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Role of metabolic conditions in
cardiorenal diseases: initiating
pathways and therapeutic
targeting

Yeshun Wu, Hongqing Xu, Xiaoming Tu and Zhenyan Gao*

Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou
People’'s Hospital, Quzhou, China

Albuminuria, a core indicator of kidney injury, is closely associated with cardiovascular
disease prognosis. Through multiple mechanisms, metabolic abnormalities, such
as hyperglycemia, hyperuricemia, obesity, and dyslipidemia, contribute to the
onset and progression of albuminuria and significantly increase the risk of adverse
cardiovascular outcomes. Based on recent clinical studies and basic experimental
evidence, this review systematically elucidates how metabolic conditions are involved
in the relationship between albuminuria and cardiac prognosis, encompassing
several mechanisms, including chronic inflammation, endoplasmic reticulum
stress, renin—angiotensin—aldosterone system overactivation, hemodynamic
alterations, vascular endothelial dysfunction, mitochondrial dysfunction, and
lipotoxicity. Additionally, it explores clinical intervention strategies. This review
underscores the pivotal role of metabolic conditions in driving cardiorenal diseases
and outlines evidence-based strategies for clinical management.
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1 Introduction

Albuminuria is a core indicator of kidney disease progression and an independent
risk factor for cardiovascular disease (CVD) and heart failure (HF) (1-3). With the rising
incidence of metabolic diseases, the role of metabolic conditions in the relationship
between albuminuria and adverse cardiovascular outcomes has gained increasing
attention. Metabolic disorder, renal disease, and CVD often overlap and coexist in
affected individuals. In a study involving 11,607 American adults, approximately 26.3%
had at least one cardiac, renal, or metabolic disease, 8.0% had two of these conditions,
and 1.5% had all three diseases simultaneously (4). Moreover, metabolic risk factors were
the main CVD-attributable burdens in China, increasing from 62.80% in 1990 to 70.45%
in 2019 (5). Common metabolic abnormalities, including hyperglycemia, hyperuricemia,
dyslipidemia, and obesity, not only share common pathophysiological mechanisms with
cardiorenal diseases but also exacerbate disease progression when coexisting (6, 7). This
interrelationship has led to the concept of Cardiovascular-Kidney-Metabolic syndrome
(8, 9). However, metabolic abnormalities appear to be the primary driver, rather than
mere contributors, of the “metabolic abnormalities—albuminuria-CVD” cycle. Metabolic
abnormalities trigger albuminuria through kidney injury (10) while directly promoting
vascular damage (11, 12), thereby initiating the progression of cardiorenal disease
(Figure 1). Based on recent clinical research and basic experimental evidence, this
research aimed to systematically elucidate the role of metabolic conditions as a driving
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FIGURE 1

The vicious "metabolic abnormalities—albuminuria—cardiovascular disease” cycle.

factor in the relationship between albuminuria and cardiovascular
prognosis, and explores the clinical intervention strategies.

2 Correlation between albuminuria
and cardiac outcomes

Previously, a 24-h albumin excretion rate (AER) exceeding
30 mg was the gold standard for diagnosing albuminuria (13).
However, given that 24-h urine collection is often impractical and
causes patient burden, spot urine samples are now routinely used to
estimate AER clinically (13). Assuming approximately 1 g of urinary
creatinine is excreted daily, the urinary albumin-to-creatinine ratio
(UACR), calculated using spot urine samples, is used to determine
the presence of albuminuria (14). Given that UACR remains
relatively constant and is not influenced by changes in individual
urine volume or body weight, it features high accuracy and
reliability (14).

Currently, albuminuria, defined by the criterion of UACR
>30 mg/g, is recognized as a critical indicator closely associated
with the progression and adverse outcomes of chronic kidney
disease (CKD), particularly diabetic nephropathy (DN) (15).
Mounting epidemiological evidence suggests that urinary albumin
excretion is also linked to CVD incidence and mortality, with
albuminuria being an independent risk factor for cardiovascular
events (16, 17). A prospective cohort study examined 8,975
patients with type 2 diabetes mellitus (T2DM) without pre-existing
CVD at baseline and found that, after a median follow-up of
4.05 years and adjustment for potential confounders, participants
with microalbuminuria exhibited a higher CVD risk, with a
hazard ratio (HR) of 1.57 (95% confidence interval [CI]: 1.04-
2.37) for myocardial infarction (MI) and 1.30 (95% CI: 1.07-1.57)
for total CVD. Moreover, as the UACR increased, the risk also
increased. Those with macroalbuminuria had an HR of 2.86 (95%
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CI: 1.63-5.00) for MI and 2.42 (95% CI: 1.85-3.15) for total
CVD (18).

