 °C, 
operated at a flow rate of 1.5 bed volumes per minute. Elution was 
performed with 80% ethanol, and the eluate was subsequently 
concentrated under vacuum via rotary evaporation at 60 °C and 
150 rpm. The condensed eluate was subjected to freeze-dried to yield 
the purified white tea extract (WTE) in powder form.

2.2 Analysis of flavonoid constituents in 
WTE

The flavonoid profile of white tea extract (WTE) was analyzed 
by high-performance liquid chromatography (UPLC) using an 
e2695 Waters system (Singapore Waters Instrument, Alliance 
e2695, Singapore). For the analysis, 0.2 mg of WTE was solubilized 
in 1 mL of methanolic solution (27). Reference standards—such as 
rutin, myricetin, quercetin, and kaempferol—were used for 
comparison—were accurately weighed (totaling 0.2 mg), placed 
into a 1 mL microcentrifuge tube, and solubilized in 1 mL of wood 
alcohol. Both the samples and standards were isolated using a 
DIKMA Diamonsil Plus C18 column (4.6 × 250 mm, 5 μm particle 
size) kept at 30 °C. The liquid phase comprised solvent A 
(acetonitrile) and solvent B (0.05% aqueous phosphoric acid 
solution, pH 3), with gradient elution programmed as follows: 
from 0 to 20 min, 12 to 30% solvent A; 20 to 32 min, held at 30% 
A; 32 to 36 min, increased from 30 to 80% A; 36 to 37 min, 
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decreased from 80% back to 12% A; and 37 to 45 min, maintained 
at 12% A. The flow rate was set at 1.0 mL/min, and detection was 
performed at 260 nm.

2.3 Evaluation of antioxidant activity 
in vitro

2.3.1 Hydroxyl radical scavenging activity 
evaluation

The ability of the extracts and vitamin C (as a positive control) to 
scavenge hydroxyl radicals was appraised following the procedure 
outlined by Zabik et al. (28). Samples at concentrations of 0.1, 0.2, 0.4, 
0.6, 0.8, and 1.0 mg/mL (1.0 mL each) were mixed with 1 mL of 
7.5 mM ferrous sulfate (FeSO₄) reagent, 2 mL of 5 mM PBS 
(phosphate-buffered saline) (pH 7.4), and 1 mL of 0.1% hydrogen 
peroxide (H₂O₂). The reaction preparation was maintained at 37 °C 
for 1 h. After incubation, the preparations were cooled under a stream 
of running water, and purified water was supplemented to bring the 
final liquid volume to 10 mL. The absorption value of the upper phase 
was noted at 510 nm using a UV–visible absorbance spectrometer 
(Yuanxi Instrument, UV-6100, Shanghai, China). Control 
measurements included a blank solution, where purified water 
replaced the test solution, and a control sample, where purified water 
was used instead of H₂O₂. Both followed the same procedural steps. 
The hydroxyl radical scavenging capacity was calculated using the  
Equation 1:

	

( )
( ) ( )B S C SA A A A

Hydroxyl radical scavenging capacity %
– / – 100 = ×  	 (1)

where, AS, AC, and AB denote the absorbance values of the sample 
solution, the reference solution, and the blank at 510 nm, respectively.

2.3.2 Superoxide radical neutralization evaluation
The superoxide anion radical scavenging activity of the extracts 

was evaluated using the pyrogallol autoxidation method (29). After 
preheating for 20 min, 4.5 mL of 50 mM tris–HCl buffer (pH 8.2) was 
mixed with 1.0 mL of sample solutions at 0.1, 0.2, 0.4, 0.6, 0.8, and 
1.0 mg/mL content and 0.4 mL of 25 mM pyrogallol solution. The 
reaction was carried out at 25 °C for 5 min, after which 1 mL of 8 mM 
HCl was added to terminate the reaction. The absorbance of the 
resulting supernatants was measured at 325 nm using the UV-6100 
UV–visible spectrophotometer. Distilled water was used as a blank 
control in place of the sample. The superoxide radical scavenging 
capacity was calculated using Equation 2.

	

( )
( )B S BA A A

Superoxide radical scavenging capacity %
– / 100 = ×  	 (2)

where, AS and AB denote the absorbance values of the sample 
solution, the reference solution, and the blank at 325 nm, respectively.

