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Background: Improving 10-year cardiovascular risk prediction beyond the
established SCORE2 algorithm is a clinical need. The plasma omega-6/omega-3
(0O6:03) polyunsaturated fatty acid (PUFA) ratio, a marker of inflammatory
balance, is a promising biomarker for enhancing risk stratification. We aimed to
evaluate if adding the O6:03 ratio to the SCORE2 model improves the prediction
of major adverse cardiovascular events (MACE).

Methods: We conducted a prospective cohort study of 183,230 UK Biobank
participants (aged 50-69 years, free of baseline cardiovascular disease or
diabetes). The plasma O6:03 ratio was measured by nuclear magnetic resonance
(NMR) spectroscopy. We compared the predictive performance of the SCORE2
model with and without the O6:03 ratio in an independent validation cohort
(N = 54,940) using Harrell's C-index, Net Reclassification Improvement (NRI),
and Integrated Discrimination Improvement (IDI).

Results: In the validation set, adding the O6:03 ratio to SCORE2 significantly
increased the C-index from 0.742 (95% CI: 0.738-0.746) to 0.747 (95% CI:
0.743-0.751) (p < 0.001). The extended model also significantly improved risk
reclassification (NRI 84, 95% Cl. 3.6-12.2%; IDI 0.021, 95% CI: 0.010-0.032).
This improvement was more pronounced in men than in women, and both
models remained well-calibrated.

Conclusion: Incorporating the plasma O6:03 PUFA ratio provides a modest but
statistically significant improvement in 10-year MACE risk prediction with the
SCORE2 algorithm. As a modifiable biomarker, the O6:03 ratio holds potential
to refine risk stratification and guide personalized nutritional interventions.

KEYWORDS

fatty acids, CVD, metabolomics, prediction model, SCORE2

Introduction

Cardiovascular disease (CVD) persists as the leading cause of morbidity and mortality
worldwide, accounting for nearly one-third of all global deaths annually (1, 2). A cornerstone
of primary prevention is the accurate stratification of individuals according to their future risk,
which enables the targeted application of preventive therapies and lifestyle interventions (3).
Consequently, clinical practice guidelines heavily rely on risk prediction models that integrate
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established risk factors to estimate an individuals long-term
probability of experiencing a major cardiovascular event (4).

The recently developed SCORE2 algorithm represents the current
state-of-the-art for estimating the 10-year risk of major adverse
cardiovascular events (MACE) in European populations free of
pre-existing CVD or diabetes (5). While SCORE2 provides a robust
foundation for clinical risk assessment, there remains a critical need
to enhance predictive precision, as a substantial “residual risk” of
cardiovascular events persists even when traditional risk factors are
optimally managed (6). This highlights a compelling need to identify
and incorporate novel biomarkers that capture pathological pathways
beyond those reflected by conventional factors.

The omega-6 to omega-3 polyunsaturated fatty-acid (PUFA) ratio
is a circulating fatty-acid biomarker that reflects the balance between
lipid mediators with pro-inflammatory potential (omega-6) and anti-
inflammatory potential (omega-3) (7). Unlike direct inflammatory
proteins such as C-reactive protein or interleukin-6, this ratio is not a
cytokine marker; rather, it integrates long-term dietary exposure and
endogenous metabolism into a composite measure of lipid balance
relevant to atherogenesis (8, 9). Although the NMR metabolomics
platform in UK Biobank quantifies more than 200 biomarkers,
we selected the omega-6/omega-3 ratio a priori based on its strong
biological rationale and prior evidence linking PUFA balance with
cardiovascular outcomes (10, 11). Specifically, (i) this ratio provides a
single integrative biomarker that may capture residual cardiovascular
risk beyond SCORE2 covariates—including age, blood pressure, and
cholesterol—given its only modest correlations with these factors; (ii)
it was directly quantified with high reproducibility in UK Biobank
using a standardized, high-throughput NMR platform, whereas
alternative indices such as the erythrocyte Omega-3 Index were not
available at scale; and (iii) previous studies consistently report that
higher omega-6 and lower omega-3 status are associated with adverse
cardiovascular outcomes, supporting the plausibility of this marker for
incremental prediction (12).

Therefore, this study aimed to investigate whether the addition of
the NMR-quantified Omega-6 to Omega-3 fatty acid ratio to the
established SCORE2 algorithm improves the prediction of 10-year
MACE risk in a large, prospective cohort of European adults without
baseline CVD or diabetes.