Traditionally, individuals who do not meet the diagnostic criteria
for CKD (UACR < 30 mg/g, estimated glomerular filtration rate
[eGFR] > 60 mL/min/1.73 m?) are not considered to have high CVD
risk. Nevertheless, recent retrospective clinical studies have
presented contradictory findings, revealing a correlation between
elevated UACR within the normal range and cardiorenal risk,
independent of eGFR levels (19, 20). Research utilizing data from the
National Health and Nutrition Examination Survey demonstrated a
near-linear relationship between continuous UACR levels and CVD
risk, even among individuals without apparent cardiovascular
disease, underscoring the continuum of risk and the importance of
(19).

sociodemographic information, body mass index (BMI), smoking

early intervention Similarly, after adjusting for
status, baseline eGFR, and related comorbidities, Kang et al. found
that a UACR within 6.211-10.010 mg/g was already significantly
associated with increased cardiac mortality (HR = 1.51, 95% CI:
1.12-2.03, p = 0.006). This association further intensified when
UACR exceeded 10.010 mg/g (HR =2.14, 95% CI: 1.62-2.82,
p<0.001) (21).

Chronic kidney injury reportedly elevates cardiovascular risk
through multiple pathophysiological processes, including
endothelial dysfunction, diffuse vascular damage, systemic
inflammation, atherosclerosis, myocardial remodeling, and
sodium and water retention (22-24). Interestingly, through
Mendelian randomization analysis, Zhou et al. discovered that
elevated UACR exhibited a causal relationship with increased risks
for CAD (odds ratio [OR], 1.260; 95% CI: 1.042-1.523; p = 0.017)
and MI (OR, 1.424; 95% CI: 1.137-1.783; p = 0.002). However,
this causal relationship vanished after adjusting for metabolic
factors such as blood pressure, blood glucose, and lipid levels (25),
suggesting that the detrimental impact of UACR on CAD is

mediated by these metabolic conditions.
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3 Role of metabolic conditions in
cardiorenal prognosis

Metabolic conditions such as hyperglycemia, dyslipidemia,
obesity, and hyperuricemia are well-established independent risk
factors for albuminuria, driving its progression from microalbuminuria
to macroalbuminuria and from intermittent to persistent states.

A study by Sivanantham et al. demonstrated that
microalbuminuria incidence was 27.7% (95% CI: 18.1-38.6) among
patients with hypertension alone and 40.6% (95% CI: 29-52.2) among
those with diabetes alone (26). In a survey conducted across 105
primary care units in Turkey, diabetes was significantly associated
with an increased albuminuria risk (OR, 1.667; 95% CI: 1.205-2.309;
p =0.002). Moreover, albuminuria prevalence was significantly lower
in patients with diabetes with controlled blood glucose than in those
without controlled blood glucose (59.0% vs. 47.0%, p = 0.002) (27).
Notably, when combined with metabolic abnormalities, the correlation
between albuminuria and cardiovascular prognosis changes. A
multicenter registry cohort study involving 5,960 patients with CAD
demonstrated that an increased UACR had a more significant impact
on all-cause and cardiovascular mortality in patients with T2DM than
in those without T2DM. Furthermore, an interaction between
glycemic status and UACR levels was observed in relation to
cardiovascular and all-cause mortality (both interaction p-values <
0.001), even when UACR values were within the guideline-
recommended normal range (23).

Regarding the relationship between hyperlipidemia and
albuminuria, Hwang et al. found that UACR was positively correlated
with total cholesterol and triglyceride levels but negatively correlated
with high-density lipoprotein cholesterol (HDL-C) levels (28).
Similarly, a higher ratio of non-HDL-C to HDL-C was significantly
associated with an increased risk of macroalbuminuria (OR, 1.34; 95%
CI: 1.13-1.59; p = 0.0007). A subgroup analysis revealed that this
association was stronger among participants with a BMI of >30 kg/m?
(OR, 1.89; 95% CI: 1.44-2.47; p < 0.01), even after excluding those
taking medications that affect lipid metabolism (29). Moreover, as
BM]I, waist circumference, and body fat content gradually increase,
urinary albumin excretion also increases (30). In genetic studies,
HindIII polymorphism in the LPL gene, a key enzyme in triglyceride
with
microalbuminuria risk in patients with T2DM (31). Moreover, Shao

metabolism, is significantly associated increased
et al. quantitatively analyzed HDL proteome alterations using isotope
dilution tandem mass spectrometry and found that low concentrations
of the anti-atherosclerotic protein PON1 in the HDL proteome were
associated with albuminuria and coronary artery calcification. In
patients with TIDM manifesting albuminuria, reduced PON1 levels
in the HDL proteome may partially mediate the increased CVD risk,
increasing the possibility that HDL proteome alterations act as
mediators of kidney disease and atherosclerosis risk (32).

