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The role of traditional Chinese 
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Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder 
characterized by hyperandrogenism, anovulation, and insulin resistance (IR). 
Recent evidence suggests that gut microbiota (GM) dysbiosis contributes to PCOS 
pathophysiology, connecting metabolic, immune, and hormonal disturbances. 
Reduced microbial diversity, depletion of short-chain fatty acid (SCFA)-producing 
bacteria, and enrichment of endotoxin-producing taxa disrupt intestinal barrier 
integrity, promote low-grade inflammation, and aggravate IR, thereby fueling a 
vicious cycle of hyperinsulinemia and hyperandrogenism. Traditional Chinese 
medicine (TCM) has shown unique advantages in modulating GM and alleviating 
PCOS-IR. Herbal formulas, active compounds (e.g., berberine), acupuncture, and 
dietary therapies such as inulin, quinoa, and flaxseed oil restore microbial balance, 
enhance SCFA production, regulate bile acid metabolism, and strengthen gut barrier 
function. These effects mitigate endotoxemia, suppress chronic inflammation, and 
improve insulin sensitivity. This review summarizes advances in understanding the 
role of GM in PCOS-IR and emphasizes TCM as a promising microbiota-targeted 
therapeutic approach.
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1 Introduction

PCOS is a common gynecological and endocrine disorder that involves both reproductive 
and metabolic dysfunctions. It affects approximately 5 to 20% of women of reproductive age 
worldwide and is recognized as a leading cause of anovulatory infertility (1, 2). The main 
characteristics of PCOS include ovulatory dysfunction, hyperandrogenism, and polycystic 
ovaries, and it is often accompanied by IR (3). IR is present in an estimated 50 to 70% of 
women with PCOS and is associated with a range of adverse outcomes (4, 5). In the short term, 
it increases the risk of obesity, gestational diabetes and miscarriage, while in the long term, it 
contributes to the development of hyperlipidemia, type 2 diabetes mellitus (T2DM), metabolic 
syndrome, and cardiovascular disease (6, 7). These complications not only threaten the 
physical and mental health of patients but also complicate clinical treatment. Therefore, a 
comprehensive understanding of the mechanisms underlying insulin resistance in PCOS is 
essential for developing effective treatment strategies and enhancing both metabolic and 
reproductive outcomes for women affected by PCOS.
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Recent studies have highlighted the crucial role of GM in the 
development of IR and PCOS (8, 9). As a symbiotic microorganism 
colonized in the human intestine, GM plays an essential role in 
regulating the host’s metabolic, immune, and endocrine functions 
(10). Under healthy conditions, a dynamic balance exists between GM 
and the host, sustaining intestinal homeostasis. However, women with 
PCOS exhibit gut microbial dysbiosis, characterized by a decrease in 
beneficial probiotics and an increase in pathogens in the GM (11, 12). 
The imbalance of microbes undermines the integrity of the gut barrier, 
increasing gut permeability and allowing the bacterial endotoxin 
lipopolysaccharide (LPS) to enter the systemic circulation; the 
presence of LPS in the bloodstream activates the host’s immune 
response and pro-inflammatory signaling pathways, which interfere 
with insulin receptor function and promote the development of IR 
(13, 14). Additionally, GM and its metabolites influence metabolic 
regulation by stimulating the secretion of brain-gut peptides, 
promoting pancreatic β-cell proliferation, and reducing insulin 
sensitivity (15). These effects result in compensatory hyperinsulinemia, 
further exacerbating IR. Therefore, maintaining a healthy and 
balanced GM is essential for mitigating insulin resistance and 
associated metabolic disturbances in PCOS.

Globally, the treatment of PCOS mainly focuses on conventional 
therapies like oral contraceptives, insulin sensitizers, and ovulation-
inducing agents. However, these options are often limited by side effects, 
costs, and long-term safety concerns. As a result, more patients with 
PCOS are turning to complementary and alternative medicine (CAM), 
especially traditional Chinese medicine (TCM) such as herbs, 
acupuncture, and dietary supplements (16). TCM, a major branch of 
CAM, has been practiced for thousands of years and is widely used in 
treating female reproductive disorders, including PCOS (10, 17). 
Chinese guideline for diagnosis and management of PCOS includes 
TCM as an auxiliary treatment method. Accumulating evidence 
suggests that certain individual herbs and herbal formulas containing 
multiple bioactive compounds have the potential to regulate 
menstruation, stimulate ovulation, reduce inflammation, and alleviate 
metabolic dysfunction (18–20). Importantly, they have been shown to 
exert their therapeutic effects possibly through modulating the GM (21). 
These oral herbal medicines interact directly with the GM, altering 
microbial composition and boosting the production of beneficial 
metabolites like short-chain fatty acids (SCFAs), which are crucial for 
maintaining metabolic balance and insulin sensitivity (22). Therefore, 
TCM offers a promising complementary approach to managing PCOS-
related insulin resistance. This review explores the current understanding 
of how TCM ameliorate PCOS-IR through GM modulation, providing 
a novel perspective for integrative therapeutic strategies.

2 Interaction between PCOS and IR

2.1 The relationship of IR and HA

The interplay between IR and hyperandrogenism (HA) is 
central to the pathogenesis of PCOS, forming negative feedback 
that drives both metabolic and reproductive dysfunction. In women 
with PCOS, IR leads to impaired glucose uptake, resulting in 
compensatory hyperinsulinemia (HI), which stimulates androgen 
production by ovarian theca cells. It also suppresses hepatic 
synthesis of sex hormone-binding globulin (SHBG), thereby 
elevating circulating free testosterone levels. Additionally, HI 
promotes neuroendocrine disturbances by enhancing 
gonadotropin-releasing hormone (GnRH) expression and 
luteinizing hormone (LH) secretion, further increasing ovarian 
androgen production. Moreover, IR disrupts the hypothalamic–
pituitary–adrenal (HPA) axis, increasing adrenocorticotropic 
hormone (ACTH) levels and adrenal androgen synthesis (23). 
These mechanisms converge to exacerbate HA, which in turn 
contributes to worsening IR by promoting visceral adiposity, 
reducing adiponectin and GLUT4 expression, and impairing 
insulin-stimulated glucose uptake in skeletal muscle (24). This 
pathological loop fosters a pro-inflammatory and lipotoxic state, 
characterized by enlarged, dysfunctional adipocytes and 
dysregulated adipokine secretion, marked by decreased insulin-
sensitizing adiponectin and elevated levels of leptin, resistin, and 
chemerin. HI also directly alters ovarian granulosa cell function by 
prematurely upregulating LH receptors, leading to early 
differentiation, follicular arrest, and anovulation. Furthermore, 
hyperinsulinemia enhances cytochrome P450c17 activity and 
increases insulin-like growth factor-1 (IGF-1) bioavailability, 
further stimulating androgen biosynthesis (25). These disturbances 
are not limited to reproduction; they contribute to adverse 
pregnancy outcomes such as miscarriage and gestational diabetes, 
and promote the development of metabolic complications. 
Nevertheless, current evidence suggests that anti-IR treatment can 
decrease circulating levels of androgens and alleviate the phenotypes 
of PCOS (26) (Figure 1).

