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Non-nutritive sweeteners (NNS) are present in various commercial articles, from 
foodstuffs to oral hygiene products. Despite their alleged safety, mounting evidence 
indicates that NNS intake is associated with an alteration of intestinal bacterial 
populations (dysbiosis) in animals and humans. Since NNS are commercialized 
based on the assumption that they are not metabolized by human cells and 
negligible effect on bacterial, the insurgence of dysbiosis associated with NNS 
intake remains unexplained. The current review aims to assess the effect of selected 
NNS (acesulfame potassium, advantame, aspartame, neotame, saccharin, stevia, 
and sucralose) on the human intestinal microbiota. Findings from this review 
suggests that NNS intake is linked not only to alterations in human physiology 
but also to modifications of bacterial biochemistry, including the hindrance of 
quorum sensing pathways, in a species-specific manner. Moreover, there were 
suggestions that NNS could also affect the biology of phages, namely by binding 
to the active sites of proteins involved in the infection process and altering the 
induction rate of prophages. The studies gathered in the present review provide 
a framework for understanding how NNS might be connected to dysbiosis, both 
directly through alterations in bacterial biochemistry and indirectly through impaired 
phage activity.
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Introduction

Currently, obesity affects roughly one in eight people worldwide and, since 1990, the 
percentage of obese adults and adolescents has doubled and quadrupled, respectively, with 
over 40% of adults being overweight (1). Obesity and high body weight are linked to various 
medical conditions, including type 2 diabetes, atherosclerosis, depression, and cancer, with a 
high burden on people’s quality of life and the health systems around the world (2). To address 
this ongoing outbreak of weight-related problems, the World Health Organization (WHO) has 
suggested limiting the amount of free sugar in foodstuffs to 10% the daily energy intake (3). 
Such a goal was followed to the food industry’s massive employment of non-nutritive 
sweeteners (NNS, also called non-caloric, high-intensity, or artificial sweeteners) (4).
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NNS are so defined because, unlike natural sweeteners such as 
glucose (dextrose), fructose, or maltose, they do not provide energetic 
input to human cells (5). The WHO, the American Food and Drug 
Administration (FDA), and the European Food Safety Authority 
(EFSA) all declared NNS safe for human consumption (6). However, 
the food authorities also introduced in 1961 a quantitative evaluator 
of NNS intake, the acceptable daily intake (ADI), which is defined as 
the daily amount of a sweetener per body-weight ingestible throughout 
a person’s lifetime without appreciable health risk (7–11).

NNS are now present in a wide variety of goods, sometimes in the 
absence of consumer awareness, ranging from soft drinks to cereals, 
from vitamin supplements to oral hygiene products (12–14). The 
global yearly consumption of NNS reached 117,000 tons in 2021 (15), 
and it has been observed that the intake of NNS-containing drinks 
doubled in children between 2000 and 2008 (16).

The NNS ADI varies according to the sweetener and different 
countries might adopt distinct ADI levels (17, 18). It has been 
estimated that one person should drink about 20 cans of diet soda 
containing aspartame, 800 cans of diet beverages containing saccharin, 
or 14 servings of iced tea containing sucralose to reach the respective 
ADI (19, 20). Although such amounts appear unattainable (21–23), it 
has been reported that the ADI is exceeded in several cases, 
particularity by youngsters (24–26).

In Germany, where about 89% of soft drinks contain NNS (27), a 
study carried out on a group of 2,291 individuals assessed that 99.8% 
of the participant did not exceed ADI intake (25). Nonetheless, 
extrapolating from these data and considering a German population 
of 83.5 million (28), one might speculate that 0.2% of individuals who 
consume NNS above the ADI level would correspond to approximately 
1.7 million people at risk of excessive NNS intake. Although the 
exposure to NNS, particularly stevia, is increasing worldwide, 
especially due to consumption of soft drinks, there is a paucity of 
recent data monitoring the actual consumption of NNS in the German 
population (29–31).

Recently, the WHO carried out a systematic re-evaluation of 
clinical trials on physiological markers, finding that not only does 
NNS intake not reduce body fat, as previously claimed, but it could 
also increase the risk of type 2 diabetes, cardiovascular disease, and 
mortality in consumers (32). Thus, the WHO has revised its stance on 
NNS safety and now recommends avoiding NNS consumption to 
control body weight (33, 34). Such re-evaluation highlights the 
necessity of understanding the effect of NNS intake on human 
physiology. The data derived from clinical trials regarding the effect of 
NNS intake on human subjects is controversial, and, in general, the 
long-term effect of NNS on human health needs to be more adequately 
investigated (35), especially considering that more people are exposed 
to NNS than those who knowingly consume them. For instance, an 
NNS intervention study reported that eight (44.4%) of 18 healthy 
participants chosen as baseline non-NNS consumers showed sucralose 
in their urine (average concentration 0.6 mM) even before the actual 
trial begun (36).

Each consumer can excrete tens to hundreds of NNS 
milligrams per day in the urine (37–39) and NNS have also been 
detected in amniotic fluids at concentrations of nanograms per 
milliliter (40). Due to their chemical stability, NNS are not 
removed during wastewater treatment; thus, they can reach 
concentrations of about 2.5 mg/L in effluvial water and have 
become a widespread environmental contaminant that is employed 

as trackers of human pollution (41–44). For example, 
environmental exposure to ace-K has been linked to an increased 
cellular damage in carp (45). Contaminated water and soil carry 
the risk of transferring NNS back into the food chain, with the 
potential of indirect NNS exposure through environmental 
contamination (46).

Moreover, the scientific assessment of NNS safety is more 
demanding than it might appear. For instance, several NNS are often 
mixed in foodstuffs, making it more challenging to assess the 
individual roles of NNS on human physiology (47). In particular, 
while dysbiosis is a common outcome associated with NNS intake, its 
effects are highly variable, depending on individual dietary habits and 
the genetic backgrounds of both the host and microbes, suggesting a 
personalized approach for further investigation in this area of 
nutrition (48, 49). Furthermore, the effects of NNS on human 
physiology are typical of prolonged contact with low concentrations, 
a combination that is difficult to replicate experimentally (50). In 
addition, the type of study can also determine a substantial bias in the 
results. For instance, it has been suggested that trials funded by 
sweetener manufacturers tended to report a lower NNS (namely, 
aspartame) risk association than independent studies (51).