Methods
Study population

The data for this study were sourced from the UK Biobank (UKB),
a major population-based prospective cohort (13). This landmark
research resource recruited over half a million men and women, aged
between 40 and 69 years, from 22 assessment centers across England,
Scotland, and Wales between 2006 and 2010. All participants provided
informed consent, and the study received ethical approval from the
North West Multi-centre Research Ethics Committee.

The selection of the final analytical cohort for the present
investigation followed a multi-step, sequential exclusion process as
illustrated in the study flowchart (Figure 1). From the initial UKB
participants, we first identified 263,289 individuals for whom
metabolomic data on the Omega-6 to Omega-3 fatty acids ratio were
available. Next, we defined the age range for inclusion. While the
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standard SCORE?2 algorithm applies to individuals aged 40-69 years
(5), we restricted eligibility to participants aged 50 to 69 years at
baseline (1 = 64,124 excluded). This decision to exclude the 40-49 age
range specifically aimed to mitigate the well-documented “healthy
volunteer bias” within the UKB cohort (14). This bias is particularly
pronounced among younger participants leading to a significantly
lower prevalence of cardiovascular disease compared to the general
population. Therefore, focusing on the 50-69 age range represents an
approach consistent with prior studies to minimize potential bias
while maintaining a large, robust sample for risk prediction analysis
(15). Subsequently, we excluded 15,893 participants with a
documented history of prevalent cardiovascular disease or diabetes at
the time of enrollment, yielding a population of 183,272 individuals
free of these conditions. A final exclusion step removed 42 individuals
who had missing data on MACE outcomes.

This process yielded a final analytical cohort of 183,230
participants. For the purposes of model development and internal
validation, this cohort was randomly partitioned into a training set,
comprising 70% of the participants (N = 128,290), and a validation set,
containing the remaining 30% (N = 54,940).

Measurement of the omega-6 to omega-3
fatty acid ratio

Baseline non-fasting venous blood samples were collected at UKB
assessment centres by trained nurses, processed within 24 h, and
plasma aliquots were stored long-term at —80 °C according to
standardized protocols (16). In 2019-2020, aliquots were transported
on dry ice to Nightingale Health (Helsinki, Finland) for metabolomic
profiling by high-throughput nuclear magnetic resonance (NMR)
spectroscopy. This platform quantifies ~250 metabolic measures,
including lipoproteins, fatty acids, amino acids, and glycolysis-related
metabolites, with high reproducibility (17).

The NMR spectroscopy platform quantifies approximately 250
circulating biomarkers, for the present study, however, we pre-specified
the plasma omega-6/omega-3 fatty acid ratio as the sole biomarker of
interest, derived from directly quantified concentrations of total n-6
and n-3 PUFAs. Rigorous quality-control procedures were applied,
including the use of internal calibration standards, blinded duplicate
samples across analytical batches, and automated detection of outlier
spectra (16). Statistical QC measures ensured consistency across the
>200,000 UK Biobank samples, and the analytical coefficient of
variation for fatty-acid measures was generally <5% (16).

SCORE2 model covariates

The established risk factors that constitute the European Society
of Cardiology’s SCORE2 algorithm were ascertained for all
participants at their baseline assessment (5). These covariates include
age, sex, current smoking status, systolic blood pressure (SBP), total
cholesterol, and high-density lipoprotein cholesterol (HDL-C).

Information on age, sex, and lifestyle factors was collected via
standardized, self-completed questionnaires. For the purpose of the
model, smoking status was dichotomized into ‘current smoker’ or
‘non-current smoker’. Physical measurements, including SBP, were
performed by trained staff; SBP was determined from automated
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FIGURE 1
Flowchart of participant selection from the UK Biobank. The flowchart illustrates the sequential application of inclusion and exclusion criteria, starting
from the total UK Biobank cohort to the final analytical sample of 183,230 participants, and the subsequent partitioning into training and validation sets.
CVD, cardiovascular disease; MACE, major adverse cardiovascular events.

readings using an Omron digital blood pressure monitor on the
participant’s left upper arm. The concentrations of total cholesterol
and HDL-C in plasma were quantified using an enzymatic method on
a Beckman Coulter AU5800 clinical chemistry analyzer.