2.2 IR and metabolic dysfunction in PCOS

Compensatory hyperinsulinemia driven by IR not only promotes 
androgen excess but also leads to metabolic disturbances such as 
dysglycemia and dyslipidemia. Women with PCOS have approximately 
a threefold increased risk of developing impaired glucose tolerance 
(IGT), T2DM, and gestational diabetes mellitus (GDM) (27, 28). Lipid 
abnormalities are also prevalent in PCOS, with a characteristic profile 
of elevated triglycerides, reduced high-density lipoprotein (HDL) 
cholesterol, and increased levels of low-density lipoprotein (LDL) 
particles, changes that elevate cardiovascular risk (25). Furthermore, 
metabolic dysfunction-associated steatotic liver disease (MASLD) is 
increasingly recognized in PCOS and is driven by androgen excess, 
IR, and enhanced lipolysis, leading to hepatic fat accumulation (29). 
Accordingly, early intervention can alleviate the long-term health and 
economic burdens of patients with PCOS.

Abbreviation: PCOS, Polycystic ovary syndrome; IR, Insulin resistance; GM, Gut 

microbiota; SCFA, Short-chain fatty acid; LPS, Lipopolysaccharide; CAM, 

Complementary and alternative medicine; HA, Hyperandrogenism; HI, 

Hyperinsulinemia; HPA, Hypothalamic-pituitary-adrenal; IGF-1, Insulin-like growth 

factor-1; SHBG, Sex hormone-binding globulin; GLP-1, Glucagon-like peptide-1; 

PYY, Peptide YY; FXR, Farnesoid X receptor; TGR5, Takeda G-protein receptor 5; 

FMT, fecal microbiota transplantation.
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3 GM dysbiosis promotes PCOS-IR

3.1 GM and PCOS-IR

The GM is essential in preserving immune, metabolic, and 
endocrine homeostasis (15). The most dominant bacterial phyla in the 
gut include Firmicutes and Bacteroidetes, which constitute about 90% 
of the gut microbiome. Within Firmicutes, the genus Clostridium is 
highly dominant, while Bacteroides and Prevotella are the major 
representatives of Bacteroidetes (30). Other key phyla include 
Actinobacteria, mainly represented by Bifidobacterium, as well as 
smaller proportions of Proteobacteria, Fusobacteria, and 
Verrucomicrobia (31). Under physiological conditions, these 
microbiomes maintain intestinal barrier integrity, modulate systemic 
inflammation, and support metabolic homeostasis through their close 
communication with intestinal epithelial and immune cells. The 
disruption of this delicate balance, termed dysbiosis, which is 
characterized by reduced microbial diversity, an imbalance in 
microbial composition, and compromised gut barrier function, has 

been implicated in the pathogenesis of various metabolic disorders 
(15, 32, 33).

Recent evidence suggests that PCOS is possibly related to 
dysbiosis, one of the primary features of dysbiosis is the reduction of 
microbial richness and diversity. GM diversity is a critical marker of 
intestinal and systemic health, influencing metabolism, immune 
balance, and inflammation (34). It is commonly assessed using alpha 
(α) diversity, which reflects the richness and evenness of species 
within a sample, and beta (β) diversity, which measures compositional 
differences across individuals. In women with PCOS, several studies 
have reported a reduction in both α- and β-diversity, particularly in 
cases with IR (9, 35). In both clinical studies and animal models (e.g., 
letrozole-induced PCOS mice), decreased α- and β-diversity have 
been linked to altered gut microbial compositions, including a higher 
Firmicutes-to-Bacteroidetes ratio and increased abundance of 
pro-inflammatory gram-negative bacteria such as Escherichia, Shigella, 
and Bacteroides (11, 36). Inversely, some studies report no significant 
change in α-diversity in PCOS patients with normal BMI, while others 
suggest that observed changes are more closely tied to obesity or 

FIGURE 1

The relationship of IR and HA (created with biorender.com). SHBG, sex hormone-binding globulin; IGF, insulin-like growth factor; GnRH, 
gonadotropin-releasing hormone; LH, luteinizing hormone; ACTH, adrenocorticotropic hormone.
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hyperandrogenism than to PCOS itself (37, 38). Factors such as 
diagnostic criteria, BMI, sex hormones, race, geography, eating habits, 
and host genetics may contribute to these discrepancies (38, 39). 
Overall, while dysbiosis is evident in PCOS, the extent of microbial 
diversity changes remains controversial.