2.3.3 DPPH antioxidant activity evaluation
WTE was prepared in purified water to obtain sample 

solutions at various concentrations. The DPPH radical scavenging 

activity was assessed following a modified protocol based on 
Abdelfattah et al. (30). Specifically, three reaction mixtures were 
prepared: Sample solutions were prepared by mixing 2 mL of the 
sample at 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL with 2 mL of 
0.3 mM DPPH solution in 95% ethanol. The reference solution 
consisted of 2 mL of ethanol combined with 2 mL of DPPH, while 
the blank comprised 2 mL of the sample mixed with 2 mL of 
ethanol. All mixtures were maintained in a dark place (25 °C) for 
30 min. Absorbance data were noted at 517 nm using the 
UV-6100 UV–visible spectrophotometer. The DPPH scavenging 
capacity  was calculated using Equation 3.

	 ( ) ( ) = × DPPH scavenging capacity % 1– – / 100s R BA A A 	 (3)

where, AS, AR, and AB denote the absorbance values of the sample 
solution, the reference solution, and the blank at 517 nm, respectively.

2.3.4 ABTS antioxidant activity evaluation
ABTS radical scavenging activity was measured with slight 

modifications based on the method described by Dan et al. (24). 
Sample solutions were prepared at concentrations of 10, 20, 40, 
60, 80, and 100 μg/mL. Equal volumes of 7 mM ABTS solution 
and 2.45 mM potassium persulfate (K₂S₂O₈) were mixed and 
allowed to react in the dark for 16 h. The resulting ABTS•+ 
solution was diluted with 5 mM phosphate buffer (pH 7.4) until 
an absorbance of 0.70 ± 0.02 at 734 nm was reached. Then, 
0.4 mL of sample solution was mixed with 4 mL of the prepared 
ABTS solution and incubated in the dark for 5 min. Absorbance 
was recorded at 734 nm using the UV-6100 UV–visible 
spectrophotometer. Distilled water was used instead of the 
sample in the blank control. The ABTS radical scavenging 
capacity of the samples was calculated using Equation 4:

	 ( ) ( )= ×ABTS scavenging capacity % 1– / 100S BA A 	 (4)

where, AS and AB denote the absorbance values of the sample 
solution and the blank at 734 nm, respectively.

2.4 Drosophila strain and feeding regimen

Wild-type fruit flies (D. melanogaster w1118 strain) were obtained 
from the Institute of Marine Science (Xiamen, Fujian, China). The 
fruit flies were maintained in an incubator set at 25 ± 1 °C with 60% 
humidity and a 12-h light/dark cycle. The standard culture medium 
was prepared in glass containers and composed of a basal diet 
containing 27 g ground corn, 13 g cane sugar, 1.5 g agar, 1.5 g yeast, 
and 150 mL distilled water, with the addition of 1.2 mL propanoic acid 
to prohibit mold development (31).

2.5 Longevity evaluation

Fruit flies were collected within 8 h post-eclosion and 
randomly assigned to four groups for each sex, with a total of 100 
males and 100 females (total flies: 800, 20 flies per tube) (1). The 
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control group (CTL) was maintained on the standard diet, while 
treatment groups received the standard medium supplemented 
with WTE was administered at three different concentrations: 
Doses were set at 0.5 mg/mL for LDG, 1.0 mg/mL for MDG, and 
3.0 mg/mL for HDG. Fruit flies were transferred to fresh food 
vials every 3 days. Mortality was recorded daily until all fruit flies 
had died (32, 33). Key lifespan parameters, including mean 
lifespan (Tm; calculated as the mean lifespan across all groups), 
longest survival time (Tmax; defined as the average survival time 
of flies during the last 24 days), and median survival time (LT50; 
the time at which 50% of the population had died) were 
determined for each group. Survival curves were generated using 
GraphPad Prism 8.0 software, and statistical significance was 
assessed via the log-rank (Mantel-Cox) test.

2.6 Locomotor activity test

Aging is commonly associated with a decline in locomotor 
activity in both animals and humans. Due to their natural 
locomotor behavior in confined spaces, fruit flies serve as a 
suitable model for evaluating physical mobility through climbing 
ability tests. The assay was performed with modifications based 
on the method by Zhou et al. (34). Briefly, newly eclosed fruit 
flies (400 males and 400 females, with 20 individuals per tube 
with flies of the same sex) were reared on their respective diets. 
Groups of fruit flies were transferred into empty tubes and gently 
tapped to the bottom. For each tube, the count of fruit flies that 
climbed at least 7 cm within 10 s was recorded. The climbing 
ability was calculated according to Equation 5. This test was 
repeated three times on days 15, 30, and 45 of the feeding 
regimens, with at least a 1-min interval between trials.

