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Background: One of the main causes of impairment in older people globally is
osteoarthritis (OA). The importance of metabolic variables in the pathophysiology
of OA has received more attention than only mechanical stress. Triglyceride-
rich lipoprotein remnants’ cholesterol component, remnant cholesterol (RC),
has been linked to a number of metabolic and inflammatory diseases. Its
relationship to the risk of OA is yet unknown, though. With an emphasis on
the mediating function of body mass index (BMI), the research prospectively
investigated the connection of RC levels with incident OA in middle-aged as
well as older persons, drawing on data from the English Longitudinal Study of
Ageing (ELSA).

Methods: Participants free of OA at baseline were included. RC levels were
estimated via the formula: triglycerides/2.2 (mmol/L). The outcome was newly
diagnosed OA during follow-up. Cox proportional hazards models were used
to examine the association between RC levels and incident OA. The models
were adjusted for a range of potential confounders, including age, sex, race,
education level, marital status, income, smoking status, alcohol frequency,
physical activity level, and chronic comorbidities. Restricted cubic splines (RCS)
were leveraged to evaluate dose-response connection. Subgroup analyses
tested the robustness of the findings, and bootstrap-based mediation analysis
evaluated the indirect effect of BMI.

Results: Among 2,205 participants, 1,100 incident OA cases were identified
during a median follow-up of 13.6 years. Higher RC levels were independently
related with higher OA risk (highest vs. lowest quartile: HR = 1.27, 95% CI. 1.07-
1.52; per unit increment: HR = 1.01, 95% CI: 1.01-1.03). RCS analysis showed a
linear dose—response connection (P for nonlinearity >0.05). Subgroup analyses
yielded consistent results without significant interactions (all P-interaction
>0.05). Mediation analysis indicated BMI substantially mediated the RC-OA
association, accounting for 84% of the effect.

Conclusion: In this large prospective cohort of middle-aged and older adults, RC
showed a positive, dose—response association with incident osteoarthritis that
attenuated to near-null after adjustment for BMI. Mediation analysis indicated
that approximately 84% of the total association operated via BMI, supporting
adiposity as the principal pathway and suggesting limited BMI-independent
effect of RC. These findings highlight RC as a potentially modifiable metabolic
biomarker and underscore the interplay of dyslipidemia and obesity in OA
pathogenesis, suggesting that RC management combined with weight control
may offer an effective strategy for OA prevention.
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1 Introduction

OA is a major cause of disability among middle-aged as well as
older adults, with prevalence steadily rising alongside global
population aging. Currently, OA affects nearly 595 million people,
accounting for 7.6% of the global population, and is expected to
increase further, imposing heavy healthcare and socioeconomic
burdens (1-3). Existing treatments, including nonsteroidal anti-
inflammatory drugs, rehabilitation, and joint replacement, mainly
target symptom relief or late-stage structural damage, underscoring
the need for early preventive strategies (4).

Although traditionally viewed as a degenerative “wear-and-tear”
disorder, emerging evidence indicates that OA involves complex
interactions between mechanical stress, metabolic abnormalities, lipid
dysregulation, and low-grade systemic inflammation (5). Disrupted
lipid metabolism may accelerate OA both indirectly, through systemic
inflammation (6-9), and directly, via lipid accumulation and
extracellular matrix disruption (10-12).

Remnant cholesterol (RC) —the cholesterol content of triglyceride-
rich lipoprotein remnants such as VLDL, chylomicron remnants, and
IDL—can be estimated from lipid profiles (e.g., triglycerides/2.2,
mmol/L) (13, 14). Elevated RC has been strongly linked to
atherosclerotic cardiovascular disease (15-17), renal dysfunction (18),
and possibly chronic inflammatory joint diseases such as rheumatoid
arthritis (19). However, its role in OA remains unexplored, and no
large-scale prospective evidence is available. Given the shared
mechanisms of lipid dysregulation and chronic inflammation in OA,
investigating RC may reveal novel insights into OA pathogenesis and
provide early metabolic targets for risk stratification and prevention.