Clinical studies consistently report alterations in microbial 
composition, characterized by the enrichment of pro-inflammatory 
and pathogenic taxa and depletion of beneficial commensals. A meta-
analysis of 28 studies revealed a consistent enrichment of Bacteroides, 
Parabacteroides, Fusobacterium, and Escherichia/Shigella, and a 
reduction in Lachnospira and Prevotella, suggesting a shift toward a 
pro-inflammatory microbiome (11). Further evidence associated these 
microbial shifts with reduced gut–brain peptides (serotonin, ghrelin, 
and PYY), increased testosterone, and altered BMI (35). Elevated 
GABA-producing bacteria such as Parabacteroides distasonis, 
Bacteroides fragilis, and Escherichia coli were also found to correlate 
with elevated LH and LH/FSH ratios (40). In obese adolescent girls 
with PCOS, higher relative abundance of Actinobacteria and 
Streptococcaceae, along with reduced Bacteroidaceae, has been 
reported. Importantly, several studies have distinguished PCOS-IR 
from non-IR phenotypes (41). Significantly higher levels of Rothia, 
Enterococcus, Ruminococcus, and Bacteroidaceae, together with 
reduced Prevotellaceae, were observed in PCOS-IR patients, 
correlating with IR, inflammation, and hormonal disruption. 
Supporting these findings on the dysbiosis, animal models have 

confirmed causality (37, 42). Overgrowth of Bacteroides vulgatus 
induced IR and reproductive dysfunction in mice (3), while 
microbiota depletion reversed IR and enhanced Farnesoid X receptor 
(FXR) signaling in PCOS models (9). Other studies using letrozole- or 
DHEA-induced PCOS mice demonstrated increased Firmicutes and 
steroidogenic bacteria (e.g., Clostridiaceae, Nocardiaceae), alongside 
decreased beneficial taxa such as Akkermansia, Turicibacter, and 
Clostridium sensu stricto (36, 43, 44). Collectively, these findings 
underscore that gut microbial alterations in PCOS and PCOS-IR are 
closely linked to metabolic, endocrine, and inflammatory disruptions, 
reinforcing the GM as a potential therapeutic target (Table 1).

3.2 The LPS and damaged gut barrier 
promote IR in PCOS

It is well known that the pathogenesis and development of PCOS 
is closely related to chronic low-grade inflammation, one of the key 
drivers of which is LPS, a pro-inflammatory endotoxin derived from 
Gram-negative gut bacteria (45, 46). The gut barrier is destroyed due 
to the GM dysbiosis in PCOS patients, allowing the transfer of LPS 
into systemic blood circulation and inducing metabolic endotoxemia 
(14). The dysbiosis characterized by an overgrowth of Gram-negative 
bacteria such as Bacteroidaceae, Escherichia coli, Desulfovibrio, and 
Burkholderia leads to increased LPS production in the gut (11, 47). 

TABLE 1  Investigations on regulating GM composition in PCOS.

Investigation Human/PCOS-like 
model

GM changes Key Associations

Liang et al. (40) Human (20 PCOS, 20 controls) ↑ Parabacteroides distasonis, Bacteroides fragilis, E. coli Positively correlated with LH levels and LH: 

FSH ratios

Li et al. (11) Meta-analysis (28 studies; 

1,022 PCOS, 928 controls)

↓ Lachnospira, Prevotella; ↑ Bacteroides, Parabacteroides, 

Lactobacillus, Fusobacterium, Escherichia/Shigella

Indicative of pro-inflammatory dysbiosis

Liu et al. (10) Human (33 PCOS, 15 controls) ↑ Bacteroides, Escherichia/Shigella, Streptococcus; ↓ 

Akkermansia, Ruminococcaceae

Altered with BMI, testosterone, and decreased 

ghrelin and PYY

Jobira et al. (41) Obese adolescents (58 total) ↑ Actinobacteria, Streptococcaceae; ↓ Bacteroidetes, 

Bacteroidaceae, Porphyromonadaceae

PCOS-related changes in phylum/family levels 

in obese adolescents

Rodriguez Paris et al. 

(38)

DHT-induced PCOS-like mice ↓ Bacteroides acidifaciens Inversely associated with obesity

Qi et al. (3) Human and mice ↑ Bacteroides vulgatus Promoted IR, altered bile acid metabolism, 

reduced IL-22, and induced infertility

Kelley et al. (36) Letrozole-induced PCOS mice ↓ Bacteroidetes; ↑ Firmicutes Time-dependent changes associated with 

metabolic disturbances

Sherman et al. (43) PCOS-like rats ↑ Nocardiaceae, Clostridiaceae; ↓ Akkermansia, Bacteroides, 

Lactobacillus, Clostridium

Enriched for steroid hormone-related bacteria

Han et al. (44) DHEA-induced PCOS-like rats ↓ Turicibacter, Clostridium sensu stricto Associated with glucose metabolism and fiber 

response

He et al. (37) Human (PCOS-IR, PCOS-NIR, 

controls)

↑ Rothia, Ruminococcus, Enterococcus; ↓ Prevotella Linked to IR, blood pressure, waist/hip 

circumference

Zeng et al. (42) Human (25 total) ↑ Bacteroidaceae; ↓ Prevotellaceae Abundance correlated with IR, inflammation, 

and hormone levels

Yang et al. (9) Human and mice ↑ Bacteroides Gut microbiota removal reversed IR and 

upregulated FXR/FGF15 expression
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Under normal conditions, tight junction proteins such as occludin and 
ZO-1 maintain the integrity of the intestinal mucosal barrier. 
However, dietary factors such as high saturated fat intake and low fiber 
consumption compromise barrier function, increase gut permeability, 
and allow LPS to translocate into the bloodstream, which may be an 
early factor in the development of inflammation and IR in humans 
and mice (48, 49). In PCOS, patients often exhibit decreased 
expression of occludin and ZO-1, resulting in a “leaky gut” and 
elevated circulating LPS levels (50, 51). Once in the bloodstream, LPS 
binds to LPS-binding protein (LBP) and is recognized by the CD14/
Toll-like receptor 4 (TLR4) complex on immune cells and various 
tissues, including ovarian theca cells. This interaction activates 
MyD88-dependent signaling cascades, leading to nuclear factor-κB 
(NF-κB) activation and the release of pro-inflammatory cytokines 
such as TNF-α, IL-1β, and IL-6 (49, 52). These cytokines interfere with 
insulin receptor signaling by promoting suppressor of cytokine 
signaling-3 (SOCS-3) expression and serine phosphorylation of 
insulin receptor substrate-1 (IRS-1), ultimately impairing GLUT4-
mediated glucose uptake and exacerbating IR (53). For instance, 
TNF-α has been shown to cause IR by increasing serine 
phosphorylation on IRS-1 (54). IL-6, notably elevated in PCOS, 
further inhibits insulin signaling and contributes to IR and ovarian 
dysfunction by disrupting follicular development (55). Experimental 
models have demonstrated that high-fat diets elevate LPS levels and 
induce IR (56). Notably, direct LPS injection elevates fasting glucose 
and insulin levels, confirming its pathogenic role (56). Emerging 
evidence suggests that modulating GM composition and restoring gut 
barrier integrity, such as through probiotics and Chinese herbal 
medicine, may reduce LPS translocation and inflammatory signaling. 
Collectively, in patients with PCOS, GM dysbiosis leads to elevated 
LPS levels, which increase intestinal permeability, impair insulin 
receptor function, and trigger a persistent inflammatory response, 
driving the progression of the PCOS-IR phenotype.

