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Background: Disturbances in lipid metabolism play a critical role in the onset
and progression of diabetic kidney disease (DKD). Remnant cholesterol (RC),
a marker of remnant lipoprotein metabolism, is an established cardiovascular
residual risk factor. However, evidence linking RC to the risk of incident DKD is
limited. This study aimed to investigate the association between RC and incident
DKD and to develop a risk prediction model incorporating RC and other clinical
variables in patients with type 2 diabetes (T2D).

Methods: A retrospective cohort study of 2,122 patients with T2D and without
baseline DKD was conducted. The association between RC and DKD risk
was examined using multivariable Cox regression and restricted cubic spline
(RCS) analysis. A random survival forest (RSF) algorithm was applied to identify
potential predictors, followed by multicollinearity assessment. A RSF-based
prediction model was developed and evaluated for discrimination, calibration,
and clinical utility.

Results: During a median follow-up of 4.22 years, 435 participants (20.5%)
developed DKD. Higher RC quartiles were associated with an increased risk
of DKD across all models; however, the hazard ratios for Q2 to Q4 were
numerically similar, indicating the absence of a clear linear dose-response
pattern. RCS analysis revealed a nonlinear association between RC and DKD risk
(P for nonlinearity = 0.031), characterized by a steep initial increase followed by
a plateau at higher RC levels. RSF identified 14 predictors (including ACR, RC)
with no significant multicollinearity (all the variance inflation factors < 3). The
model exhibited strong discrimination (3-year AUC = 0.86, 5-year AUC = 0.91)
and calibration (3-year mean absolute error = 0.011, 5-year mean absolute
error = 0.026), and outperformed “treat-all’/"treat-none” strategies in decision
curve analysis.

Conclusion: RC was independently and nonlinearly associated with DKD risk in
T2D. The RSF model demonstrated good predictive performance and may assist
individualized risk assessment and management.
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Introduction

Diabetic kidney disease (DKD) is one of the most common and
devastating microvascular complications of type 2 diabetes (T2D),
affecting up to 30-40% of patients during their lifetime and it
represents a leading cause of end-stage renal disease worldwide (1-3).
The development of DKD not only markedly increases the risk of
cardiovascular morbidity and mortality but also imposes a substantial
economic and social burden on healthcare systems (4, 5). Given that
DKD is often clinically silent in its early stages, by the time
microalbuminuria or a decline in estimated glomerular filtration rate
(eGFR) become detectable, irreversible renal damage may have
already occurred (1, 6). Therefore, early identification of individuals
at high risk for DKD and timely intervention are essential to slowing
disease progression, preventing kidney failure, and improving long-
term outcomes in T2D populations (7-9).

Accumulating evidence suggests that disturbances in lipid
metabolism play a critical role in the onset and progression of DKD
(10-12). Abnormal lipid profiles promote renal injury through lipid
deposition in glomerular and tubular cells, induction of oxidative stress,
and activation of pro-inflammatory pathways, thereby accelerating
glomerulosclerosis and tubulointerstitial fibrosis (10, 13). Notably,
remnant cholesterol (RC)—calculated as total cholesterol minus high-
density lipoprotein cholesterol (HDL-C) and low-density lipoprotein
(LDL-C)—primarily reflects
lipoproteins, including very-low-density lipoprotein cholesterol
(VLDL-C) and intermediate-density lipoprotein cholesterol (IDL-C)
(14, 15). It serves as a marker of remnant lipoprotein metabolism,

cholesterol atherogenic remnant

potentially capturing atherogenic lipid burden not reflected by
conventional lipid parameters (14, 15). RC is increasingly recognized
as a contributor to cardiovascular residual risk independent of LDL-C,
contributing to atherosclerosis through endothelial dysfunction and
plaque instability (15-17). Additionally, Wang et al. have confirmed
that elevated RC is independently associated with increased arterial
stiffness (18). As an early marker of systemic vascular damage, arterial
stiffness suggests that RC may impair both macrovascular and
microcirculatory systems through endothelial dysfunction and
decreased vascular compliance (19). In the kidneys, RC-driven vascular
stiffening may accelerate injury via dual pathways: by promoting
glomerular capillary hypertension transmission and oxidative stress on
one hand (20), and by activating fibrotic pathways through direct
lipotoxic deposition in renal tissues on the other (21). However, clinical
evidence linking RC to DKD remains relatively limited.

Therefore, a retrospective cohort study was designed in T2D
patients without DKD at baseline to examine the association between
RC and the risk of developing DKD, including an assessment of
potential dose-response relationships. In addition, a DKD risk
prediction model was developed and validated using machine learning
approaches that incorporate RC with other routinely available clinical
variables, aiming to enhance individualized risk stratification and
inform targeted prevention strategies.

Materials and methods
Study population

This retrospective cohort study included patients with T2D who
were treated at the Affiliated Jinhua Hospital, Zhejiang University
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School of Medicine between January 2015 and December 2023.
Eligible participants were identified through the hospital’s electronic
medical record system. The inclusion criteria were: (1) age >18 years;
(2) confirmed diagnosis of T2D; and (3) available follow-up data.
Patients were excluded if they: (1) lacked follow-up records; (2) were
missing key laboratory data [including urinary albumin-to-creatinine
ratio (ACR), eGFR, glycated hemoglobin (HbAIc), and lipid profile]
or important demographic information; (3) had renal injury
(ACR > 30 mg/g and/or eGFR <60 mL/min/1.73 m?) at baseline or
developed non-diabetic kidney diseases during follow-up; or (4) had
a follow-up duration of less than 2 years. A total of 2,122 patients with
T2D were included in the final analysis (Figure 1). This study followed
the tenets of the Declaration of Helsinki and was approved by the
Ethics Committee of the Affiliated Jinhua Hospital, Zhejiang
University School of Medicine (Approval No. [Res] 2025-Ethical
Review-226). The requirement for informed consent was waived due
to the retrospective nature of the study.