Body mass index (BMI), reflecting both adiposity and mechanical
load, is an established risk factor for OA (20). Beyond joint overloading,
obesity promotes chronic inflammation, lipid disturbances, and
abnormal adipokine secretion (5). Importantly, RC levels are strongly
associated with obesity phenotypes (21), suggesting BMI may mediate
the link between RC and OA. Quantifying this mediation is essential
to disentangle direct metabolic effects from obesity-driven
mechanisms and to guide integrated prevention strategies.

To address these gaps, we leveraged data from the English
Longitudinal Study of Ageing (ELSA), a nationally representative
prospective cohort that continuously tracks the health, social, and
metabolic profiles of community-dwelling adults aged 50 years and
older in England (22). This well-characterized dataset provides
detailed biochemical and lifestyle measures, making it ideal for
exploring the metabolic determinants of musculoskeletal diseases.
Therefore, using data from the ELSA, this study prospectively
examines the association between RC and incident OA, evaluates
potential dose-response patterns, and quantifies the mediating role of
BMI. These analyses aim to provide novel evidence on the metabolic
contributions to OA development and inform early prevention
strategies in ageing populations.

2 Methods
2.1 Study design and population

The research was a prospective cohort analysis based on the ELSA,

a nationally representative cohort that has followed
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community-dwelling adults aged >50 years since 2002, collecting
detailed information on health, socioeconomic status, and lifestyle
(22). We defined Wave 2 (2004-2005) as baseline and included
participants who were free of osteoarthritis (OA) at baseline, with
follow-up through Wave 9 (2018-2019). After applying inclusion as
well as exclusion criteria, 2,205 participants aged >50 years were
included in the final analysis (Figure 1).

2.2 Variable definitions and measurements

2.2.1 Remnant cholesterol

In accordance with current guidelines, since LDL-C was
estimated, RC was calculated as triglycerides/2.2 (mmol/L)
(13, 14).

2.2.2 BMI

BMI was computed as weight in kilograms divided by height in
meters squared (kg/m?).

2.2.30A

Incident OA was identified at each ELSA wave using self-reported
physician diagnosis from standardized questionnaires. Validation
evidence indicates that self-reported OA has acceptable diagnostic
accuracy at the population level (pooled sensitivity = 0.75 and
specificity = 0.89), supporting its use when clinical examination is
infeasible in large cohort studies (23).

2.3 Potential confounders

We considered a range of potential confounders which may affect
the connection of RC with OA, including:

Demographic factors: age, sex, ethnicity, education, marital status,
household income.

Lifestyle factors: smoking status (yes/no), alcohol consumption
(>1 time/week vs. <1 time/week), physical activity level (high/low).

Health status: chronic comorbidities such as hypertension,
diabetes, and hyperlipidemia.

Missing data were addressed via multiple imputation by chained
equations with random forest algorithms.

2.4 Statistical analysis

Categorical variables were reported as counts as well as
percentages, whereas continuous variables were summarized as mean
+ SD or median with interquartile range. ¢-tests or Kruskal-Wallis tests
for continuous variables as well as y” tests for categorical data were
leveraged to assess for differences between groups. Plotting of Kaplan-
Meier survival curves was done, and the log-rank test was leveraged
to evaluate any differences.

Cox proportional hazards regression models were applied to
examine the association between RC and incident OA, with results
presented as hazard ratios (HRs) and 95% confidence intervals (CIs).
To enhance interpretability, a stepwise modeling strategy was adopted:

Model 1: Unadjusted model, showing the crude association
between RC and OA.
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ELSA wave 2
n = 9432
Exclude:
Age<50: n=261
missing RC data: n=3274
missing CESD data at wave 4: n=266
participants with osteoarthritis at wave 2: n=183
Adult participants with
complete data at wave 2:
n = 5448
Exclude:
participants with missing osteoarthritis
follw-up data: n=3243
Participants enrolled in this
study:
n = 2205
FIGURE 1
Research flowchart. ELSA, English Longitudinal Study of Ageing; RC, remnant cholesterol; CESD, the Center for Epidemiologic Studies Depression
Scale (CES-D).