Nonetheless, a growing number of reports suggest that NNS 
consumption can be associated with adverse physiological effects, 
particularly due to alterations in the intestinal microbiome compared 
to normal conditions (dysbiosis). A cross-sectional observational 
study of human volunteers showed a negative correlation between 
NNS intake and the abundance of different types of bacteria, including 
butyric acid-producing ones, in the colon (52). It has been shown that 
ace-K, aspartame, saccharin, and sucralose increased the horizontal 
gene transfer among bacteria, both at the intra-species (among 
Acinetobacter baylyi strains) and the inter-species (between A. baylyi 
and Bacillus subtilis) levels (53). Remarkably, it has also been shown 
that these NNS added at a concentration of 1–5 mM for 24 h decreased 
the growth of the acidogenic Streptococcus mutans but left unaffected 
that of the alkali-producing Streptococcus sanguis (54). Based on a 
survey of 28 clinical studies, there was a tendency for an increased 
abundance of members of the Enterobacteriaceae family and decreased 
abundance of members of the Clostridium cluster XIVa in NNS 
consumers compared to healthy controls (55). In addition, bacteria 
extracted from 13 healthy volunteers and exposed to sucralose showed 
an increased abundance of Escherichia and Shigella genera, whereas 
aspartame increased the abundance of bifidobacteria; the production 
of short-chain fatty acids (SCFA) was also altered by these sweeteners 
(56). Sucralose has been indicated as a possible cause of the insurgence 
of inflammatory bowel disease (57). If NNS can affect some bacterial 
species or even strain differently from others, it can be speculated that 
NNS intake could raise the risk for an imbalance in the microbial 
growth that could explain the observed dysbiosis in NNS consumers.

The goal of this review was to determine the direct effects of 
popular NNS on gut microbes to identify the mechanism underlying 
the development of dysbiosis associated with the consumption of 
sweeteners. The most prevalent NNS include acesulfame potassium 
(ace-K), advantame, aspartame, neotame, saccharin, stevia, and 
sucralose (4, 58, 59). This review will focus on the direct interaction 
between NNS and bacteria, based on in vivo and ex vivo trials in 
animals, as well as in vitro experiments. The review will also examine 
the potential impact of NNS on phages, considering the crucial role 
these microbes play in shaping the intestinal microbiome.
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The articles presented in the present review were obtained 
primarily by searching the National Library of Medicine (NLM) with 
the PubMed tool (60) with the keywords: ((((((Inflammation[MeSH 
Terms]) OR (Inflammation)) OR ((Dysbiosis[MeSH Terms]) OR 
(Dysbiosis))) OR (Pathological Conditions, Signs and Symptoms[MeSH 
Terms])) OR ((obesity) OR (obesity[MeSH Terms]))) OR 
((Gastrointestinal Microbiome[MeSH Terms]) OR (Gastrointestinal 
Microbiome))) AND ((Non-Nutritive Sweeteners[MeSH Terms]) OR 
(Non-Nutritive Sweeteners)). Furthermore, the NLM’s database of 
clinical trials (61) was searched using the following keywords: 
Condition/disease: Non-Nutritive Sweeteners; Other terms: 
Inflammation OR obesity OR microbiome. Both queries were initiated 
on November 15, 2022. Relevant papers were included based on their 
titles and abstracts. Additional literature was obtained by further 
exploring works related to the selected studies.

NNS structure and metabolism

Ace-K

Ace-K is an oxathiazinone dioxide salt that is efficiently absorbed 
by the small intestine without metabolization. Thus, ace-K is rapidly 
transported into the bloodstream and then eliminated through the 
urine, although 1% of the ingested dose is released into the feces (62). 
In pregnant women, ace-K has been recovered in amniotic fluid (40) 
and is transmitted to newborns through breastfeeding (63). However, 
there are no reports of adverse effects in children. The by-products of 
ace-K are potassium and acetoacetamide, and dietary NNS generates 
concentrations of these metabolites that are considered well within the 
safety levels (64, 65). Ace-K was cleared for human consumption in 
the 1970s, albeit the clinical testing was later deemed unsatisfactory 
and additional trials were never performed (66). Moreover, it has been 
shown that both mouse adipocytes 3 T3-L1 and human primary 
mesenchymal stem cells exposed to ace-K exhibited enhanced 
adipogenesis (67).

It has also been reported that several environmental bacteria 
(belonging to the families Boseaceae, Bradyrhizobiaceae, 
Chelatococcaceae, Methylophilaceae, Phyllobacteriaceae, and 
Pseudomonadaceae) can metabolize this NNS using it as an energetic 
source (68, 69). The biodegradation of ace-K to sulfamic acid has been 
reported in lakes, rivers, and wastewater treatment plants, but only in 
aerobic conditions (70, 71). Since the gastrointestinal tract (GIT) is 
virtually anaerobic (72), the fate of this NNS in the GIT remains 
largely unknown (see Figure 1).

Aspartame, advantame, and neotame

Aspartame, formally known as aspartyl-phenylalanine methyl 
ester (or (N-L-α-aspartyl)-L-phenylalanine methyl ester), is a 
methylated dipeptide of the amino acids L-aspartic acid and 
L-phenylalanine. Advantame (N-[N-[3-(3-hydroxy-4-methoxyphenyl)
propyl]-α-aspartyl]-L-phenylalanine 1-methyl ester) and neotame 
(N-[N-(3,3-dimethylbutyl)-1-α-aspartyl]-L-phenylalanine 1-methyl 
ester) are aspartame derivatives (73). Compared to aspartame, the 
former (developed through computer-based design by the sweetener 
producer firm Ajinomoto in 1987) has higher thermostability (74); the 

latter, released in 1991, has higher water solubility. The International 
Agency for Research on Cancer (IARC) has registered aspartame as a 
possible carcinogenic agent for humans (75).

Aspartic acid and phenylalanine are released, together with 
methanol, from the matabolization of aspartame by peptidases and 
esterases present in the intestinal cells (62). The hydrolysis of 
advantame in the intestinal tract also produces methanol as well as 
de-esterified advantame (also known as ANS9801-acid) (76, 77). The 
latter molecule is further metabolized to N-(3-(3-hydroxy-4-
methoxyphenyl))-propyl-L-aspartic acid (HF-1) (78). The hydrolysis 
of neotame produces dimethylbutylaspartylphenylalanine 
(DMB-Asp-Phe) and methanol (73).

Inside the enterocytes, aspartic acid is converted to oxalacetate, 
which is involved in gluconeogenesis; phenylalanine is transformed to 
tyrosine, whereas methanol is converted into formaldehyde and, in 
turn, to formic acid and carbon dioxide. The excess of these 
metabolites, the same as those obtained from the digestion of natural 
food, is excreted in the urine. Although methanol is toxic, the levels 
generated by the digestion of aspartame are considered well below the 
safety threshold (79). No aspartame has been recovered during 
breastfeeding (80). Aspartame-derived metabolites are readily 
adsorbed by the small intestine and delivered by the portal vein to the 
liver; therefore, it does not reach the colon, whereas both advantame 
and neotame metabolites were recovered from feces and urine (73).

High levels of aspartic acid or phenylalanine may cause health 
issues, but dietary amounts of aspartame are considered to produce 
negligible amounts of these metabolites (80). However, people with 
phenylketonuria should avoid ingesting aspartame because they lack 
a functional phenylalanine hydroxylase and, therefore, cannot convert 
phenylalanine to tyrosine (81). High levels of phenylalanine have been 
linked to an increased risk of seizures (82).

