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Background: Disturbances in lipid metabolism play a critical role in the onset 
and progression of diabetic kidney disease (DKD). Remnant cholesterol (RC), 
a marker of remnant lipoprotein metabolism, is an established cardiovascular 
residual risk factor. However, evidence linking RC to the risk of incident DKD is 
limited. This study aimed to investigate the association between RC and incident 
DKD and to develop a risk prediction model incorporating RC and other clinical 
variables in patients with type 2 diabetes (T2D).
Methods: A retrospective cohort study of 2,122 patients with T2D and without 
baseline DKD was conducted. The association between RC and DKD risk 
was examined using multivariable Cox regression and restricted cubic spline 
(RCS) analysis. A random survival forest (RSF) algorithm was applied to identify 
potential predictors, followed by multicollinearity assessment. A RSF-based 
prediction model was developed and evaluated for discrimination, calibration, 
and clinical utility.
Results: During a median follow-up of 4.22 years, 435 participants (20.5%) 
developed DKD. Higher RC quartiles were associated with an increased risk 
of DKD across all models; however, the hazard ratios for Q2 to Q4 were 
numerically similar, indicating the absence of a clear linear dose–response 
pattern. RCS analysis revealed a nonlinear association between RC and DKD risk 
(P for nonlinearity = 0.031), characterized by a steep initial increase followed by 
a plateau at higher RC levels. RSF identified 14 predictors (including ACR, RC) 
with no significant multicollinearity (all the variance inflation factors < 3). The 
model exhibited strong discrimination (3-year AUC = 0.86, 5-year AUC = 0.91) 
and calibration (3-year mean absolute error = 0.011, 5-year mean absolute 
error = 0.026), and outperformed “treat-all”/“treat-none” strategies in decision 
curve analysis.
Conclusion: RC was independently and nonlinearly associated with DKD risk in 
T2D. The RSF model demonstrated good predictive performance and may assist 
individualized risk assessment and management.
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Introduction

Diabetic kidney disease (DKD) is one of the most common and 
devastating microvascular complications of type 2 diabetes (T2D), 
affecting up to 30–40% of patients during their lifetime and it 
represents a leading cause of end-stage renal disease worldwide (1–3). 
The development of DKD not only markedly increases the risk of 
cardiovascular morbidity and mortality but also imposes a substantial 
economic and social burden on healthcare systems (4, 5). Given that 
DKD is often clinically silent in its early stages, by the time 
microalbuminuria or a decline in estimated glomerular filtration rate 
(eGFR) become detectable, irreversible renal damage may have 
already occurred (1, 6). Therefore, early identification of individuals 
at high risk for DKD and timely intervention are essential to slowing 
disease progression, preventing kidney failure, and improving long-
term outcomes in T2D populations (7–9).

Accumulating evidence suggests that disturbances in lipid 
metabolism play a critical role in the onset and progression of DKD 
(10–12). Abnormal lipid profiles promote renal injury through lipid 
deposition in glomerular and tubular cells, induction of oxidative stress, 
and activation of pro-inflammatory pathways, thereby accelerating 
glomerulosclerosis and tubulointerstitial fibrosis (10, 13). Notably, 
remnant cholesterol (RC)—calculated as total cholesterol minus high-
density lipoprotein cholesterol (HDL-C) and low-density lipoprotein 
cholesterol (LDL-C)—primarily reflects atherogenic remnant 
lipoproteins, including very-low-density lipoprotein cholesterol 
(VLDL-C) and intermediate-density lipoprotein cholesterol (IDL-C) 
(14, 15). It serves as a marker of remnant lipoprotein metabolism, 
potentially capturing atherogenic lipid burden not reflected by 
conventional lipid parameters (14, 15). RC is increasingly recognized 
as a contributor to cardiovascular residual risk independent of LDL-C, 
contributing to atherosclerosis through endothelial dysfunction and 
plaque instability (15–17). Additionally, Wang et al. have confirmed 
that elevated RC is independently associated with increased arterial 
stiffness (18). As an early marker of systemic vascular damage, arterial 
stiffness suggests that RC may impair both macrovascular and 
microcirculatory systems through endothelial dysfunction and 
decreased vascular compliance (19). In the kidneys, RC-driven vascular 
stiffening may accelerate injury via dual pathways: by promoting 
glomerular capillary hypertension transmission and oxidative stress on 
one hand (20), and by activating fibrotic pathways through direct 
lipotoxic deposition in renal tissues on the other (21). However, clinical 
evidence linking RC to DKD remains relatively limited.

Therefore, a retrospective cohort study was designed in T2D 
patients without DKD at baseline to examine the association between 
RC and the risk of developing DKD, including an assessment of 
potential dose–response relationships. In addition, a DKD risk 
prediction model was developed and validated using machine learning 
approaches that incorporate RC with other routinely available clinical 
variables, aiming to enhance individualized risk stratification and 
inform targeted prevention strategies.