3.3 The products of GM promote IR

3.3.1 Short-chain fatty acids (SCFAs)
SCFAs, predominantly acetate, propionate, butyrate, and valerate, 

are critical microbial metabolites produced through the fermentation 
of dietary fibers by GM, which plays a vital role in metabolic regulation 
(57). Studies show that women with PCOS have lower levels of SCFA-
producing bacteria such as Butyricimonas, Blautia, Coprococcus, and 
Faecalibacterium prausnitzii, leading to decreased SCFA levels, 
especially butyrate, which may contribute to IR (11). SCFAs exert their 
effects via activation of G protein-coupled receptors (GPR41, GPR43, 
GPR109A) and free fatty acid receptors (FFAR2/3) expressed on 
intestinal epithelial cells, enteroendocrine cells, adipose tissue, and 
pancreatic β-cells (58). This signaling promotes the secretion of gut 
hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY 
(PYY), which improve insulin sensitivity and regulate energy 
homeostasis (59). Clinical evidence indicates that women with PCOS 
exhibit lower fecal SCFA levels compared to controls, with reductions 
inversely associated with fasting insulin (60). Zhang et al. reported 
significantly higher fecal SCFAs in healthy women than in those with 
PCOS, while dietary or probiotic interventions restoring SCFA 
production improved glycemic and lipid profiles (61). Probiotic 

supplementation, including strains like Bifidobacterium, has been 
shown to restore SCFA production, improve GLP-1 secretion, and 
enhance glycemic control in PCOS patients (61). In mouse models, 
butyrate supplementation not only prevented obesity and IR on a 
high-fat diet but also enhanced mitochondrial function and energy 
expenditure (62). Collectively, reduced SCFA levels, especially 
butyrate, due to gut microbial dysbiosis appear to play a pivotal role 
in the development of IR in PCOS. Besides, SCFAs strengthen the 
intestinal barrier and reduce LPS-induced endotoxemia by inhibiting 
inflammatory pathways like NF-κB, suppressing pro-inflammatory 
cytokines (e.g., TNF-α, IL-1β), and increasing the expression of tight 
junction proteins (33). Collectively, reduced SCFA levels due to gut 
microbial dysbiosis contribute to the development of IR in PCOS.

3.3.2 Bile acid (BAs)
BAs are not only critical for lipid digestion and absorption but also 

function as potent signaling molecules that regulate glucose and lipid 
metabolism, inflammation, and energy homeostasis (63). Primary 
BAs, synthesized in the liver as cholic acid and chenodeoxycholic acid, 
undergo microbial transformations in the intestine by bacteria such 
as Lactobacillus, Bifidobacterium, and Bacteroides, generating 
secondary BAs including deoxycholic acid (DCA), lithocholic acid 
(LCA), and ursodeoxycholic acid (UDCA) (63). In PCOS, gut 
microbiota dysbiosis disrupts this transformation, leading to reduced 
beneficial bile acids like glycodeoxycholic acid (GDCA) and 
tauroursodeoxycholic acid (TUDCA) (13). For instance, Bacteroides 
vulgatus overgrowth increases bile salt hydrolase (bsh) gene 
abundance, lowering GDCA and TUDCA levels and inducing insulin 
resistance and hormonal imbalance. Supplementation with GDCA or 
TUDCA can restore ovarian and metabolic function by activating the 
BA–IL-22 signaling axis (3). Besides, BAs enhance insulin sensitivity 
via two major receptors: FXR and Takeda G-protein receptor 5 
(TGR5) (64). FXR activation suppresses gluconeogenesis and 
promotes glycogen synthesis through the PI3K/AKT pathway, while 
TGR5 activation in intestinal endocrine cells increases GLP-1 
secretion and regulates appetite via the gut–brain axis (65). In PCOS, 
impaired FXR/TGR5 signaling due to dysbiosis contributes to IR, 
hyperlipidemia, and chronic low-grade inflammation.

3.4 Brain-gut peptides

Recent evidence suggests that the pathogenesis of PCOS involves 
the gut-brain axis, a bidirectional network connecting the gut 
microbiota, the enteric nervous system, and central neuroendocrine 
circuits. Brain-gut peptides such as GLP-1, PYY, serotonin, and 
ghrelin are important factors in this axis. A clinical report indicated 
that the levels of ghrelin and PYY in the plasma of PCOS patients are 
significantly reduced, which is associated with an increase in the 
abundance of Bacteroides, E. coli/Shigella, and a decrease in beneficial 
bacteria such as Akkermansia (35). Ghrelin not only regulates 
appetite and energy balance but also influences hypothalamic 
gonadotropin-releasing hormone GnRH secretion, modulating LH 
release and ovarian function. Similarly, PYY and GLP-1 promote 
satiety, delay gastric emptying, and enhance insulin sensitivity; their 
reduction exacerbates metabolic dysfunction and hyperinsulinemia. 
Studies have shown that fasting and postprandial GLP-1 levels are 
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lower in both lean and obese PCOS women compared to healthy 
controls, and this deficiency persists despite oral contraceptive 
treatment (66). In addition, ghrelin/obestatin imbalance and leptin 
dysregulation have been associated with altered lipid intake and 
increased HOMA-IR, further linking dietary composition, 
microbiota, and hormonal imbalance (67). Moreover, gut microbes 
can modulate brain–gut peptides through the vagus nerve and 
neurotransmitter production, including serotonin and GABA, 
influencing both appetite control and hypothalamic–pituitary–
ovarian (HPO) axis activity. Collectively, diminished gut–brain 
peptide signaling driven by microbial dysbiosis and altered metabolite 
production contributes to the bidirectional loop between metabolic 
and reproductive dysfunction in PCOS.

