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pathways and therapeutic 
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Albuminuria, a core indicator of kidney injury, is closely associated with cardiovascular 
disease prognosis. Through multiple mechanisms, metabolic abnormalities, such 
as hyperglycemia, hyperuricemia, obesity, and dyslipidemia, contribute to the 
onset and progression of albuminuria and significantly increase the risk of adverse 
cardiovascular outcomes. Based on recent clinical studies and basic experimental 
evidence, this review systematically elucidates how metabolic conditions are involved 
in the relationship between albuminuria and cardiac prognosis, encompassing 
several mechanisms, including chronic inflammation, endoplasmic reticulum 
stress, renin–angiotensin–aldosterone system overactivation, hemodynamic 
alterations, vascular endothelial dysfunction, mitochondrial dysfunction, and 
lipotoxicity. Additionally, it explores clinical intervention strategies. This review 
underscores the pivotal role of metabolic conditions in driving cardiorenal diseases 
and outlines evidence-based strategies for clinical management.
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1 Introduction

Albuminuria is a core indicator of kidney disease progression and an independent 
risk factor for cardiovascular disease (CVD) and heart failure (HF) (1–3). With the rising 
incidence of metabolic diseases, the role of metabolic conditions in the relationship 
between albuminuria and adverse cardiovascular outcomes has gained increasing 
attention. Metabolic disorder, renal disease, and CVD often overlap and coexist in 
affected individuals. In a study involving 11,607 American adults, approximately 26.3% 
had at least one cardiac, renal, or metabolic disease, 8.0% had two of these conditions, 
and 1.5% had all three diseases simultaneously (4). Moreover, metabolic risk factors were 
the main CVD-attributable burdens in China, increasing from 62.80% in 1990 to 70.45% 
in 2019 (5). Common metabolic abnormalities, including hyperglycemia, hyperuricemia, 
dyslipidemia, and obesity, not only share common pathophysiological mechanisms with 
cardiorenal diseases but also exacerbate disease progression when coexisting (6, 7). This 
interrelationship has led to the concept of Cardiovascular–Kidney–Metabolic syndrome 
(8, 9). However, metabolic abnormalities appear to be the primary driver, rather than 
mere contributors, of the “metabolic abnormalities–albuminuria–CVD” cycle. Metabolic 
abnormalities trigger albuminuria through kidney injury (10) while directly promoting 
vascular damage (11, 12), thereby initiating the progression of cardiorenal disease 
(Figure 1). Based on recent clinical research and basic experimental evidence, this 
research aimed to systematically elucidate the role of metabolic conditions as a driving 
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factor in the relationship between albuminuria and cardiovascular 
prognosis, and explores the clinical intervention strategies.

2 Correlation between albuminuria 
and cardiac outcomes

Previously, a 24-h albumin excretion rate (AER) exceeding 
30 mg was the gold standard for diagnosing albuminuria (13). 
However, given that 24-h urine collection is often impractical and 
causes patient burden, spot urine samples are now routinely used to 
estimate AER clinically (13). Assuming approximately 1 g of urinary 
creatinine is excreted daily, the urinary albumin-to-creatinine ratio 
(UACR), calculated using spot urine samples, is used to determine 
the presence of albuminuria (14). Given that UACR remains 
relatively constant and is not influenced by changes in individual 
urine volume or body weight, it features high accuracy and 
reliability (14).

Currently, albuminuria, defined by the criterion of UACR 
>30 mg/g, is recognized as a critical indicator closely associated 
with the progression and adverse outcomes of chronic kidney 
disease (CKD), particularly diabetic nephropathy (DN) (15). 
Mounting epidemiological evidence suggests that urinary albumin 
excretion is also linked to CVD incidence and mortality, with 
albuminuria being an independent risk factor for cardiovascular 
events (16, 17). A prospective cohort study examined 8,975 
patients with type 2 diabetes mellitus (T2DM) without pre-existing 
CVD at baseline and found that, after a median follow-up of 
4.05 years and adjustment for potential confounders, participants 
with microalbuminuria exhibited a higher CVD risk, with a 
hazard ratio (HR) of 1.57 (95% confidence interval [CI]: 1.04–
2.37) for myocardial infarction (MI) and 1.30 (95% CI: 1.07–1.57) 
for total CVD. Moreover, as the UACR increased, the risk also 
increased. Those with macroalbuminuria had an HR of 2.86 (95% 

CI: 1.63–5.00) for MI and 2.42 (95% CI: 1.85–3.15) for total 
CVD (18).