MACE incident assessment

Participants were prospectively followed for a maximum of
10 years from their baseline assessment. The observation period for
each individual concluded upon the diagnosis of a first MACE, death
from a non-cardiovascular cause, or the completion of the 10-year
follow-up, whichever of these occurred earliest (18). Although our
primary analyses focused on 10-year risk, the actual follow-up period
varied across individuals, with a median of 11.0 years (interquartile
range 10.5-12.1 years). Importantly, >99% of participants had either
experienced an event or contributed at least 10 years of follow-up.

The study’s primary endpoint was a composite of MACE, an
outcome definition aligned with that of the original SCORE2
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algorithm. A detailed definition of the MACE components is
provided in Supplementary Table S1. Incident events were captured
via the UK BiobanKk’s robust, routine linkage to national electronic
health records. This comprehensive data linkage enabled the
identification of non-fatal events, namely myocardial infarction and
stroke, from hospital admission and primary care databases. Fatal
cardiovascular events were determined through an analysis of
cause-of-death information obtained from national death

certificate registries.

Statistical analyses

Baseline characteristics of the study cohort were presented as means
with standard deviations (SD) for continuous variables and as counts with
percentages (N, %) for categorical variables. To compare characteristics
between participants who did and did not develop MACE during
follow-up, independent t-tests were used for continuous variables and
chi-squared (?) tests were applied for categorical variables. In addition,
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we compared baseline characteristics between these two subsamples to
ensure representativeness (Supplementary Table 52).

Correlation analyses were conducted between the omega-6/
omega-3 ratio and the individual components of the SCORE2
algorithm. Additionally, a multivariable Cox proportional hazards
regression model was used to investigate the association between the
omega-6/omega-3 ratio and the risk of MACE, after adjusting for all
SCORE2 covariates. For supplementary analyses, we also evaluated
the associations of absolute plasma concentrations of total omega-6
and total omega-3 fatty acids with MACE risk. To further explore
the shape of this association, we fitted Cox models with restricted
cubic splines (RCS) using four knots placed at the 5th, 35th, 65th,
and 95th percentiles of the omega-6/omega-3 ratio distribution,
following Harrell's recommended approach (19). This approach
allowed for a flexible modeling of the hazard ratio across the
distribution of the omega-6/omega-3 ratio and included a formal
test for non-linearity.

For the primary analysis, two prediction models were developed
on the training set and subsequently evaluated on the independent
validation set: (1) the established SCORE2 algorithm, and (2) an
extended model incorporating the omega-6/omega-3 ratio as an
additional predictor. The performance of these models was rigorously
evaluated through a comprehensive assessment. Model discrimination,
the ability to distinguish between individuals who did and did not
develop MACE, was quantified using Harrell's C-index, with the
change in C-index between models being statistically tested and
visualized with Receiver Operating Characteristic (ROC) curves.
Furthermore, we assessed the improvement in risk stratification by
calculating the Integrated Discrimination Improvement (IDI) and
both
Improvement (NRI) (20). For the categorical NRI, participants were

continuous and category-based Net Reclassification
classified into three predefined 10-year risk groups based on SCORE2
guidelines: low risk (<5%), intermediate risk (5 to <10%), and high
risk (>10%) (5). Model calibration was assessed to determine the
agreement between predicted probabilities and observed outcomes.
We generated a calibration plot by graphing observed event
frequencies against predicted probabilities for deciles of risk in the
validation cohort. To evaluate the clinical utility of the extended
model, we performed decision curve analysis (DCA). The net benefit
of the SCORE2 model alone was compared against the extended

model (SCORE2 + 06:03 ratio) and the default strategies of treating

TABLE 1 Baseline characteristics of selected participants.

Baseline characteristics Total (N = 183,230)

No (N = 169,941)

10.3389/fnut.2025.1693151

all or no individuals across a range of clinically relevant threshold
probabilities.

All statistical analyses were conducted using R software, version
4.4.1 (R Foundation for Statistical Computing, Vienna, Austria). A
small proportion of participants had missing data for one or more
covariates. The extent of missingness for each variable is detailed in
Supplementary Table S3. Missing values for covariates were imputed
using the random forest-based missForest package (21). A two-sided
p-value below 0.05 was considered statistically significant for all tests.

Results
Baseline characteristics

The baseline characteristics of the 183,230 participants included
in the final analysis are detailed in Table 1. The mean age of the cohort
was 59.8 years (SD 5.4), and a majority of the participants were female
(56.5%). Current smokers constituted 9.2% of the study population.
At baseline, the mean SBP was 142.4 mmHg, and the mean omega-6/
omega-3 ratio for the entire cohort was 9.5.