Materials and methods

Study population

This retrospective cohort study included patients with T2D who 
were treated at the Affiliated Jinhua Hospital, Zhejiang University 

School of Medicine between January 2015 and December 2023. 
Eligible participants were identified through the hospital’s electronic 
medical record system. The inclusion criteria were: (1) age ≥18 years; 
(2) confirmed diagnosis of T2D; and (3) available follow-up data. 
Patients were excluded if they: (1) lacked follow-up records; (2) were 
missing key laboratory data [including urinary albumin-to-creatinine 
ratio (ACR), eGFR, glycated hemoglobin (HbA1c), and lipid profile] 
or important demographic information; (3) had renal injury 
(ACR ≥ 30 mg/g and/or eGFR <60 mL/min/1.73 m2) at baseline or 
developed non-diabetic kidney diseases during follow-up; or (4) had 
a follow-up duration of less than 2 years. A total of 2,122 patients with 
T2D were included in the final analysis (Figure 1). This study followed 
the tenets of the Declaration of Helsinki and was approved by the 
Ethics Committee of the Affiliated Jinhua Hospital, Zhejiang 
University School of Medicine (Approval No. [Res] 2025-Ethical 
Review-226). The requirement for informed consent was waived due 
to the retrospective nature of the study.

Data collection

Demographic characteristics, medical history, medication use, 
and laboratory parameters were extracted from the electronic medical 
record system. The collected variables included: age, sex, smoking 
status, alcohol consumption, duration of diabetes, systolic blood 
pressure (SBP), diastolic blood pressure (DBP), body mass index 
(BMI), total cholesterol (TC), triglycerides (TG), LDL-C, HDL-C, 
fasting plasma glucose (Glu), uric acid (UA), glycated hemoglobin 
(HbA1c), serum creatinine (sCr), total protein (TP), serum albumin. 
Comorbidities and medication history, including hypertension status, 
use of angiotensin-converting enzyme inhibitors (ACEIs) or 
angiotensin II receptor blockers (ARBs), insulin, fibrates/statins, and 
sodium-glucose cotransporter 2 inhibitors/glucagon-like peptide-1 
receptor agonists (SGLT2i/GLP-1RA), were also recorded. Then, the 
values of eGFR, ACR, and RC were calculated. eGFR was calculated 
based on sCr using the Xiangya equation, which is validated in 
Chinese populations (22). ACR was calculated by dividing urinary 
albumin concentration by urinary creatinine concentration (3). RC 
was calculated using the formula: RC = TC - HDL-C - LDL-C (14).

Definitions

T2D was diagnosed according to World Health Organization 
guidelines (fasting plasma glucose ≥7.0 mmol/L or HbA1c ≥ 6.5%) 
(23). Hypertension was defined as systolic blood pressure ≥140 mmHg 
and/or diastolic blood pressure ≥90 mmHg, or current use of 
antihypertensive medications. Smoking and alcohol use status were 
categorized based on self-reported data from admission 
questionnaires. According to American Diabetes Association 
diagnostic criteria, DKD was defined as the development of eGFR 
<60 mL/min/1.73 m2 and/or ACR ≥ 30 mg/g (24, 25).

Statistical analysis

All statistical analyses were conducted using R software (version 
4.3.2), with two-sided p values < 0.05 considered statistically 
significant. Baseline characteristics were summarized as mean ± 
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standard deviation for normally distributed continuous variables, 
median (interquartile range) for skewed data, and frequency 
(percentage) for categorical variables. Participants were stratified into 
quartiles of RC levels (Q1–Q4) with the following thresholds and 
group sizes: Q1: <0.46 mmol/L (n = 508), Q2: 0.47–0.63 mmol/L 
(n = 537), Q3: 0.64–0.82 mmol/L (n = 541), Q4: >0.83 mmol/L 
(n = 536). p values for trend across quartiles were tested using linear 
regression for continuous variables and the Cochran–Armitage test 
for categorical variables. Cox proportional hazards models were 
selected to evaluate RC-DKD associations. The covariate selection was 
based on major demographic characteristics (including age, sex, and 
BMI) and established DKD risk factors reported in previous studies 
(26–28). We constructed three models with adjustments for major 
covariables: Model 1 was adjusted for age and sex; Model 2 included 
Model 1 variables plus SBP, BMI, ACR, sCr, and HbA1c; and Model 3 
further included diabetic duration, hypertension status, fibrate/statin 
use, and SGLT2i/GLP-1RA use. In the variable screening process for 
predictive modeling, TC, HDL-C, and LDL-C were not included 
because RC, which was selected for analysis, was calculated from these 
parameters, and their simultaneous inclusion could introduce 
multicollinearity. Similarly, given that nearly all participants receiving 
ACEIs/ARBs had hypertension in this study, hypertension status was 
included in the screening model, whereas ACEI/ARB use was not, in 
order to avoid redundancy and collinearity. Restricted cubic spline 
(RCS) models, adjusted for covariates in Model 3, were used to explore 
potential nonlinear associations between RC and DKD risk. For 
predictive modeling, the random survival forest (RSF) algorithm was 
applied, given its ability to handle right-censored survival data, 