In summary, gut dysbiosis promotes PCOS-related IR by 
disrupting intestinal barrier integrity, elevating LPS-induced 
inflammation, and altering microbial metabolites such as SCFAs and 
bile acids. These changes impair brain-gut axis signaling, reduce 
GLP-1 and PYY secretion, and disrupt hormone balance, forming a 
vicious cycle of metabolic inflammation and reproductive dysfunction 
in PCOS (Figure 2).

4 TCM as GM modulator in PCOS-IR

4.1 Herbal formulas

Accumulating evidence highlights Chinese herbal medicine as a 
promising therapeutic method for PCOS, particularly by targeting 
GM to alleviate IR and chronic inflammation. Both clinical studies 
and PCOS-like animal models demonstrate that herbal formulas 
remodel gut microbial communities, restore intestinal barrier 
integrity, and regulate host metabolic signaling (Table 2; Figure 3). 
For instance, the Bu Shen Hua Zhuo Formula (BSHZF) reduced 
hyperandrogenism, fasting glucose, and IR in letrozole-induced 
PCOS rats while restoring microbial α-diversity, enriching 
Lactobacillus and SCFA-producing bacteria, and suppressing the 
TLR4/NF-κB inflammatory pathway by lowering serum LPS (21). 

Similarly, the Shaoyao-Gancao Decoction (SGD) alleviated 
hyperandrogenism, estrous cycle disruption, and ovarian 
inflammation by increasing beneficial bacteria such as Akkermansia, 
Blautia, and Butyricicoccus, reducing LPS-producing Proteobacteria, 
enhancing tight junction proteins, and inhibiting TLR4/NF-κB 
activation (68). Moreover, SGD was shown to regulate BA-related 
microbes and the BA/FXR pathway, suggesting dual actions on 
microbial and metabolic signaling (69).

Several classical prescriptions also show potential in regulating 
PCOS-IR through GM. Guizhi Fuling Wan (GZFL) improved IR and 
inflammation by reshaping microbial composition, notably restoring 
Alloprevotella and reducing inflammatory taxa (70). Modified Banxia 
Xiexin Decoction (BX) and Modified Cangfu Daotan Decoction 
(MCDD) attenuated hyperinsulinemia, reduced inflammatory 
cytokines, and modulated NF-κB and LCN-2 pathway (71, 72). 
Clinical evidence also supports these findings, Jiawei Qi Gong Wan 
(JQG) improved IR and endocrine dysfunction in PCOS patients with 
phlegm-dampness syndrome by increasing butyrate-producing 
bacteria, reducing LPS-producing species, and restoring microbial 
diversity (73).

Other formulas exhibit complementary benefits. Bailing capsules 
(BL) improved insulin sensitivity and ovarian function in DHEA-
induced PCOS mice by repairing gut barrier integrity, reducing 
systemic inflammation, and inhibiting TLR4/NF-κB activation, while 
enriching Akkermansia (53). Heqi San (HQS) demonstrated anti-
inflammatory effects by suppressing NF-κB activity, inhibiting 
macrophage M1 polarization, and preventing granulosa cell 
apoptosis, alongside enriching Bifidobacterium and Parasutterella 
(74). Yulin Tong Bu formula (YLTB) corrected ovarian dysfunction 
and glucose intolerance, with metabolomic analysis identifying 
ferulic acid as a key microbiota-associated mediator (75). Fufang 
Zhenzhu Tiao Zhi (FTZ) improved estrous cycle regularity and IR in 
letrozole-induced PCOS mice by upregulating adiponectin, 
supporting fat–ovary metabolic crosstalk (76). These findings 
underscore that CHM formulas act through enhancing SCFA-
producing bacteria, modulating BA metabolism, reinforcing 
intestinal barrier function, suppressing LPS-induced inflammation, 
and restoring host metabolic pathways.

FIGURE 2

The mechanism of GM affects IR in PCOS patients (created with biorender.com).
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TABLE 2  Effects of CHM Formulas and active compounds on GM and PCOS-IR.

CHM Human/Model GM changes Signaling pathways Metabolic/reproductive 
outcomes

Formulas

 � Bu Shen Hua Zhuo Formula 

(BSHZF)

Letrozole-induced PCOS 

rats

↑ Lactobacillus, SCFA-producing 

bacteria (Allobaculum, Bacteroides, 

Ruminococcaceae), ↓ Firmicutes

↓ LPS, TLR4/NF-κB 

inhibition

↓ Body weight, fasting glucose, 

insulin, testosterone; improved 

ovarian morphology

 � Shaoyao-Gancao Decoction 

(SGD)

Letrozole-induced PCOS 

rats

↓ Firmicutes/Bacteroidetes ratio; ↓ 

Proteobacteria; ↑ Butyricicoccus, 

Coprococcus, Akkermansia, Blautia, 

Bacteroides

Enhanced tight junctions; ↓ 

TLR4/NF-κB

Improved estrous cycles, reduced 

hyperandrogenism, ↓ 

inflammation

 � SGD (extended) PCOS rats (fecal transplant 

study)

Remodelled BA-related bacteria BA/FXR pathway regulation Ameliorated dyslipidemia, estrous 

dysfunction

 � Bailing Capsules (BL) DHEA + high-fat diet 

PCOS mice

↑ Akkermansia, ↓ Muribaculaceae IRS1/PI3K/AKT activation; ↓ 

TLR4/MyD88/NF-κB

Improved IR, hormone balance, 

ovarian morphology; ↓ 

inflammation

 � Heqi San (HQS) DHEA + high-fat diet 

PCOS mice

↑ Bifidobacterium, Parasutterella; ↓ 

Lachnoclostridium

↓ NF-κB, M1 macrophage 

polarization; anti-apoptotic 

signaling

Improved IR, reduced granulosa 

apoptosis, ↓ IL-6, TNF-α, ovarian 

protection

 � Yulin Tong Bu Formula 

(YLTB)