Data collection

Demographic characteristics, medical history, medication use,
and laboratory parameters were extracted from the electronic medical
record system. The collected variables included: age, sex, smoking
status, alcohol consumption, duration of diabetes, systolic blood
pressure (SBP), diastolic blood pressure (DBP), body mass index
(BMI), total cholesterol (TC), triglycerides (TG), LDL-C, HDL-C,
fasting plasma glucose (Glu), uric acid (UA), glycated hemoglobin
(HbAlc), serum creatinine (sCr), total protein (TP), serum albumin.
Comorbidities and medication history, including hypertension status,
use of angiotensin-converting enzyme inhibitors (ACEIs) or
angiotensin II receptor blockers (ARBs), insulin, fibrates/statins, and
sodium-glucose cotransporter 2 inhibitors/glucagon-like peptide-1
receptor agonists (SGLT2i/GLP-1RA), were also recorded. Then, the
values of eGFR, ACR, and RC were calculated. eGFR was calculated
based on sCr using the Xiangya equation, which is validated in
Chinese populations (22). ACR was calculated by dividing urinary
albumin concentration by urinary creatinine concentration (3). RC
was calculated using the formula: RC = TC - HDL-C - LDL-C (14).

Definitions

T2D was diagnosed according to World Health Organization
guidelines (fasting plasma glucose >7.0 mmol/L or HbAlc > 6.5%)
(23). Hypertension was defined as systolic blood pressure >140 mmHg
and/or diastolic blood pressure >90 mmHg, or current use of
antihypertensive medications. Smoking and alcohol use status were
categorized based on self-reported data from admission
questionnaires. According to American Diabetes Association
diagnostic criteria, DKD was defined as the development of eGFR

<60 mL/min/1.73 m* and/or ACR > 30 mg/g (24, 25).
Statistical analysis

All statistical analyses were conducted using R software (version
4.3.2), with two-sided p values < 0.05 considered statistically
significant. Baseline characteristics were summarized as mean *
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FIGURE 1
Study flow diagram of participant enrollment and exclusion for DKD risk analysis in patients with type 2 diabetes. The flow diagram showed the
enrollment of patients with type 2 diabetes (2015-2023), exclusion criteria (age < 18 years, missing follow-up records, baseline renal injury, non-
diabetic kidney disease during follow-up, follow-up time < 2 years, missing key laboratory/demographic data), and final cohort (1,687 non-progressors
vs. 435 progressors to DKD) for analyzing DKD risk. DKD, diabetic kidney disease; ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular
filtration rate; HbAlc, glycated hemoglobin.

standard deviation for normally distributed continuous variables,
median (interquartile range) for skewed data, and frequency
(percentage) for categorical variables. Participants were stratified into
quartiles of RC levels (Q1-Q4) with the following thresholds and
group sizes: Q1: <0.46 mmol/L (n=508), Q2: 0.47-0.63 mmol/L
(n=537), Q3: 0.64-0.82 mmol/L (n=>541), Q4: >0.83 mmol/L
(n =536). p values for trend across quartiles were tested using linear
regression for continuous variables and the Cochran-Armitage test
for categorical variables. Cox proportional hazards models were
selected to evaluate RC-DKD associations. The covariate selection was
based on major demographic characteristics (including age, sex, and
BMI) and established DKD risk factors reported in previous studies
(26-28). We constructed three models with adjustments for major
covariables: Model 1 was adjusted for age and sex; Model 2 included
Model 1 variables plus SBP, BMI, ACR, sCr, and HbA1lc; and Model 3
further included diabetic duration, hypertension status, fibrate/statin
use, and SGLT2i/GLP-1RA use. In the variable screening process for
predictive modeling, TC, HDL-C, and LDL-C were not included
because RC, which was selected for analysis, was calculated from these
parameters, and their simultaneous inclusion could introduce
multicollinearity. Similarly, given that nearly all participants receiving
ACEIs/ARBs had hypertension in this study, hypertension status was
included in the screening model, whereas ACEI/ARB use was not, in
order to avoid redundancy and collinearity. Restricted cubic spline
(RCS) models, adjusted for covariates in Model 3, were used to explore
potential nonlinear associations between RC and DKD risk. For
predictive modeling, the random survival forest (RSF) algorithm was
applied, given its ability to handle right-censored survival data,
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capture nonlinear effects, and model complex interactions among
predictors. The RSF was implemented via the randomForestSRC
package, using 1,000 trees and optimizing terminal node size by
minimizing the out-of-bag (OOB) error rate. Predictor importance
was quantified using permutation-based mean decrease in the
concordance index. Multicollinearity among RSF-selected variables
was assessed using variance inflation factors (VIF) and Spearman
correlation heatmaps. Model performance was evaluated by time-
dependent receiver operating characteristic (ROC) curves, calibration
plots generated from 1,000 bootstrap resamples, and decision curve
analysis (DCA) to quantify the net clinical benefit compared with
treat-all and treat-none strategies.

Results

Baseline characteristics of the study
population

The baseline clinical and demographic characteristics of the
2,122 participants without DKD at baseline, stratified by quartiles of
RC, were summarized in Table 1. The mean age of the overall study
population was 57.47 + 11.19 years, and 1,325 (62.4%) participants
were male. During a median follow-up of 4.22 years, 435 participants
(20.5%) developed incident DKD. Participants in higher RC quartiles
were generally younger, had shorter diabetes duration, and higher
values of BMI, SBP, DBP, TG, TC, LDL-C, fasting Glu, HbAlc, serum
UA, and eGFR, along with lower HDL-C levels (all P for trend <
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0.001). In addition, the prevalence of hypertension and the use of
ACEI/ARB, insulin or fibrate/statin therapy decreased significantly
across RC quartiles (all P for trend p < 0.05). However, a significant
upward trend was also observed for smoking status. No significant
differences were observed in sex distribution, drinking status, sCr,
TP, albumin, ACR, or use of SGLT2i/GLP-1RA (all P for trend
> 0.05).

Association between RC levels and incident
DKD risk

Multivariable Cox regression analysis was conducted to evaluate
the association between RC levels and the risk of incident DKD

10.3389/fnut.2025.1697943

(Table 2). When RC was analyzed as a continuous variable, each unit
increase in RC was significantly associated with a higher risk of DKD
in the age- and sex-adjusted model (Model 1: HR, 1.198; 95% CI,
1.037-1.385; p = 0.014). However, this association was attenuated and
no longer statistically significant after further adjustment for clinical
covariates in Model 2 and Model 3.

When RC was categorized into quartiles, higher RC levels were
consistently associated with an increased risk of DKD across all
models. In the fully adjusted model (Model 3), compared with
participants in the lowest quartile (Q1), those in Q2, Q3, and Q4 had
significantly higher risks of DKD (HR for Q2, 1.478; 95% CI, 1.133-
1.929; p = 0.004; HR for Q3, 1.479; 95% CI, 1.148-1.958; p = 0.006;
HR for Q4, 1.461; 95% CI, 1.092-1.953; p = 0.011). Notably, although
a statistically significant linear trend was observed across RC quartiles

TABLE 1 Baseline characteristics of study population according to RC quartiles.