Saccharin

Saccharin is a benzoic acid sulfimide that is moderately absorbed 
by the small intestine: while about 85–95% of it is delivered to the 
bloodstream and excreted in the urine, the rest reaches the colon 
unaltered (62). Saccharin is not metabolized by animal cells (83), 
indicating physiological inertness in humans, which has led to its 
widespread use in food products.

Experimental models performed in the 1970s-1980s reported an 
increased risk of bladder cancer in rodents fed with high-dose 
saccharin, leading to a legal requirement to display a warning label on 
saccharin-containing items (51). However, such a requirement was 
removed in 2000 based on the objection that rodents do not constitute 
a proper model for human physiology and that the concentrations 
utilized in early experiments were well above the ADI (84). Nonetheless, 
it was later demonstrated that human and mouse adipocytes treated 
with saccharin exhibited an abnormally activated Akt signaling 
pathway, leading to enhanced adipogenesis and reduced lipolysis (67).

Stevia

Stevia is a generic term for the extract of the shrub Stevia 
rebaudiana (fam. Asteraceae), also known as candyleaf, which is 
widespread in south America (85). Stevia has been utilized by 
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indigenous tribes for centuries, but it was not officially recognized 
by Western scientists until 1887. It was introduced to the Japanese 
food industry in the 1970s, received approval from the FDA in the 
1990s, and was introduced in the European market in 2011 (86, 87).

In 1931, the active factor of candyleaf extracts was described to 
contain a mixture of glycosides, the most abundant being steviol, 
stevioside, rebaudioside (reb) A-F, dulcoside, and steviolbioside (86, 
88). The steviol glycosides share a diterpene steviol moiety (89). The 

FIGURE 1

Chemical structure of the sweeteners included in the present review. Comparison of the structures of natural and non-nutritive sweeteners. Dextrose 
(also known as glucose) and fructose are the basic units of monosaccharides; maltose and sucrose are disaccharides. Sucrose is the reference 
molecule for the sweetening power of sweeteners. The de-esterification of advantame (*) generates ANS9801-acid.
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term ‘stevia’ will be  used in this review as a synonym for steviol 
glycosides to indicate that no active factor has explicitly been disclosed 
in the cited literature.

Stevia reaches the colon unaltered because animal cells are unable 
to metabolize its glycosides (62). Intestinal bacteria, specifically 
members of the genus Bacteroides, have been shown to metabolize 
steviol glycosides, producing steviol as the final product, which is 
resistant to further degradation (90, 91). Steviol is then absorbed by 
the colonic epithelium and released into the bloodstream (89). 
Interestingly, the microbial enzyme involved in the degradation of 
steviosides, sennoside hydrolyzing glycosidase, is usually inhibited by 
glucose (92); thus, it might be expected that its expression would 
be increased in diets that are poor in this natural saccharine (93).

Sucralose

Sucralose is a chlorinated disaccharide obtained by exchanging 
three hydroxyl groups of sucrose with chlorine. It is poorly absorbed 
by the small intestine so that about 85% of it reaches the colon and is 
excreted in the feces (62, 94). It is commonly assumed that sucralose 
is metabolized neither by animal nor by bacterial enzymes (95), a 
feature that advocated for its physiological safety. Nonetheless, it has 
been reported that environmental bacteria can degrade this NNS, 
although without a substantial energetic gain, to 1,6-dichloro-1,6-
dideoxy-D-fructose and uronic acid (96, 97).

NNS impact on bacteria

Overview

In the following sections, experimental studies investigating the 
direct effect of NNS on the biology of bacteria will be discussed. The 
results are summarized in Table 1; selected characteristics of NNS are 
reported in Table 2.

Ace-K

Ace-K had a strain-specific bacteriostatic effect on E. coli in vitro: 
Luria-Bertani (LB) agar supplemented with 2.5% w/v (124 mM) ace-K 
reduced the number of colony-forming units (CFU) by 90% for E. coli 
strain HB101, and 98% for K-12 (98). Other studies reported a boost 
in the growth of E. coli upon exposure to 6 mg/mL of ace-K, an effect 
associated with alterations in the bacterial metabolism (99). Others, 
however, did not report substantial differences in bacterial growth: 
mice fed ace-K supplements within the ADI for 8 weeks did not show 
a difference in microbial density or cecal butyrate concentration 
compared to a placebo group (100). The growth of E. coli strain 
K802NR was not affected by exposure to ace-K at a concentration of 
5 mM (101). Bacteria isolated from rat guts and exposed to ace-K 
displayed inhibited glucose fermentation (102).

Ace-K induced an anti-genotoxic response in E. coli strain DPD2794 
but not in strains TV1061 and DPD2544 (103). Ace-K at a concentration 
of at least 0.03 mg/L increased over three times the recombination 
frequency between E. coli K-12 strains and four times between E. coli and 
Pseudomonas alloputida (15). The authors of such a study also reported 

that the high recombination rate was decreased upon treatment with 
radical scavengers, suggesting that reactive oxygen species (ROS) were 
involved in the process. Membrane permeability was also increased upon 
treatment with ace-K (15). Because the concentration in the experiment 
was lower than the concentration of NNS in the urine, the authors argued 
that ace-K could increase the rate of horizontal gene transfer in the human 
gut, with a higher risk of spreading antibiotic resistance genes (15).

Aspartame, advantame, and neotame

Dysbiosis was observed in newborn mice breastfed by mothers 
provided with chow supplemented with aspartame, correspondent to 
the human ADI, in particular, with higher production of propionate 
and butyrate and decreased lactose fermentation (104). Mice fed with 
a concentration within the ADI for aspartame over a period of 8 weeks 
showed impairment of glucose tolerance and higher abundance of 
members of the family Enterobacteriaceae as well as Clostridium 
leptum, an SCFA producer compared to controls (105, 106).

Aspartame was not bacteriostatic against either E. coli 10,418 or 
Streptococcus mutans 19,433, but it increased biofilm formation in 
E. coli and Enterococcus faecalis as well as enhanced their adhesion to 
Caco-2 intestinal cells (107, 108). Similarly, advantame (0.4 mM) and 
neotame (0.5 mM) did not affect the growth of E. coli K802NR whereas 
aspartame (1.4 mM) showed bacteriostatic activity (101). However, 
other studies did report a bacteriostatic effect of aspartame (20.4 mM) 
on E. coli along with altered fatty acid metabolism (99). Moreover, 
aspartame stimulated the production of cytotoxins in E. faecalis, with 
subsequent reduced viability of Caco-2 cells (107). Aspartame induced 
DNA damage in E. coli strain DPD2794 but not in strains TV1061 and 
DPD2544 (103). Molecular docking studies showed that aspartame 
could bind the hydrophobic pocket involved in the detection of the 
quorum sensing (QS) modulator 3-oxo-C12-HSL (LasR) of 
Pseudonomas aeruginosa, in particular by establishing connections 
with residue Val76, with an overall affinity of −8.6 kcal/mol, impairing 
the quorum sensing pathway of this bacterium (101).