capture nonlinear effects, and model complex interactions among 
predictors. The RSF was implemented via the randomForestSRC 
package, using 1,000 trees and optimizing terminal node size by 
minimizing the out-of-bag (OOB) error rate. Predictor importance 
was quantified using permutation-based mean decrease in the 
concordance index. Multicollinearity among RSF-selected variables 
was assessed using variance inflation factors (VIF) and Spearman 
correlation heatmaps. Model performance was evaluated by time-
dependent receiver operating characteristic (ROC) curves, calibration 
plots generated from 1,000 bootstrap resamples, and decision curve 
analysis (DCA) to quantify the net clinical benefit compared with 
treat-all and treat-none strategies.

Results

Baseline characteristics of the study 
population

The baseline clinical and demographic characteristics of the 
2,122 participants without DKD at baseline, stratified by quartiles of 
RC, were summarized in Table 1. The mean age of the overall study 
population was 57.47 ± 11.19 years, and 1,325 (62.4%) participants 
were male. During a median follow-up of 4.22 years, 435 participants 
(20.5%) developed incident DKD. Participants in higher RC quartiles 
were generally younger, had shorter diabetes duration, and higher 
values of BMI, SBP, DBP, TG, TC, LDL-C, fasting Glu, HbA1c, serum 
UA, and eGFR, along with lower HDL-C levels (all P for trend < 

FIGURE 1

Study flow diagram of participant enrollment and exclusion for DKD risk analysis in patients with type 2 diabetes. The flow diagram showed the 
enrollment of patients with type 2 diabetes (2015–2023), exclusion criteria (age < 18 years, missing follow-up records, baseline renal injury, non-
diabetic kidney disease during follow-up, follow-up time < 2 years, missing key laboratory/demographic data), and final cohort (1,687 non-progressors 
vs. 435 progressors to DKD) for analyzing DKD risk. DKD, diabetic kidney disease; ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular 
filtration rate; HbA1c, glycated hemoglobin.
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0.001). In addition, the prevalence of hypertension and the use of 
ACEI/ARB, insulin or fibrate/statin therapy decreased significantly 
across RC quartiles (all P for trend p < 0.05). However, a significant 
upward trend was also observed for smoking status. No significant 
differences were observed in sex distribution, drinking status, sCr, 
TP, albumin, ACR, or use of SGLT2i/GLP-1RA (all P for trend 
> 0.05).

Association between RC levels and incident 
DKD risk

Multivariable Cox regression analysis was conducted to evaluate 
the association between RC levels and the risk of incident DKD 

(Table 2). When RC was analyzed as a continuous variable, each unit 
increase in RC was significantly associated with a higher risk of DKD 
in the age- and sex-adjusted model (Model 1: HR, 1.198; 95% CI, 
1.037–1.385; p = 0.014). However, this association was attenuated and 
no longer statistically significant after further adjustment for clinical 
covariates in Model 2 and Model 3.

When RC was categorized into quartiles, higher RC levels were 
consistently associated with an increased risk of DKD across all 
models. In the fully adjusted model (Model 3), compared with 
participants in the lowest quartile (Q1), those in Q2, Q3, and Q4 had 
significantly higher risks of DKD (HR for Q2, 1.478; 95% CI, 1.133–
1.929; p = 0.004; HR for Q3, 1.479; 95% CI, 1.148–1.958; p = 0.006; 
HR for Q4, 1.461; 95% CI, 1.092–1.953; p = 0.011). Notably, although 
a statistically significant linear trend was observed across RC quartiles 

TABLE 1  Baseline characteristics of study population according to RC quartiles.