Variable Total (n = 2,122) Q1 (n = 508) Q2 (n =537) Q3 (n = 541) Q4 (n = 536) P for trend
Age, year 57.47 £ 11.19 60.31 £ 10.56 59.05 + 10.37 56.56 + 10.10 54.10 £ 11.73 <0.001
Gender, 1 (%)

Female, 1 (%) 797 (37.56) 190 (37.40) 210 (39.11) 212 (39.19) 185 (34.52) 0.352

Male, n (%) 1,325 (62.44) 318 (62.60) 327 (60.89) 329 (60.81) 351 (65.48)
Smoking, 7 (%) 788 (37.14) 175 (34.45) 192 (35.75) 201 (37.15) 220 (41.05) 0.024
Drinking, (%) 775 (36.52) 189 (37.21) 191 (35.57) 194 (35.86) 201 (37.50) 0.889
Diabetic duration, 7.00 (3.00, 10.00) 10.00 (4.00, 15.00) 7.00 (4.00, 10.00) 6.00 (3.00, 10.00) 5.00 (1.00, 10.00) <0.001
year
SBP, mmHg 133.91 = 18.05 132.35 £ 18.56 133.95 £ 18.28 134.43 £17.12 134.80 + 18.14 0.028
DBP, mmHg 78.87 £11.24 76.23 +10.54 7832+ 11.24 7995+ 11.11 80.86 £ 11.46 <0.001
BMLI, kg/m? 24.65+4.35 23.72+£3.49 24.48 £4.26 24.85+3.96 2551 £5.26 <0.001
TC, mmol/l 4.70 £ 1.12 4.03 £0.86 4.28 £0.86 4.78 £0.84 5.65+1.14 <0.001
TG, mmol/l 1.47 (1.03, 2.20) 1.00 (0.78, 1.29) 1.29 (0.98, 1.72) 1.64 (1.23,2.24) 2.48 (1.71, 3.76) <0.001
LDL, mmol/l 2.88+£0.82 246 +£0.75 2.62+0.72 2.98 £0.67 3.44+0.78 <0.001
HDL, mmol/l 1.12£0.30 1.23 +£0.31 1.12+£0.27 1.08 £0.28 1.06 £ 0.32 <0.001
RC, mmol/l 0.64 (0.47, 0.83) 0.37(0.29, 0.42) 0.55(0.51, 0.59) 0.72 (0.67, 0.77) 1.01 (0.90, 1.20) <0.001
Glu, mmol/l 7.72£2.80 7.22+2.62 7.49+2.71 7.73£2.76 8.41 £2.97 <0.001
UA, pmol/L 304 (254, 364) 290 (243, 347) 296 (248, 354) 309 (255, 370) 324 (270, 378) <0.001
HbAlc, % 8.34+2.24 8.02£2.15 8.09+2.11 8.44 +2.34 8.79+£2.27 <0.001
sCr, pmol/L 74.27 £13.93 75.36 + 13.67 7393 +14.21 73.84+14.21 74.00 £ 13.54 0.135
TP, g/L 67.43 £5.85 67.12£598 67.60 £5.92 67.07 £5.58 67.92 £5.89 0.106
Albumin, g/L 41.51 +3.74 4141 £391 41.48 £3.63 41.28 £ 3.80 41.85 £ 3.59 0.121
ACR, mg/g 10.10 (5.20, 16.13) 10.30 (5.90, 16.60) 10.10 (4.80, 15.90) 9.90 (4.65, 15.60) 10.32 (5.66, 17.30) 0.751
eGFR, ml/ 78.44 + 8.95 76.70 +7.98 77.81 + 8.46 78.83 £ 8.94 80.34 £9.88 <0.001
min/1.73 m*
Hypertension, n (%) 1,024 (48.26) 280 (55.12) 276 (51.40) 245 (45.29) 223 (41.60) <0.001
ACEI/ARB use, n (%) 373 (17.58) 108 (21.26) 97 (18.06) 96 (17.75) 72 (13.43) 0.001
Insulin therapy, n (%) 708 (33.37) 187 (36.81) 184 (34.26) 176 (32.53) 161 (30.04) 0.017
Fibrate/statin use 330 (15.55) 106 (20.87) 100 (18.62) 63 (11.65) 61 (11.38) <0.001
SGLT2i/GLP-1RA use 214 (10.09) 46 (9.06) 64 (11.92) 49 (9.06) 55 (10.26) 0.919

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density

lipoprotein cholesterol; RC, remnant cholesterol; Glu, fasting blood-glucose; UA, uric acid; HbAlc, glycated hemoglobin Alc; sCr, serum creatinine; TP, total protein; ACR, albumin-to-
creatinine ratio; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; SGLT2i, sodium-glucose cotransporter 2
inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist.
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TABLE 2 HR for incident DKD associated with RC as a Continuous variable and by quartiles.

Model 1 Model 2 Model 3
RC level 95%ClI P value 95%ClI P value 95%ClI P value
Per unit 1.198 1.037-1.385 0.014 1.062 0.910-1.241 0.445 1.073 0.921-1.249 0.364
increase
Quartile 1 Ref Ref Ref
Quartile 2 1.400 1.076-1.821 0.012 1.454 1.115-1.895 0.006 1.478 1.133-1.929 0.004
Quartile 3 1.457 1.108-1.915 0.007 1.429 1.084-1.883 0.011 1.479 1.118-1.958 0.006
Quartile 4 1.537 1.159-2.037 0.003 1.401 1.053-1.863 0.020 1.461 1.092-1.953 0.011
P for trend 0.011 0.022 0.012

DKD, diabetic kidney disease; RC, remnant cholesterol; HR, hazard ratios; CI, confidence intervals; SBP, systolic blood pressure; BMI, body mass index; HbAlc, glycated hemoglobin Alc;
ACR, albumin-to-creatinine ratio; sCr, serum creatinine; SGLT2i, sodium-glucose cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist.

Model 1: adjusted for age and sex.
Model 2: model 1 + adjusted for SBP, BMI, ACR, sCr, HbAlc.

Model 3: model 2 + adjusted for diabetic duration, hypertension, Fibrate/statin use and SGLT2i/GLP-1RA use.

in all the three models, the hazard ratios for Q2 to Q4 were numerically
similar and did not exhibit a clear linear dose-response pattern.