Aspartame (0.1 μM) increased four-fold the recombination 
frequency among E. coli K-12 strains as well as inter-species 
recombination (E. coli to P. alloputida) (15). The increased 
recombination rate was associated with a higher ROS concentration 
in the bacterial cells and higher membrane permeability (15).

Models based on CD-1 mice fed for 4 weeks with neotame at a 
concentration equivalent to 2.5 times the human ADI showed 
alterations of the enteric microbiome (109). The alterations in treated 
mice compared to controls included enrichment of members of the 
genus Bacteroides (particularly those belonging to the family S24-7) 
and depletion of members of the families Lachnospiraceae and 
Ruminococcaceae. Such a modification of the microbiota was also 
associated with a shift in bacterial biochemistry, characterized by a 
reduction in the concentrations of malic acid, mannose-6-phosphate, 
and glyceric acid, among others. On the other hand, there was an 
increase in lipids such as linoleic and stearic acids.

Saccharin

Saccharin at a concentration of 2.7 mM inhibited the growth of 
E. coli strain K802NR (101) and exhibited bacteriostatic effect on 
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E. coli strain 10,418 at a concentration of 1 mM but not at 0.1 mM, 
although it did not affect the growth of E. faecalis (107). Saccharin 
displayed a species-specific bacteriostatic effect on E. coli: LB agar 
supplemented with 2.5% w/v (137 mM) saccharin reduced the 
number of CFU by 90% for strain HB101, and almost 100% for 
K-12 (98). Studies in rats reported discordant results. It was shown 
that saccharin did not affect the growth of Lactobacillus amylovorus 
strain 4,228 (110). In contrast, others have shown that saccharin 
inhibits the fermentation of glucose in the gut (102). Saccharin at 
a concentration of 0.1 μM did not affect the recombination 

frequency between E. coli strains or between E. coli and 
P. alloputida (15).

Streptococcus mutans was inhibited in a dose-dependent manner 
by saccharin (108). Saccharin provided at a concentration 
corresponding to the ADI increased biofilm formation and cellular 
adhesion to Caco-2 cells in E. coli and Enterococcus faecalis cultures 
(107). Furthermore, saccharin significantly increased the invasion 
index of E. faecalis but not that of E. coli; however, E. coli exposed to 
saccharin increased the production of cytotoxins reducing the 
viability of Caco-2 cells (107). Saccharin induced chromosomal 

TABLE 1  Effects of non-nutritive sweeteners on bacteriaa.

Effect Ace-K A.A.N.b Saccharin Stevia Sucralose Ref.

Bacteriostasis

A. viscosus NC NC NC NC +(13.9–55.5) (118)

E. faecalis 19433 NC –(0.1) –(0.1)c NC –(0.1) (107)

E. coli 10418 NC –(0.1) ±(0.1)c,d NC –(0.1) (107)

E. coli DSM 613 NC NC NC ±(0–520)d NC (112)

E. coli DSM 5695 NC NC NC ±(0–520)c,d NC (112)

E. coli HB101 +(124) NC +(136.5) +(25.9) +(62.9–125.7) (98)

E. coli K-12 ±(124) NC +(136.5) –(25.9) +(62.9–125.7) (98)

E. coli K802NR –(5.0) ±(1.4) +(2.7) NC +(25.2) (101)

L. amylovorus NC NC –(0.8) NC NC (110)

P. syringae DSM 21482 NC NC NC ±(0–520)c,d NC (112)

S. mutans NC –(0.07–68) +(0.1–110) NC NC (108)

Streptococcus spp. NC NC NC NC +(13.9–55.5) (118)

Dysbiosis +(29.8–124) +(20.4–84.9) +(136.5) +(1–25.9) +(15.1–125.7) (93, 98, 99, 104, 

105, 109, 114, 

121, 202)

Alteration in 

metabolism

+(29.8) +(20.4) +(140) +(NA) +(15.1) (99, 102, 114)

Increased mutation 

rate

NC NC NC NC +(157.2) (119)

Genotoxicity

E. coli DPD2794 +(49.7) +(13.6) +(27.3) NC NC (103)

E. coli TV1061 –(NA) –(NA) +(27.3) NC NC (103)

E. coli DPD2544 –(NA) –(NA) –(NA) NC NC (103)

Increased recombination

Intra-species +(1.5 × 10−4 –1.5) +(1.0 × 10−4–1.0) –(1.6 × 10−4–1.6) NC +(8.0 × 10−5–8.0 × 10−1) (15, 102)

Inter-species +(1.5 × 10−4 –1.5) +(1.0 × 10−4 –1.0) +(1.6 × 10−4 –1.6) NC +(8.0 × 10−5–8.0 × 10−1) (15, 102)

Biofilm formation promotion

E. coli NC +(1.0 × 10−4 –0.1) +(1.6 × 10−4 –0.1) NC +(8.0 × 10−5–0.1) (15, 107)

E. faecalis NC +(0.1) –(0.1) NC –(0.1) (107)

Enhanced cytotoxin 

production

NC +(0.1) –(0.1) NC +(0.1) (107)

QS impairment –(5.0) ±(1.4)e +(2.7) NC +(25.2) (101)

a+: effect observed experimentally; −: effect not observed experimentally; ±: conflicting results; NA: value not available; NC: experiment not conducted. Exposure concentrations are given in 
mM.
bAspartame, advantame, or neotame.
cBased on exposure to whole stevia extracts.
dConcentration estimated from the molecular weight of rebaudioside A (967.0).
ePositive effect with aspartame; negative effect with advantame/neotame.
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damage in E. coli strains DPD2794 and TV1061 but not in strain 
DPD2544 (103).

Like aspartame, saccharin was shown by molecular docking to 
bind the QS receptor LasR, in particularly by binding to Val76, with an 
affinity of −7.3 kcal/mol; thus, impairing P. aeruginosa QS pattern and 
its inhibiting the bacterial growth and motility (101).

Saccharin also increased tissue inflammation. C57BL/6 J mice fed 
with saccharin at a concentration of 0.3 mg/mL for 6 months 
displayed a higher expression of pro-inflammatory markers such as 
inducible nitric-oxide synthase (iNOS) and TNF-α, as well as a 
higher abundance of some genera such as Corynebacterium and 
Roseburia, and a lower abundance of Ruminococcus compared to 
controls (111).

Stevia

Stevia extracts elicited concentration-dependent species-specific 
responses in selected bacteria (112). For instance, a 1.5% w/v solution 
of methanol-extracted stevia caused a significant decrease in the 
growth of E. coli strains 613 and 5,695 but not in Pseudomonas 
syringae strain DSM 21482. However, at a concentration of 3.1%, 
stevia extracts exhibited a significant bacteriostatic effect on P. syringae 
21,482, but did not alter the growth of the E. coli strains. Instead, at a 
stevia concentration of 6.2%, E. coli 5,695 showed a significant growth 
increase over the control, whereas E. coli 613 and P. syringae 21,482 
remained unaffected.