Model 2: Adjusted for demographic covariates, including age,
gender, race, marital, education, income.

Model 3: Further adjusted for clinical and lifestyle variables,
including hypertension, diabetes, cancer, CHD, depression,
hyperlipidemia, smoking, alcohol use, and physical activity status.

Stratified subgroup analyses by age, sex, education, marital status,
smoking, alcohol use, BMI, and physical activity were performed to
evaluate robustness.

Mediation analysis was carried out via the “mediation” package in
R to assess the indirect effect of BMI on the RC-OA association. All
confounders were adjusted, and the proportion mediated was
estimated using the bootstrap method with 1,000 replications to
obtain 95% Cls. Statistical tests were two-sided, with a significance
level of & = 0.05.

3 Results
3.1 Baseline characteristics

2,205 participants were incorporated, with a mean age of 62 years;
43.8% were men, 98% were White, and 88.4% were married. The mean
baseline RC level was 2.71 mmol/L. During a median follow-up of
163 months, 1,100 incident OA cases were identified (Table 1).
Additionally, among the variables included as baseline characteristics
and covariates in the adjusted models, depression, coronary heart
disease (CHD), sex, physical activity, high-school education level, and
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age were each significantly and positively associated with incident
OA. Detailed estimates are provided in the Figure 2.

3.2 Association between RC and OA

In Cox regression models, RC as a continuous variable was
positively related to OA risk. Each 1 mmol/L rise in RC corresponded
to approximately a 1-2% higher risk of OA (fully adjusted model:
HR =1.01, 95% CI: 1.01-1.03) (Table 2). When RC was categorized
into quartiles, results were consistent: compared with the lowest
quartile (Q1), participants in Q3 and Q4 had significantly higher risk
(HR=1.22, 95% CIL 1.02-1.45; HR=1.27, 95% CIL: 1.07-1.52,
respectively). Kaplan-Meier curves demonstrated higher cumulative
incidence of OA in participants with elevated RC (Figure 3). RCS
analysis suggested a linear dose-response connection of RC with OA,
with no evidence of nonlinearity (P-nonlinearity = 0.108) (Figure 4).

Because BMI is hypothesized to lie on the causal pathway linking
RC to OA, our primary Cox models did not include BMI to estimate
the total effect of RC. To further examine whether an independent
association persisted after accounting for BMI, we additionally fit
Models (Model 3 + BMI) to estimate the direct effect. After BMI
adjustment, the association between RC and OA was substantially
attenuated and became non-significant (HR = 1.00, 95% CI: 0.99-
1.02). This attenuation pattern is consistent with BMI acting as a major
mediator through adiposity-related mechanisms such as mechanical
loading and low-grade systemic inflammation. In mediation analysis,
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TABLE 1 Baseline characteristics of study populations across OA.