Variable Total (n = 2,122) Q1 (n = 508) Q2 (n = 537) Q3 (n = 541) Q4 (n = 536) P for trend

Age, year 57.47 ± 11.19 60.31 ± 10.56 59.05 ± 10.37 56.56 ± 10.10 54.10 ± 11.73 <0.001

Gender, n (%)

 � Female, n (%) 797 (37.56) 190 (37.40) 210 (39.11) 212 (39.19) 185 (34.52) 0.352

 � Male, n (%) 1,325 (62.44) 318 (62.60) 327 (60.89) 329 (60.81) 351 (65.48)

Smoking, n (%) 788 (37.14) 175 (34.45) 192 (35.75) 201 (37.15) 220 (41.05) 0.024

Drinking, n (%) 775 (36.52) 189 (37.21) 191 (35.57) 194 (35.86) 201 (37.50) 0.889

Diabetic duration, 

year

7.00 (3.00, 10.00) 10.00 (4.00, 15.00) 7.00 (4.00, 10.00) 6.00 (3.00, 10.00) 5.00 (1.00, 10.00) <0.001

SBP, mmHg 133.91 ± 18.05 132.35 ± 18.56 133.95 ± 18.28 134.43 ± 17.12 134.80 ± 18.14 0.028

DBP, mmHg 78.87 ± 11.24 76.23 ± 10.54 78.32 ± 11.24 79.95 ± 11.11 80.86 ± 11.46 <0.001

BMI, kg/m2 24.65 ± 4.35 23.72 ± 3.49 24.48 ± 4.26 24.85 ± 3.96 25.51 ± 5.26 <0.001

TC, mmol/l 4.70 ± 1.12 4.03 ± 0.86 4.28 ± 0.86 4.78 ± 0.84 5.65 ± 1.14 <0.001

TG, mmol/l 1.47 (1.03, 2.20) 1.00 (0.78, 1.29) 1.29 (0.98, 1.72) 1.64 (1.23, 2.24) 2.48 (1.71, 3.76) <0.001

LDL, mmol/l 2.88 ± 0.82 2.46 ± 0.75 2.62 ± 0.72 2.98 ± 0.67 3.44 ± 0.78 <0.001

HDL, mmol/l 1.12 ± 0.30 1.23 ± 0.31 1.12 ± 0.27 1.08 ± 0.28 1.06 ± 0.32 <0.001

RC, mmol/l 0.64 (0.47, 0.83) 0.37 (0.29, 0.42) 0.55 (0.51, 0.59) 0.72 (0.67, 0.77) 1.01 (0.90, 1.20) <0.001

Glu, mmol/l 7.72 ± 2.80 7.22 ± 2.62 7.49 ± 2.71 7.73 ± 2.76 8.41 ± 2.97 <0.001

UA, μmol/L 304 (254, 364) 290 (243, 347) 296 (248, 354) 309 (255, 370) 324 (270, 378) <0.001

HbA1c, % 8.34 ± 2.24 8.02 ± 2.15 8.09 ± 2.11 8.44 ± 2.34 8.79 ± 2.27 <0.001

sCr, μmol/L 74.27 ± 13.93 75.36 ± 13.67 73.93 ± 14.21 73.84 ± 14.21 74.00 ± 13.54 0.135

TP, g/L 67.43 ± 5.85 67.12 ± 5.98 67.60 ± 5.92 67.07 ± 5.58 67.92 ± 5.89 0.106

Albumin, g/L 41.51 ± 3.74 41.41 ± 3.91 41.48 ± 3.63 41.28 ± 3.80 41.85 ± 3.59 0.121

ACR, mg/g 10.10 (5.20, 16.13) 10.30 (5.90, 16.60) 10.10 (4.80, 15.90) 9.90 (4.65, 15.60) 10.32 (5.66, 17.30) 0.751

eGFR, ml/

min/1.73 m2

78.44 ± 8.95 76.70 ± 7.98 77.81 ± 8.46 78.83 ± 8.94 80.34 ± 9.88 <0.001

Hypertension, n (%) 1,024 (48.26) 280 (55.12) 276 (51.40) 245 (45.29) 223 (41.60) <0.001

ACEI/ARB use, n (%) 373 (17.58) 108 (21.26) 97 (18.06) 96 (17.75) 72 (13.43) 0.001

Insulin therapy, n (%) 708 (33.37) 187 (36.81) 184 (34.26) 176 (32.53) 161 (30.04) 0.017

Fibrate/statin use 330 (15.55) 106 (20.87) 100 (18.62) 63 (11.65) 61 (11.38) <0.001

SGLT2i/GLP-1RA use 214 (10.09) 46 (9.06) 64 (11.92) 49 (9.06) 55 (10.26) 0.919

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density 
lipoprotein cholesterol; RC, remnant cholesterol; Glu, fasting blood-glucose; UA, uric acid; HbA1c, glycated hemoglobin A1c; sCr, serum creatinine; TP, total protein; ACR, albumin-to-
creatinine ratio; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; SGLT2i, sodium-glucose cotransporter 2 
inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist.
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in all the three models, the hazard ratios for Q2 to Q4 were numerically 
similar and did not exhibit a clear linear dose–response pattern.