	

( )
 

= × ≥ 

Locomotor ability %
the number of flies that climbed a given 

/ 20 100distance within a set time 7cm
	

(5)

2.7 H₂O₂-induced stress challenge

Hydrogen peroxide (H₂O₂) is a reactive oxidant that can 
produce highly reactive hydroxyl radicals. It possesses dual 
properties, acting as both an oxidizing and reducing agent. The 
oxidative stress challenge was conducted following the protocol 
depicted by Yang et al. (26). Eclosed fruit flies (400 males and 400 
females, 25 flies per tube, segregated by sex) were maintained on 
control or WTE-supplemented diets for 25 days. Afterwards, the 
flies were food-restricted for 2 h before being transferred to tubes 
containing engulfed filter paper soaked with 6% glucose solution 
and 1 mL of 30% H₂O₂. Care was taken to ensure the filter paper 
was thoroughly moist but without any dripping liquid. Mortality 
was marked every 4 h until all fruit flies had expired. The Survival 
rate was calculated using the Equation 6.

	
( )   

= − ×  
  

number of flies that 
Survival rate % 1 / 25 100died every 4 hours

	 (6)

2.8 Feeding behavior evaluation

Dietary restriction has been demonstrated to affect lifespan 
extension. To eliminate the potential that the prolonged lifespan 
identified in the survival assay resulted from decreased food 
consumption, a gustatory assay was performed following the method 
of Wongchum et al. (19). Newly eclosed fruit flies (240 males and 240 
females, 20 flies per tube, separated by sex) were distributed to all the 
groups and maintained for 6 days. The fruit flies were subsequently 
starved for 24 h in vials lined with Kimwipes soaked in distilled 
water. Following this, sodium sulfadiazine B (acid red) was 
incorporated into the culture medium at 0.2%, and the fruit flies were 
permitted to feed for 2 h. Following feeding, the fruit flies were 
anesthetized using anhydrous diethyl ether, and then the abdominal 
redness of the fruit flies was observed under a stereomicroscope. A 
score of 0 (no red abdomen) to 5 (fully red abdomen) abdominal 
redness scoring system was employed to quantify feeding, enabling 
comparison of food consumption among groups.

2.9 Measurement of antioxidant enzyme 
activity

Briefly, newly eclosed fruit flies (2,400 males and 2,400 females, 
20 flies per tube, grouped by sex) were fed their respective diets for 
30 and 45 days. After a 2-h fasting period, fruit flies were immobilized 
by liquid nitrogen and weighed and then preserved at −80 °C (35). 
For biochemical assays, a 10% tissue homogenate was prepared by 
homogenizing fruit flies in ice-cold physiological saline (1:49 w/v), 
followed by centrifugation at 2,795 × g for 15 min at 4 °C. Following 
the manufacturer’s protocol (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China), the supernatants were collected and 
diluted for subsequent determination of superoxide dismutase 
(SOD), catalase (CAT), malondialdehyde (MDA), and protein 
content (via Coomassie Brilliant Blue assay).

2.10 Evaluation of gene expression levels

Newly eclosed fruit flies (240 males and 240 females, 20 flies per 
tube, grouped by sex) were reared on their respective diets for 25 days 
(18). Samples were preserved at −80 °C using the TRIzol method. 
Complementary DNA (cDNA) was synthesized from isolated total 
RNA using the High-Capacity cDNA Reverse Transcription Kit. 
Quantitative qRT-PCR analysis was then conducted employing SYBR 
Green chemistry along with sequence-specific primers. Using Rp49 as 
the internal control, relative expression levels of target genes were 
quantified via the 2^−ΔΔCT method (36). TRIzol Reagent, along with 
the High-Capacity cDNA Reverse Transcription Kit and SYBR Green 
Kit, was supplied by Sangon Biotech Co., Ltd. (Shanghai, China). 
Primers designed for antioxidant-related genes (as shown in Table 1) 
were synthesized by Sangon Biotech Co., Ltd.

2.11 Analysis of statistics

Unless otherwise specified, data are shown as mean ± standard 
deviation in triplicate (n = 3), except for the longevity analysis, 
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locomotor activity assay, and hydrogen peroxide challenge (n = 5). 
Statistical analyses were performed using SPSS Statistics version 23 
(IBM, Chicago, United  States). Group survival curves were 
evaluated using Kaplan–Meier analysis, with statistical 
comparisons made via the log-rank test. One-factor ANOVA 
followed by Tukey’s post hoc test was applied to compare differences 
between group means. Statistical significance was set at p < 0.05, 
and graphs were created using GraphPad Prism 8.0 (GraphPad 
Software, San Diego, United States).