Variable

Levels

Overall
N = 2,205

Absence of OA

N=1105

10.3389/fnut.2025.1692833

Presence of OA

N =1,100

p-value

Frontiers in Nutrition
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Age, mean (SD) 2,205 62.16 (6.98) 61.47 (6.89) 62.86 (7.01) <0.001
BMI, mean (SD) 2,205 27.80 (4.75) 27.06 (4.23) 28.55 (5.12) <0.001
RC (mmol/L), mean (SD) 2,205 2.71 (4.57) 2.38 (3.72) 3.05(5.27) <0.001
Follow-up time (month),
(sD) 2,205 115.79 (62.06) 167.53 (3.19) 63.80 (48.13) <0.001
Race, 1 (p%) 2,205 0.320
Non-White 36.00 (1.63%) 21.00 (1.90%) 15.00 (1.36%)
‘White 2,169.00 (98.37%) 1,084.00 (98.10%) 1,085.00 (98.64%)
Gender, 1 (p%) 2,205 <0.001
Female 1,240.00 (56.24%) 518.00 (46.88%) 722.00 (65.64%)
Male 965.00 (43.76%) 587.00 (53.12%) 378.00 (34.36%)
Marital, n (p%) 2,205 0.001
Married 1,584.00 (71.84%) 828.00 (74.93%) 756.00 (68.73%)
Other 621.00 (28.16%) 277.00 (25.07%) 344.00 (31.27%)
Education, 1 (p%) 2,205 <0.001
Below high school 703.00 (31.88%) 304.00 (27.51%) 399.00 (36.27%)
College or above 976.00 (44.26%) 528.00 (47.78%) 448.00 (40.73%)
High school 526.00 (23.85%) 273.00 (24.71%) 253.00 (23.00%)
Smoke, n (p%) 2,205 0.193
No 1,953.00 (88.57%) 969.00 (87.69%) 984.00 (89.45%)
Yes 252.00 (11.43%) 136.00 (12.31%) 116.00 (10.55%)
Drink, n (p%) 2,205 <0.001
<1/week 713.00 (32.34%) 318.00 (28.78%) 395.00 (35.91%)
>1 week 1,492.00 (67.66%) 787.00 (71.22%) 705.00 (64.09%)
Physical activity, n (p%) 2,205 <0.001
High 1,925.00 (87.30%) 1,000.00 (90.50%) 925.00 (84.09%)
Low 280.00 (12.70%) 105.00 (9.50%) 175.00 (15.91%)
Income (5th quintile), n 2,205 <0.001
%) Q1 441.00 (20.00%) 205.00 (18.55%) 236.00 (21.45%)
Q2 441.00 (20.00%) 181.00 (16.38%) 260.00 (23.64%)
Q3 441.00 (20.00%) 209.00 (18.91%) 232.00 (21.09%)
Q4 441.00 (20.00%) 232.00 (21.00%) 209.00 (19.00%)
Q5 441.00 (20.00%) 278.00 (25.16%) 163.00 (14.82%)
Diabetes, n (p%) 2,205 0.252
No 2,060.00 (93.42%) 1,039.00 (94.03%) 1,021.00 (92.82%)
Yes 145.00 (6.58%) 66.00 (5.97%) 79.00 (7.18%)
Hyperlipidemia, n (p%) 2,205 0.078
No 1,837.00 (83.31%) 936.00 (84.71%) 901.00 (81.91%)
Yes 368.00 (16.69%) 169.00 (15.29%) 199.00 (18.09%)
Cancer, n (p%) 2,205 0.208
No 2,088.00 (94.69%) 1,053.00 (95.29%) 1,035.00 (94.09%)
Yes 117.00 (5.31%) 52.00 (4.71%) 65.00 (5.91%)
(Continued)
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TABLE 1 (Continued)

10.3389/fnut.2025.1692833

Variable Levels Overall Absence of OA  Presence of OA p-value
N = 2,205 N =1,105 N =1,100
Coronary heart disease, n 2,205 0.027
%) No 2,077.00 (94.20%) 1,053.00 (95.29%) 1,024.00 (93.09%)
Yes 128.00 (5.80%) 52.00 (4.71%) 76.00 (6.91%)
Hypertension, 1 (p%) 2,205 0.340
No 1,165.00 (52.83%) 595.00 (53.85%) 570.00 (51.82%)
Yes 1,040.00 (47.17%) 510.00 (46.15%) 530.00 (48.18%)
Depression, n (p%) 2,205 <0.001
No 1,967.00 (89.21%) 1,026.00 (92.85%) 941.00 (85.55%)
Yes 238.00 (10.79%) 79.00 (7.15%) 159.00 (14.45%)

OA, osteoarthritis.