A community-based prospective cohort study involving 1,862
middle-aged and older adult participants found that, over a 4-year
follow-up period, after adjusting for confounding factors, each 1 mg/
dL increase in serum uric acid (UA) was associated with a 1.42-fold
higher risk of developing microalbuminuria (OR, 1.42; 95% CI: 1.27-
1.59; p < 0.01). Thus, elevated serum UA can independently predict
the onset of microalbuminuria (33). Additionally, Russo et al.
conducted a retrospective investigation involving 21,963 patients from
the URRAH study database. During a follow-up period of 215,618
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person-years, they found that cardiovascular mortality stratified by all
levels of eGFR was significantly higher in patients with hyperuricemia
and proteinuria than in those with only one risk factor or no risk
factors (34).

4 Mechanisms of metabolic conditions
involved in cardiorenal diseases

Metabolic abnormalities deliver a “double hit” through renal
injury (triggering albuminuria) and vascular damage (directly
promoting atherosclerosis), creating a vicious “metabolic
abnormalities—albuminuria—-CVD” cycle. This multidimensional
effect dominated by metabolic abnormalities may include the

following specific underlying mechanisms (Figure 2).

4.1 Chronic inflammation and endoplasmic
reticulum stress

Chronic low-grade inflammation induced by metabolic disorders
exists in multiple organs or tissues, including the heart, brain, kidneys,
and skeletal muscles and is characterized by the infiltration of immune
cells, production of abnormal cytokines, and aberrant activation of
inflammatory signaling pathways (35-38). Chronic inflammation is a
fundamental feature of most renal pathologies, where inflammatory
cell infiltration into the renal interstitium promotes fibroblast
proliferation and collagen synthesis, causing renal interstitial
fibrosis—a crucial process leading CKD to end-stage renal disease
(39-41). Moreover, metabolically mediated inflammation could
accelerate glomerulosclerosis and interstitial fibrosis, causing gradual
decline in renal function (40). Additionally, inflammation may
compromise the structural and functional integrity of glomerular cells
and injure renal tubular epithelial cells, thereby impairing reabsorption
and secretion functions and accelerating the progression of CKD
(42-44). In populations with diabetes and obesity, elevated glucose
and lipid accumulation can promote inflammatory responses
dependent of nodular receptor protein 3 (NLRP3) inflammasomes,
inducing podocyte injury, a major factor in subsequent renal damage
(45-49). Furthermore, inflammation with a high-specificity cellular
and molecular response contributes to the initiation and progression
of atherosclerosis (50). A high-fat diet can exacerbate atherosclerosis
by elevating the neutrophil levels (51). Chronic inflammation
associated with metabolic disorders can also damage vascular
endothelial cells and promote lipid deposition and platelet aggregation,
ultimately forming atherosclerotic plaques and increasing CAD risk
(52, 53). In summary, chronic inflammation driven by metabolic
dysregulation may be a key contributor to the development of
cardiorenal diseases associated with metabolic abnormalities.

Several studies have demonstrated that excess nutrients and
inflammatory cytokines associated with metabolic diseases can
trigger or exacerbate ER stress and induce the overproduction of
downstream reactive oxygen species (ROS) and reactive nitrogen
(54-57). ER stress disrupts the balance between nitric oxide and
ROS, leading to oxidative stress, which aids in inducing endothelial
dysfunction and atherosclerosis (58-60). Disruption of redox
homeostasis leads to the accumulation of oxidative intermediates,
which then attack unsaturated fatty acids in biological membranes,
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reactive oxygen species; TC, total cholesterol; TG, triglyceride.