It has been reported that rebA could be metabolized by selected 
members of the genera Bifidumbacterium and Lactobacillus in a 

strain-specific fashion: B. breve CCDM 562, B. bifidum CCDM 559, 
B. adolescentis AVNB3-P1, and L. mucosae SP1TA2-P1 showed faster 
growth than a panel of eleven other strains (113). While the increase 
in growth rate was deemed too small to provide a significant advantage 
to these strains, newborn mice fed with stevia showed an increased 
abundance of propionate- and butyrate-producing bacteria and a 
decreased abundance of lactose fermenters compared to controls, 
leading to increased body weight and fat accumulation (104).

RebA displayed a strain-specific bacteriostatic effect in vitro on 
E. coli HB101 but not on K-12 (98). Exposure to steviol, a compound 
produced by bacteria harvested from the colon of volunteers, resulted 
in a tenfold reduction in propionate production and a change in pH 
associated with a higher density of bifidobacteria (114). It has been 
shown that, compared to glucose, stevioside is an inhibitor of 
anaerobic bacteria, whereas RebA is an inhibitor of aerobic 
bacteria (93).

Not all effects associated with stevia are adverse. It has been 
demonstrated that stevia stimulates the expression of sodium/glucose 
cotransporter 1 (SGLT1) on the surface of rabbit intestinal cells, 
alleviating the pathogenic symptoms of experimental E. coli infection 
(115). SGLT1, which is activated by glucose, facilitates the absorption 
of water and other electrolytes into the cell, thereby counteracting the 
effects of colitis (116). SGLT1 expression is induced by the hormone 
glucagon-like peptide 2 (GLP-2), released by enteroendocrine cells of 
the intestine in response to glucose intake (117). Stevia can also 
activate the excretion of GLP-2 from the enteroendocrine cells by 
binding to the taste family 1 receptor (T1R) present on the surface of 
the intestinal epithelial cells (115). The physiological consequences of 
such an alteration are unknown.

TABLE 2  Characteristics of selected non-nutritive sweeteners.

NNS Molecular 
weight (g/

mol)

ACa Discovered/
approved

SPb ADIc Fraction 
reaching 
colon (%)

Concentration 
in waterd

Chemical 
classe

Final 
metabolic 
products

Ace-K 201.2 E950 1967/1984 150–

200

9/15 1 49.7 pM-

2.8 nM

Sulfuric acid 

derivative

Acetoacetamide, 

potassium

Advantame 476.5 E969 1987/2014 37,000 5/33 77–96 – Dipeptide ANS9801, 

methanol

Aspartame 294.3 E951 1965/1984 200 40/50 0 34.0 pM Dipeptide Aspartic acid, 

phenylalanine, 

methanol

Neotame 378.5 E961 1991/2008 7,000–

13,000

2/0.3 50f – Dipeptide DMB-Asp-Phe, 

methanol

Saccharin 183.2 E954 1878/1977 240–

300

5/15 5–15 54.6 pM-

1.7 nM

Benzisothiazole 

derivative

None

Steviol 

glycosidesg

≥ 318.4h E960 1887i/2008 300 6–16/4 100 – Diterpenoid 

derivatives

Steviol

Sucralose 397.6 E955 1976/2000 750 15/5 85 25.2 pM-

2.4 nM

Disaccharide None

aAdditive code.
bSweetening power compared to sucrose (30 g/L at 20 °C).
cAdmissible daily intake in the EU/USA (mg/kg/day).
dDerived from Praveena et al. (42); comprises tap, surface, ground, sea, and lake water in Europe.
eDerived from PubChem Kim et al. (203).
fAs as 3,3-dimethylbutylaspartylphenylalanine (DMB-Asp-Phe).
gComponent of stevia.
hMW calculated for steviol.
iIn use for more than 1,500 years but scientifically described in this year.
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Sucralose

Sucralose showed a bacteriostatic effect on E. coli HB101 and K-12 
in  vitro: LB agar supplemented with 2.5% w/v (63 mM) sucralose 
decreased the bacterial density by 74%; moreover, the size of the 
colonies also showed a dose-dependent reduction related to the content 
of sucralose in the culture medium (98). Similarly, 25 mM sucralose 
significantly reduced the growth of E. coli strain K802NR (101). A 
slight bacteriostatic effect upon E. coli was confirmed at a concentration 
of 15.1 mM (99). However, E. coli strain 10,418 was not affected by 
sucralose (107). Sucralose at a concentration of 126 mM inhibited the 
growth of Streptococcus sobrinus, S. sanguis, S. challis, S. salivarius, and 
Actinomyces viscosus, all of which are commonly found in the oral 
microbiome, without entering the bacterial cells (118). Sucralose at a 
concentration of at least 27.8 mM inhibited the growth of a panel of 
environmental bacteria (50). Even in this case, the inhibitory effect was 
obtained without the transportation of sucralose into the bacterial cell. 
Sub-inhibitory concentrations of sucralose, however, increased the 
survival rate of E. coli BW25113 when exposed to the antibiotic 
moxifloxacin and enhanced the mutation rate of this strain (119).

Mice fed a supplement of sucralose showed increased body weight 
and a higher abundance of Bacillota compared to controls (98). 
Sucralose within the ADI increased biofilm formation and cellular 
adhesion to Caco-2 cells in E. coli and E. faecalis cultures (107). 
Additionally, sucralose enhanced the expression of cytotoxins in both 
E. coli and E. faecalis, thereby reducing the viability of Caco-2 cells 
(107). Maternal sucralose in mice also down-regulated the expression 
of mucin type 2 and tight junction protein ZO-1, while boosting 
pro-inflammatory cytokines such as IL-1β and IFN-γ, suggesting a 
morphological alteration of the intestinal epithelium associated with 
local inflammation (120).

Remarkably, different concentrations of sucralose were linked to 
dinstinct dysbiotic profiles. Sucralose administered to rats at 0.54 mM 
increased Bacillota abundance while decreasing the abundance of 
Bacteroidetes, whereas sucralose at 0.78 mM had the opposite effect 
(121). Nonetheless, both concentrations reduced the abundance of 
members of the commensal families Lactobacillaceae 
and Akkermansiaceae.

Sucralose was also involved in generating an inflammatory micro-
environment. C57BL/6 mice fed sucralose at a concentration of 
0.3 mM for 6 months exhibited a higher expression of 
pro-inflammatory markers, such as matrix metalloproteinase 2 and 
iNOS, along with altered expression of amino acid metabolism and 
modifications in the microbiome relative abundances (122).

It has been reported that sucralose administered within the ADI 
to mice for 8 weeks resulted in a dose-dependent reduction in the 
abundance of bacteria of the Clostridium cluster XIVa group and a 
decrease in the amount of cecal butyrate (100). Sucralose binds to the 
P. aeruginosa QS receptor LasR, particularly by forming a connection 
with residue Val76, with an affinity of −6.1 kcal/mol, thereby inhibiting 
the growth and motility of this bacterium through impairment of the 
quorum sensing pathway (101).