BMI statistically accounted for approximately 84% of the total
association between RC and OA (p < 0.05) (Figure 5), supporting the
hypothesis that RC influences OA risk primarily through
BMI-dependent pathways. In sex-stratified analyses, the mediating
role of BMI differed by sex. Among males, BMI statistically mediated
approximately 62% of the association between RC and OA (p < 0.05),
whereas no significant mediation effect was observed in females
(p > 0.05).

3.3 Subgroup analyses

Subgroup analyses were nominally significant in some strata (age
<65, male, White, high-school education, high physical activity, <1
drink/week); however, interaction tests were non-significant for all
subgroups (all P interaction >0.05). Notably, in the obese subgroup,
no clear association was observed for RC per 1-unit increase
(Figure 6).

4 Discussion

Based on the large prospective ELSA cohort, the research is the
first to systematically assess the connection between RC and incident
OA in middle-aged as well as older adults. We found higher RC was
related with a significantly higher risk of OA in a linear dose-response
manner. Furthermore, mediation analysis indicated that BMI
accounted for a substantial proportion of this association, suggesting
that both metabolic and mechanical pathways may jointly contribute
to OA development. However, these mediation estimates should
be interpreted with caution: our observational design is susceptible to
residual confounding, and validity requires no unmeasured
confounding of the exposure-mediator-outcome pathways and no
mediator-outcome confounders affected by exposure. While we tested
and, if needed, modeled exposure-mediator interaction, the results
remain explanatory rather than strictly causal.

Without adjustment for BMI, RC was positively associated with
incident OA (HR 1.01, 95% CI 1.01-1.03). After adding BMI to the
Cox model, the association attenuated to non-significance (HR 1.00,
95% CI 0.99-1.02). This pattern is compatible with adiposity-related
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pathways—mechanical loading and low-grade inflammation—
suggesting that BMI may lie on the RC — OA pathway. To separate
pathway mediation from metric attenuation due to the
non-collapsibility of Cox hazard ratios, we prespecified and reported
the total effect (without BMI) alongside the direct effect (with BMI),
and conducted counterfactual mediation. The mediation analysis
indicated that approximately 84% of the total RC-OA effect operated
via BMI, with only a small BMI-independent component. Consistent
with this interpretation, tests for interaction across BMI categories
(normal, overweight, obese) were non-significant, and in the obese
subgroup we observed no clear association between RC and incident
OA; these subgroup findings are exploratory given multiplicity and
unequal precision. Taken together, these findings support adiposity as
the principal conduit linking RC to OA and imply limited independent
predictive value of RC beyond BMI. We note that mediation
proportions in non-linear models are scale-dependent and that single
baseline measurements of RC and BMI may bias estimates toward
the null.

Obesity and elevated BMI have long been recognized as major risk
factors for OA, acting not only through mechanical loading but also
via chronic low-grade inflammation and lipid disturbances (24).
Consistent with this, growing evidence has highlighted the role of lipid
dysregulation in OA. Epidemiological studies have reported
associations between dyslipidemia and OA, although the direction
and strength of associations for specific lipid fractions (e.g., HDL-C,
LDL-C) vary across populations and study designs (25-27). For
example, a UK Biobank study reported a paradoxical causal
relationship whereby genetically lower LDL-C predisposed individuals
to higher OA risk (28, 29), challenging conventional assumptions and
suggesting instability of causal evidence (30). Clinical observations
further support the link between metabolic imbalance and OA
phenotypes, as obesity as well as hyperlipidemia are related with more
severe synovitis, structural damage, and worse functional outcomes
(31). Adipokines such as leptin have also been implicated in cartilage
damage and disease progression (32, 33), reinforcing the “metabolism-
inflammation-cartilage degradation” pathway.