Traditionally, individuals who do not meet the diagnostic criteria 
for CKD (UACR < 30 mg/g, estimated glomerular filtration rate 
[eGFR] > 60 mL/min/1.73 m2) are not considered to have high CVD 
risk. Nevertheless, recent retrospective clinical studies have 
presented contradictory findings, revealing a correlation between 
elevated UACR within the normal range and cardiorenal risk, 
independent of eGFR levels (19, 20). Research utilizing data from the 
National Health and Nutrition Examination Survey demonstrated a 
near-linear relationship between continuous UACR levels and CVD 
risk, even among individuals without apparent cardiovascular 
disease, underscoring the continuum of risk and the importance of 
early intervention (19). Similarly, after adjusting for 
sociodemographic information, body mass index (BMI), smoking 
status, baseline eGFR, and related comorbidities, Kang et al. found 
that a UACR within 6.211–10.010 mg/g was already significantly 
associated with increased cardiac mortality (HR = 1.51, 95% CI: 
1.12–2.03, p = 0.006). This association further intensified when 
UACR exceeded 10.010 mg/g (HR = 2.14, 95% CI: 1.62–2.82, 
p < 0.001) (21).

Chronic kidney injury reportedly elevates cardiovascular risk 
through multiple pathophysiological processes, including 
endothelial dysfunction, diffuse vascular damage, systemic 
inflammation, atherosclerosis, myocardial remodeling, and 
sodium and water retention (22–24). Interestingly, through 
Mendelian randomization analysis, Zhou et al. discovered that 
elevated UACR exhibited a causal relationship with increased risks 
for CAD (odds ratio [OR], 1.260; 95% CI: 1.042–1.523; p = 0.017) 
and MI (OR, 1.424; 95% CI: 1.137–1.783; p = 0.002). However, 
this causal relationship vanished after adjusting for metabolic 
factors such as blood pressure, blood glucose, and lipid levels (25), 
suggesting that the detrimental impact of UACR on CAD is 
mediated by these metabolic conditions.

FIGURE 1

The vicious “metabolic abnormalities–albuminuria–cardiovascular disease” cycle.
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3 Role of metabolic conditions in 
cardiorenal prognosis

Metabolic conditions such as hyperglycemia, dyslipidemia, 
obesity, and hyperuricemia are well-established independent risk 
factors for albuminuria, driving its progression from microalbuminuria 
to macroalbuminuria and from intermittent to persistent states.

A study by Sivanantham et al. demonstrated that 
microalbuminuria incidence was 27.7% (95% CI: 18.1–38.6) among 
patients with hypertension alone and 40.6% (95% CI: 29–52.2) among 
those with diabetes alone (26). In a survey conducted across 105 
primary care units in Turkey, diabetes was significantly associated 
with an increased albuminuria risk (OR, 1.667; 95% CI: 1.205–2.309; 
p = 0.002). Moreover, albuminuria prevalence was significantly lower 
in patients with diabetes with controlled blood glucose than in those 
without controlled blood glucose (59.0% vs. 47.0%, p = 0.002) (27). 
Notably, when combined with metabolic abnormalities, the correlation 
between albuminuria and cardiovascular prognosis changes. A 
multicenter registry cohort study involving 5,960 patients with CAD 
demonstrated that an increased UACR had a more significant impact 
on all-cause and cardiovascular mortality in patients with T2DM than 
in those without T2DM. Furthermore, an interaction between 
glycemic status and UACR levels was observed in relation to 
cardiovascular and all-cause mortality (both interaction p-values < 
0.001), even when UACR values were within the guideline-
recommended normal range (23).

Regarding the relationship between hyperlipidemia and 
albuminuria, Hwang et al. found that UACR was positively correlated 
with total cholesterol and triglyceride levels but negatively correlated 
with high-density lipoprotein cholesterol (HDL-C) levels (28). 
Similarly, a higher ratio of non-HDL-C to HDL-C was significantly 
associated with an increased risk of macroalbuminuria (OR, 1.34; 95% 
CI: 1.13–1.59; p = 0.0007). A subgroup analysis revealed that this 
association was stronger among participants with a BMI of ≥30 kg/m2 
(OR, 1.89; 95% CI: 1.44–2.47; p < 0.01), even after excluding those 
taking medications that affect lipid metabolism (29). Moreover, as 
BMI, waist circumference, and body fat content gradually increase, 
urinary albumin excretion also increases (30). In genetic studies, 
HindIII polymorphism in the LPL gene, a key enzyme in triglyceride 
metabolism, is significantly associated with increased 
microalbuminuria risk in patients with T2DM (31). Moreover, Shao 
et al. quantitatively analyzed HDL proteome alterations using isotope 
dilution tandem mass spectrometry and found that low concentrations 
of the anti-atherosclerotic protein PON1 in the HDL proteome were 
associated with albuminuria and coronary artery calcification. In 
patients with T1DM manifesting albuminuria, reduced PON1 levels 
in the HDL proteome may partially mediate the increased CVD risk, 
increasing the possibility that HDL proteome alterations act as 
mediators of kidney disease and atherosclerosis risk (32).