Mechanisms underlying metabolic conditions involved in cardiorenal diseases. AGEs, advanced glycation end-products; FFAs, free fatty acids; LDL,
low-density lipoprotein; NLRP3, nodular receptor protein 3; RAAS, renin—angiotensin—aldosterone system; RNS, reactive nitrogen species; ROS,

trigger lipid peroxidation, and further decompose into smaller
oxides, including malondialdehyde; consequently, a series of
involving  the
cardiovascular and renal systems occur (61-65). Thus, metabolically
related ER the
cardiorenal complications.

structural and functional abnormalities

stress  facilitates development  of

4.2 Overactivation of the renin—
angiotensin—aldosterone system

During obesity, adipose tissue secretes various adipokines (e.g.,
leptin and adiponectin), which can directly or indirectly activate the
renin-angiotensin—aldosterone system (RAAS) (66, 67). RAAS can
also be activated by chronic hyperglycemia and hyperuricemia
through the direct stimulation of renal renin secretion (68-71). This
system is involved in blood pressure regulation, fluid homeostasis, and
electrolyte balance. When it is overactivated, aldosterone secretion
increases, promoting the renal tubular reabsorption of sodium and
water, increasing volume load, and exacerbating cardiac burden (72).
Angiotensin II induces plaque formation during the early stages,
representing one of the most crucial impacts on atherogenesis from
the RAAS (73). Additionally, the increased production of angiotensin
which
vasoconstriction, blood pressure elevation, and cardiac and renal

II induces endothelin expression, causes systemic
injury worsening (74, 75). Meanwhile, angiotensin II overexpression
can induce oxidative stress, ER damage, and apoptosis by activating
signaling pathways such as the mTOR/ERK pathway, leading to
cardiorenal organ remodeling and dysfunction (76-78). Moreover, UA
and angiotensin II synergistically increased inflammation and
oxidative stress in human proximal tubular cells through the activation
of toll-like receptor 4 (TLR4), in an additive manner (79). In summary,
RAAS overactivation associated with metabolic abnormalities induces
a vicious cycle of neurohumoral abnormalities, internal environment
disturbances, and oxidative stress, further contributing in the

development of cardiorenal disease.
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4.3 Hemodynamic alterations

Obesity exhibits an increase in circulating blood volume and
glomerular pressure, resulting in mechanical damage to the capillary
walls. Prolonged exposure to elevated intraglomerular pressure can
induce focal segmental glomerulosclerosis, which clinically presents
as albuminuria and progressive decline in renal function (80, 81). In
hyperglycemia, the secretion of vasoactive substances such as
prostaglandins and nitric oxide increases, causing the afferent
arterioles to excessively dilate and the renal blood flow to significantly
increase, resulting in hyperfiltration (82, 83). Obesity and
hyperglycemia promote the generation of advanced glycation
end-products (AGEs), which are deposited in the glomerular
basement membrane and mesangial region; this deposition leads to
the thickening of basement membranes, proliferation of mesangial
matrix, and restricted dilation of the efferent arterioles, exacerbating
state  (84-86).
mechanically damages the glomerular capillary walls and continuously

the hyperfiltration Prolonged hyperfiltration
activates mesangial and endothelial cells, which release profibrotic
factors such as TGF- and platelet-derived growth factor, ultimately
promoting glomerulosclerosis (87-91). At the macro level, reciprocal
communication between the renal microvasculature and the systemic
circulation creates a vicious cycle that accelerates the progression of
cardiorenal disease (92). Additionally, hemodynamic disturbances
associated with metabolic dysfunction increase cardiac load and
exacerbate HF symptoms (93).

4.4 Vascular endothelial dysfunction

Metabolic abnormalities, such as hyperglycemia, hyperuricemia,
and excessive release of free fatty acids (FFAs), adversely affect the
vascular wall, leading to endothelial dysfunction (94-98). Vascular
endothelial cells help maintain the barrier function between blood
and the vascular wall; they also regulate the normal functioning of the
circulatory system by balancing vasodilation and vasoconstriction
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(99). Vascular endothelial dysfunction is characterized by impaired
endothelium-dependent vasodilation, increased oxidative stress,
chronic inflammation, increased permeability, and endothelial cell
senescence, collectively hindering the physiological and protective
functions of endothelial cells (100, 101). In endothelial dysfunction,
vascular regulatory mechanisms are impaired, increasing the risk of
cardiorenal diseases. Such dysfunction also leads to the decreased
activity of endothelial nitric oxide synthase, resulting in reduced NO
synthesis, which enhances vasoconstrictive capacity and increases
peripheral resistance, thereby exacerbating cardiac load and causing
renal diseases (102-105). High levels of glucose and UA, as well as
AGEs, increase the permeability of glomerular endothelial cells,
induce endothelial cell apoptosis, significantly alter the glomerular
filtration barrier, and lead to albuminuria (84, 106). Therefore,
improving endothelial function may help prevent or treat cardiorenal
diseases associated with metabolic abnormalities.