Sucralose at a concentration of 0.1 μM was sufficient to promote 
intra-species recombination in E. coli K-12, and inter-species 
recombination between E. coli and P. alloputida, with rate increases of 
1.5 and 2.6 times over controls, respectively (15). Sucralose treatment 
increased the production of ROS in the bacterial cells and the 
permeability of the cells (15).

NNS impact on bacteriophages

Overview

Bacteriophages (phages for short) represent a major modulator of 
bacterial communities (123, 124). Lytic phages provide one level of 
regulation (‘Kill-the-Winner’ model) by lysing the more abundant species 
in the community and allowing the proliferation of less competitive 
bacteria (125). Recent data have shed light on the crucial role of phages in 
modulating the development and response of the immune system (126–
129). To infect their hosts, phages require not only receptors to recognize 
bacterial surface receptors, such as proteins and carbohydrates present in 
capsule and cell wall compounds, but also enzymes that can digest the 
polysaccharides present not only in these structures but also in biofilms’ 
extracellular matrices (130). For example, the tail tubular proteins 
TTPAgp31 (gp31 for short) of Klebsiella pneumoniae phage KP32 possess 
glycolytic activity, which enables the virus to diffuse within biofilms (131–
133). Nonetheless, it is assumed that most phages in the human GIT are 
temperate (134). The theoretical frameworks (such as the ‘Piggyback-the-
Winner’ and ‘community shuffling’ models) predict that prophage 
induction at high host densities is a key aspect to stabilize dominant 
bacterial species and promote diversity through genetic transfer 
(135–139).

Despite the momentous role that phages play in shaping the 
intestinal microbiome, the effect of NNS on phage biology has mostly 
gone overlooked. Due to the lack of experimental data on the impact 
of non-nutritive sweeteners (NNS) on phage biology, the following 
sections will investigate how substances like sucrose and polyethylene 
glycol affect phage particles and their infectivity. These molecules were 
chosen because they share similar chemical properties with NNS 
and carbohydrates.

Phage stabilization

While the literature on how NNS affect the morphology of phages 
is sparse, it is crucial to recognize that carbohydrates and other 
compounds significantly influence virion structure. These studies 
primarily focus on the need to enhance virion stability during 
industrial storage. In particular, lyophilization is a necessary step in 
the long-term preservation of viruses and the delivery of phage 
preparations through spraying; however, it can cause disruptions to 
virions, resulting in the loss of infectivity (140). Carbohydrates such 
as lactose, mannitol, polyethylene glycol (PEG), and trehalose are 
known to prevent virion disruption during lyophilization by forming 
a protective matrix around the virus shell (141–143). Several 
sweeteners (dextran, glucose, sucrose, trehalose, mannitol, and xylitol) 
have been investigated for their properties in protecting phage 
particles during phage preparation, with 10% w/v sucrose (292 mM) 
being the most effective (144). Other studies confirmed the protective 
power of sucralose, applied at a concentration of 2% (58 mM) (145).

By way of example, sucrose is routinely used to stabilize phage 
particles in lyophilized phage preparations (146). In a process known 
as “preferential exclusion,” disaccharides can surround a capsid, 
trapping a layer of liquid water around the virion and protecting it 
from structural deformation caused by freezing (147). Dextran can 
protect the capsid from osmotic and heat shocks (148). Steviol 
glycosides are known, apart from their sweetness, for their 
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emulsification power and are employed to improve food texture (149–
151). It has been shown that rebA can form apolar bonds with 
proteins, such as those found in soy extracts, thereby improving the 
emulsification of the matrix (152). Remarkably, it has been reported 
that emulsifiers can alter the intestinal microbiome (153). Nonetheless, 
the role of rebA in particular and steviol glycosides in general in 
modulating the homeostasis of the GIT remains poorly characterized.

The concentration of these protective molecules is an important 
factor to consider. Sucrose at a low concentration (100 mM) showed 
protective activity against E. coli phage CA933P during the lyophilization 
process (which includes both freezing and drying steps), whereas higher 
concentrations increased virion disruption (154).

Alteration of infectivity

There is very limited information regarding the role of NNS on 
phage infectivity. One study demonstrated that stevia extracts can 
either enhance or reduce the infectivity of selected phages (112). In 
particular, methanol-derived stevia extracts exhibited not only 
different activities against various viruses but also a concentration-
dependent behavior. For instance, a concentration of 50% w/v of stevia 
significantly increased phage MS2 (host: E. coli DSM 5695) and T4 
(host: E. coli DSM 613) densities in comparison with unexposed 
controls but not that of phage Φ6 (host: Pseudomonas syringae DSM 
21482). Conversely, 1.5% stevia significantly decreased MS2 and T4 
densities compared to unexposed controls, but exposure to 3% 
solution increased the amount of phages; Φ6 had the opposite 
trend (112).

Phage infection is affected by its environment. For instance, the 
infectivity of phage lambda towards E. coli was decreased in the 
presence of lactose, possibly due to this carbohydrate hindering the 
adsorption step (155).

Only one study analyzed the direct interaction between 
sweeteners, albeit natural, and phage proteins involved in the 
infection process (132). Docking analysis demonstrated that maltose 

could fit into a pocket within gp31, establishing a hydrogen bond 
with residues Asp131, Asp133, and Glu134, with Asp133 being part of the 
catalytic site (132). Consequently, it was hypothesized that the 
binding side of gp31 would accommodate disaccharides because 
larger molecules would cause the protein to unfold. The authors of 
that study also noted that the binding to maltose was not very 
specific, implying that gp31 might bind to various saccharides. Such 
data can lead to speculation that NNS might have the potential to 
bind gp31 or other phage proteins.

In our laboratory, we sought to assess whether this hypothesis had 
a foundation by investigating the binding of selected NNS on two 
phage proteins. We used gp31 in conjunction with the fiber protein 
gp17 of phage ɸYeO3-12, which has Yersinia enterocolitica as its host 
(156). We first assess the potential for NNS to bind to these proteins 
using biodocking. Our results indicated that several NNS could not 
only bind gp31 and gp17 but also overlap with the pocket binding 
maltose, a natural carbohydrate that represents a natural ligand for 
these proteins. In particular, we observed that rebA could overlap with 
maltose on gp31 (Figure 2A) and gp17 (Figure 2B). We confirmed the 
binding of rebA to recombinant gp31 by microscale thermophoresis 
(157) and that of gp17 by ELISA (158). Since these proteins are 
involved in the infection process, we sought to assess whether the 
binding of rebA could hamper the activity of these proteins. 
We observed that exposure to rebA decreased the processivity rate of 
gp31 compared to unexposed controls. Similarly, the addition of rebA 
to recombinant gp17 decreased the adsorption rate of this protein 
compared to controls. Unexpectedly, however, when we  exposed 
whole phages derived from bacterial lysates, we observed that the 
infection process occurred about 30 min faster than in 
unexposed controls.