A community-based prospective cohort study involving 1,862 
middle-aged and older adult participants found that, over a 4-year 
follow-up period, after adjusting for confounding factors, each 1 mg/
dL increase in serum uric acid (UA) was associated with a 1.42-fold 
higher risk of developing microalbuminuria (OR, 1.42; 95% CI: 1.27–
1.59; p < 0.01). Thus, elevated serum UA can independently predict 
the onset of microalbuminuria (33). Additionally, Russo et al. 
conducted a retrospective investigation involving 21,963 patients from 
the URRAH study database. During a follow-up period of 215,618 

person-years, they found that cardiovascular mortality stratified by all 
levels of eGFR was significantly higher in patients with hyperuricemia 
and proteinuria than in those with only one risk factor or no risk 
factors (34).

4 Mechanisms of metabolic conditions 
involved in cardiorenal diseases

Metabolic abnormalities deliver a “double hit” through renal 
injury (triggering albuminuria) and vascular damage (directly 
promoting atherosclerosis), creating a vicious “metabolic 
abnormalities–albuminuria–CVD” cycle. This multidimensional 
effect dominated by metabolic abnormalities may include the 
following specific underlying mechanisms (Figure 2).

4.1 Chronic inflammation and endoplasmic 
reticulum stress

Chronic low-grade inflammation induced by metabolic disorders 
exists in multiple organs or tissues, including the heart, brain, kidneys, 
and skeletal muscles and is characterized by the infiltration of immune 
cells, production of abnormal cytokines, and aberrant activation of 
inflammatory signaling pathways (35–38). Chronic inflammation is a 
fundamental feature of most renal pathologies, where inflammatory 
cell infiltration into the renal interstitium promotes fibroblast 
proliferation and collagen synthesis, causing renal interstitial 
fibrosis—a crucial process leading CKD to end-stage renal disease 
(39–41). Moreover, metabolically mediated inflammation could 
accelerate glomerulosclerosis and interstitial fibrosis, causing gradual 
decline in renal function (40). Additionally, inflammation may 
compromise the structural and functional integrity of glomerular cells 
and injure renal tubular epithelial cells, thereby impairing reabsorption 
and secretion functions and accelerating the progression of CKD 
(42–44). In populations with diabetes and obesity, elevated glucose 
and lipid accumulation can promote inflammatory responses 
dependent of nodular receptor protein 3 (NLRP3) inflammasomes, 
inducing podocyte injury, a major factor in subsequent renal damage 
(45–49). Furthermore, inflammation with a high-specificity cellular 
and molecular response contributes to the initiation and progression 
of atherosclerosis (50). A high-fat diet can exacerbate atherosclerosis 
by elevating the neutrophil levels (51). Chronic inflammation 
associated with metabolic disorders can also damage vascular 
endothelial cells and promote lipid deposition and platelet aggregation, 
ultimately forming atherosclerotic plaques and increasing CAD risk 
(52, 53). In summary, chronic inflammation driven by metabolic 
dysregulation may be a key contributor to the development of 
cardiorenal diseases associated with metabolic abnormalities.

Several studies have demonstrated that excess nutrients and 
inflammatory cytokines associated with metabolic diseases can 
trigger or exacerbate ER stress and induce the overproduction of 
downstream reactive oxygen species (ROS) and reactive nitrogen 
(54–57). ER stress disrupts the balance between nitric oxide and 
ROS, leading to oxidative stress, which aids in inducing endothelial 
dysfunction and atherosclerosis (58–60). Disruption of redox 
homeostasis leads to the accumulation of oxidative intermediates, 
which then attack unsaturated fatty acids in biological membranes, 
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trigger lipid peroxidation, and further decompose into smaller 
oxides, including malondialdehyde; consequently, a series of 
structural and functional abnormalities involving the 
cardiovascular and renal systems occur (61–65). Thus, metabolically 
related ER stress facilitates the development of 
cardiorenal complications.