RCS analysis was performed to further assess the potential
nonlinearity of this association (Figure 2). The spline curve
demonstrated a nonlinear relationship between RC and DKD risk (P
for nonlinearity = 0.031), characterized by an initial steep increase in
risk followed by a flattening of the curve at higher RC concentrations.
The overall association remained statistically significant (P
overall = 0.014).

Variable selection for incident DKD risk
prediction using RSF algorithm

In light of the nonlinear relationship between RC and DKD risk
indicated by the RCS analysis, and considering that the dataset
involved time-to-event outcomes and multiple correlated clinical
variables, a RSF algorithm was applied to explore potential
predictors of incident DKD from 21 candidate variables. The
permutation importance ranking was shown in Figure 3. Among all
variables, ACR demonstrated the highest permutation importance,
followed by RC and diabetic duration. Based on both permutation
importance values and the clinical relevance reported in previous
studies, variables with permutation importance > 0.1 were selected
as predictors for DKD risk. A total of 14 variables met this criterion,
including SBP, DBP, BMI, RC, TG, Glu, UA, HbAc, sCr, ACR, age,
diabetic duration, albumin, and SGLT2i/GLP-1RA use.

Assessment of collinearity among selected
variables

To evaluate potential collinearity among the 14 variables selected
from the RSF analysis, spearman’s rank correlation coefficient was first
used to examine their pairwise correlations (Figure 4A). Overall, no
strong correlations were observed, and most variable pairs demonstrated
either no significant association or only weak correlations. The strongest
correlations were observed between TG and RC (r = 0.62, p < 0.001),
followed by HbAlc and fasting glucose (r=0.60, p <0.001) and
between SBP and DBP (r = 0.52, p < 0.001). Variance inflation factors
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FIGURE 2

RCS plot showing the non-linear dose—response relationship
between RC levels and risk of incident DKD adjusted for multiple
confounders. The multiple confounders included age, sex, SBP, BMI,
ACR, sCr, HbAlc, diabetic duration, hypertension, fibrate/statin use,
and SGLT2i/GLP-1RA use. The reference value (HR = 1) was set at the
median RC level (0.64 mmol/L). DKD, diabetic kidney disease; SBP,
systolic blood pressure; BMI, body mass index; RC, remnant
cholesterol; HbAlc, glycated hemoglobin Alc; sCr, serum creatinine;
ACR, albumin-to-creatinine ratio; SGLT?2i, sodium-glucose
cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor
agonist.

(VIFs) were subsequently calculated to further assess multicollinearity
(Figure 4B). All VIF values were below the commonly used threshold
of 3, with the highest observed for TG (VIF = 2.74).

Model development and performance
evaluation

A predictive model for incident DKD was constructed using the
RSF algorithm, which integrated the 14 pre-selected variables. Model
performance was evaluated in terms of discrimination, calibration,
and clinical utility.

Discrimination ability was assessed using time-dependent ROC
curves and risk stratification. As shown in Figure 5A, the model
achieved AUC values of 0.86 for 3-year and 0.91 for 5-year DKD
prediction. Kaplan-Meier survival analysis further confirmed effective
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Permutation Importance

Permutation importance of variables in predicting incident DKD risk using random survival forest. Variables were ranked by permutation importance
(higher values indicated greater importance in predicting DKD risk). The model included 21 baseline variables, and permutation importance was
calculated by randomly permuting each variable's values and measuring the decrease in model performance (concordance index). DKD, diabetic
kidney disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; TG, triglycerides; RC, remnant cholesterol; Glu,
fasting blood-glucose; UA, uric acid; HbAlc, glycated hemoglobin Alc; sCr, serum creatinine; TP, total protein; ACR, albumin-to-creatinine ratio;
SGLT2i, sodium-glucose cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist.
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risk stratification, with clear separation between high- and low-risk
groups defined by the median RSF score (Figure 5B) and a statistically
significant difference in cumulative DKD incidence (log-rank
P <0.001). To delineate time-specific risk stratification by the RSF
model, Kaplan-Meier curves were stratified at 3-year and 5-year
risk

(Supplementary Figures S1A,B). Participants in the high-risk group

horizons  according to the median predicted
exhibited significantly elevated cumulative DKD incidence compared
to the low-risk group at both time points (Log-rank p < 0.001).
Calibration accuracy was examined using calibration plots with
1,000 bootstrap repetitions. For 3-year prediction (Figure 5C), the
model demonstrated close agreement between predicted and observed
risks (mean absolute error = 0.011; mean squared error = 0.00087;
90th percentile absolute error = 0.019; n = 1,683). For 5-year prediction
(Figure 5D), calibration remained acceptable, although prediction
errors increased slightly (mean absolute error = 0.026; mean squared
error = 0.0015; 90th percentile absolute error = 0.061; n = 1,025).
Clinical utility was evaluated by decision curve analysis (Figure 5E).
Both the 3-year and 5-year models provided greater net benefit than
the “treat-all” and “treat-none” strategies across a wide range of
threshold probabilities. The 5-year model consistently demonstrated a

marginally superior net benefit compared to the 3-year model.

Discussion

This retrospective cohort study demonstrated that higher levels of
RC were independently associated with an increased risk of incident
DKD in patients with T2D, and that this relationship was nonlinear,
with a steep rise in risk at lower RC levels followed by a plateau at
higher concentrations. Furthermore, a RSF model incorporating RC
and other routine clinical variables was constructed, and it achieved
high discriminative performance for 3-year and 5-year DKD
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prediction, showed good calibration, and provided net clinical benefit
across a range of decision thresholds. These findings might have a
potential utility for enhancing individualized DKD risk stratification
in patients with T2D.