3 Results and discussion

3.1 Flavonoid content of WTE

Flavonoids such as rutin, myricetin, quercetin, and kaempferol, 
known for their notable biological properties (37), were quantified in 
white tea extract (WTE) (Figure  1) using an external standard 
method. Quercetin and kaempferol concentrations were determined 
to be  1.7828 ± 0.22 μg/mg and 5.726 ± 0.31 μg/mg, respectively 
(Table 2). The presence of these bioactive flavonoids provides a basis 

for their further isolation and structural characterization. Additionally, 
this study supports previous reports that white tea primarily contains 
the flavonoids rutin, quercetin, myricetin, and kaempferol (38).

3.2 Evaluation of WTE’S antioxidant activity 
in vitro

The ability to scavenge DPPH and ABTS free radicals is commonly 
used as a standard approach to assess antioxidant capacity. Hydroxyl 
and superoxide anion radicals are classified as reactive oxygen species 
(ROS), can cause cellular damage, and their neutralization contributes 
to antioxidant effects (14, 39). In this study, the antioxidant potential 
of WTE was assessed by measuring its scavenging activities against 
DPPH (Figure  2A), ABTS radicals (Figure  2B), hydroxyl radicals 
(Figure 2C), and superoxide anion radicals (Figure 2D).

IC₅₀ is an important parameter for evaluating the inhibitory 
potency of a substance; the lower the concentration, the stronger 
the inhibitory effect (40). WTE exhibited IC₅₀ values of 
0.02835 mg/mL and 0.04011 mg/mL for scavenging hydroxyl 
radicals and superoxide anion radicals, respectively. In 
comparison, vitamin C exhibited IC₅₀ values of 0.02472 mg/mL 
and 0.02051 mg/mL for the same radicals. These results highlight 
WTE’s strong hydroxyl radical scavenging ability. Additionally, 
WTE showed a clear dose-dependent scavenging effect on DPPH 
and ABTS radicals. Vitamin C exhibited IC₅₀ values of 0.01900 mg/
mL for DPPH radicals and 0.02688 mg/mL for ABTS radicals, 
while WTE demonstrated IC₅₀ values of 0.04786 mg/mL and 
0.03560 mg/mL for these radicals. Remarkably, at a concentration 
of 0.1 mg/mL, WTE achieved 100% scavenging of ABTS radicals. 
The data demonstrate that WTE has powerful ABTS radical 
neutralizing effects and considerable antioxidant potential 
in  vitro, supporting its promising application as a natural 
antioxidant and laying the groundwork for further investigation 
into its senescence-inhibiting properties. In a similar study, Atak 
et al. (41) reported the in vitro antioxidant properties of three tea 
varieties. These varieties exhibited remarkable scavenging abilities 
for DPPH free radicals, with IC₅₀ values of 0.014 mg/mL for white 
tea, 0.035 mg/mL for green tea, and 0.016 mg/mL for handcrafted 
green tea. Furthermore, the antioxidant properties of green tea 

TABLE 1  Real-time PCR primers sequence of genes in fruit flies 
(Drosophila melanogaster).

Gene 
name

Sequence (5′ to 3′) Annealing 
temperature 

(°C)

SOD1
GCGGCGTTATTGGCATTG

53
ACTAACAGACCACAGGCTATG

SOD2
AGAACCTCTCGCCCAACAAG

55
CGTGGTCAGCTCCTTTTTGAAC

CAT
GAATGTGACGGACAACCAGGATG

53
CGGACAGCAGGAGGACAAGG

MTH
GAGGAGGTAAACAACAGTGAGGAAG

55
CCACGGTAATACGACTTGCCATAG

Rp49
CTTCATCCGCCACCAGTC

55
GCACCAGGAACTTCTTGAATC

FIGURE 1

HPLC analysis of WTE identified rutin, myricetin, quercetin, and kaempferol as peaks 1–4, with other peaks remaining unidentified.
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FIGURE 2

In vitro antioxidant activities of white tea extract (WTE), assessed by (A) DPPH, (B) ABTS, (C) hydroxyl, and (D) superoxide anion radical scavenging 
assays. Data are expressed as mean ± SD (n = 3). Different lowercase letters indicate significant differences between groups (p < 0.05). Vitamin C (Vit C) 
was used as the positive control.

and turmeric extracts were evaluated in a rat model by assessing 
the activities of SOD and MDA levels. The results indicated that 
green tea exhibited an IC₅₀ value of 0.75 ± 0.16 μg/mL, while 
turmeric extract showed an IC₅₀ of 5.3 ± 0.4 μg/mL for reducing 
50% of DPPH radicals (42).