RCS analysis was performed to further assess the potential 
nonlinearity of this association (Figure  2). The spline curve 
demonstrated a nonlinear relationship between RC and DKD risk (P 
for nonlinearity = 0.031), characterized by an initial steep increase in 
risk followed by a flattening of the curve at higher RC concentrations. 
The overall association remained statistically significant (P 
overall = 0.014).

Variable selection for incident DKD risk 
prediction using RSF algorithm

In light of the nonlinear relationship between RC and DKD risk 
indicated by the RCS analysis, and considering that the dataset 
involved time-to-event outcomes and multiple correlated clinical 
variables, a RSF algorithm was applied to explore potential 
predictors of incident DKD from 21 candidate variables. The 
permutation importance ranking was shown in Figure 3. Among all 
variables, ACR demonstrated the highest permutation importance, 
followed by RC and diabetic duration. Based on both permutation 
importance values and the clinical relevance reported in previous 
studies, variables with permutation importance > 0.1 were selected 
as predictors for DKD risk. A total of 14 variables met this criterion, 
including SBP, DBP, BMI, RC, TG, Glu, UA, HbA1c, sCr, ACR, age, 
diabetic duration, albumin, and SGLT2i/GLP-1RA use.

Assessment of collinearity among selected 
variables

To evaluate potential collinearity among the 14 variables selected 
from the RSF analysis, spearman’s rank correlation coefficient was first 
used to examine their pairwise correlations (Figure 4A). Overall, no 
strong correlations were observed, and most variable pairs demonstrated 
either no significant association or only weak correlations. The strongest 
correlations were observed between TG and RC (r = 0.62, p < 0.001), 
followed by HbA1c and fasting glucose (r = 0.60, p < 0.001) and 
between SBP and DBP (r = 0.52, p < 0.001). Variance inflation factors 

(VIFs) were subsequently calculated to further assess multicollinearity 
(Figure 4B). All VIF values were below the commonly used threshold 
of 3, with the highest observed for TG (VIF = 2.74).

Model development and performance 
evaluation

A predictive model for incident DKD was constructed using the 
RSF algorithm, which integrated the 14 pre-selected variables. Model 
performance was evaluated in terms of discrimination, calibration, 
and clinical utility.

Discrimination ability was assessed using time-dependent ROC 
curves and risk stratification. As shown in Figure  5A, the model 
achieved AUC values of 0.86 for 3-year and 0.91 for 5-year DKD 
prediction. Kaplan–Meier survival analysis further confirmed effective 

TABLE 2  HR for incident DKD associated with RC as a Continuous variable and by quartiles.

Model 1 Model 2 Model 3

RC level HR 95%CI P value HR 95%CI P value HR 95%CI P value

Per unit 

increase

1.198 1.037–1.385 0.014 1.062 0.910–1.241 0.445 1.073 0.921–1.249 0.364

Quartile 1 Ref Ref Ref

Quartile 2 1.400 1.076–1.821 0.012 1.454 1.115–1.895 0.006 1.478 1.133–1.929 0.004

Quartile 3 1.457 1.108–1.915 0.007 1.429 1.084–1.883 0.011 1.479 1.118–1.958 0.006

Quartile 4 1.537 1.159–2.037 0.003 1.401 1.053–1.863 0.020 1.461 1.092–1.953 0.011

P for trend 0.011 0.022 0.012

DKD, diabetic kidney disease; RC, remnant cholesterol; HR, hazard ratios; CI, confidence intervals; SBP, systolic blood pressure; BMI, body mass index; HbA1c, glycated hemoglobin A1c; 
ACR, albumin-to-creatinine ratio; sCr, serum creatinine; SGLT2i, sodium-glucose cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist.
Model 1: adjusted for age and sex.
Model 2: model 1 + adjusted for SBP, BMI, ACR, sCr, HbA1c.
Model 3: model 2 + adjusted for diabetic duration, hypertension, Fibrate/statin use and SGLT2i/GLP-1RA use.

FIGURE 2

RCS plot showing the non-linear dose–response relationship 
between RC levels and risk of incident DKD adjusted for multiple 
confounders. The multiple confounders included age, sex, SBP, BMI, 
ACR, sCr, HbA1c, diabetic duration, hypertension, fibrate/statin use, 
and SGLT2i/GLP-1RA use. The reference value (HR = 1) was set at the 
median RC level (0.64 mmol/L). DKD, diabetic kidney disease; SBP, 
systolic blood pressure; BMI, body mass index; RC, remnant 
cholesterol; HbA1c, glycated hemoglobin A1c; sCr, serum creatinine; 
ACR, albumin-to-creatinine ratio; SGLT2i, sodium-glucose 
cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor 
agonist.
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risk stratification, with clear separation between high- and low-risk 
groups defined by the median RSF score (Figure 5B) and a statistically 
significant difference in cumulative DKD incidence (log-rank 
p < 0.001). To delineate time-specific risk stratification by the RSF 
model, Kaplan–Meier curves were stratified at 3-year and 5-year 
horizons according to the median predicted risk 
(Supplementary Figures S1A,B). Participants in the high-risk group 
exhibited significantly elevated cumulative DKD incidence compared 
to the low-risk group at both time points (Log-rank p < 0.001).