4.2 Overactivation of the renin–
angiotensin–aldosterone system

During obesity, adipose tissue secretes various adipokines (e.g., 
leptin and adiponectin), which can directly or indirectly activate the 
renin–angiotensin–aldosterone system (RAAS) (66, 67). RAAS can 
also be activated by chronic hyperglycemia and hyperuricemia 
through the direct stimulation of renal renin secretion (68–71). This 
system is involved in blood pressure regulation, fluid homeostasis, and 
electrolyte balance. When it is overactivated, aldosterone secretion 
increases, promoting the renal tubular reabsorption of sodium and 
water, increasing volume load, and exacerbating cardiac burden (72). 
Angiotensin II induces plaque formation during the early stages, 
representing one of the most crucial impacts on atherogenesis from 
the RAAS (73). Additionally, the increased production of angiotensin 
II induces endothelin expression, which causes systemic 
vasoconstriction, blood pressure elevation, and cardiac and renal 
injury worsening (74, 75). Meanwhile, angiotensin II overexpression 
can induce oxidative stress, ER damage, and apoptosis by activating 
signaling pathways such as the mTOR/ERK pathway, leading to 
cardiorenal organ remodeling and dysfunction (76–78). Moreover, UA 
and angiotensin II synergistically increased inflammation and 
oxidative stress in human proximal tubular cells through the activation 
of toll-like receptor 4 (TLR4), in an additive manner (79). In summary, 
RAAS overactivation associated with metabolic abnormalities induces 
a vicious cycle of neurohumoral abnormalities, internal environment 
disturbances, and oxidative stress, further contributing in the 
development of cardiorenal disease.

4.3 Hemodynamic alterations

Obesity exhibits an increase in circulating blood volume and 
glomerular pressure, resulting in mechanical damage to the capillary 
walls. Prolonged exposure to elevated intraglomerular pressure can 
induce focal segmental glomerulosclerosis, which clinically presents 
as albuminuria and progressive decline in renal function (80, 81). In 
hyperglycemia, the secretion of vasoactive substances such as 
prostaglandins and nitric oxide increases, causing the afferent 
arterioles to excessively dilate and the renal blood flow to significantly 
increase, resulting in hyperfiltration (82, 83). Obesity and 
hyperglycemia promote the generation of advanced glycation 
end-products (AGEs), which are deposited in the glomerular 
basement membrane and mesangial region; this deposition leads to 
the thickening of basement membranes, proliferation of mesangial 
matrix, and restricted dilation of the efferent arterioles, exacerbating 
the hyperfiltration state (84–86). Prolonged hyperfiltration 
mechanically damages the glomerular capillary walls and continuously 
activates mesangial and endothelial cells, which release profibrotic 
factors such as TGF-β and platelet-derived growth factor, ultimately 
promoting glomerulosclerosis (87–91). At the macro level, reciprocal 
communication between the renal microvasculature and the systemic 
circulation creates a vicious cycle that accelerates the progression of 
cardiorenal disease (92). Additionally, hemodynamic disturbances 
associated with metabolic dysfunction increase cardiac load and 
exacerbate HF symptoms (93).

4.4 Vascular endothelial dysfunction

Metabolic abnormalities, such as hyperglycemia, hyperuricemia, 
and excessive release of free fatty acids (FFAs), adversely affect the 
vascular wall, leading to endothelial dysfunction (94–98). Vascular 
endothelial cells help maintain the barrier function between blood 
and the vascular wall; they also regulate the normal functioning of the 
circulatory system by balancing vasodilation and vasoconstriction 

FIGURE 2

Mechanisms underlying metabolic conditions involved in cardiorenal diseases. AGEs, advanced glycation end-products; FFAs, free fatty acids; LDL, 
low-density lipoprotein; NLRP3, nodular receptor protein 3; RAAS, renin–angiotensin–aldosterone system; RNS, reactive nitrogen species; ROS, 
reactive oxygen species; TC, total cholesterol; TG, triglyceride.
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(99). Vascular endothelial dysfunction is characterized by impaired 
endothelium-dependent vasodilation, increased oxidative stress, 
chronic inflammation, increased permeability, and endothelial cell 
senescence, collectively hindering the physiological and protective 
functions of endothelial cells (100, 101). In endothelial dysfunction, 
vascular regulatory mechanisms are impaired, increasing the risk of 
cardiorenal diseases. Such dysfunction also leads to the decreased 
activity of endothelial nitric oxide synthase, resulting in reduced NO 
synthesis, which enhances vasoconstrictive capacity and increases 
peripheral resistance, thereby exacerbating cardiac load and causing 
renal diseases (102–105). High levels of glucose and UA, as well as 
AGEs, increase the permeability of glomerular endothelial cells, 
induce endothelial cell apoptosis, significantly alter the glomerular 
filtration barrier, and lead to albuminuria (84, 106). Therefore, 
improving endothelial function may help prevent or treat cardiorenal 
diseases associated with metabolic abnormalities.