DHEA + high-fat diet 

PCOS mice; pseudo-sterile 

models

Restored gut microbial diversity; 

metabolites (ferulic acid, folic acid) 

linked to PCOS parameters

Microbiota–metabolite 

interactions

Improved glucose clearance, 

insulin sensitivity, and ovarian 

function

 � Fufang Zhenzhu Tiao Zhi 

(FTZ)

Letrozole-induced PCOS 

mice

Not specified (systemic 

modulation)

↑ Adiponectin signaling Restored estrous cycles, alleviated 

IR, improved ovarian morphology

 � Guizhi Fuling Wan (GFW) Letrozole + high-fat diet 

PCOS rats

↑ Alloprevotella, ↓ pro-

inflammatory Lachnospiraceae, 

Ruminococcaceae

↓ Inflammatory cytokines 

(TNF-α, IL-6, hs-CRP)

↓ Fasting insulin, improved IR and 

ovarian histology

 � Modified Banxia Xiexin 

Decoction

PCOS-IR rats (letrozole + 

high-fat diet)

↑ Akkermansia, Blautia, ↓ 

Clostridium_sensu_stricto_1

Barrier repair, metabolic 

regulation

Improved IR, corrected glucose 

metabolism

 � Modified Cangfu Daotan 

Decoction (MCDD)

PCOS-IR rats (letrozole + 

high-fat diet)

Not specified ↓ NF-κB/LCN-2; ↑ Insr/Irs-1/

Glut4

↓ Body weight, restored estrous 

cycle, ↓ fatty liver, improved IR

 � Jiawei Qi Gong Wan Clinical study in PCOS 

patients (phlegm-dampness 

syndrome)

↑ Butyrate-producing bacteria, ↓ 

LPS-producing and pro-

inflammatory taxa

Microbiota–inflammation 

interaction

Improved IR, BMI, hormone 

balance, menstrual regulation

Active compounds

 � Berberine (BBR) Clinical trials in PCOS 

patients; DHEA-induced 

PCOS rats

↓ Firmicutes/Bacteroidetes ratio; 

modulated Romboutsia, 

Bacteroides, Clostridium

Regulated glucose and 

glutamine metabolism; 

modulated KEGG pathways 

(T2DM, ABC transporters); ↓ 

LPS

↓ Fasting insulin, HOMA-IR, 

testosterone; ↓ waist 

circumference; improved IR and 

metabolic profile

 � Naringenin (Nar) Letrozole-induced PCOS 

rats

↑ Butyricimonas, Lachnospira, 

Coprococcus, Roseburia; ↓ Prevotella

↑ Tight junction proteins 

(claudin-1, occludin); 

modulated AMPK, SIRT1/

PGC-1α

↓ Body weight; improved estrous 

cycles, ovarian morphology, IR, 

and hormone balance

 � Dendrobium officinale 

polysaccharide (DOP)

Letrozole-induced PCOS 

rats

↑ Butyrate-producing bacteria; ↑ 

α-diversity

↑ Butyrate and PYY; GPR41-

mediated gut–brain–ovary 

axis

Improved ovarian morphology, 

estrous cycles, and endocrine 

function

 � Cordyceps polysaccharide 

(CP)

PCOS-like rats ↓ Desulfovibrionaceae, Helicobacter 

(Gram-negative bacteria)

↓ LPS translocation; inhibited 

TLR4/MyD88/NF-κB in liver 

and adipose; restored insulin 

signaling

↓ IR, improved glucose-lipid 

metabolism, alleviated ovarian 

polycystic lesions

(Continued)
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4.2 Bioactive compounds of herbal 
medicine

Modern studies have shown that bioactive compounds derived 
from herbal medicine play a therapeutic role in PCOS-IR by 

regulating the GM and its related metabolic pathways (Table 2; 
Figure 3). Berberine, an isoquinoline alkaloid derived from Coptis 
and Phellodendron species, has attracted considerable attention for 
its glucose- and lipid-lowering properties, with multiple studies 
supporting its potential to alleviate IR in PCOS. Clinical trials 

TABLE 2  (Continued)

CHM Human/Model GM changes Signaling pathways Metabolic/reproductive 
outcomes

 � Astragalus polysaccharide 

(APS)

DHEA-induced PCOS mice ↑ Rikenellaceae, Odoribacter, 

Marinifilaceae; ↓ Bacteroidota

Reduced oxidative stress; gut 

microbiota–metabolite 

correlations with glucose and 

lipids

↓ IR, OS, dyslipidemia; improved 

reproductive function

 � Mangiferin Letrozole + HFD-induced 

PCOS rats

Altered Firmicutes, Bacteroidota, 

Proteobacteria; ↑ Blautia, 

Coprococcus, Roseburia

Anti-apoptotic (↓ Caspase-3, 

Cytc); modulated 

inflammation/apoptosis 

signaling

Improved lipid/glucose 

metabolism, IR, hormone balance, 

ovarian function

 � Curcumin DHEA-induced PCOS mice Not specified; improved barrier 

integrity

↑ Occludin, ZO-1; inhibited 

TLR4/MyD88/NF-κB; ↓ IL-6, 

TNF-α, LPS

↓ Body weight, testosterone, LH/

FSH; ↑ insulin sensitivity, E2; 

improved ovarian/colon histology

FIGURE 3

The mechanism of TCM alleviates PCOS-IR through GM (created with biorender.com).
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revealed that 12 weeks of berberine reduced waist circumference, 
HOMA-IR, and metabolic parameters more effectively than placebo 
and even metformin (77). Mechanistic studies suggest that 
berberine acts partly through reshaping the GM, enhancing SCFA 
producers, and regulating key metabolites such as glutamine and 
glucose, thereby influencing host energy metabolism and 
inflammatory pathways (78). However, the therapeutic role of 
berberine remains controversial. While certain PCOS-like rodent 
models confirmed improvements in IR, sex hormone profiles, and 
ovarian morphology, another study reported that berberine reduced 
microbial diversity without ameliorating metabolic or reproductive 
phenotypes (79). Such discrepancies may reflect differences in 
experimental models, treatment duration, or baseline 
microbiota composition.