Calibration accuracy was examined using calibration plots with 
1,000 bootstrap repetitions. For 3-year prediction (Figure 5C), the 
model demonstrated close agreement between predicted and observed 
risks (mean absolute error = 0.011; mean squared error = 0.00087; 
90th percentile absolute error = 0.019; n = 1,683). For 5-year prediction 
(Figure  5D), calibration remained acceptable, although prediction 
errors increased slightly (mean absolute error = 0.026; mean squared 
error = 0.0015; 90th percentile absolute error = 0.061; n = 1,025).

Clinical utility was evaluated by decision curve analysis (Figure 5E). 
Both the 3-year and 5-year models provided greater net benefit than 
the “treat-all” and “treat-none” strategies across a wide range of 
threshold probabilities. The 5-year model consistently demonstrated a 
marginally superior net benefit compared to the 3-year model.

Discussion

This retrospective cohort study demonstrated that higher levels of 
RC were independently associated with an increased risk of incident 
DKD in patients with T2D, and that this relationship was nonlinear, 
with a steep rise in risk at lower RC levels followed by a plateau at 
higher concentrations. Furthermore, a RSF model incorporating RC 
and other routine clinical variables was constructed, and it achieved 
high discriminative performance for 3-year and 5-year DKD 

prediction, showed good calibration, and provided net clinical benefit 
across a range of decision thresholds. These findings might have a 
potential utility for enhancing individualized DKD risk stratification 
in patients with T2D.

RC, reflecting cholesterol content in triglyceride-rich remnant 
lipoproteins, has garnered increasing attention as an independent 
predictor of atherosclerotic and microvascular outcomes (29–31). 
A large Korean cohort of type 2 diabetes patients (n = 1.96 million 
participants) demonstrated that individuals in the highest RC 
quartile exhibited significantly elevated risks for myocardial 
infarction (HR = 1.28, 95%CI:1.25–1.31) and ischemic stroke 
(HR = 1.22, 95%CI:1.20–1.25), independent of LDL-C and statin 
use (29). Similarly, large cohort studies in European populations 
confirmed remnant cholesterol as a strong independent risk factor 
for peripheral artery disease, myocardial infarction, and ischemic 
stroke (30). Notably, its association with peripheral artery disease 
was substantially stronger than with myocardial infarction or 
stroke, and it consistently demonstrated greater predictive value 
than traditional lipid parameters in multivariable-adjusted models 
(30). Mechanistically, RC particles promote vascular injury by 
activating vascular endothelia and triggering systemic inflammation 
(e.g., elevating hsCRP) (32–34). The EPIC-Norfolk study confirmed 
this inflammatory effect is unique to RC (not observed with 
LDL-C), mediated through small VLDL particles and apoC-III 
(32). RC’s synergy with hyperglycemia-induced endothelial 
dysfunction highlights its pathological relevance in microvascular 
disease, providing a mechanistic rationale for RC-related 
complications extending beyond macrovascular pathology (32). 
These findings establish a pathophysiological foundation for 
exploring RC’s role in DKD, where microvascular injury is central 
to pathogenesis.

To evaluate the association between RC and incident DKD risk, 
this study employed RC quartile-based stratification, revealing 

FIGURE 3

Permutation importance of variables in predicting incident DKD risk using random survival forest. Variables were ranked by permutation importance 
(higher values indicated greater importance in predicting DKD risk). The model included 21 baseline variables, and permutation importance was 
calculated by randomly permuting each variable’s values and measuring the decrease in model performance (concordance index). DKD, diabetic 
kidney disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; TG, triglycerides; RC, remnant cholesterol; Glu, 
fasting blood-glucose; UA, uric acid; HbA1c, glycated hemoglobin A1c; sCr, serum creatinine; TP, total protein; ACR, albumin-to-creatinine ratio; 
SGLT2i, sodium-glucose cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist.
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distinctive baseline patterns. Interestingly, an inverse relationship 
between age and RC quartiles was observed, with participants in 
higher RC categories tending to be  younger. This pattern was 
consistent with epidemiological data showing that RC levels often 
peak in younger to middle-aged adults before declining in older 
populations, potentially owing to age-related changes in lipoprotein 
metabolism or treatment patterns (35, 36). Moreover, the lower 
prevalence of hypertension among individuals with higher RC levels 
may be partially explained by their younger age, as advanced age is a 
strong independent risk factor for hypertension (37, 38). Alternatively, 
it is possible that differences in statin use, lifestyle factors, or the 
presence of comorbid conditions such as kidney impairment in older 
individuals contribute to these patterns. These observations 

underscore the importance of considering age and comorbid profiles 
when interpreting RC-associated risk, and suggest that future studies 
should explore age-stratified associations and the influence of 
therapeutic interventions on remnant cholesterol dynamics.