Over the 10-year follow-up period, 13,289 (7.3%) participants
experienced a MACE. A comparison of baseline characteristics
revealed multiple statistically significant differences between
individuals who developed MACE and those who did not. Participants
in the MACE group were, on average, older (62.0 vs. 59.6 years), less
likely to be female (38.6% vs. 57.9%), more likely to be current
smokers (16.6% vs. 8.6%), and exhibited higher SBP (147.0 vs.
139.1 mmHg); all with p-values <0.001. This group also presented
with significantly lower levels of HDL-C (1.4 vs. 1.5 mmol/L,
p <0.001). Notably, the mean omega-6/omega-3 ratio was significantly
higher among participants who later experienced a MACE compared
to those who remained event-free (9.9 vs. 9.5, p < 0.001).

Association of the omega-6/omega-3 ratio
with MACE risk

The omega-6/omega-3 ratio showed only weak correlations with
SCORE?2 covariates (Figure 2). The strongest, albeit weak, correlations
were observed with total cholesterol (r = —0.13), age (r = —0.12), and

MACE status
Yes (N = 13,289)

p-value

Female, N (%) 103,571 (56.5) 98,445 (57.9) 5,126 (38.6) <0.001
Age (years) 59.8 (5.4) 59.6 (5.4) 62.0 (5.2) <0.001
Current smoker, N (%) 16,889 (9.2) 14,680 (8.6) 2,209 (16.6) <0.001
Systolic blood pressure (mmHg) 142.4 (19.7) 139.1 (19.6) 147.0 (20.8) <0.001
Total cholesterol (mmol/L) 5.8 (1.1) 5.8(1.1) 5.7(1.2) 0.003
HDL cholesterol (mmol/L) 1.5 (0.4) 1.5 (0.4) 1.4 (0.4) <0.001
Omega-6/Omega-3 9.5(4.2) 9.5(4.2) 9.9 (4.7) <0.001

Values are expressed as mean (standard deviation) for continuous variables, and N (%) for categorical variables. p-values were calculated using ¢-tests for continuous variables and y* tests for
categorical variables. HDL, high-density lipoprotein; MACE, major adverse cardiovascular event; omega-6/omega-3, omega-6 fatty acids to omega-3 fatty acids ratio; SBP, systolic blood

pressure.
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FIGURE 2

Pearson correlation matrix of the omega-6/omega-3 ratio and
SCORE2 covariates. The matrix displays the correlation coefficients
between the plasma omega-6/omega-3 ratio, age, sex, smoking
status, systolic blood pressure (SBP), total cholesterol (total-C), and
high-density lipoprotein cholesterol (HDL-C). The color scale
indicates the strength and direction of the correlation, with blue
representing a positive correlation and red representing a negative
correlation.

sex (r = 0.12), while its correlation with other factors like SBP was
negligible (r = —0.03).

After adjustment for all SCORE2 covariates, each one-unit
increase in the omega-6/omega-3 ratio was associated with an
increased risk of MACE. Each one-unit increment in the ratio
corresponded to a 1% increase in the hazard of MACE (HR: 1.03; 95%
CI: 1.03-1.04). In supplementary analyses, higher absolute plasma
omega-6 concentrations were associated with increased MACE risk
(HR per SD =1.06; 95% CI: 1.04-1.08), whereas higher omega-3
concentrations were inversely associated with MACE (HR per
SD =0.93; 95% CI: 0.91-0.95).

The dose-response relationship between the omega-6/omega-3
ratio and MACE risk was further visualized using restricted cubic
splines (Figure 3). The analysis demonstrated a clear, monotonically
increasing risk of MACE with higher levels of the ratio. This positive
association was statistically significant (P for overall < 0.001), and
there was no evidence of a significant deviation from linearity (P for
nonlinear = 0.323).