4.5 Mitochondrial dysfunction

Mitochondrial quality control is a core regulatory system that
maintains cellular energy homeostasis through three synergistic
mechanisms (107). First, PGC-1a-mediated mitochondrial biogenesis
continuously generates new mitochondria by activating the protein
nuclear factor erythroid 2-related factor 2. Second, mitochondrial
dynamics—coordinately regulated by fusion proteins including
mitofusins and fission proteins such as DRP1, ensure the clearance of
damaged organelles and the renewal of healthy mitochondria with
minimal resources and energy required. Finally, mitophagy mediated
by PINKI/Parkin pathway, precisely identifies and eliminates
damaged units with dissipated membrane potentials, thereby
establishing a closed-loop system for mitochondrial quality control.
This dynamic cycle—comprising biogenesis, remodeling, and
clearance—provides adaptive support for cellular metabolism;
however, when disrupted, it directly compromises the structural
integrity of the ventricular myocardium and renal parenchyma,
ultimately impairing cardiac and renal functions (108, 109).

Elevated levels of glucose, UA, and FFAs can induce mitochondrial
dysfunction, which leads to ROS accumulation and exacerbates
mitochondrial dynamic disturbances and mitochondrial DNA damage,
forming a vicious cycle (110-114). High glucose levels can promote
excessive mitochondrial fission in renal podocytes, leading to glomerular
damage and renal dysfunction (115). Impairment of the mitochondrial
antioxidant defense system, together with increased mitochondrial ROS
production, can harm renal cell membrane lipids, proteins, and DNA,
thereby inducing podocyte apoptosis and endothelial cell damage,
which are common features of acute and chronic kidney injuries (116,
117). Moreover, mitochondrial dynamic imbalance contributes to the
pathogenesis of various CVDs. Mitochondrial dynamic homeostasis is
essential not only for the growth, apoptosis, and migration of vascular
endothelial and smooth muscle cells but also for the regulation of matrix
metalloproteinase production by monocytes and macrophages, as well
as extracellular matrix degradation, which are important initiating
factors for vascular remodeling (118-122). Abnormal mitochondrial
dynamics can impair vascular cell function and accelerate the onset and
progression of vascular remodeling diseases such as atherosclerosis (118,
121). Additionally, hyperglycemia can promote time-dependent
mitochondrial dysfunction in cardiomyocytes, potentially leading to
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diabetic cardiomyopathy (123). Given the important role of
mitochondrial function in regulating cardiorenal injury, maintaining
mitochondrial homeostasis during metabolic abnormalities is crucial.

4.6 Lipotoxicity and insulin resistance

In lipotoxicity during lipid metabolism disorders, FFA
concentrations or intracellular lipid levels exceeds the storage capacity
of adipose tissue and the oxidative capacity of various tissues for FFAs;
consequently, lipid levels are abnormally elevated in the blood or are
excessively deposited in nonadipose tissues, causing damage and
toxicity to tissues and organs (124, 125). Lipotoxicity has been reported
to increase CKD risk and considered as an independent risk factor for
adverse cardiovascular events (126). It also increases the triglyceride
and low-density lipoprotein cholesterol (LDL-C) levels; the deposition
of these lipid components in the vascular wall leads to plaque
formation, which causes vascular stenosis and obstruction, ultimately
increasing the risk of atherosclerotic CVD (127). Lipotoxicity-induced
liver inflammation may also lead to an imbalance in coagulation and
fibrinolysis, making the blood hypercoagulable (128); consequently,
cardiac and renal blood vessels develop thrombosis, which further
promotes the onset and progression of cardiorenal diseases. Abnormal
lipid metabolism also results in excessive FFA accumulation in
nonadipose organs such as the heart and kidneys. When renal sinus fat
abnormally accumulates, mechanical compression and inflammatory
factor release can occur, triggering local hypoxia, oxidative stress, and
fibrosis; consequently, nephron function is impaired (129, 130).
Similarly, abnormal FFA buildup in cardiomyocytes activates ROS
production, induces ER stress, and disrupts mitochondrial p-oxidation,
leading to cardiomyocyte apoptosis, interstitial fibrosis, and contractile
function impairment; ultimately, lipotoxic cardiomyopathy develops
(131, 132). Early prevention and control of lipotoxicity are essential to
effectively maintain cardiorenal function.