In the present study, higher RC levels were significantly associated 
with increased incident DKD risk (P for trend < 0.05 across all 
adjusted models), which was broadly consistent with prior evidence 
linking elevated RC to adverse renal outcomes (39, 40). Of note, the 
loss of significance for RC as a continuous variable in Models 2 and 3 
likely reflected the nonlinear relationship between RC and DKD risk, 
as evidenced by the RCS analysis. The plateau effect at higher RC 
concentrations indicated that per-unit increments in RC beyond the 
threshold (Q1) did not proportionally increase risk. Conversely, 

FIGURE 4

Correlation heatmap (A) and VIF plot (B) for multicollinearity assessment of 14 RSF-selected predictor variables in incident DKD risk prediction. DKD, 
diabetic kidney disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; TG, triglycerides; RC, remnant cholesterol; 
Glu, fasting blood-glucose; UA, uric acid; HbA1c, glycated hemoglobin A1c; sCr, serum creatinine; ACR, albumin-to-creatinine ratio; SGLT2i, sodium-
glucose cotransporter 2 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist; VIF, variance inflation factor.

https://doi.org/10.3389/fnut.2025.1697943
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Dai et al.� 10.3389/fnut.2025.1697943

Frontiers in Nutrition 08 frontiersin.org

categorical analysis captured the threshold effect: participants 
exceeding the lowest quartile (Q1) exhibited a consistently elevated 
risk (HR ≈ 1.5), regardless of further RC elevation. This explained the 
persistent significance in quartile-based models. Additionally, 
Population-based analyses have shown that higher RC is associated 
with lower eGFR and a higher prevalence of albuminuria after 
adjustment for conventional lipids and cardiometabolic risk factors 

(39). In longitudinal settings, RC has also been related to faster renal 
disease progression and a higher risk of end-stage kidney disease 
among patients with diabetic nephropathy (40). Although most 
previous investigations examined chronic kidney disease of mixed 
etiologies, the present findings extended these observations to incident 
DKD in a Chinese T2D cohort. This is consistent with the well-
established role of RC as a residual cardiovascular risk factor (14–17) 

FIGURE 5

Performance evaluation of the DKD risk prediction model based on random survival forest. (A) Time-dependent ROC curves showing discriminatory 
power at 3 and 5 years; (B) Kaplan–Meier curves comparing cumulative DKD risk between high- (≥median model score) and low-risk (<median model 
score) groups; (C,D) Calibration curves evaluating agreement between predicted and observed risk at 3 and 5 years, validated by 1,000 bootstrap 
resamples. (E) DCA curves showing net clinical benefit of the model at 3 and 5 years, compared to “treat all” and “treat none” strategies. DKD, diabetic 
kidney disease; AUC, area under the curve; DCA, decision curve analysis.
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and supports the concept that RC may also contribute to microvascular 
complications in diabetes.

Several mechanisms may underlie the observed link between RC 
and DKD. RC, as a measure of cholesterol content in triglyceride-rich 
remnant lipoproteins, reflects an atherogenic lipid burden not 
captured by LDL-C (29–31). Triglyceride-rich remnant particles can 
penetrate the glomerular filtration barrier and be  taken up by 
mesangial and proximal tubular cells, leading to intrarenal lipid 
accumulation and “lipotoxicity,” which provoke mitochondrial 
dysfunction, endoplasmic reticulum stress, and excessive reactive 
oxygen species generation (12, 13, 41, 42). These metabolic insults 
activate inflammatory and fibrotic pathways, including NF-κB and 
TGF-β signaling, resulting in mesangial expansion, glomerulosclerosis, 
and tubulointerstitial fibrosis. RC-induced lipotoxic stress also 
amplifies systemic and local low-grade inflammation—particularly via 
small VLDL and apoC-III–mediated pathways—thereby aggravating 
endothelial dysfunction and microvascular injury that are central to 
DKD pathogenesis (32, 43). Furthermore, RC-related metabolic 
disturbances may synergize with hyperglycemia and insulin resistance 
to enhance oxidative and inflammatory stress within glomerular cells, 
accelerating renal damage progression (10–12).