To the best of our knowledge, these experiments were the first to 
specifically investigate the effect of NNS on phage infectivity. These 
results confirmed the hypothesis that NNS (namely, rebA) could not 
only bind to phages but also alter the biology of these viruses. 
Additional experimental evidence is needed to expand these 
observations and understand their impact on the microbiome.

FIGURE 2

Co-localization of sweeteners on phage proteins. Cartoon showing selected poses of the docking between gp31 (a tubular protein with enzymatic 
activity) of Klebsiella phage 32 (A) and gp17 (a fiber protein involved in the recognition of host’s surface moieties) of Yersinia phage ɸYeO3-12 (B). The 
images show the overlapping between maltose (yellow) and rebA (red) in the same pocket, suggesting a direct competition between these molecules. 
The images were obtained by the docking analysis carried out by Marongiu et al. (156) generated using PyMol ver. 2.5.0 and Schrödinger, LLC (201).
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Prophage induction

There is only one paper regarding the NNS-driven alteration of 
prophage induction rates (159). According to this study, stevia 
increased the prophage induction rate of Bacteroides thetaiotaomicron 
by 410% but decreased that of Enterococcus fecalis, which was instead 
highly induced by aspartame (+579%).

Nonetheless, carbohydrates have long been known to induce 
prophages with species-specific efficacy (160). For instance, glucose 
boosted the induction rate of Salmonella enterica ser. Typhimurium (161) 
and fructose can induce prophages Φ1 and Φ2 carried by 
Limosilactobacillus reuteri, an important commensal species of the human 
gut (162). Newly formed Φ1 and Φ2 virions were generated upon 
cultivating L. reuteri with either galactose, xylose, or fructose but not 
glucose (163). The induction mechanism was based on the reduction of 
fructose to mannitol, and through the action of acetate kinase A (AckA), 
it led to the production of the SCFA acetic acid (164). Subsequently, 
acetate activates the recA (163), the key regulator of the SOS response, 
which in turn cleaves the prophage suppressor, triggering the activation 
of the lytic genes (165). Interestingly, other SCFAs, such as propionate and 
butyrate, could induce prophage in L. reuteri (166). Since recA is present 
in virtually all bacteria and is one of the most conserved bacterial proteins 
(167), it is plausible that a similar induction mechanism might occur in 
bacteria other than L. reuteri (168).

Discussion

Summary of the data

Despite the widespread use of NNS in foodstuffs and other oral 
products, a consensus on the safety of these sweeteners for human 
consumption remains necessary. The alleged NNS food hygiene relies on 
the triple assumption that (i) human cells cannot metabolize these 
substances, (ii) they do not impact bacteria, and (iii) they reach the colon 
in negligible (169). Nonetheless, recent evidence suggests that NNS can 
cause dysbiosis in both humans and rodents, a disorder that has been 
linked to increased risk of conditions such as type 2 diabetes (170, 171). 
The purpose of this review was to provide a summary of the relationship 
between NNS intake and microbial activity, focusing on the experimental 
evidence investigating the direct effect of NNS on bacterial growth. The 
present work also focused on the NNS’ potential role in phage biology, a 
feature that is frequently overlooked in the literature.

The NNS discussed in the present review (ace-K, advantame, 
aspartame, neotame, saccharin, stevia, and sucralose) were consistently 
reported to cause dysbiosis, alter bacterial metabolism, and impair QS 
pathways in a species-specific fashion. These differences suggest a 
diverse response from selected bacterial species or even strains of the 
same species, which can explain the onset of dysbiosis. The data 
gathered in this review suggested that the primary impact of 
non-nutritive sweeteners (NNS) on bacterial growth is related to the 
induction of oxidative stress, changes in membrane permeability, and 
QS response. Nonetheless, it is not clear thus far whether NNS can 
affect the bacterial biochemistry from within after internalization or 
could act from outside the cell by activating signal pathways that can 
alter bacterial growth and environmental adaptation.

Remarkably, in  vitro treatment of eukaryotic cells (human 
glioblastoma-derived SH-SY5Y and mouse cell lines TM3 and TM4) 

with aspartame (270 μM) or sucralose (≥1 μM) resulted in increased 
cellular oxidative stress (172, 173), while mouse models reported 
discordant results on the antioxidant effects of aspartame in vivo (174, 
175). These results suggest that not only do NNS have the potential to 
affect cellular biochemistry in both prokaryotic and eukaryotic cells, 
but that some additional factors might superimpose on the NNS 
activity in vivo, leading to more inconsistent results.

Therefore, NNS-induced oxidative damage and cellular damage 
in general could be considered as the main candidates to explain the 
observed impairment of bacterial growth, although the details of the 
molecular mechanisms underlying this process are still poorly 
understood. Furthermore, the activation of QS pathways does not 
necessarily require the metabolization of NNS, which aligns with the 
observation that these molecules can be  retrieved unaltered in 
biological samples (51, 176).

The possible molecular mechanisms linking NNS exposure to 
oxidative stress or QS alteration remain unclear. However, it is well 
established that oxidative stress can lead to modifications in bacterial 
biochemistry, including DNA damage and lipid peroxidation (177, 178). 
Among the bacterial responses to oxidative stress, there is the alteration 
of membrane fluidity (homeoviscous adaptation) and alteration of 
permeability through the activation of porins such as OmpC (179–181). 
Furthermore, oxidative stress is understood to activate the nucleotide 
excision repair, specifically the transcription-coupled repair pathway, 
which is recombinogenic (182). These responses are consistent with the 
results of the studies presented in the present review (53, 102).

In this review, we  propose an additional putative scenario to 
explain NNS-linked dysbiosis: phage hindrance. The impairment of 
phages would not involve NNS metabolism and would most likely 
occur at minute levels of sweeteners due to the delicate position that 
phages hold in the balance of bacterial homeostasis. Such a scenario 
remains speculative, but so does the model of the NNS-induced QS 
alteration (101). The concept conveyed here is based on the 
observations that sucrose and other carbohydrates, most with 
sweetening capability, could protect the virion structure through 
preferential exclusion (146, 154) as well as by reducing the aggregation 
of viral particles (140).

In addition, recent evidence reported on NNS influence on phage 
infectivity (112). Because phage structural enzymes may bind 
saccharides such as maltose (132), it is possible that NNS could 
overlap with the carbohydrate-binding pocket of these proteins. In our 
laboratory, we have substantiated this hypothesis by showing through 
preliminary experiments that rebA bound proteins of phages KS32 
(host: Klebsiella pneumoniae) and ɸYeO3-12 (host: Yersinia 
enterocolitica) and how rebA could interfere with phage infection by 
speeding up the lytic cycle of ɸYeO3-12 (156). The mechanisms of this 
enhancement, though, remain elusive.