4.5 Mitochondrial dysfunction

Mitochondrial quality control is a core regulatory system that 
maintains cellular energy homeostasis through three synergistic 
mechanisms (107). First, PGC-1α–mediated mitochondrial biogenesis 
continuously generates new mitochondria by activating the protein 
nuclear factor erythroid 2–related factor 2. Second, mitochondrial 
dynamics—coordinately regulated by fusion proteins including 
mitofusins and fission proteins such as DRP1, ensure the clearance of 
damaged organelles and the renewal of healthy mitochondria with 
minimal resources and energy required. Finally, mitophagy mediated 
by PINK1/Parkin pathway, precisely identifies and eliminates 
damaged units with dissipated membrane potentials, thereby 
establishing a closed-loop system for mitochondrial quality control. 
This dynamic cycle—comprising biogenesis, remodeling, and 
clearance—provides adaptive support for cellular metabolism; 
however, when disrupted, it directly compromises the structural 
integrity of the ventricular myocardium and renal parenchyma, 
ultimately impairing cardiac and renal functions (108, 109).

Elevated levels of glucose, UA, and FFAs can induce mitochondrial 
dysfunction, which leads to ROS accumulation and exacerbates 
mitochondrial dynamic disturbances and mitochondrial DNA damage, 
forming a vicious cycle (110–114). High glucose levels can promote 
excessive mitochondrial fission in renal podocytes, leading to glomerular 
damage and renal dysfunction (115). Impairment of the mitochondrial 
antioxidant defense system, together with increased mitochondrial ROS 
production, can harm renal cell membrane lipids, proteins, and DNA, 
thereby inducing podocyte apoptosis and endothelial cell damage, 
which are common features of acute and chronic kidney injuries (116, 
117). Moreover, mitochondrial dynamic imbalance contributes to the 
pathogenesis of various CVDs. Mitochondrial dynamic homeostasis is 
essential not only for the growth, apoptosis, and migration of vascular 
endothelial and smooth muscle cells but also for the regulation of matrix 
metalloproteinase production by monocytes and macrophages, as well 
as extracellular matrix degradation, which are important initiating 
factors for vascular remodeling (118–122). Abnormal mitochondrial 
dynamics can impair vascular cell function and accelerate the onset and 
progression of vascular remodeling diseases such as atherosclerosis (118, 
121). Additionally, hyperglycemia can promote time-dependent 
mitochondrial dysfunction in cardiomyocytes, potentially leading to 

diabetic cardiomyopathy (123). Given the important role of 
mitochondrial function in regulating cardiorenal injury, maintaining 
mitochondrial homeostasis during metabolic abnormalities is crucial.

4.6 Lipotoxicity and insulin resistance

In lipotoxicity during lipid metabolism disorders, FFA 
concentrations or intracellular lipid levels exceeds the storage capacity 
of adipose tissue and the oxidative capacity of various tissues for FFAs; 
consequently, lipid levels are abnormally elevated in the blood or are 
excessively deposited in nonadipose tissues, causing damage and 
toxicity to tissues and organs (124, 125). Lipotoxicity has been reported 
to increase CKD risk and considered as an independent risk factor for 
adverse cardiovascular events (126). It also increases the triglyceride 
and low-density lipoprotein cholesterol (LDL-C) levels; the deposition 
of these lipid components in the vascular wall leads to plaque 
formation, which causes vascular stenosis and obstruction, ultimately 
increasing the risk of atherosclerotic CVD (127). Lipotoxicity-induced 
liver inflammation may also lead to an imbalance in coagulation and 
fibrinolysis, making the blood hypercoagulable (128); consequently, 
cardiac and renal blood vessels develop thrombosis, which further 
promotes the onset and progression of cardiorenal diseases. Abnormal 
lipid metabolism also results in excessive FFA accumulation in 
nonadipose organs such as the heart and kidneys. When renal sinus fat 
abnormally accumulates, mechanical compression and inflammatory 
factor release can occur, triggering local hypoxia, oxidative stress, and 
fibrosis; consequently, nephron function is impaired (129, 130). 
Similarly, abnormal FFA buildup in cardiomyocytes activates ROS 
production, induces ER stress, and disrupts mitochondrial β-oxidation, 
leading to cardiomyocyte apoptosis, interstitial fibrosis, and contractile 
function impairment; ultimately, lipotoxic cardiomyopathy develops 
(131, 132). Early prevention and control of lipotoxicity are essential to 
effectively maintain cardiorenal function.