Prospective evidence on “nontraditional lipid markers and OA”
remains limited, and large-scale data on RC in particular have been
lacking. Previous work has focused mainly on rheumatoid arthritis,
showing higher RC is related with higher RA incidence and
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Variables HR (95%CI) P
Race
Non-White 1.00 (Reference) ‘
White 1.34(0.80~2.25) —T—— 0272
Somke
No 1.00 (Reference) | |
Yes 0.86 (0.70 ~ 1.05) —— 0.129
Income
Q1 1.00 (Reference)
Q 1.07 (0.89~129) 0.449
Q3 1.02 (085 ~123) 0.829
Q4 0.96 (0.79~1.17) 0.712
Q5 0.80 (0.64~0.99) —— 0.043
Depression
No 1.00 (Reference) | |
Yes 1.48 (1.25~1.76) 3l <001
Diabetes
No 1.00 (Reference)
Yes 1.04(0.82~132) 0.739
Hyperlipidemia
No 1.00 (Reference)
Yes 1.13 (097 ~1.32) 0.129
Cancer
No 1.00 (Reference)
Yes 0.96 (0.74 ~1.23) 0.725
CHD
No 1.00 (Reference)
Yes 1.34 (1.05~1.71) —— 0017
Hypertension
No 1.00 (Reference)
Yes 0.99(0.87~1.12) 0.819
Gender
Female 1.00 (Reference)
Male 0.63 (0.55~0.72) HIH <.001
Marital
Married 1.00 (Reference)
Other 1.09 (0.95~1.25) 0233
Drink
<1/week 1.00 (Reference)
>=]/week 0.97(0.85~1.11) 0.661
Physical activity
High 1.00 (Reference)
Low 1.29 (1.09~1.53) ——  0.003
Education
Below high school  1.00 (Reference)
College or above 0.95(0.82~1.10) 0512
High school 0.83(0.71 ~0.98) il 0.028
Age 1.01 (1.01 ~1.02) 0.007
RC 1.01(1.01 ~1.03) 0.025
1
HR (95%CI)
FIGURE 2
Multivariate forest plot of the association between RC and OA. RC,
remnant cholesterol; OA, osteoarthritis; CHD, coronary heart
disease.

cardiovascular risk in RA patients (19, 34, 35). Our study extends this
evidence to OA, demonstrating for the first time in a large aging
cohort that elevated RC independently predicts incident OA, thus
broadening RC from a cardiovascular and inflammatory arthritis
biomarker to a metabolic risk indicator relevant for degenerative
joint disease. Notably, our mediation analysis further quantified the
chain “RC — BMI — OA providing evidence that metabolic
dysfunction may act synergistically with obesity to drive OA
risk (36).
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RC—the cholesterol cargo of triglyceride-rich lipoprotein (TRL)
remnants (37)—provides a biologically coherent link to OA through
lipid-metabolic and inflammatory pathways. TRL remnants can
traverse the endothelium and become retained in the subendothelial
space; macrophage ApoE-mediated uptake of VLDL/remnants
induces an M1 pro-inflammatory phenotype, foam-cell formation,
and up-regulation of inflammatory mediators (accompanied by
activation of matrix metalloproteinases, etc.) (38-40). These processes
are presumed to extend to the joint microvasculature and synovium
(41, 42).

In inflamed milieus, redox-modified lipoproteins such as oxidized
LDL directly accelerate cartilage matrix loss and inflammatory
chondrocyte death by disrupting TFEB-regulated autophagy-lysosome
function and engaging NF-kB programs (5, 43, 44). OA cartilage also
exhibits lipid-metabolic reprogramming, with enhanced fatty-acid
oxidation shown to drive disease progression in experimental models
(12, 45). Complementary lipidomic studies report phospho- and
sphingolipid enrichment in synovial fluid/tissues, aligning systemic
dyslipidaemia with local joint lipid remodeling (46, 47).

Finally, consistent with recent metabolic and osteoarthritis
literature, RC correlates positively with adiposity and insulin resistance
(21, 48, 49), while obesity promotes OA through adipokine-mediated
low-grade inflammation and mechanical loading (33, 50, 51); together,
these observations support a biologically plausible “RC — (BMI/
metabolic dysregulation) — OA” axis and align with the substantial
BMI-explained proportion observed in our study.