3.3 WTE supplementation led to lifespan 
extension in fruit flies

In light of WTE’s proven antioxidant effects observed in vitro, its 
anti-aging effects were further validated through lifespan assays in 
fruit flies (Figure 3; Table 2). Relative to the control group (CTL), both 
the medium dose group (MDG) and high dose group (HDG) 
significantly (p<0.01) prolonged lifespan in male and female fruit flies. 
In males, the mean lifespan (Tm) increased by 10.54 and 115.41%, the 
median survival time (LT50) rose by 10.66 and 15.75%, and the 
maximum lifespan (Tmax) prolonged by 14.91 and 21.05% for MDG 
and HDG, respectively (p<0.01). Female flies exhibited even more 
pronounced lifespan extensions, with Tm increased by 10.23 and 
30.39%, LT50 by 8.16 and 34.48%, and Tmax by 21.82 and 32.27% in 
MDG and HDG, respectively (p<0.01). These findings demonstrated 
that dietary supplementation with WTE significantly enhances 

TABLE 2  The flavonoid content in the white tea extract (WTE).

Compounds Retention time (min) Content (μg/mg)

Rutin 15.887 2.5389 ± 0.19

Myricetin 22.356 0.9425 ± 0.10

Quercetin 26.896 1.7828 ± 0.22

Kaempferol 39.593 5.7926 ± 0.31

Data are represented as means ± standard deviations (n=3).
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longevity in fruit flies, consistent with previous reports by Han 
et al. (43).

This study found that female fruit flies exhibited greater longevity 
than males when treated with WTE, indicating that females may 
better tolerate higher doses of WTE (HDG), as reflected by Tmax data 
(Figure  3). Furthermore, supplementation with 3.0 mg/mL WTE 
increased survival rates by 14.81% in males and 20% in females. WTE 
administration significantly enhanced LT50, Tm, and Tmax in the HDG 
groups (Figure 3; Table 3). These results align with the study by Yang 
et al. (26), which revealed that Chinese mugwort (Artemisia argyi) 
extract prolongs lifespan and enhances motor function in fruit flies. 
Similarly, Kang et al. (44) reported that puerarin intake contributes to 
survival time prolongation and enhances physical activity in male 
fruit flies.

Female fruit flies typically exhibit a longer lifespan compared to 
males, which can be attributed to genetic factors. Genetically, females 
exhibit elevated expression levels of genes associated with oxidative stress 
resistance, DNA repair, and longevity regulation, including superoxide 
dismutase (SOD), catalase (CAT), and heat shock protein 70 (HSP70). 
These genes enhance their cellular protection against reactive oxygen 

species, contributing to their extended lifespan (31, 45). Furthermore, 
sex-specific variations in the insulin/IGF-1 signaling (IIS) and target of 
rapamycin (TOR) pathways are of paramount importance. Female fruit 
flies generally exhibit lower IIS/TOR activity, resulting in enhanced stress 
resilience and an extended lifespan (46, 47). Sex-determination genes, 
such as doublesex (dsx), transformer (tra), and Sex-lethal (sxl), further 
influence metabolic and immune-related processes that shape the aging 
trajectories between the sexes (48).

3.4 Role of WTE supplementation on fruit 
fly resistance to hydrogen peroxide stress

Hydrogen peroxide (H₂O₂), a potent oxidizing agent that generates 
hydroxyl radicals and rapidly elevates ROS levels in fruit flies, is widely 
used to induce oxidative stress in antioxidant studies (49). This research 
examined the potential of WTE to promote resistance to oxidative stress 
and prolong lifespan. Under H₂O₂-induced oxidative conditions, male 
fruit flies in the MDG and HDG groups exhibited markedly increased 
survival rates compared to the control group, with improvements of 5.01 

FIGURE 3

Kaplan–Meier survival curves of male and female Drosophila melanogaster fed diets supplemented with white tea extract (WTE) at 0.5 (LDG), 1.0 
(MDG), and 3.0 mg/mL (HDG). In females, all treatment groups showed significantly extended lifespan compared to control (CTL) (LDG: p = 0.023; 
MDG: p < 0.001; HDG: p < 0.001). In males, lifespan extension was significant in MDG (p < 0.01) and HDG (p < 0.001), but not in LDG (p = 0.258). Data 
are presented as mean ± SD (n = 5). Survival differences were analyzed using the log-rank test.

TABLE 3  Effect of various doses of white tea extract (WTE) on the lifespan of male and female fruit flies (Drosophila melanogaster).