Insulin resistance is a core feature of metabolic disorders and is
crucial in CVD and CKD development by promoting myocardial
fibrosis, endothelial dysfunction, and lipid metabolism disorders (133,
134). Insulin resistance can activate the mTOR/S6K1 signaling pathway,
affecting the expression of insulin receptors in cardiac and renal tissues,
reducing insulin sensitivity, and ultimately damaging such tissues
(135-137). Pulakat et al. found that the mTOR/S6K1 signaling pathway
was activated in the cardiovascular tissues of rodent models with
nutrient excess; this activation is associated with weakened insulin
metabolic signaling, impairing NO-mediated vasodilation, causing
cardiac diastolic dysfunction, and promoting renal tubulointerstitial
fibrosis (138). Insulin resistance can also contribute to peripheral
microvascular and skeletal muscle dysfunction (139, 140), which are
linked to increased HF risk (141, 142). A positive correlation was found
between insulin resistance and HF risk in older adults with diabetes
(143). Overall, insulin resistance directly or indirectly contributes to
myocardial and renal tissue damage, and mitigating it may help
alleviate its negative effects on the cardiovascular system and kidneys.

5 Therapeutic options

In this review, the analyses of observational studies and
randomized trials have demonstrated that early metabolic regulation
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and subsequent albuminuria remission can accurately predict long-
term improvements in cardiorenal clinical outcomes (144, 145).
Metabolic conditions are not only a potent predictor of cardiorenal
risk but also a modifiable therapeutic target. The following discussion
focuses on the beneficial effects of metabolic regulation on cardiorenal
diseases, with an emphasis on lifestyle interventions, pharmacological
treatments, and novel targeted therapies (Figure 3).

5.1 Lifestyle interventions

Lifestyle interventions, including dietary modification and
exercise, are fundamental to the management of metabolic
abnormalities. By improving energy metabolism balance, reducing
oxidative stress, and mitigating inflammatory responses, they offer
multidimensional protection to the renal and cardiovascular systems.
The Dietary Approach to Stop Hypertension diet emphasizes a high
intake of vegetables, fruits, whole grains, and low-fat dairy products

10.3389/fnut.2025.1701084

while limiting saturated fat and cholesterol consumption (146).
Mechanistically, its high levels of potassium, magnesium, and dietary
fiber enhance insulin sensitivity and inhibit RAAS activation (147,
148),  thereby The
Mediterranean diet emphasizes the intake of monounsaturated fatty

alleviating  glomerular hyperfiltration.
acids (MUFAs), primarily from olive oil, fish, and nuts, to lower the
inflammatory factor levels (149, 150). The CORDIOPREV study,
which enrolled 1,002 patients with coronary heart disease, revealed
that the crude incidence rate of major cardiovascular events per 1,000
person-years was 28.1 (95% CI, 27.9-28.3) in the Mediterranean diet
group, which was significantly lower than 37.7 (95% CI, 37.5-37.9) in
the low-fat diet group, with a log-rank p-value of 0.039 (151). The
multivariate-adjusted HRs across the different models ranged from
0.719 (95% CI, 0.541-0.957) to 0.753 (95% CI, 0.568-0.998),
indicating that the Mediterranean diet has cardiovascular protective
effects (151). Furthermore, each one-point increase in the
Mediterranean Diet Scale was associated with a 10% reduction in
CKD risk (OR, 0.901; 95% CI, 0.868-0.935) (152), possibly because of
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MUFAs, which inhibit the TLR4/NF-kB pathway and reduce
glomerular endothelial cell damage (153, 154).

Various types of exercise, including aerobic exercise, resistance
exercise, and comprehensive exercise training, can effectively prevent
and significantly improve metabolic abnormalities. For example,
moderate-intensity aerobic exercise (e.g., brisk walking and
swimming) activates the AMPK/PGC-1a pathway, thereby enhancing
mitochondrial biogenesis and insulin sensitivity in both cardiac and
skeletal muscles (155-157). For patients with metabolic abnormalities
characterized by muscle loss and fat accumulation, resistance exercise
can enhance muscle glucose uptake and reduce ectopic fat (158, 159).
Furthermore, through alternating short bursts of high-intensity
exercise and low-intensity recovery periods, high-intensity interval
training (HIIT) significantly enhances mitochondrial oxidative
phosphorylation efficiency and capillary growth (160, 161), improving
cardiac function (162). Additionally, HIIT benefits renal function by
influencing kidney-specific mRNA expression of genes related to
endogenous antioxidant enzyme activity (GpxI, Sodl, and Cat) and
inflammation (Kiml and Tnfrsf1b) (163, 164).