RG, reflecting cholesterol content in triglyceride-rich remnant
lipoproteins, has garnered increasing attention as an independent
predictor of atherosclerotic and microvascular outcomes (29-31).
A large Korean cohort of type 2 diabetes patients (1 = 1.96 million
participants) demonstrated that individuals in the highest RC
quartile exhibited significantly elevated risks for myocardial
infarction (HR =1.28, 95%CI:1.25-1.31) and ischemic stroke
(HR = 1.22, 95%CI:1.20-1.25), independent of LDL-C and statin
use (29). Similarly, large cohort studies in European populations
confirmed remnant cholesterol as a strong independent risk factor
for peripheral artery disease, myocardial infarction, and ischemic
stroke (30). Notably, its association with peripheral artery disease
was substantially stronger than with myocardial infarction or
stroke, and it consistently demonstrated greater predictive value
than traditional lipid parameters in multivariable-adjusted models
(30). Mechanistically, RC particles promote vascular injury by
activating vascular endothelia and triggering systemic inflammation
(e.g., elevating hsCRP) (32-34). The EPIC-Norfolk study confirmed
this inflammatory effect is unique to RC (not observed with
LDL-C), mediated through small VLDL particles and apoC-III
(32). RC’s synergy with hyperglycemia-induced endothelial
dysfunction highlights its pathological relevance in microvascular
disease, providing a mechanistic rationale for RC-related
complications extending beyond macrovascular pathology (32).
These findings establish a pathophysiological foundation for
exploring RC’s role in DKD, where microvascular injury is central
to pathogenesis.

To evaluate the association between RC and incident DKD risk,
this study employed RC quartile-based stratification, revealing
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distinctive baseline patterns. Interestingly, an inverse relationship
between age and RC quartiles was observed, with participants in
higher RC categories tending to be younger. This pattern was
consistent with epidemiological data showing that RC levels often
peak in younger to middle-aged adults before declining in older
populations, potentially owing to age-related changes in lipoprotein
metabolism or treatment patterns (35, 36). Moreover, the lower
prevalence of hypertension among individuals with higher RC levels
may be partially explained by their younger age, as advanced age is a
strong independent risk factor for hypertension (37, 38). Alternatively,
it is possible that differences in statin use, lifestyle factors, or the
presence of comorbid conditions such as kidney impairment in older
individuals contribute to these patterns. These observations
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underscore the importance of considering age and comorbid profiles
when interpreting RC-associated risk, and suggest that future studies
should explore age-stratified associations and the influence of
therapeutic interventions on remnant cholesterol dynamics.

In the present study, higher RC levels were significantly associated
with increased incident DKD risk (P for trend < 0.05 across all
adjusted models), which was broadly consistent with prior evidence
linking elevated RC to adverse renal outcomes (39, 40). Of note, the
loss of significance for RC as a continuous variable in Models 2 and 3
likely reflected the nonlinear relationship between RC and DKD risk,
as evidenced by the RCS analysis. The plateau effect at higher RC
concentrations indicated that per-unit increments in RC beyond the
threshold (Q1) did not proportionally increase risk. Conversely,
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categorical analysis captured the threshold effect: participants
exceeding the lowest quartile (Q1) exhibited a consistently elevated
risk (HR = 1.5), regardless of further RC elevation. This explained the
persistent significance in quartile-based models. Additionally,
Population-based analyses have shown that higher RC is associated
with lower eGFR and a higher prevalence of albuminuria after
adjustment for conventional lipids and cardiometabolic risk factors
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(39). In longitudinal settings, RC has also been related to faster renal
disease progression and a higher risk of end-stage kidney disease
among patients with diabetic nephropathy (40). Although most
previous investigations examined chronic kidney disease of mixed
etiologies, the present findings extended these observations to incident
DKD in a Chinese T2D cohort. This is consistent with the well-
established role of RC as a residual cardiovascular risk factor (14-17)
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and supports the concept that RC may also contribute to microvascular
complications in diabetes.

Several mechanisms may underlie the observed link between RC
and DKD. RC, as a measure of cholesterol content in triglyceride-rich
remnant lipoproteins, reflects an atherogenic lipid burden not
captured by LDL-C (29-31). Triglyceride-rich remnant particles can
penetrate the glomerular filtration barrier and be taken up by
mesangial and proximal tubular cells, leading to intrarenal lipid
accumulation and “lipotoxicity,” which provoke mitochondrial
dysfunction, endoplasmic reticulum stress, and excessive reactive
oxygen species generation (12, 13, 41, 42). These metabolic insults
activate inflammatory and fibrotic pathways, including NF-xB and
TGF-p signaling, resulting in mesangial expansion, glomerulosclerosis,
and tubulointerstitial fibrosis. RC-induced lipotoxic stress also
amplifies systemic and local low-grade inflammation—particularly via
small VLDL and apoC-III-mediated pathways—thereby aggravating
endothelial dysfunction and microvascular injury that are central to
DKD pathogenesis (32, 43). Furthermore, RC-related metabolic
disturbances may synergize with hyperglycemia and insulin resistance
to enhance oxidative and inflammatory stress within glomerular cells,
accelerating renal damage progression (10-12).

In this study, a steep-rise-plateau pattern between RC and DKD
risk was observed in the RCS analysis, it might reflect a biological
threshold beyond which additional remnant lipoprotein accumulation
exerts diminishing renal toxicity. At lower to moderate RC levels,
increasing concentrations of triglyceride-rich remnant particles can
markedly amplify oxidative stress, endothelial dysfunction, and lipid
deposition within glomerular and tubular compartments, triggering
inflammatory and fibrotic cascades that accelerate renal injury (10, 11,
13,41, 42). However, once these pathogenic pathways are maximally
activated, further increases in RC may confer limited additional risk,
leading to a saturation-like plateau. Similar threshold phenomena
have been reported for other metabolic risk markers such as the
triglyceride-glucose index in DKD (28), suggesting that early-stage
lipid accumulation and endothelial activation are key rate-limiting
steps in the transition from metabolic disturbance to overt renal
damage. This nonlinear pattern may underscore the potential benefit
of early RC control before reaching the inflection point where
irreversible microvascular injury ensues.

However, some studies have reported attenuated or non-significant
associations between RC and renal outcomes (39, 44), emphasizing
potential effect modification by study design, endpoint definition, and
population characteristics. In an NHANES-based cross-sectional
analysis (39), higher remnant cholesterol was associated with lower
eGFR in dose-response fashion, but the link with albuminuria lost
statistical significance after full adjustment (OR 1.24; 95% CI: 0.95-
1.61). Similarly, prognostic analysis of the ACCORD cohort revealed
that RC had no statistically significant association with progression to
renal failure (p=0.621) (38). These discrepancies may reflect
differences in outcome definitions, duration of follow-up, ethnic and
metabolic backgrounds, as well as varying degrees of concomitant
lipid-lowering therapy. Taken together, these findings suggest that the
prognostic value of RC may vary by renal endpoint and population
context, underlining the need for prospective, standardized research
across diverse cohorts.