Sex and dosage group 50% Survival days (LT50, days) Mean lifespan (Tm, days) Maximum lifespan (Tmax, days)

Male CTL 47.37 ± 3.48c 48.66 ± 1.63c 68.40 ± 1.12c

LDG 49.49 ± 2.33bc 50.79 ± 1.10bc 70.80 ± 1.52c

MDG 52.42 ± 2.24ab 53.79 ± 1.02ab 78.60 ± 1.12b

HDG 54.83 ± 2.04a 56.16 ± 0.97a 82.80 ± 1.20a

Female CTL 43.36 ± 4.70b 47.78 ± 3.78b 66.00 ± 1.25c

LDG 46.44 ± 2.22b 50.99 ± 1.50b 77.10 ± 1.54b

MDG 46.90 ± 2.19b 52.67 ± 1.46b 80.40 ± 1.47b

HDG 58.31 ± 2.37a 62.30 ± 1.92a 87.30 ± 0.87a

Data are represented as means ± standard deviations (n=5). Different lowercase letters indicate significant differences within the same group (p<0.05). CTL, control group; LDG, MDG, and 
HDG represent diets containing 0.5, 1.0, and 3.0 mg/mL of WTE, respectively.
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and 8.24%, respectively (Figure 4). Consistent with these findings, Yang 
et  al. (50) demonstrated that supplementation with wolf berry 
polysaccharides significantly lowered mortality caused by H₂O₂. These 
results suggest that WTE mitigates oxidative damage induced by H₂O₂ 
and may delay the aging process.

Notably, female fruit flies exhibited the most pronounced increase in 
survival under H₂O₂ stress in the MDG and HDG, with survival rates 
significantly (p<0.01) improving by 12.88 and 30.44%, respectively. Our 
findings demonstrate that WTE, especially at medium and high 
concentrations, significantly (p<0.01) enhances oxidative stress resistance 
versus the control group. Furthermore, females showed greater tolerance 

to H₂O₂-induced stress than males (Figure 4), suggesting a sex-dependent 
difference in stress resilience among fruit flies (51).

3.5 Role of WTE in modulating dietary 
intake and enhancing athletic capacity in 
fruit flies

Red coloration index of the abdomen, assessed by counting the 
number of visibly red abdominal segments, serves as an indicator of 
feeding behavior in fruit flies. A consistent level of redness suggests 

FIGURE 4

Effect of hydrogen peroxide–induced oxidative stress on the survival of Drosophila melanogaster fed diets containing white tea extract (WTE) at 0.5 
(LDG), 1.0 (MDG), and 3.0 mg/mL (HDG). In females, MDG and HDG significantly improved survival compared to the control (CTL) (p < 0.01), while LDG 
showed no significant effect (p = 0.124). In males, significant differences were observed in MDG and HDG (p < 0.01), but not in LDG (p = 0.990). Data 
are presented as mean ± SD (n = 5). Survival was analyzed using the Kaplan–Meier log-rank test.

FIGURE 5

Abdominal redness index of Drosophila melanogaster fed diets supplemented with white tea extract (WTE) at concentrations of 0.5 (LDG), 1.0 (MDG), 
and 3.0 mg/mL (HDG). Data are presented as mean ± SD (n = 3). Different lowercase letters indicate statistically significant differences among groups 
(p < 0.05). CTL, Control group; LDG, MDG, and HDG: low-, medium-, and high-dose WTE groups, respectively.
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comparable food consumption among the groups (52). After WTE 
supplementation, no changes were observed in the feeding behavior of 
the flies; all groups exhibited three red abdominal segments, suggesting 
that the anti-aging effects were not related to altered dietary behavior 
(Figure 5). Statistical analysis showed no significant difference (p>0.05) 
in terms of stomach erythema grading between WTE-treated groups and 
the control, showing comparable food consumption across sexes and 
treatments. Dietary restriction has been reported to considerably 
enhance lifespan in flies according to previous studies (53). Our feeding 
assay results ruled out dietary restriction as a factor contributing to 
lifespan extension, supporting that the increased longevity was due to 
WTE supplementation rather than reduced food intake. Additionally, 
flies did not avoid the WTE-containing medium, confirming that their 
feeding patterns remained unchanged.

Metabolic slowdown and reduced physical activity are widely 
observed during aging in animals as well as humans. In fruit flies, athletic 
ability, particularly vertical climbing, decreases significantly with age and 
serves as an important indicator of organismal deterioration (54). By 
days 30 and 45, fruit flies in the CTL showed a significant (p<0.01) 
reduction in athletic performance (Figure  6). However, dietary 
supplementation with WTE significantly (p<0.01) improved the 
locomotor abilities of both male and female fruit flies, with the most 
pronounced effects observed in the HDG. On day 30, athletic 
performance increased by 30.51% in males and 32.20% in females within 
the HDG. Remarkably, by day 45, these improvements reached 74.07 and 
60.71%, respectively (p<0.01). Additionally, flies receiving WTE 
supplementation exhibited more agile movements compared to other 
groups, indicating that WTE enhances exercise capacity in both sexes.