5.2 Pharmacological treatments

Drug regimens should be tailored to specific metabolic disorders
(e.g., hyperglycemia, hyperlipidemia, and hyperuricemia) while
providing renal and cardiovascular protection.

For instance, SGLT2 inhibitors promote urinary glucose excretion,
reduce blood volume, and lower intraglomerular pressure by
inhibiting SGLT2 in the proximal tubule (165, 166). The SGLT2
inhibitor empagliflozin decreased the risk of kidney disease
progression or cardiovascular death by 28% (95% CI 0.64-0.82,
p<0.0001) in the EMPA-KIDNEY trial (167). This drug also
significantly reduced the risk of adverse cardiovascular events and
hospitalization for HF in patients with T2DM in the EMPA-REG
OUTCOME (168). GLP-1 receptor agonist, a glucose-lowering drug,
enhances glucose-dependent insulin secretion while inhibiting gastric
emptying and appetite. A meta-analysis conducted by Kristensen et
al. revealed that GLP-1 receptor agonist reduced the risks of MACE
by 12% (95% CI, 0.82-0.94, p < 0.0001) and a broad composite kidney
outcome by 17% (95% CI, 0.78-0.89; p < 0.0001), mainly resulting
from the decreased excretion of urinary albumin (169). More
importantly, both SGLT2 inhibitors and GLP-1 receptor agonists exert
cardiorenal protection through multiple mechanisms, including the
regulation of mitochondrial function, inhibition of renin secretion,
and reduction of oxidative stress (170, 171). SGLT2 inhibitors enhance
mitochondrial biogenesis and mitophagy by activating the AMPK-
PGC-1a pathway, while directly suppressing renin release by restoring
sodium delivery to the macula densa (170, 172). GLP-1 receptor
agonists stabilize mitochondrial membrane potential and optimize
energy metabolism via the cAMP-PKA signaling cascade; they also
indirectly modulate the RAAS by regulating the sympathetic tone
(170, 172). Furthermore, both drug classes could suppress ROS
generation and regulate calcium homeostasis, thereby attenuating the
unfolded protein response to block ER stress—driven apoptotic
pathways (170, 171); ultimately, cytoprotective effects are exerted in
the heart and kidneys.

Statins, which regulate lipids, inhibit oxidized LDL generation
(173) and suppress macrophage infiltration, thereby delaying the
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progression of atherosclerosis and glomerulosclerosis (174, 175).
Lipid-lowering drugs, particularly PCSK9 inhibitors, reduce the risk
of cardiovascular events by lowering LDL-C and lipoprotein(a) levels
(176, 177). PCSK9 exacerbates albuminuria by interacting with and
downregulating megalin, a proximal tubule receptor essential for
protein reabsorption in the kidneys (178, 179). In experimental
models, inhibiting PCSK9 maintained megalin levels, reduced
albuminuria, and improved renal disease phenotype (180).

The protective effects of UA-lowering therapy on cardiorenal
diseases require further exploration, and pharmacological treatment for
symptomatic hyperuricemia may hold greater significance (181-183).
Allopurinol reduces UA production by inhibiting xanthine oxidase
activity, thereby blocking the conversion of hypoxanthine and xanthine
into UA. A prospective cohort study by Goicoechea et al. demonstrated
that allopurinol treatment significantly lowered serum UA and C-reactive
protein levels, increased eGFR, and slowed the progression of kidney
disease. Compared with the control group, allopurinol treatment reduced
the risk of cardiovascular events by 71% (p = 0.026) (184). Similarly, the
composite renal event rate was significantly lower in the febuxostat group
than in the placebo group (relative risk [RR], 0.68; 95% CI 0.46-0.99),
with a notably higher eGFR (mean difference: 2.89 mL/min/1.73 m’
95% CI 0.69-5.09) (185). However, in high-risk patients such as those
with diabetes or CKD, the impact of febuxostat on cardiovascular risk,
compared with allopurinol, remains unclear in previous studies, with
potential effects ranging from neutral to either reduced or increased risk;
the underlying mechanisms are still unclear (186-188). In addition, in
salt-induced hypertensive rat models, benzbromarone significantly
reduced advanced oxidation protein products and attenuated oxidative
stress, suggesting its substantial potential for preventing CVD and
CKD (189).

5.3 Novel targeted therapies

Novel medications targeting multiple pathways, including chronic
inflammation, ER stress, endothelial function, and mitochondrial
function, are warranted.