This study has several limitations. First, its retrospective,
single-center design may limit causal inference and restrict the
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generalizability of the findings to broader T2D populations, as
patient characteristics, clinical practices, and local healthcare
patterns may differ from those in other regions or settings.
Second, on one hand, residual confounding cannot be entirely
excluded, and certain potentially relevant variables—such as
dietary habits, inflammatory biomarkers, socioeconomic factors,
and genetic predispositions—were not available in the dataset; on
the other hand, despite multivariable adjustment, residual
confounding persists due to imbalances in antihypertensive/lipid-
lowering drug usage across RC quartiles. Third, RC was calculated
indirectly from TC, LDL-C, and HDL-C rather than directly
measured, which is a common and validated approach in
epidemiological research but does not capture remnant lipoprotein
particle number, size, or composition, potentially limiting
mechanistic interpretation. Finally, the prediction model
underwent internal validation but lacked external validation in
independent cohorts. For a time-dependent model, dividing the
dataset into separate training and validation sets would have
yielded a relatively small number of DKD cases in each subset, as
only events occurring within the time window are eligible for
analysis. This scarcity of events per analytical window could
compromise parameter estimation stability. Therefore, model
construction was performed using the entire dataset, and
calibration was assessed using bootstrap resampling with 1,000
iterations in this study. External validation in larger, multi-center,
independent populations is warranted to confirm robustness
and applicability.

Conclusion

In conclusion, this study found that RC was independently
associated with incident DKD risk in T2D, with a nonlinear pattern
characterized by a steep increase in risk at moderate RC levels,
followed by a plateau at higher concentrations. In addition, an
RSF-based prediction model integrating RC with other routinely
available clinical variables showed good discrimination, acceptable
calibration, and potential clinical utility. These findings indicate that
RC may be a useful variable for more refined DKD risk stratification
in T2D, and that machine learning approaches could provide a feasible
strategy for developing clinically applicable prediction tools.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics Committee
of Affiliated Jinhua Hospital, Zhejiang University School of Medicine
(Approval No. [Res] 2025-Ethical Review-163). The studies were
conducted in accordance with the local legislation and institutional
requirements. The ethics committee/institutional review board waived
the requirement of written informed consent for participation from

frontiersin.org


https://doi.org/10.3389/fnut.2025.1697943
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Dai et al.

the participants or the participants’ legal guardians/next of kin due to
the retrospective nature of the study.

Author contributions

YD: Data curation, Conceptualization, Writing - review & editing,
Writing - original draft. QP: Formal analysis, Writing - original draft,
Writing - review & editing. YY: Writing - review & editing, Formal
analysis, Data curation. YM: Formal analysis, Funding acquisition,
Writing - review & editing. GC: Writing - original draft, Writing -
review & editing, Conceptualization, Data curation. HW: Data
curation, Writing — review & editing, Conceptualization, Writing —
original draft, Funding acquisition, Formal analysis.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research received the
grant from Science Technology Department of Zhejiang province,
China (LGF22H200021), Jinhua Science and Technology Bureau
(grant numbers 2021-3-055), Jinhua Municipal Traditional Chinese
Medicine Science and Technology Research Project Grant (2025LC04),
and Health Commission of Jinhua City (JYZDXK-2023-09).

Acknowledgments

We thank all the participants and all the colleagues of Department
of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University
School of Medicine. Huabin Wang and Yongjun Ma are the guarantors
of this work and, as such, have full access to all the data in the study
and take responsibility for the integrity of the data and the accuracy
of the data analysis.

References

1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, Progress,
and possibilities. Clin ] Am Soc Nephrol. (2017) 12:2032-45. doi: 10.2215/CJN.11491116

2. Bell DSH, Jerkins T. The potential for improved outcomes in the prevention and
therapy of diabetic kidney disease through 'stacking' of drugs from different classes.
Diabetes Obes Metab. (2024) 26:2046-53. doi: 10.1111/dom.15559

3. Gupta S, Dominguez M, Golestaneh L. Diabetic kidney disease: an update. Med
Clin North Am. (2023) 107:689-705. doi: 10.1016/j.mcna.2023.03.004

4. Fried LE, Folkerts K, Smeta B, Bowrin KD, Mernagh P, Millier A, et al. Targeted
literature review of the burden of illness in patients with chronic kidney disease and type
2 diabetes. Am ] Manag Care. (2021) 27:S168-77. doi: 10.37765/ajmc.2021.88660

5. Xie D, Ma T, Cui H, Li J, Zhang A, Sheng Z, et al. Global burden and influencing
factors of chronic kidney disease due to type 2 diabetes in adults aged 20-59 years,
1990-2019. Sci Rep. (2023) 13:20234. doi: 10.1038/s41598-023-47091-y

6. McGrath K, Edi R. Diabetic kidney disease: diagnosis, treatment, and prevention.
Am Fam Physician. (201) 99:751-9.

7. Montero N, Oliveras L, Martinez-Castelao A, Gorriz JL, Soler MJ, Ferndndez-
Fernandez B, et al. Clinical practice guideline for detection and management of diabetic
kidney disease: a consensus report by the Spanish Society of Nephrology. Nefrologia
(Engl Ed). (2025) 45:1-26. doi: 10.1016/j.nefroe.2025.04.005

8. de Boer IH, Khunti K, Sadusky T, Tuttle KR, Neumiller JJ, Rhee CM, et al. Diabetes
Management in Chronic Kidney Disease: a consensus report by the American Diabetes
Association (ADA) and kidney disease: improving global outcomes (KDIGO). Diabetes
Care. (2022) 45:3075-90. doi: 10.2337/dci22-0027

Frontiers in Nutrition

10.3389/fnut.2025.1697943

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The authors declare that Gen Al was used in the creation of this
manuscript. Declaration of Generative Al and AI-Assisted Technology
Use: DeepSeek was used to assist with the initial translation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnut.2025.1697943/
full#supplementary-material

9. Hara A. Pulse pressure and kidney outcomes in diabetic kidney disease. Hypertens
Res. (2024) 47:3489-91. doi: 10.1038/s41440-024-01958-3

10. Han YZ, Du BX, Zhu XY, Wang YZ, Zheng HJ, Liu WJ. Lipid metabolism disorder
in diabetic kidney disease. Front Endocrinol (Lausanne). (2024) 15:1336402. doi:
10.3389/fend0.2024.1336402

11.Chen X, Yin Q, Ma L, Fu P. The role of cholesterol homeostasis in diabetic
kidney  disease. Curr  Med Chem. (2021) 28:7413-26. doi:
10.2174/0929867328666210419132807