Insulin resistance is a core feature of metabolic disorders and is 
crucial in CVD and CKD development by promoting myocardial 
fibrosis, endothelial dysfunction, and lipid metabolism disorders (133, 
134). Insulin resistance can activate the mTOR/S6K1 signaling pathway, 
affecting the expression of insulin receptors in cardiac and renal tissues, 
reducing insulin sensitivity, and ultimately damaging such tissues 
(135–137). Pulakat et al. found that the mTOR/S6K1 signaling pathway 
was activated in the cardiovascular tissues of rodent models with 
nutrient excess; this activation is associated with weakened insulin 
metabolic signaling, impairing NO-mediated vasodilation, causing 
cardiac diastolic dysfunction, and promoting renal tubulointerstitial 
fibrosis (138). Insulin resistance can also contribute to peripheral 
microvascular and skeletal muscle dysfunction (139, 140), which are 
linked to increased HF risk (141, 142). A positive correlation was found 
between insulin resistance and HF risk in older adults with diabetes 
(143). Overall, insulin resistance directly or indirectly contributes to 
myocardial and renal tissue damage, and mitigating it may help 
alleviate its negative effects on the cardiovascular system and kidneys.

5 Therapeutic options

In this review, the analyses of observational studies and 
randomized trials have demonstrated that early metabolic regulation 
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and subsequent albuminuria remission can accurately predict long-
term improvements in cardiorenal clinical outcomes (144, 145). 
Metabolic conditions are not only a potent predictor of cardiorenal 
risk but also a modifiable therapeutic target. The following discussion 
focuses on the beneficial effects of metabolic regulation on cardiorenal 
diseases, with an emphasis on lifestyle interventions, pharmacological 
treatments, and novel targeted therapies (Figure 3).

5.1 Lifestyle interventions

Lifestyle interventions, including dietary modification and 
exercise, are fundamental to the management of metabolic 
abnormalities. By improving energy metabolism balance, reducing 
oxidative stress, and mitigating inflammatory responses, they offer 
multidimensional protection to the renal and cardiovascular systems. 
The Dietary Approach to Stop Hypertension diet emphasizes a high 
intake of vegetables, fruits, whole grains, and low-fat dairy products 

while limiting saturated fat and cholesterol consumption (146). 
Mechanistically, its high levels of potassium, magnesium, and dietary 
fiber enhance insulin sensitivity and inhibit RAAS activation (147, 
148), thereby alleviating glomerular hyperfiltration. The 
Mediterranean diet emphasizes the intake of monounsaturated fatty 
acids (MUFAs), primarily from olive oil, fish, and nuts, to lower the 
inflammatory factor levels (149, 150). The CORDIOPREV study, 
which enrolled 1,002 patients with coronary heart disease, revealed 
that the crude incidence rate of major cardiovascular events per 1,000 
person-years was 28.1 (95% CI, 27.9–28.3) in the Mediterranean diet 
group, which was significantly lower than 37.7 (95% CI, 37.5–37.9) in 
the low-fat diet group, with a log-rank p-value of 0.039 (151). The 
multivariate-adjusted HRs across the different models ranged from 
0.719 (95% CI, 0.541–0.957) to 0.753 (95% CI, 0.568–0.998), 
indicating that the Mediterranean diet has cardiovascular protective 
effects (151). Furthermore, each one-point increase in the 
Mediterranean Diet Scale was associated with a 10% reduction in 
CKD risk (OR, 0.901; 95% CI, 0.868–0.935) (152), possibly because of 

FIGURE 3

Current methods for intervening in and regulating metabolic conditions to improve cardiorenal outcomes. CKD, chronic kidney disease; CVD, 
cardiovascular disease; DASH, Dietary Approach to Stop Hypertension; HF, heart failure; HIIT, high-intensity interval training; NAD+, nicotinamide 
adenine nucleotide; RAAS, renin–angiotensin–aldosterone system; ROS, reactive oxygen species; UA, uric acid.
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MUFAs, which inhibit the TLR4/NF-κB pathway and reduce 
glomerular endothelial cell damage (153, 154).

Various types of exercise, including aerobic exercise, resistance 
exercise, and comprehensive exercise training, can effectively prevent 
and significantly improve metabolic abnormalities. For example, 
moderate-intensity aerobic exercise (e.g., brisk walking and 
swimming) activates the AMPK/PGC-1α pathway, thereby enhancing 
mitochondrial biogenesis and insulin sensitivity in both cardiac and 
skeletal muscles (155–157). For patients with metabolic abnormalities 
characterized by muscle loss and fat accumulation, resistance exercise 
can enhance muscle glucose uptake and reduce ectopic fat (158, 159). 
Furthermore, through alternating short bursts of high-intensity 
exercise and low-intensity recovery periods, high-intensity interval 
training (HIIT) significantly enhances mitochondrial oxidative 
phosphorylation efficiency and capillary growth (160, 161), improving 
cardiac function (162). Additionally, HIIT benefits renal function by 
influencing kidney-specific mRNA expression of genes related to 
endogenous antioxidant enzyme activity (Gpx1, Sod1, and Cat) and 
inflammation (Kim1 and Tnfrsf1b) (163, 164).