In this study, a steep-rise–plateau pattern between RC and DKD 
risk was observed in the RCS analysis, it might reflect a biological 
threshold beyond which additional remnant lipoprotein accumulation 
exerts diminishing renal toxicity. At lower to moderate RC levels, 
increasing concentrations of triglyceride-rich remnant particles can 
markedly amplify oxidative stress, endothelial dysfunction, and lipid 
deposition within glomerular and tubular compartments, triggering 
inflammatory and fibrotic cascades that accelerate renal injury (10, 11, 
13, 41, 42). However, once these pathogenic pathways are maximally 
activated, further increases in RC may confer limited additional risk, 
leading to a saturation-like plateau. Similar threshold phenomena 
have been reported for other metabolic risk markers such as the 
triglyceride–glucose index in DKD (28), suggesting that early-stage 
lipid accumulation and endothelial activation are key rate-limiting 
steps in the transition from metabolic disturbance to overt renal 
damage. This nonlinear pattern may underscore the potential benefit 
of early RC control before reaching the inflection point where 
irreversible microvascular injury ensues.

However, some studies have reported attenuated or non-significant 
associations between RC and renal outcomes (39, 44), emphasizing 
potential effect modification by study design, endpoint definition, and 
population characteristics. In an NHANES-based cross-sectional 
analysis (39), higher remnant cholesterol was associated with lower 
eGFR in dose–response fashion, but the link with albuminuria lost 
statistical significance after full adjustment (OR 1.24; 95% CI: 0.95–
1.61). Similarly, prognostic analysis of the ACCORD cohort revealed 
that RC had no statistically significant association with progression to 
renal failure (p = 0.621) (38). These discrepancies may reflect 
differences in outcome definitions, duration of follow-up, ethnic and 
metabolic backgrounds, as well as varying degrees of concomitant 
lipid-lowering therapy. Taken together, these findings suggest that the 
prognostic value of RC may vary by renal endpoint and population 
context, underlining the need for prospective, standardized research 
across diverse cohorts.

This study has several limitations. First, its retrospective, 
single-center design may limit causal inference and restrict the 

generalizability of the findings to broader T2D populations, as 
patient characteristics, clinical practices, and local healthcare 
patterns may differ from those in other regions or settings. 
Second, on one hand, residual confounding cannot be entirely 
excluded, and certain potentially relevant variables—such as 
dietary habits, inflammatory biomarkers, socioeconomic factors, 
and genetic predispositions—were not available in the dataset; on 
the other hand, despite multivariable adjustment, residual 
confounding persists due to imbalances in antihypertensive/lipid-
lowering drug usage across RC quartiles. Third, RC was calculated 
indirectly from TC, LDL-C, and HDL-C rather than directly 
measured, which is a common and validated approach in 
epidemiological research but does not capture remnant lipoprotein 
particle number, size, or composition, potentially limiting 
mechanistic interpretation. Finally, the prediction model 
underwent internal validation but lacked external validation in 
independent cohorts. For a time-dependent model, dividing the 
dataset into separate training and validation sets would have 
yielded a relatively small number of DKD cases in each subset, as 
only events occurring within the time window are eligible for 
analysis. This scarcity of events per  analytical window could 
compromise parameter estimation stability. Therefore, model 
construction was performed using the entire dataset, and 
calibration was assessed using bootstrap resampling with 1,000 
iterations in this study. External validation in larger, multi-center, 
independent populations is warranted to confirm robustness 
and applicability.

Conclusion

In conclusion, this study found that RC was independently 
associated with incident DKD risk in T2D, with a nonlinear pattern 
characterized by a steep increase in risk at moderate RC levels, 
followed by a plateau at higher concentrations. In addition, an 
RSF-based prediction model integrating RC with other routinely 
available clinical variables showed good discrimination, acceptable 
calibration, and potential clinical utility. These findings indicate that 
RC may be a useful variable for more refined DKD risk stratification 
in T2D, and that machine learning approaches could provide a feasible 
strategy for developing clinically applicable prediction tools.
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Glossary

ACEI - Angiotensin converting enzyme inhibitor

ARB - Angiotensin receptor blocker

ACR - Albumin-to-creatinine ratio

BMI - Body mass index

DKD - Diabetes kidney disease

DBP - Diastolic blood pressure

eGFR - Estimated glomerular filtration rate

RC - Remnant cholesterol

GLP-1RA - Glucagon-like peptide-1 receptor agonists

HbA1c - Glycated hemoglobin

HDL-C - High-density lipoprotein cholesterol

HR - Hazard ratios

LDL-C - Low-density lipoprotein cholesterol

MSS - Maximum selected statistics

RCS - Restricted cubic spline

SBP - Systolic blood pressure

SGLT2i - Sodium-glucose cotransporter-2 inhibitors

T2D - Type 2 diabetes

RSF - Random survival forest

ROC - Receiver operating characteristic

VIF - Variance inflation factors

DCA - Decision curve analysis

VLDL - Very-low-density lipoprotein cholesterol

IDL-C - Intermediate-density lipoprotein cholesterol
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