Naringenin (Nar), a natural flavanone, has demonstrated 
substantial benefits in PCOS-like models. Nar restored estrous cycles, 
improved ovarian morphology, and attenuated hyperandrogenism 
while reducing body weight and improving IR. GM sequencing 
revealed Nar-induced enrichment of SCFA-producing bacteria 
(Butyricimonas, Lachnospira, Coprococcus, Roseburia), alongside 
upregulation of tight junction proteins (claudin-1, occludin) in the 
colon (80). These findings suggest that Nar exerts metabolic and 
reproductive improvements through enhancing intestinal barrier 
integrity and SCFA-driven signaling pathways.

Polysaccharides are another class of herbal medicine active 
ingredients with GM-dependent effects. Dendrobium officinale 
polysaccharide (DOP) cannot be directly absorbed but is fermented 
into SCFAs, particularly butyrate, by gut microbes. In PCOS rats, DOP 
increased microbial diversity, enriched butyrate producers, and 
elevated butyrate and PYY levels, which mediated improvements in 
ovarian morphology and estrous cyclicity via a gut–brain–ovary axis 
(81). Similarly, Cordyceps polysaccharide (CP) ameliorated glucose-
lipid disturbances by reducing Gram-negative bacteria such as 
Desulfovibrionaceae and Helicobacter, thereby lowering gut-derived 
LPS translocation. This suppressed TLR4/MyD88/NF-κB activation 
in the liver and adipose tissue, restored insulin signaling, and 
alleviated ovarian polycystic changes (82). Astragalus polysaccharide 
(APS) also improved IR, oxidative stress, and dyslipidemia in PCOS 
mice, while reshaping GM by enriching beneficial bacteria such as 
Odoribacter and Marinifilaceae (83).

Other phytochemicals exhibit complementary effects. Mangiferin, 
a xanthone glycoside, ameliorated ovarian dysfunction, IR, and lipid 
abnormalities in PCOS rats while significantly altering gut microbial 
composition, increasing beneficial SCFA-producing genera (Blautia, 
Coprococcus, Roseburia). Transcriptomic analyses further suggested 
its regulation of apoptosis and inflammatory signaling (84). 
Curcumin, a well-known polyphenol, demonstrated anti-
inflammatory and barrier-protective effects in PCOS models. It 
reduced serum testosterone and LH/FSH ratios, improved insulin 
sensitivity, and attenuated ovarian and colonic histopathology. 
Mechanistically, curcumin increased occludin and ZO-1 expression 
while suppressing TLR4/MyD88/NF-κB activation and systemic 
proinflammatory cytokines, thereby reducing LPS-induced 
endotoxemia (52). Another polyphenol, resveratrol, is widely used in 
the treatment of PCOS. Wang et al. showed that fecal microbiota 
transplantation (FMT) from resveratrol-treated donors significantly 
improved ovarian function and increased microbial diversity, 
characterized by elevated Firmicutes/Bacteroidetes ratios and higher 

relative abundance of Lactobacillus murinus and L. salivarius (85). 
Thus, GM as a central mediator of CHM active ingredients in 
alleviating PCOS-IR. By restoring gut microbial balance, reducing 
LPS leakage, and enhancing beneficial metabolites, these CHM 
bioactive compounds attenuate IR, hyperandrogenism, and 
ovarian dysfunction.

4.3 Dietary therapy

Dietary therapy, as a fundamental aspect of TCM, is increasingly 
being utilized in the research of PCOS (Figure 3). Recent experimental 
studies highlight the therapeutic role of functional foods such as 
quinoa and flaxseed oil (FO). In PCOS-like rats, quinoa 
supplementation significantly improved estrous cycle regularity, 
reduced fasting insulin and HOMA-IR, and alleviated ovarian, 
pancreatic, and intestinal pathology (86). Besides, quinoa restored 
autophagy and PI3K/AKT/mTOR signaling in ovarian tissue, 
reinforced intestinal barrier integrity via upregulation of tight junction 
proteins, and shifted GM composition by enriching Lactobacillus, 
Bacteroides, and Oscillospira while reducing Prevotella and the 
Firmicutes/Bacteroidetes ratio (86). These microbial and metabolic 
improvements were closely correlated with reductions in 
hyperandrogenism and improved reproductive outcomes. Similarly, 
flaxseed oil, rich in α-linolenic acid, exerted broad benefits in 
letrozole-induced PCOS rats (87). FO corrected sex hormone 
imbalances, reduced body weight and dyslipidemia, and ameliorated 
IR. Anti-inflammatory effects were evident through reductions in 
plasma and ovarian IL-1β, TNF-α, and MCP-1, alongside increases in 
IL-10. Importantly, FO supplementation enriched beneficial microbes 
including Lactobacillus, Bifidobacterium, and Faecalibacterium, while 
reducing Proteobacteria and Streptococcus (87).

Clinical evidence further supports the role of diet in PCOS 
pathophysiology. Meta-analyses reveal that women with PCOS 
consume significantly less dietary fiber than controls, a deficiency 
associated with greater adiposity, IR, and impaired glucose tolerance 
(88). Dietary fiber fermentation by gut microbes yields SCFAs, which 
regulate host metabolism, immune homeostasis, and gut barrier 
integrity. Inadequate fiber intake may reduce SCFA production, 
exacerbating PCOS metabolic disturbances (88). Integrating 
functional foods rich in fiber and unsaturated fatty acids may therefore 
represent a cost-effective, sustainable adjunct to conventional 
PCOS management.

4.4 Probiotics, prebiotics, and synbiotics

Prebiotics are organic substances that are not digested and 
absorbed by the host but can selectively promote the metabolism and 
proliferation of beneficial bacteria (22). Common prebiotics include 
cellulose, polysaccharides, chitosan, and polyphenols. Inulin, a 
fermentable dietary fiber that enhances SCFA production, improves 
microbial diversity, and mitigates systemic inflammation. Clinical 
trials have shown that inulin supplementation in PCOS women 
reduced body mass, hyperandrogenism, and IR while lowering 
inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1) (89). Other 
studies in letrozole- or DHEA-induced PCOS mice confirmed that 
inulin increased SCFA production, restored estrous cycles, reduced 
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testosterone, and suppressed ovarian inflammation via downregulation 
of LPS-TLR4 signaling (90, 91). Importantly, FMT from inulin-treated 
patients improved insulin sensitivity, lipid accumulation, and 
reproductive outcomes in antibiotic-treated mice (91).