Improvement in cardiovascular risk
prediction

The predictive performance of the original SCORE2 model and
the extended model incorporating the omega-6/omega-3 ratio was
evaluated in the independent validation set, with the primary
results summarized in Table 2. In the validation cohort, the
addition of the omega-6/omega-3 ratio to the SCORE2 model led
to a statistically significant improvement in discrimination. For the
total population, the Harrell’s C-index increased from 0.742 (95%
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CI: 0.738, 0.746) for the original SCORE2 model to 0.747 (95% CI:
0.743, 0.751) for the extended model (P for comparison <0.001).
Figure 4 shows the ROC curves for the two models. This
enhancement was observed in both sexes. Among men, the
C-index rose from 0.751 (95% CI: 0.745, 0.756) to 0.757 (95% CI:
0.751, 0.762) (p < 0.001), and among women, it increased from
0.734 (95% CI: 0.726, 0.742) to 0.737 (95% CI: 0.729, 0.750)
(p = 0.032).

The enhanced model also demonstrated a significant improvement
in risk reclassification. For the total population, the NRI was 8.4%
(95% CI: 3.6, 12.2%), and the IDI was 0.021 (95% CI: 0.010, 0.032).
The improvement in risk stratification was more pronounced in men
(NRI: 8.9, 95% CI: 2.7, 15.0%; IDI: 0.024, 95% CI: 0.009, 0.038) than
in women (NRIL: 5.6, 95% CI: —0.3, 11.6%; IDI: 0.017, 95% CI:
0.000, 0.035).

The calibration of both the original and extended models was
assessed in the validation cohort. Figure 5 displays the calibration
plots, showing the relationship between predicted probabilities and
observed MACE frequencies. Both models exhibited excellent
calibration, with the calibration curves for both models closely
following the line of perfect calibration, indicating a strong agreement
between predicted and actual risk.

To quantify the clinical significance, a decision curve analysis was
performed (Supplementary Figure S1). The analysis revealed that
while both models were superior to the default strategies of treating
all or no patients, the extended model incorporating the 06:03 ratio
yielded a consistently higher net benefit than the SCORE2 model
alone. This superiority was evident across a broad and clinically
relevant range of threshold probabilities, from approximately 5 to 30%.

Discussion

This study demonstrates that the plasma omega-6/omega-3 fatty-
acid ratio, measured by high-throughput NMR metabolomics,
provides incremental prognostic information for cardiovascular risk
prediction beyond the SCORE2 algorithm. By analyzing more than
180,000 participants from the UK Biobank, we showed that this ratio
modestly but significantly improved risk discrimination and
reclassification while maintaining excellent calibration. To our
knowledge, this is the first large-scale European study to evaluate the
clinical utility of the omega-6/omega-3 ratio in the context of
SCORE2, thereby highlighting its potential relevance as a novel
biomarker for refining primary prevention strategies.

Context with previous research

Modern Western dietary patterns are often associated with
elevated omega-6 relative to omega-3 intake; however, our findings
pertain to the circulating plasma omega-6/omega-3 ratio, which may
reflect both dietary and metabolic influences. The clinical relevance of
this biomarker lies in its potential to improve cardiovascular risk
prediction when added to SCORE2, independent of its dietary or
evolutionary context (22, 23). Mechanistically, an elevated ratio fosters
a prothrombotic and pro-inflammatory state by favoring the
overproduction of potent eicosanoids from the omega-6 precursor
arachidonic acid, such as the vasoconstrictor and platelet aggregator

frontiersin.org


https://doi.org/10.3389/fnut.2025.1693151
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Huang et al.

10.3389/fnut.2025.1693151

7 -
P for overall < 0.001
P for nonlinear = 0.323
6 .
S
O
X
wn
2 4-
R
s
S 3
= 34
s
N
s
24
14
0 T T T T T 1
0 20 40 60 80 100 120
Omega-6/0Omega-3
FIGURE 3
Dose-response relationship between the plasma omega-6/omega-3 ratio and the risk of MACE. The curve was plotted using a cox proportional
hazards model with restricted cubic splines. The solid line represents the multivariable-adjusted hazard ratio (HR), and the shaded area indicates the
95% confidence interval (Cl). The model was adjusted for age, sex, current smoking status, systolic blood pressure, total cholesterol, and HDL
cholesterol. MACE, major adverse cardiovascular events; HR, hazard ratio; Cl, confidence interval.

TABLE 2 Predictive performance of the SCORE2 model with omega-6/omega-3 added.