3.6 Role of WTE in modulating antioxidant 
enzymes in fruit flies

Reactive oxygen species (ROS) are common free radicals produced 
during normal metabolic activities. Under oxidative stress induced by 
external factors, excessive ROS can overwhelm the organism’s antioxidant 
defenses, accelerating aging and mortality (55). The ROS-detoxifying 
enzyme system plays a vital role in mitigating oxidative damage by 
eliminating surplus free radicals, thus maintaining redox balance and 
slowing aging. This study evaluated the effects of different doses of WTE 
supplementation on catalase (CAT) and total superoxide dismutase 
(T-SOD) activities in fruit flies. CAT levels increased with age in both 
male and female flies. On day 30, the LDG showed no significant change 
(p>0.05) in CAT activity compared to controls, whereas MDG and HDG 
exhibited significant (p<0.01) increases in both sexes (Figure 7). By day 
45, CAT activity rose proportionally with WTE amount. When treated 
with 3 mg/mL, male CAT activity significantly (p<0.01) increased by 
53.40%, reaching 15.3 U/mg protein from a baseline of 10.0 U/mg 
protein and 35.16% in females (from 10.6 to 14.3 U/mg protein).

Dietary supplementation with WTE markedly, dose-dependent 
increase in T-SOD activity in fruit flies, with a more pronounced effect 
observed in females (Figure 8). On day 45, flies receiving 3 mg/mL 
WTE showed significant elevations in T-SOD activity by 52.08% 
(p<0.05) in males and 57.14% (p<0.01) in females. These results 
suggest that WTE enhances the activity of key antioxidant enzymes, 
confirming its potent antioxidant effect in fruit flies. SOD and CAT are 
vital endogenous antioxidants that form the core of the body’s defense 
system against free radicals, thereby contributing to the delay of aging. 

This study found that both CAT and T-SOD activities increased with 
age in a dose-dependent manner across all groups, with female fruit 
flies showing significantly (p<0.01) higher T-SOD activity than males. 
Previous research has indicated that extracts of green and black tea can 
similarly enhance antioxidant potential in fruit flies (56). Flavonoids, 
comparable to tea antioxidants such as catechins and theaflavins, exert 

FIGURE 6

Effect of different concentrations of white tea extract (WTE) on the 
climbing performance of male and female Drosophila melanogaster 
at specified time points. Flies were fed diets supplemented with 0.5 
(LDG), 1.0 (MDG), and 3.0 mg/mL (HDG) WTE. Data are presented as 
mean ± SD (n = 5). Different lowercase letters indicate significant 
differences among groups on the same day (p < 0.05). CTL, Control 
group; LDG, MDG, and HDG: low-, medium-, and high-dose WTE 
groups, respectively.
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significant antioxidant functions (57). Consistent with these findings, 
our results demonstrate that WTE boosts Levels of enzymes involved 
in oxidative stress defense and partially reduces MDA synthesis, which 
may contribute to lifespan extension in fruit flies.

3.7 Role of WTE in modulating levels of 
oxidative by-products

MDA, a byproduct of lipid peroxidation caused by free radicals, 
can promote cross-linking and polymerization of macromolecules 
such as proteins and nucleic acids, leading to cellular membrane 
damage and cytotoxic effects (58). In this study, MDA levels in 
both male and female fruit flies from the MDG and HDG were 
significantly (p<0.05) decreased on day 30 (Figure 9). By day 45, 
fruit flies in the HDG showed a further significant (p<0.01) 
reduction in MDA levels compared to controls, reflecting a decline 
in antioxidant defense during natural aging. Flies in the LDG 
exhibited a slight decrease in MDA (1.72% in males and 1.98% in 
females), but this was not statistically significant (p>0.05). At 3 mg/
mL WTE, MDA levels dropped significantly (p<0.01) by 49.86% in 
males and 47.96% in females. These findings indicate that WTE 

effectively reduces lipid peroxidation and oxidative harm in fruit 
flies. This concurs with earlier reports showing that goji berry 
polysaccharides effectively lengthen fruit fly lifespan and decrease 
MDA content (59).