5.2 Pharmacological treatments

Drug regimens should be tailored to specific metabolic disorders 
(e.g., hyperglycemia, hyperlipidemia, and hyperuricemia) while 
providing renal and cardiovascular protection.

For instance, SGLT2 inhibitors promote urinary glucose excretion, 
reduce blood volume, and lower intraglomerular pressure by 
inhibiting SGLT2 in the proximal tubule (165, 166). The SGLT2 
inhibitor empagliflozin decreased the risk of kidney disease 
progression or cardiovascular death by 28% (95% CI 0.64–0.82, 
p < 0.0001) in the EMPA-KIDNEY trial (167). This drug also 
significantly reduced the risk of adverse cardiovascular events and 
hospitalization for HF in patients with T2DM in the EMPA-REG 
OUTCOME (168). GLP-1 receptor agonist, a glucose-lowering drug, 
enhances glucose-dependent insulin secretion while inhibiting gastric 
emptying and appetite. A meta-analysis conducted by Kristensen et 
al. revealed that GLP-1 receptor agonist reduced the risks of MACE 
by 12% (95% CI, 0.82–0.94, p < 0.0001) and a broad composite kidney 
outcome by 17% (95% CI, 0.78–0.89; p < 0.0001), mainly resulting 
from the decreased excretion of urinary albumin (169). More 
importantly, both SGLT2 inhibitors and GLP-1 receptor agonists exert 
cardiorenal protection through multiple mechanisms, including the 
regulation of mitochondrial function, inhibition of renin secretion, 
and reduction of oxidative stress (170, 171). SGLT2 inhibitors enhance 
mitochondrial biogenesis and mitophagy by activating the AMPK-
PGC-1α pathway, while directly suppressing renin release by restoring 
sodium delivery to the macula densa (170, 172). GLP-1 receptor 
agonists stabilize mitochondrial membrane potential and optimize 
energy metabolism via the cAMP-PKA signaling cascade; they also 
indirectly modulate the RAAS by regulating the sympathetic tone 
(170, 172). Furthermore, both drug classes could suppress ROS 
generation and regulate calcium homeostasis, thereby attenuating the 
unfolded protein response to block ER stress–driven apoptotic 
pathways (170, 171); ultimately, cytoprotective effects are exerted in 
the heart and kidneys.

Statins, which regulate lipids, inhibit oxidized LDL generation 
(173) and suppress macrophage infiltration, thereby delaying the 

progression of atherosclerosis and glomerulosclerosis (174, 175). 
Lipid-lowering drugs, particularly PCSK9 inhibitors, reduce the risk 
of cardiovascular events by lowering LDL-C and lipoprotein(a) levels 
(176, 177). PCSK9 exacerbates albuminuria by interacting with and 
downregulating megalin, a proximal tubule receptor essential for 
protein reabsorption in the kidneys (178, 179). In experimental 
models, inhibiting PCSK9 maintained megalin levels, reduced 
albuminuria, and improved renal disease phenotype (180).

The protective effects of UA-lowering therapy on cardiorenal 
diseases require further exploration, and pharmacological treatment for 
symptomatic hyperuricemia may hold greater significance (181–183). 
Allopurinol reduces UA production by inhibiting xanthine oxidase 
activity, thereby blocking the conversion of hypoxanthine and xanthine 
into UA. A prospective cohort study by Goicoechea et al. demonstrated 
that allopurinol treatment significantly lowered serum UA and C-reactive 
protein levels, increased eGFR, and slowed the progression of kidney 
disease. Compared with the control group, allopurinol treatment reduced 
the risk of cardiovascular events by 71% (p = 0.026) (184). Similarly, the 
composite renal event rate was significantly lower in the febuxostat group 
than in the placebo group (relative risk [RR], 0.68; 95% CI 0.46–0.99), 
with a notably higher eGFR (mean difference: 2.89 mL/min/1.73 m2; 
95% CI 0.69–5.09) (185). However, in high-risk patients such as those 
with diabetes or CKD, the impact of febuxostat on cardiovascular risk, 
compared with allopurinol, remains unclear in previous studies, with 
potential effects ranging from neutral to either reduced or increased risk; 
the underlying mechanisms are still unclear (186–188). In addition, in 
salt-induced hypertensive rat models, benzbromarone significantly 
reduced advanced oxidation protein products and attenuated oxidative 
stress, suggesting its substantial potential for preventing CVD and 
CKD (189).

5.3 Novel targeted therapies

Novel medications targeting multiple pathways, including chronic 
inflammation, ER stress, endothelial function, and mitochondrial 
function, are warranted.