Moreover, higher physical activity related to lower OA risk,
consistent with its anti-inflammatory effects, weight control, and
improved joint homeostasis (52, 53). Depressive symptoms were
associated with higher OA risk, potentially via HPA-axis activation,
systemic inflammation, pain amplification, and reduced activity (54,
55). CHD showed a positive association, underscoring shared cardio-
metabolic-inflammatory pathways with OA and the burden of
multimorbidity (56, 57). These covariates were included primarily to
control confounding; their estimates are descriptive and
reported transparently.

Under standard mediation assumptions, BMI statistically
explained ~84% of the RC-OA association. Mechanistically, RC
co-varies with adiposity and insulin resistance, while adiposity
contributes to OA via mechanical loading and adipo-inflammatory
signaling. Taken together, these data support a pathway in which RC
predominantly relates to OA through BMI-linked mechanisms, with
a small residual BMI-independent component. We interpret these
estimates as explanatory rather than strictly causal, acknowledging
residual confounding and single-time measurements.

In clinical terms, the BMI-independent predictive value of RC for
OA appears modest, consistent with evidence that RC tracks adiposity
and insulin resistance and associates with adverse obesity phenotypes
in population studies (21, 48). Nevertheless, RC may add value to
multivariable risk profiling, particularly in metabolically unhealthy
phenotypes or normal-BMI individuals with dyslipidaemia, where BMI
alone incompletely captures metabolic inflammation and ectopic fat.
RC also denotes modifiable risk: unhealthy lifestyle patterns (smoking,
low physical activity, poor diet) associate with higher RC (58), and lipid-
lowering trials show that reductions in remnant cholesterol accompany
lower cardiovascular risk (59, 60), supporting RC as a tractable target
within the metabolic-inflammatory axis that is biologically relevant to
OA. To define RC’s independent utility for OA, prospective studies with
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TABLE 2 Correlation between RC and the risk of OA.

Variables Model 1

HR (95%ClI)

HR (95%ClI)

10.3389/fnut.2025.1692833

Model 2 Model 3

HR (95%ClI)

RC 1.02 (1.01 ~ 1.03) <0.001 1.02 (1.01 ~ 1.03) 0.003 1.01 (1.01 ~ 1.03) 0.028
RC quartile
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 1.18 (0.99 ~ 1.40) 0.068 1.18 (0.99 ~ 1.40) 0.069 1.17 (0.99 ~ 1.40) 0.072
Q3 1.25(1.05 ~ 1.49) 0.011 1.22 (1.03 ~ 1.45) 0.025 1.22 (1.02 ~ 1.45) 0.030
Q4 1.42 (1.19 ~ 1.68) <0.001 1.32 (1.11 ~ 1.57) 0.001 1.27 (1.07 ~ 1.52) 0.008
P for trend <0.001 0.006 0.036

HR, hazard ratio; CI, confidence interval.
Model 1: Crude.
Model 2: Adjust: Age, Gender, Race, Marital, Education, Income.

Model 3: Adjust: Age, Gender, Race, Education, Income, Marital, Physical activity, Smoke, Drink, Diabetes, Hyperlipidemia, Cancer, CHD, Hypertension, Depression.

The bolded values indicate that the P-values are less than 0.05.
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FIGURE 3
Kaplan—Meier curves for the cumulative incidence of OA.

repeated measurements, interventions aimed at remnant lowering, and
causal designs (e.g., Mendelian randomization) are warranted (61, 62).

There are several limitations warrant mention. First,
we acknowledge that single baseline assessments of RC/BMI and
wave-based OA ascertainment limit our ability to implement a
precise 2-3-year time-lag. Consequently, reverse causation cannot
be fully excluded. Given potential regression-dilution from
one-time exposure measurement and the absence of exact event

Frontiers in Nutrition

dates, our estimates should be viewed as conservative associations.
The finding that BMI statistically explains a large proportion of
the RC-0A association under mediation assumptions is consistent
with scenarios in which subclinical disease at baseline and
adiposity-related pathways co-evolve. Future datasets with exact
diagnosis dates and repeated biomarker assessments will allow
formal landmark/delayed-entry analyses to more directly address
reverse causation. Second, OA diagnosis relied primarily on
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The RCS curve of the association between RC and OA.