12. Mitrofanova A, Fontanella AM, Merscher S, Fornoni A. Lipid deposition and
metaflammation in diabetic kidney disease. Curr Opin Pharmacol. (2020) 55:60-72. doi:
10.1016/j.coph.2020.09.004

13. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid
metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res.
(2014) 55:561-72. doi: 10.1194/j1r.P040501

14. Baratta F, Cocomello N, Coronati M, Ferro D, Pastori D, Angelico E et al.
Cholesterol remnants, triglyceride-rich lipoproteins and cardiovascular risk. Int ] Mol
Sci. (2023) 24:4268. doi: 10.3390/ijms24054268

15.Heo JH, Jo SH. Triglyceride-rich lipoproteins and remnant cholesterol in
cardiovascular  disease. ]| Korean Med Sci. (2023) 38:e295. doi:
10.3346/jkms.2023.38.e295

16. Miname M, Santos RD. Remnant cholesterol, the cardiovascular-kidney-metabolic
syndrome, and cardiovascular disease: lessons from CHARLS. Eur ] Prev Cardiol. (2025)
32:zwaf345. doi: 10.1093/eurjpc/zwaf345

frontiersin.org


https://doi.org/10.3389/fnut.2025.1697943
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnut.2025.1697943/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2025.1697943/full#supplementary-material
https://doi.org/10.2215/CJN.11491116
https://doi.org/10.1111/dom.15559
https://doi.org/10.1016/j.mcna.2023.03.004
https://doi.org/10.37765/ajmc.2021.88660
https://doi.org/10.1038/s41598-023-47091-y
https://doi.org/10.1016/j.nefroe.2025.04.005
https://doi.org/10.2337/dci22-0027
https://doi.org/10.1038/s41440-024-01958-3
https://doi.org/10.3389/fendo.2024.1336402
https://doi.org/10.2174/0929867328666210419132807
https://doi.org/10.1016/j.coph.2020.09.004
https://doi.org/10.1194/jlr.P040501
https://doi.org/10.3390/ijms24054268
https://doi.org/10.3346/jkms.2023.38.e295
https://doi.org/10.1093/eurjpc/zwaf345

Dai et al.

17.Zhang Y, Xu Q, Tian X, Xia X, Chen §, Liu F, et al. Longitudinal changes in
remnant cholesterol and the risk of cardiovascular disease. Cardiovasc Diabetol. (2025)
24:1. doi: 10.1186/s12933-024-02556-w

18. Wang Z, Li M, Xie ], Gong ], Liu N. Association between remnant cholesterol and
arterial stiffness: a secondary analysis based on a cross-sectional study. J Clin Hypertens
(Greenwich). (2022) 24:26-37. doi: 10.1111/jch.14384

19. Anderson TJ. Arterial stiffness or endothelial dysfunction as a surrogate marker
of vascular risk. Can ] Cardiol. (2006) 22:72B-80B. doi: 10.1016/s0828-282x(06)70990-4

20. Kim HL. Arterial stiffness and hypertension. Clin Hypertens. (2023) 29:31. doi:
10.1186/540885-023-00258-1

21. Vaziri ND. Lipotoxicity and impaired high density lipoprotein-mediated reverse
cholesterol transport in chronic kidney disease. ] Ren Nutr. (2010) 20:S35-43. doi:
10.1053/.jrn.2010.05.010

22.Li DY, Yin WJ, Yi YH, Zhang BK, Zhao ], Zhu CN, et al. Development and
validation of a more accurate estimating equation for glomerular filtration rate in a
Chinese population. Kidney Int. (2019) 95:636-46. doi: 10.1016/j.kint.2018.10.019

23. World Health Organization. Definition and diagnosis of diabetes mellitus and
intermediate hyperglycemia: report of a WHO/IDF consultation, 2006. Geneva: WHO
Document Production Services (2006).

24. Hosseini Sarkhosh SM, Hemmatabadi M, Esteghamati A. Development and
validation of a risk score for diabetic kidney disease prediction in type 2 diabetes
patients: a machine learning approach. J Endocrinol Investig. (2023) 46:415-23. doi:
10.1007/s40618-022-01919-y

25. American Diabetes Association. Diagnosis and classification of diabetes mellitus.
Diabetes Care. (2014) 37:S81-90. doi: 10.2337/dc14-S081

26. Wang H, Jin X, Lin E, Chen G, Lin M, Ma Y. Sex-specific and metabolic subgroup
heterogeneity in high-density lipoprotein cholesterol associations with diabetic kidney
disease risk: a retrospective cohort study. Lipids Health Dis. (2025) 24:205. doi:
10.1186/512944-025-02632-4

27.Wang H, Wu J, Lin M, Hu Y, Ma Y. High levels of high-density lipoprotein
cholesterol may increase the risk of diabetic kidney disease in patients with type 2
diabetes. Sci Rep. (2024) 14:15362. doi: 10.1038/s41598-024-66548-2

28. Wang H, Chen G, Sun D, Ma Y. The threshold effect of triglyceride glucose index
on diabetic kidney disease risk in patients with type 2 diabetes: unveiling a non-linear
association.  Front  Endocrinol  (Lausanne).  (2024)  15:1411486.  doi:
10.3389/fend0.2024.1411486

29. Huh JH, Han KD, Cho YK, Roh E, Kang JG, Lee SJ, et al. Remnant cholesterol and
the risk of cardiovascular disease in type 2 diabetes: a nationwide longitudinal cohort
study. Cardiovasc Diabetol. (2022) 21:228. doi: 10.1186/s12933-022-01667-6

30. Wadstrom BN, Wulff AB, Pedersen KM, Jensen GB, Nordestgaard BG. Elevated
remnant cholesterol increases the risk of peripheral artery disease, myocardial
infarction, and ischaemic stroke: a cohort-based study. Eur Heart J. (2022) 43:3258-69.
doi: 10.1093/eurheartj/ehab705

31. Wadstrém BN, Pedersen KM, Wulff AB, Nordestgaard BG. Elevated remnant
cholesterol and atherosclerotic cardiovascular disease in diabetes: a population-based

Frontiers in Nutrition

11

10.3389/fnut.2025.1697943

prospective  cohort  study. (2023)  66:2238-49.  doi:

10.1007/s00125-023-06016-0

32. Kraaijenhof JM, Kerkvliet MJ, Nurmohamed NS, Grethorst A, Kroon J, Wareham
NJ, et al. The role of systemic inflammation in remnant cholesterol associated
cardiovascular risk: insights from the EPIC-Norfolk study. Eur J Prev Cardiol.
(2025):zwaf037. doi: 10.1093/eurjpc/zwaf037

33. Liu HH, Guo YL, Zhu CG, Wu NQ, Gao Y, Xu RX, et al. Synergistic effect of the
commonest residual risk factors, remnant cholesterol, lipoprotein(a), and inflammation,
on prognosis of statin-treated patients with chronic coronary syndrome. J Transl Med.
(2022) 20:243. doi: 10.1186/s12967-022-03448-x

34. Chen M, Chen Z, Ye H, Cheng Y, Jin Z, Cai S. Long-term association of remnant
cholesterol with all-cause and cardiovascular disease mortality: a nationally
representative cohort study. Front Cardiovasc Med. (2024) 11:1286091. doi:
10.3389/fcvm.2024.1286091

35. Wang Y, Zhang Y, Wang X, Chen S, Tian X, Xu Q, et al. Cumulative remnant
cholesterol burden increases the risk of cardiovascular disease among young adults. Ann
Epidemiol. (2024) 94:127-36. doi: 10.1016/j.annepidem.2024.05.005

36. Varbo A, Freiberg JJ, Nordestgaard BG. Remnant cholesterol and myocardial
infarction in Normal weight, overweight, and obese individuals from the Copenhagen
general population study. Clin Chem. (2018) 64:219-30. doi: 10.1373/clinchem.2017.279463

Diabetologia.

37. Chesnaye NC, Ortiz A, Zoccali C, Stel VS, Jager KJ. The impact of population
ageing on the burden of chronic kidney disease. Nat Rev Nephrol. (2024) 20:569-85. doi:
10.1038/541581-024-00863-9

38. Carpio EM, Ashworth M, Asgari E, Shaw C, Schartau P, Durbaba S, et al.
Hypertension and cardiovascular risk factor management in a multi-ethnic cohort of
adults with CKD: a cross sectional study in general practice. ] Nephrol. (2022) 35:901-10.
doi: 10.1007/s40620-021-01149-0

39.He X, Zou R, Du X, Li K, Sha D. Association of remnant cholesterol with decreased
kidney function or albuminuria: a population-based study in the U.S. Lipids Health Dis.
(2024) 23:2. doi: 10.1186/512944-023-01995-w

40.Liu L, Wang C, Hu Z, Yang P, Li Y, Zhou Y, et al. Association of Cumulative
Remnant Cholesterol with kidney function decline in Chinese population: a prospective
cohort study. Kidney Dis (Basel). (2025) 11:90-103. doi: 10.1159/000543037

41.Ruan XZ, Varghese Z, Moorhead JE An update on the lipid nephrotoxicity
hypothesis. Nat Rev Nephrol. (2009) 5:713-21. doi: 10.1038/nrneph.2009.184

42. Proctor G, Jiang T, Iwahashi M, Wang Z, Li ], Levi M. Regulation of renal fatty acid
and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with
type 1 diabetes. Diabetes. (2006) 55:2502-9. doi: 10.2337/db05-0603

43.Varbo A, Benn M, Tybjerg-Hansen A, Nordestgaard BG. Elevated remnant
cholesterol causes both low-grade inflammation and ischemic heart disease, whereas
elevated low-density lipoprotein cholesterol causes ischemic heart disease without
inflammation. Circulation. (2013) 128:1298-309. doi:
10.1161/CIRCULATIONAHA.113.003008

44.Yu P, Yuan Q, Huang L, Tao L, Peng Z, Pu J. The prognostic value of remnant
cholesterol to adverse renal outcomes in patients with type 2 diabetes. Diabetol Metab
Syndr. (2025) 17:52. doi: 10.1186/s13098-025-01617-8

frontiersin.org


https://doi.org/10.3389/fnut.2025.1697943
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.1186/s12933-024-02556-w
https://doi.org/10.1111/jch.14384
https://doi.org/10.1016/s0828-282x(06)70990-4
https://doi.org/10.1186/s40885-023-00258-1
https://doi.org/10.1053/j.jrn.2010.05.010
https://doi.org/10.1016/j.kint.2018.10.019
https://doi.org/10.1007/s40618-022-01919-y
https://doi.org/10.2337/dc14-S081
https://doi.org/10.1186/s12944-025-02632-4
https://doi.org/10.1038/s41598-024-66548-2
https://doi.org/10.3389/fendo.2024.1411486
https://doi.org/10.1186/s12933-022-01667-6
https://doi.org/10.1093/eurheartj/ehab705
https://doi.org/10.1007/s00125-023-06016-0
https://doi.org/10.1093/eurjpc/zwaf037
https://doi.org/10.1186/s12967-022-03448-x
https://doi.org/10.3389/fcvm.2024.1286091
https://doi.org/10.1016/j.annepidem.2024.05.005
https://doi.org/10.1373/clinchem.2017.279463
https://doi.org/10.1038/s41581-024-00863-9
https://doi.org/10.1007/s40620-021-01149-0
https://doi.org/10.1186/s12944-023-01995-w
https://doi.org/10.1159/000543037
https://doi.org/10.1038/nrneph.2009.184
https://doi.org/10.2337/db05-0603
https://doi.org/10.1161/CIRCULATIONAHA.113.003008
https://doi.org/10.1186/s13098-025-01617-8

Dai et al.

Glossary

ACEI - Angiotensin converting enzyme inhibitor
ARB - Angiotensin receptor blocker

ACR - Albumin-to-creatinine ratio

BMI - Body mass index

DKD - Diabetes kidney disease

DBP - Diastolic blood pressure

eGFR - Estimated glomerular filtration rate

RC - Remnant cholesterol

GLP-1RA - Glucagon-like peptide-1 receptor agonists
HbAIc - Glycated hemoglobin

HDL-C - High-density lipoprotein cholesterol

HR - Hazard ratios
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LDL-C - Low-density lipoprotein cholesterol
MSS - Maximum selected statistics

RCS - Restricted cubic spline

SBP - Systolic blood pressure

SGLT2i - Sodium-glucose cotransporter-2 inhibitors
T2D - Type 2 diabetes

RSF - Random survival forest

ROC - Receiver operating characteristic

VIEF - Variance inflation factors

DCA - Decision curve analysis

VLDL - Very-low-density lipoprotein cholesterol

IDL-C - Intermediate-density lipoprotein cholesterol
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