Synbiotics, which combine probiotics and prebiotics, have 
demonstrated stronger effects than either alone. Usually comes as a 
supplement in pharmaceutical form of juice and capsules. In PCOS 
mouse models, inulin-enriched synbiotic yogurt restored estrous 
cyclicity, improved ovarian morphology, and enhanced IL-22 
secretion while shifting microbial composition toward Lactobacillus, 
Bifidobacterium, and Akkermansia, with concurrent modulation of 
bile acid metabolism (92). Clinical studies further support these 
findings: randomized trials revealed that probiotic and synbiotic 
supplementation for 8–12 weeks significantly improved HOMA-IR, 
fasting glucose, lipid profiles, and hormonal balance (93). The meta-
analysis confirmed that synbiotics exert the most pronounced 
improvements in metabolic and endocrine outcomes, though 
variations in probiotic strains, dosing, and trial designs limit 
standardization (93).

Probiotics are live microorganisms that confer health benefits by 
restoring microbial balance, enhancing gut barrier integrity, and 
modulating host immunity—particularly Bifidobacterium and 
Lactobacillus species. Specific bacterial species like Bifidobacterium 
lactis V9 supplementation in PCOS patients reduced LH/FSH ratios 
and increased SCFA levels, with clinical efficacy linked to successful 
gut colonization (61). In DHT-induced PCOS mice, Bifidobacterium 
longum BL21 supplementation enhanced ovarian function, improved 
glucose tolerance, and reduced inflammatory cytokines while 
enriching beneficial microbiota (94). Similarly, Lactobacillus strains 
alleviated hyperandrogenism, restored estrous cycles, and improved 
ovarian morphology in letrozole-induced PCOS models, highlighting 
the gut–brain–ovary axis as a potential regulatory pathway (95). 
Therefore, these interventions not only improve insulin sensitivity and 
metabolic health but also alleviate hyperandrogenism and ovarian 
dysfunction, highlighting their dual impact on both reproductive and 
metabolic outcomes. However, clinical evidence remains limited by 
small sample sizes and short intervention durations, necessitating 
larger multicenter trials to establish standardized protocols (Figure 3).

4.5 Acupuncture

Acupuncture, a cornerstone of TCM, has gained attention as a 
non-pharmacological intervention for PCOS and IR. In animal 
models, electroacupuncture (EA) improved estrous cyclicity, 
reduced visceral adiposity, and enhanced glucose tolerance in 
dihydrotestosterone (DHT)-induced PCOS rats. These benefits 
were associated with shifts in microbial taxa, notably reduced 
Prevotella and altered Tenericutes abundance (96). Human studies 
provide more interesting insights. A randomized trial combining 
acupuncture with clomiphene in obese PCOS patients demonstrated 
greater reductions in LH/FSH ratios and improved IR compared 
with clomiphene alone, alongside compositional changes in GM, 
including increased Agathobacter faecis and decreased 
Erysipelatoclostridium and Streptococcus species. These microbial 
shifts may contribute to improvements in hormone balance and 
metabolism (97). However, large-scale trials report mixed 
outcomes: Wen et al. found that acupuncture was less effective than 

metformin in reducing HOMA-IR, though it showed advantages in 
glucose metabolism and fewer gastrointestinal side effects. Such 
findings demonstrate its potential as a low-risk adjunct therapy, 
especially in patients intolerant to pharmacologic agents (98) 
(Figure 3).

5 Shortcomings and future 
prospection

Although TCMs show considerable promise as modulators of 
the GM in alleviating IR in PCOS, current evidence is limited by 
several shortcomings that warrant critical attention. Most clinical 
studies are small, single-center trials with short intervention 
durations and heterogeneous diagnostic criteria, making it difficult 
to generalize findings or establish standardized treatment regimens. 
While some clinical trials, such as those investigating berberine, 
demonstrate significant improvements in IR and metabolic 
parameters, contradictory findings in animal models highlight the 
complexity of herbal medicine–microbiota–host interactions and 
the need for greater mechanistic clarity. Moreover, the lack of long-
term safety evaluations and rigorous quality control in herbal 
preparation, standardization, and bioactive compound identification 
poses significant challenges to reproducibility and clinical 
translation. Variations in formulation, dosage, and preparation 
methods further complicate the interpretation of therapeutic 
outcomes and hinder cross-study comparisons. Furthermore, most 
existing studies examine single herbs or isolated compounds, 
whereas traditional Chinese medicine typically employs multi-herb 
prescriptions with synergistic interactions that remain poorly 
characterized. Future research should integrate multi-omics 
technologies and artificial intelligence (AI)-driven analytical models 
to identify active components, predict host–microbiota interactions, 
and optimize individualized therapeutic strategies, and conduct 
well-designed, large-scale, multicenter randomized clinical trials 
with standardized diagnostic criteria and safety assessments to make 
TCM a safe, effective, and evidence-based strategy for managing 
PCOS and its metabolic dysfunctions.

6 Conclusion

PCOS is a multifactorial disorder in which IR and 
hyperandrogenism form a vicious cycle driving metabolic and 
reproductive dysfunction. Increasing evidence indicate that GM 
dysbiosis as a pivotal mediator of these abnormalities through 
mechanisms involving impaired intestinal barrier integrity, 
endotoxemia, disrupted microbial metabolites such as SCFAs and 
BAs, and altered gut–brain–ovarian signaling. Within this context, 
TCM emerges as a promising modulator of GM, capable of restoring 
microbial balance, reducing inflammation, and improving 
IR. Preclinical and clinical studies have shown that herbal formulas, 
active ingredients, dietary fibers, synbiotic interventions, and 
acupuncture enhance the abundance of SCFA-producing bacteria, 
strengthen intestinal barrier function, and attenuate systemic and 
ovarian inflammation. Moreover, these interventions often exert 
synergistic effects on metabolic and endocrine pathways, linking 
microbiota regulation to improved reproductive outcomes. Here, we 
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emphasize that TCM may offer an integrative therapeutic strategy to 
alleviate IR and improve long-term outcomes in PCOS by regulating 
the gut microbiome.
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