Recently, nicotinamide adenine nucleotide (NAD*) has been
discovered to regulate immune function and inflammation (190,
191). Treatment with nicotinamide riboside (NR), an NAD*
intermediate, in T2DM mice prevented the increase in albuminuria,
urinary kidney injury molecule-1 excretion, and renal pathological
changes; such prevention was due to reduced inflammation, at least
partially by inhibiting the activation of the cGAS/STING signaling
pathway (192). Additionally, NR increased SIRT3 activity and
improved mitochondrial function, thereby reducing mitochondrial
DNA damage (192). Moreover, through its anti-inflammatory and
antioxidant activities, taurine, a sulfur-containing amino acid, helps
alleviate endothelial dysfunction caused by metabolic abnormalities,
prevent mitochondrial dysfunction, and help regulate vascular
pressure (193-195). In patients with T2DM, taurine supplementation
significantly reduces insulin resistance, oxidative stress, inflammation,
and endothelial markers (193). Furthermore, finerenone, as a novel
nonsteroidal mineralocorticoid receptor antagonist, is known to
reduce inflammation and fibrosis, thereby exerting cardiorenal
protective effects (196).

A previous study reported the interconnection between gut
microbiota, metabolic abnormalities, and chronic inflammation (197).
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Role of metabolic conditions in cardiorenal diseases: Initiating pathways and therapeutic targeting. DASH, Dietary Approach to Stop Hypertension; HIIT,
high-intensity interval training; NAD+, nicotinamide adenine nucleotide; NLRP3, nodular receptor protein 3; RAAS, renin—angiotensin—aldosterone
system; RNS, reactive nitrogen species; ROS, reactive oxygen species; UA, uric acid.

Trimethylamine-N-oxide (TMAO), a metabolite of gut microbiota,
the TLR4/NF-kB pathway, thereby
inflammation; it is also closely associated with atherosclerosis and

activates exacerbating
renal pathological changes (198-200). Clinically, probiotic therapy has
been shown to reduce TMAO levels in patients with unstable angina
(201). In patients with DN, Dai et al. found that probiotics could
improve glucose and lipid metabolism and reduce inflammation and
oxidative stress, thereby delaying the progression of albuminuria and
renal function impairment (202).
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The chemical 4-PBA alleviates ER stress by stabilizing protein
folding; it also reduces fat accumulation in zebrafish fed a high-fat diet
(203, 204). Several animal experiments have demonstrated that 4-PBA
can reduce tubular cell apoptosis and renal fibrosis (205). Moreover,
exogenous 4-PBA supplementation can inhibit atrial fibrosis in mice
with atrial fibrillation induced by a high-fat diet (206), prevent cardiac
rupture and remodeling in mice with MI (207), and inhibit myocardial
hypertrophy and interstitial fibrosis caused by pressure overload (208).
Additionally, nutritional supplements such as coenzyme Q10
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(CoQ10), a coenzyme in the mitochondrial respiratory chain, can
reduce ROS production, thereby improving oxidative stress responses.
Clinically, CoQ10 supplementation has beneficial effects on the lipid
profile and helps lower blood pressure (209). It also helps prevent
acute kidney injury in male diabetic rats, primarily by enhancing renal
hemodynamics and reducing oxidative stress (210). Furthermore,
CoQ10 can improve cardiovascular health, potentially by reducing
inflammation and oxidative stress, thereby decreasing fibrosis (211).
MicroRNAs (miRNAs) participate in the epigenetic regulation of
genes involved in lipid and glucose metabolism, with some being
dysregulated in metabolic and cardiorenal diseases (212-214).
Research on miRNA-loaded edible nanoparticles offers promising
new perspectives for clinical interventions targeting metabolic
disorders and cardiorenal diseases (215).

Given that single-pathway interventions have limited efficacy,
multi-pathway synergistic therapies have emerged as the core strategy
for managing metabolic abnormalities. Regulating metabolism can
effectively alleviate chronic inflammation, relieve ER stress, and
optimize mitochondrial function, thereby improving cardiorenal
outcomes. These mechanisms provide an important theoretical basis
for the prevention and treatment of complications related to
metabolic abnormalities.

6 Conclusion

Given the associations among metabolic conditions, albuminuria,
and CVD (Figure 4), early screening, comprehensive management,
and targeted therapies are important. Targeted intervention in
metabolic abnormalities may effectively control albuminuria, delay
CVD progression, and improve the overall prognosis of cardiorenal
disease. Future research should further explore the underlying
mechanisms so that more precise prevention and treatment strategies
can be developed, providing patients with more comprehensive
health protection.
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