Metrics Total
Training set (70% of UK Biobank, N = 128,290)

Men Women

C-index (SCORE2)

0.745 (0.743, 0.747)

0.751 (0.748, 0.755)

0.738 (0.733, 0.743)

C-index (+omega-6/omega-3)

0.749 (0.747, 0.752)

0.756 (0.752, 0.760)

0.742 (0.737, 0.747)

p-values for C-index comparison

<0.001

<0.001

<0.001

Validation set (30% of UK Biobank, N = 54,940)

C-index (SCORE2)

0.742 (0.738, 0.746)

0.751 (0.745, 0.756)

0.734 (0.726, 0.742)

C-index (+omega-6/omega-3)

0.747 (0.743, 0.751)

0.757 (0.751, 0.762)

0.737 (0.729, 0.750)

P-values for C-index comparison <0.001 <0.001 0.032
NRI 8.4(3.6,122) 8.9(2.7,15.0) 5.6 (—0.3,11.6)
IDI 0.021 (0.010, 0.032) 0.024 (0.009, 0.038) 0.017 (0.000, 0.035)

IDJ, integrated discrimination improvement; NRI, net reclassification improvement; omega-6/omega-3, omega-6 fatty acids to omega-3 fatty acids ratio.

thromboxane A2 and the inflammatory mediator leukotriene B4 (24).
This biochemical framework is strongly supported by large-scale
prospective cohort studies that link this imbalance to clinical
outcomes (25). A landmark analysis of the UK Biobank cohort, which
utilized objective plasma measurements, found that individuals in the
highest quintile of the omega-6/omega-3 ratio had a 31% greater risk
of cardiovascular mortality compared to those in the lowest quintile
(23). Furthermore, evidence from secondary prevention trials, such as
the Lyon Diet Heart Study, demonstrated that a dietary intervention
achieving a lower ratio of approximately 4:1 was associated with a 70%
reduction in total mortality, reinforcing the clinical importance of
correcting this dietary imbalance (26).

This analysis also contributes to the ongoing effort to enhance
cardiovascular risk stratification by incorporating novel fatty acid

Frontiers in Nutrition

biomarkers into established prediction models. Previous research has
primarily focused on the predictive value of absolute concentrations
of individual fatty acids, particularly the Omega-3 Index (the sum of
EPA and DHA in red blood cell membranes) (27-29). For example,
one study found that adding the Omega-3 Index to the Pooled Cohort
Equations (PCE) for atherosclerotic cardiovascular disease (ASCVD)
prediction modestly but significantly increased the AUC (27).
Similarly, other investigations have incorporated various fatty acids
into broader metabolite risk scores, reporting significant increases in
the C-statistic when added to models like QRISK3 for patients with
type 2 diabetes (30, 31). However, these studies did not specifically
evaluate the incremental predictive utility of the omega-6/
omega-3 ratio, a metric which may better reflect the underlying
pro-inflammatory potential. Our research addresses this gap,
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Receiver operating characteristic (ROC) curves for the prediction of 10-year MACE. The plot compares the discriminative ability of the original SCORE2
model (red) and the extended model including the omega-6/omega-3 ratio (blue) in the validation set. The diagonal dashed line represents the
performance of a random classifier (area under the curve = 0.5). ROC, Receiver Operating Characteristic; MACE, major adverse cardiovascular events.
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Frontiers in Nutrition 07 frontiersin.org


https://doi.org/10.3389/fnut.2025.1693151
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Huang et al.

demonstrating that this simple, integrated ratio provides a modest but
statistically significant enhancement to risk prediction beyond
conventional factors, consistent in magnitude with prior investigations
using individual fatty acid profiles.

Biological mechanisms

The omega-6/omega-3 ratio provides biological plausibility for the
observed associations by reflecting competing substrate flux through
COX/LOX pathways: higher omega-6 favors more pro-inflammatory/
pro-thrombotic eicosanoids (e.g., TXA2, LTB4), whereas higher
omega-3 favors less inflammatory mediators and specialized
pro-resolving mediators (SPMs) (32-39).

Potential applications

The findings of this study suggest that the omega-6/omega-3 ratio
could serve as a valuable clinical tool to enhance cardiovascular risk
stratification beyond current models. Existing prediction models
based on traditional risk factors often provide limited power in
predicting recurrent cardiovascular events, particularly in the context
of secondary prevention (40). As a modifiable biomarker, the
omega-6/omega-3 ratio offers a tangible target for personalized
nutritional interventions. Measuring the ratio could help clinicians
identify at-risk individuals not captured by traditional metrics and
subsequently monitor the biological efficacy of dietary changes aimed
at restoring a more favorable fatty acid balance. This biomarker-
guided approach could optimize prevention strategies, moving beyond
generic advice to consume more omega-3 s towards a more nuanced
strategy that also addresses the excessive consumption of omega-6 s.
The well-documented inconsistency of large-scale omega-3
supplementation trials may be partly explained by a failure to account
for baseline PUFA status or the high background intake of omega-6 s
(23, 41). A personalized approach that targets the ratio could help
clarify these conflicting results and lead to more effective
prevention tools.