Prophage induction might also be affected by NNS. It has been 
reported that stevia altered the activation of prophage in a species-
specific manner (159). Since induction is linked to damage responses 
like the SOS pathway and QS systems (163, 183–185), the cellular 
stress observed in bacteria upon exposure to NNS might lead to the 
speculation that induction could be  another by-product of NNS 
intake. Moreover, given the close relationship between QS and 
prophage induction, which is linked to horizontal gene transfer, 
metabolic alteration in bacteria, and predator/prey interactions (186–
188), understanding the possible influence of NNS on the QS is 
important both for medical and microbial ecology purposes.
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Any imbalance in bacterial abundance resulting from NNS 
exposure may be  amplified within the microbiome, as phages 
influence the immune system, for example, by controlling SCFA levels 
(126). As a result, alterations to the immune system may produce local 
inflammation, which can cause cellular damage to intestinal cells and 
promote the spread of additional pathogens. Figure 3 illustrates this 
speculative framework linking the consumption of NNS to the onset 
of dysbiosis.

Limitations and perspectives

Assessing NNS food hygiene is a challenging task. First, safety 
testing is typically performed in animal models; however, it has been 
noted that animal microbiomes have not proven to be  a viable 
substitute for human intestinal microbiota (189). Second, NNS are 
expected to exert their activity in minute amounts over prolonged 
periods, making it challenging to evaluate their impact on human or 

FIGURE 3

Overview of the speculative NNS-driven phage hindrance. Cartoon depicting the potential effects of NNS on phage biology and the consequences for 
the gut microbiota. According to the literature, NNS can increase the rate of horizontal gene transfer. It is reasonable to believe that a pathobiont (a 
bacterium with virulence capabilities present in the digestive system in low abundance) could exchange its virulence traits (encoded in plasmids or 
prophages) with a more abundant and avirulent commensal species. Thus, a commensal symbiont would be transformed into a pathovar. The 
virulence factors may cause harm to intestinal epithelial cells, promoting the formation of altered cells that can degenerate into cancer precursors. 
Inhibiting lytic phages may increase the population of pathogenic bacteria that can cause local inflammation and cellular damage if phages target 
pathogenic species. These conditions may, in turn, lead to the proliferation of more pathogenic species and the development of altered cells. In 
addition, NNS have been shown to stabilize phage virions. If the stabilized phages use a commensal species as a host, the infection rate of symbionts 
may increase, leading to a decrease in the abundance of beneficial species, which may promote the spread of pathogenic species. The imbalance in 
bacterial abundance due to phages may cause alterations in immune cells, for instance, through the action of short-chain fatty acids (SCFAs) that can 
lead to chronic inflammation and, consequently, cellular damage and a higher abundance of opportunistic bacteria. Finally, there are reports from the 
literature. NNS can influence the rate of prophage induction. Prophages can be activated in response to DNA damage, as well as to bacterial densities, 
due to their sensitivity to the bacterial autoinducers (AIs). Induced prophages generate a wave of infectious phages that can target other bacteria, 
specifically variants of the same species that do not carry the prophage, thus causing an imbalance in the bacterial community—a feature described by 
the community shuffling model. Even in this case, the result would be a higher risk of promoting the growth and spread of opportunistic bacteria. The 
end product of phage hindrance, combined with other factors such as diet and concurrent illnesses, would be the establishment of dysbiosis.
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bacterial cells through experimental models (50). Since most bacteria 
do not metabolize NNS, the mechanism underlying NNS-associated 
dysbiosis remains largely unknown (190). Third, studies that expose 
bacteria to NNS have used varying concentrations of sweeteners, 
complicating comparisons between results. Four, individual differences 
in dietary habits, genetic backgrounds, and microbiome compositions 
further contribute to the variability of findings across studies. Finally, 
it should be considered that clinical studies assessing the impact of 
NNS on the human microbiome are largely based on questionnaires, 
sometimes in the quantification of NNS levels in urine, and more rarely 
determine the direct impact of NNS on bacteria.

The NNS concentrations employed in the studies reported herein 
showed a wide variation (10−5-102 mM) but it is not known thus far 
what are the physiological levels within the human GIT. To the best of 
our knowledge, the NNS concentration in feces has yet to 
be established, while only few studies reported the concentration of 
NNS in urine, which was in the range of 0.1–0.3% of the ADI (191). 
Based on an average volume of the colon of about 700 mL (192, 193), 
we  estimated the colonic concentration of rebA at about 5 μM 
(Marongiu, manuscript submitted) while the environmental NNS 
concentration is even lower than that. Therefore, only a subset if the 
experiments described in the present review were performed with 
concentrations similar to the physiological NNS concentration.

Since alterations in bacterial growth have been observed both in 
the human GIT and in the environment, it can be speculated that 
either NNS are active at very low concentrations or some other, yet 
unknown, mechanisms are responsible for the reported changes. 
Experimental investigation, even using high NNS doses, is therefore 
fundamental for discriminating between these two scenarios, along 
with an empirical quantification of the NNS physiological level at 
which the bacteria are exposed within the GIT. Similarly, the data 
regarding the NNS effect on phages is virtually absent altogether. 
Additional studies addressing whether NNS could stabilize phage 
particles or reduce virion aggregation, for instance, would shed light 
on the observed alteration of phage infectivity (156).

The ramifications of NNS affecting commensal species in the 
intestinal tract could be far-reaching, given that these bacteria not 
only compete with each other for nutrient intake but also oppose the 
colonization of the intestinal mucosa by foreign pathogens as well as 
the proliferation of resident pathobionts, a process known as 
colonization resistance (194). For example, commensal bacteria can 
reduce the spread of intestinal pathogens, such as Vibrio cholerae, 
whose cholera toxin is encoded by prophage CTXΦ (195, 196), 
through direct competition. Bacteroides thetaiotaomicron, on the other 
hand, produces compounds that limit the growth of the pathogen 
E. coli O157: H7 as well as expression of its Shiga toxin, which is 
produced through the induction of Stx prophages present in this strain 
(197). Moreover, commensal bacteria can also counteract the invasion 
of pathogens by stimulating the immune system through the release 
of SCFA (198, 199). Thus, alterations in the growth of commensal 
bacteria (symbionts) might increase the susceptibility to 
intestinal pathogens.

Understanding the interaction between NNS and phage biology is 
important not only for food safety and microbial ecology but may also 
have direct medical applications. For instance, the addition of the 
sweetener xylitol to phage preparations increased the reduction in 
Pseudomonas aeruginosa and Klebsiella pneumoniae loads compared to 
phages alone (200). Nonetheless, little experimental evidence is at the 

moment available to fully understand how NNS might modulate phage 
structure and infection.

Conclusion

The analysis of the current literature revealed a limited but 
growing body of evidence suggesting a connection between the 
consumption of NNS and dysbiosis. Despite the paucity of clinical 
trials, preliminary laboratory results suggest that such dysbiosis may 
be mediated primarily by alterations in biochemical pathways and 
interference with quorum sensing signaling within bacterial 
communities. Furthermore, NNS might influence phage biology, 
potentially having far-reaching consequences for the gut microbiome.
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