Recently, nicotinamide adenine nucleotide (NAD+) has been 
discovered to regulate immune function and inflammation (190, 
191). Treatment with nicotinamide riboside (NR), an NAD+ 
intermediate, in T2DM mice prevented the increase in albuminuria, 
urinary kidney injury molecule-1 excretion, and renal pathological 
changes; such prevention was due to reduced inflammation, at least 
partially by inhibiting the activation of the cGAS/STING signaling 
pathway (192). Additionally, NR increased SIRT3 activity and 
improved mitochondrial function, thereby reducing mitochondrial 
DNA damage (192). Moreover, through its anti-inflammatory and 
antioxidant activities, taurine, a sulfur-containing amino acid, helps 
alleviate endothelial dysfunction caused by metabolic abnormalities, 
prevent mitochondrial dysfunction, and help regulate vascular 
pressure (193–195). In patients with T2DM, taurine supplementation 
significantly reduces insulin resistance, oxidative stress, inflammation, 
and endothelial markers (193). Furthermore, finerenone, as a novel 
nonsteroidal mineralocorticoid receptor antagonist, is known to 
reduce inflammation and fibrosis, thereby exerting cardiorenal 
protective effects (196).

A previous study reported the interconnection between gut 
microbiota, metabolic abnormalities, and chronic inflammation (197). 
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Trimethylamine-N-oxide (TMAO), a metabolite of gut microbiota, 
activates the TLR4/NF-κB pathway, thereby exacerbating 
inflammation; it is also closely associated with atherosclerosis and 
renal pathological changes (198–200). Clinically, probiotic therapy has 
been shown to reduce TMAO levels in patients with unstable angina 
(201). In patients with DN, Dai et al. found that probiotics could 
improve glucose and lipid metabolism and reduce inflammation and 
oxidative stress, thereby delaying the progression of albuminuria and 
renal function impairment (202).

The chemical 4-PBA alleviates ER stress by stabilizing protein 
folding; it also reduces fat accumulation in zebrafish fed a high-fat diet 
(203, 204). Several animal experiments have demonstrated that 4-PBA 
can reduce tubular cell apoptosis and renal fibrosis (205). Moreover, 
exogenous 4-PBA supplementation can inhibit atrial fibrosis in mice 
with atrial fibrillation induced by a high-fat diet (206), prevent cardiac 
rupture and remodeling in mice with MI (207), and inhibit myocardial 
hypertrophy and interstitial fibrosis caused by pressure overload (208). 
Additionally, nutritional supplements such as coenzyme Q10 

FIGURE 4

Role of metabolic conditions in cardiorenal diseases: Initiating pathways and therapeutic targeting. DASH, Dietary Approach to Stop Hypertension; HIIT, 
high-intensity interval training; NAD+, nicotinamide adenine nucleotide; NLRP3, nodular receptor protein 3; RAAS, renin–angiotensin–aldosterone 
system; RNS, reactive nitrogen species; ROS, reactive oxygen species; UA, uric acid.
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(CoQ10), a coenzyme in the mitochondrial respiratory chain, can 
reduce ROS production, thereby improving oxidative stress responses. 
Clinically, CoQ10 supplementation has beneficial effects on the lipid 
profile and helps lower blood pressure (209). It also helps prevent 
acute kidney injury in male diabetic rats, primarily by enhancing renal 
hemodynamics and reducing oxidative stress (210). Furthermore, 
CoQ10 can improve cardiovascular health, potentially by reducing 
inflammation and oxidative stress, thereby decreasing fibrosis (211). 
MicroRNAs (miRNAs) participate in the epigenetic regulation of 
genes involved in lipid and glucose metabolism, with some being 
dysregulated in metabolic and cardiorenal diseases (212–214). 
Research on miRNA-loaded edible nanoparticles offers promising 
new perspectives for clinical interventions targeting metabolic 
disorders and cardiorenal diseases (215).

Given that single-pathway interventions have limited efficacy, 
multi-pathway synergistic therapies have emerged as the core strategy 
for managing metabolic abnormalities. Regulating metabolism can 
effectively alleviate chronic inflammation, relieve ER stress, and 
optimize mitochondrial function, thereby improving cardiorenal 
outcomes. These mechanisms provide an important theoretical basis 
for the prevention and treatment of complications related to 
metabolic abnormalities.

6 Conclusion

Given the associations among metabolic conditions, albuminuria, 
and CVD (Figure 4), early screening, comprehensive management, 
and targeted therapies are important. Targeted intervention in 
metabolic abnormalities may effectively control albuminuria, delay 
CVD progression, and improve the overall prognosis of cardiorenal 
disease. Future research should further explore the underlying 
mechanisms so that more precise prevention and treatment strategies 
can be developed, providing patients with more comprehensive 
health protection.
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