Strengths and limitations

The primary strengths of this study include its large, prospective
design and the use of an objective, NMR-quantified biomarker, which
avoids the inaccuracies of self-reported dietary data and offers high
reproducibility for large-scale studies (42). However, several
limitations must be acknowledged. As an observational study, our
findings demonstrate a strong association rather than definitive
causality. Nevertheless, the prospective design, which establishes that
the measured biomarker status precedes the clinical outcome,
provides evidence that is suggestive of a causal relationship and
warrants confirmation through other methodological approaches,
such as Mendelian randomization. The analysis relied on a single
baseline measurement, which does not account for changes in diet
over the follow-up period. Furthermore, while statistically significant,
the magnitude of the improvement in discrimination (AC = 0.005) is
modest from a clinical standpoint. It is important to contextualize
this result within large-scale epidemiology; in cohorts with very large
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sample sizes and high statistical power, predictive improvements
from single biomarkers are typically incremental. Nonetheless, the
practical implementation of this finding for population screening is
constrained by the cost-effectiveness of NMR-based quantification.
Therefore, we suggest that the primary importance of the omega-6/
omega-3 ratio as a promising biomarker lies in its potential role in
guiding personalized nutritional interventions, potentially in
combination with other cost-effective markers, rather than in its
immediate, standalone impact on risk algorithm calibration. In
addition, the UK Biobank cohort is subject to a “healthy volunteer
bias,” meaning participants are generally healthier, less diverse, and
from higher socioeconomic backgrounds than the general population,
which may limit the generalizability of our findings to more
vulnerable groups who bear the greatest burden of cardiovascular
disease (14). Finally, it is crucial to distinguish between the circulating
plasma O6:03 ratio measured in our study and estimates of dietary
fatty acid intake. Our study utilized a plasma biomarker, which
should not be directly equated with dietary consumption. Plasma
fatty acid concentrations are an integrated measure, reflecting not
only recent and long-term dietary patterns but also complex
endogenous metabolic processes. These processes include the
interconversion of fatty acids and the competitive metabolism of
omega-6 and omega-3 PUFAs for the same desaturase and elongase
enzymes, which can be influenced by genetic and other host factors.
Therefore, while the plasma 06:03 ratio is a powerful biomarker of
internal metabolic status, it is not a pure proxy for diet. The
discussions of dietary and evolutionary context within this paper are
intended to provide the biological rationale for this biomarker’s
potential role in health, and do not imply a direct equivalence with
the measured plasma levels.

Conclusion

In conclusion, this large-scale prospective study demonstrates that
the plasma omega-6/omega-3 PUFA ratio provides incremental
predictive value for 10-year MACE risk when added to the established
SCORE?2 algorithm. While the improvement in model discrimination
is modest, the primary clinical utility of the omega-6/omega-3 ratio
lies in its status as a modifiable biomarker. It has the potential to refine
risk stratification and guide personalized nutritional interventions
aimed at mitigating the chronic inflammatory state that
drives atherosclerosis.
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Glossary

AA - Arachidonic acid

ASCVD - Atherosclerotic cardiovascular disease
CI - Confidence interval

COX - Cyclooxygenase

CVD - Cardiovascular disease

DCA - Decision curve analysis

EPA - Eicosapentaenoic acid

HDL-C - High-density lipoprotein cholesterol
HR - Hazard ratio

IDI - Integrated Discrimination Improvement
LOX - Lipoxygenase

LTB4 - Leukotriene B4
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MACE - Major adverse cardiovascular events
NMR - Nuclear magnetic resonance

NRI - Net Reclassification Improvement
PCE - Pooled Cohort Equations

PUFA - Polyunsaturated fatty acid

RCS - Restricted cubic splines

ROC - Receiver Operating Characteristic
SBP - Systolic blood pressure

SD - Standard deviation

SPM - Specialized pro-resolving mediator
TXA2 - Thromboxane A2

UKB - UK Biobank
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