3.8 Role of WTE in regulating relative 
expression

Quantitative PCR was performed to assess the impact of WTE on the 
expression of antioxidant-related genes (CAT, SOD1, SOD2, and MTH) 
in fruit flies (Figure  10). Results showed that CAT and SOD1 were 
significantly (p<0.01) upregulated in both MDG and HDG across male 
and female flies compared to the control. SOD2 expression was 
significantly (p<0.01) increased in male fruit flies within the MDG and 
HDG. Notably, the expression of the MTH gene, which typically increases 

FIGURE 8

Total superoxide dismutase (T-SOD) activity in Drosophila 
melanogaster after dietary supplementation with white tea extract 
(WTE) at 0.5 (LDG), 1.0 (MDG), and 3.0 mg/mL (HDG) on Days 30 and 
45. Data are presented as mean ± SD (n = 3). Different lowercase 
letters on the same day indicate statistically significant differences 
among groups (p < 0.05). CTL, Control group.

FIGURE 7

Catalase (CAT) activity in Drosophila melanogaster supplemented 
with white tea extract (WTE) at 0.5 (LDG), 1.0 (MDG), and 3.0 mg/mL 
(HDG) on Days 30 and 45. Data are presented as mean ± SD (n = 3). 
Different lowercase letters on the same day indicate statistically 
significant differences among groups (p < 0.05). CTL, Control group.
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FIGURE 9

Effect of varying concentrations of white tea extract (WTE) on 
malondialdehyde (MDA) content in Drosophila melanogaster 
measured on Days 30 and 45. Data are presented as mean ± SD (n = 
3). Different lowercase letters on the same day indicate statistically 
significant differences among groups (p < 0.05). CTL, Control group; 
LDG, MDG, and HDG, Diets supplemented with 0.5, 1.0, and 3.0 mg/
mL WTE, respectively.

with age and contributes to aging by diminishing antioxidant defenses, 
was significantly (p<0.01) decreased in all WTE-treated male and female 
groups compared to the controls. The significant reduction in MTH 
mRNA levels across the dose groups corresponded with the observed 
lifespan extension in fruit flies.

A positive association was observed between the antioxidant activities 
of fruit flies and the transcriptional levels of antioxidant-related genes, 
including CAT, SOD1, and SOD2. The increase in CAT and T-SOD 
enzyme levels induced by WTE suggests that its antioxidant properties 
contribute to lifespan extension. WTE improves the antioxidant enzyme 
system in fruit flies by upregulating these genes, which enhances the 
organism’s ability to neutralize oxidative stress and delay aging. This 
proposed anti-aging mechanism aligns with findings by Cai et al. (29), who 
demonstrated similar functional properties of peptides derived from 
crimson snapper scales. Similarly, Kang et al. (44) reported that blueberry 
extract’s age-delaying effects involve modulation of antioxidant 
gene expression.

4 Conclusion

WTE is a bioactive, health-beneficial ingredient, mainly due to its 
abundance in flavonoid content, including rutin, myricetin, quercetin, 
and kaempferol. It demonstrated strong in vitro antioxidant activities 
against DPPH, hydroxyl radicals, superoxide anions, and ABTS radicals. 
The study showed that supplementation with WTE improved the physical 
functions of fruit flies and extended their lifespan. This lifespan extension 
was closely linked to an improved antioxidant defense system, evidenced 
by decreased MDA levels, elevated activities of T-SOD and CAT enzymes, 
and increased expression of antioxidant genes (CAT, SOD1, and SOD2). 
These findings highlight WTE’s potential as a functional dietary 
antioxidant and anti-aging agent, indicating promising applications in the 
food and health sectors. Given that the WTE comprises a diverse range 
of bioactive compounds, the isolation, purification, and structural 
elucidation of the flavonoid constituents responsible for its anti-aging 

FIGURE 10

Expression levels of antioxidant-related genes (CAT, SOD1, SOD2, and MTH) in Drosophila melanogaster fed diets supplemented with white tea extract 
(WTE) at 0.5 (LDG), 1.0 (MDG), and 3.0 mg/mL (HDG). Data are presented as mean ± SD (n = 3). Different lowercase letters above bars indicate 
statistically significant differences among groups (p < 0.05). CTL, Control group.
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properties are imperative. This meticulous process can facilitate the 
identification of the key bioactive molecules and elucidate their intricate 
structure–activity relationships. Future research will validate the anti-
aging potential of white tea extract using mammalian models like mice to 
provide more robust biological evidence. These experiments will 
determine if the beneficial effects observed in fruit flies can be extrapolated 
to higher organisms and clarify the underlying molecular and 
physiological mechanisms.
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