ACME=-3.71

Proportion of mediation:
84% (P<0.05)

Total Effect=-4.44

ADE= -0.74

Adjust: Age, Gender, Race, Education, Income, Marital, Physical activity, Somke,
Drink, Diabetes, Hyperlipidemia, Cancer, CHD, Hypertension, Depression
FIGURE 5

Mediation effects of BMI on the association between RC and OA. RC, remnant cholesterol; OA, osteoarthritis; BMI, body mass index; CHD, coronary
heart disease; ACME, average causal mediation effect; ADE, average direct effect.

self-report or physician report without systematic imaging to explore structural subtypes and progression. Future studies

verification, which may introduce recall bias—exacerbated by  should incorporate longitudinal imaging and inflammatory
symptom fluctuations—and non-differential misclassification (63,  biomarkers to clarify mechanisms and evaluate the impact of
64). Third, lack of imaging-based phenotyping limited our ability =~ RC-lowering interventions on OA risk.
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Subgroup n (%) HR (95%CI) P P for interaction
Age i 0.461
<65 1449 (65.71) 1.01 (1.00 ~ 1.03) i-—i 0.045
>=65 756 (34.29)  1.01 (0.99 ~1.03) I—:LI—l 0.470

Gender i 0.281
Female 1240 (56.24) 1.01 (0.99 ~1.03) = 0.208
Male 965 (43.76)  1.02 (1.00 ~ 1.04) II—'—| 0.039

Race | 0.901
Non-W hite 36 (1.63) 1.14 (0.82 ~ 1.56) : 0.436
White 2169 (98.37) 1.01 (1.00 ~1.03) fu— 0.025

Marital i 0.744
Married 1584 (71.84) 1.01 (1.00 ~1.03) i-—l 0.089
Other 621 (28.16)  1.02 (1.00 ~ 1.04) ’—l—| 0.055

Education i 0.537
Below high school 703 (31.88)  1.02 (1.00 ~ 1.04) Il—'—| 0.140
College or above 976 (44.26)  1.00 (0.98 ~ 1.03) |—+—| 0.653
High school 526 (23.85)  1.02 (1.00 ~ 1.05) '—l—| 0.049

BMI i 0.607
Normal 623 (28.25)  1.02 (0.98 ~ 1.06) |—i-—| 0.323
Obese 592 (26.85)  1.01 (0.99 ~1.02) I—E—-—I 0.513
Overweight 990 (44.90)  0.99 (0.97 ~ 1.02) |—-i—| 0.672

Physical activity i 0.326
High 1925 (87.30) 1.02 (1.00 ~ 1.03) II—I-l 0.008
Low 280 (12.70)  0.99 (0.97 ~1.02) I—-—E—| 0.605

Somke i 0.090
No 1953 (88.57) 1.01 (0.99 ~1.02) a 0.221
Yes 252 (11.43)  1.03 (1.00 ~ 1.06) I|—-—| 0.024

Drink | 0215
<I/week 713 (32.34)  1.02 (1.00 ~ 1.04) '—-—| 0.011
>=]/week 1492 (67.66) 1.01 (0.99 ~1.03) = 0.440

0ﬁ9 0.55 { 1.65 1‘1
FIGURE 6
The association between RC and OA in different subgroups.

5 Conclusion

In a large UK cohort of middle-aged and older adults, the
RC-osteoarthritis association became non-significant after BMI
adjustment and appeared largely BMI-mediated. Our results
highlight the intertwined role of metabolic-mechanical pathways,
with BMI serving as a key mediator. These results suggest
that RC may represent a new, modifiable metabolic biomarker for
OA and provide new evidence supporting the “metabolism-
obesity-OA” pathway. Early RC management, together with
weight control, could serve as dual intervention targets for
OA prevention.
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