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Introduction: Although the roles of micronutrients in human health are widely
acknowledged, their specific associations with gout remain inadequately
explored. This study integrates evidence from Mendelian randomization (MR),
Chinese cross-sectional, and NHANES analyses to comprehensively investigate.
Methods: The MR analysis was used to evaluate the potential causal associations
between 15 trace elements (copper, calcium, iron, magnesium, potassium,
selenium, zinc, carotenoids, folate, vitamin A, vitamin B12, vitamin B6, vitamin C,
vitamin D, and vitamin E) and gout risk from the FinnGen database (n = 327,457).
Significant findings were validated via logistic regression in Chinese clinical data
(n = 4,359) and NHANES 2011-2018 data (n = 13,902).

Results: Univariable MR identified calcium, magnesium, and vitamin B6 as associated
with gout. Multivariable MR indicated that only higher magnesium levels causally
reduced gout risk (OR = 0.630, 95% Cl: 0400-0.992, p = 0.046). Consistently, high
serum magnesium (Q4) was associated with lower gout risk in the Chinese clinical
data (OR = 0.546, 95% Cl: 0.319-0.933, p = 0.027) versus the lowest quartile (Q1).
NHANES analysis confirmed that higher dietary magnesium intake lowered gout
risk (OR = 0.738, 95% Cl: 0.550-0.989, p = 0.049). Additionally, the restricted cubic
spline (RCS) found that the OR began below 1 when the dietary magnesium intake
exceeded 0.27 g/day.

Discussion: This multifaceted study provides novel evidence supporting a
protective role of magnesium against gout. The underlying mechanism may
involve magnesium’s influence on uric acid or its anti-inflammatory effects. These
hypotheses need to be clarified by further experimental and clinical studies.
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1 Introduction

Patients with gout, a chronic condition caused by monosodium
urate crystal deposition, typically present with acute inflammatory
monoarthritis, often affecting the lower limb joints (1). Key risk
factors include elevated uric acid production (e.g., from intake of
high-purine foods), diminished uric acid excretion (e.g., from renal
dysfunction), and inflammatory responses (2). The global incidence
of gout markedly increased between 1990 and 2019, particularly in
high-income regions of North America and East Asia (3). The number
of people with gout worldwide reached 55.8 million in 2020 and is
projected to continue to increase by 2050. Therefore, an urgent need
exists to strengthen health education and promote improvements in
diet and lifestyle to alleviate the burden of gout (4).

In recent years, accumulating evidence has established that
various micronutrients (minerals and vitamins) are significantly
associated with both serum urate homeostasis and gout pathogenesis,
and have critical roles in uric acid metabolism. Among essential
mineral elements, novel copper- and zinc-based compounds have
shown potent dual inhibition of xanthine oxidase and xanthine
dehydrogenase enzymatic activities, thus resulting in urate-lowering
effects (5). Dietary potassium, particularly from fruit sources, has
been suggested to exert urate-lowering effects (6). Epidemiological
investigations have revealed inverse associations of magnesium and
iron with gout risk (7), whereas serum calcium concentrations have
shown positive correlations with both hyperuricemia and gout
incidence (8). Furthermore, blood selenium levels have been found to
have significant positive correlations with serum urate concentrations
and hyperuricemia (HUA) prevalence (9); consequently, selenium
might be a novel risk factor for gout development. Among the
vitamins, serum retinol (a vitamin A metabolite) is positively
correlated with uric acid levels (10), whereas vitamin B12 and folate
intake are inversely associated with serum urate and gout risk,
respectively (8). Vitamin C intake is negatively correlated with serum
uric acid levels (10), and vitamin C supplementation is further
associated with a modest decrease in gout risk (11). Notably,
individuals with vitamin D insufficiency or deficiency have
significantly higher serum uric acid levels than those with normal
vitamin D status (12).

These findings highlight the potential
micronutrients in urate metabolism and gout risk management, yet

importance of

comprehensive systematic analyses of the relationship between
micronutrients and gout incidence remain limited. Therefore,
we conducted a Mendelian randomization (MR) analysis to screen
micronutrients, and subsequently used clinical data and the NHANES
database to explore associations between micronutrients and gout.

2 Materials and methods
2.1 Mendelian randomization analysis

2.1.1 Date source

The analytical workflow of this study is presented in Figure 1. On
the basis of previous studies, we collected genetic data for 15 trace
elements from the Genome-wide Association Study (GWAS) database.
These 15 micronutrients comprised vitamin A (ukb-b-9596,
European); vitamin B12 (ukb-b-19524, European); vitamin B6
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(ukb-b-7864, European); vitamin C (ukb-b-19390, European); vitamin
D (ukb-b-18593, European); vitamin E (ukb-b-6888, European); zinc
(ieu-a-1079, European); copper (ieu-a-1073, European); calcium
(ukb-b-8951, European); carotene (ukb-b-16202, European); folate
(ukb-b-11349, European); iron (ukb-b-20447, European); magnesium
(ukb-b-7372, European); potassium (ukb-b-17881, European);
selenium (ieu-a-1077, European) (13). The outcome of interest in this
study was gout. Relevant data were downloaded from the FinnGen
database' of European origin. This ancestry matching effectively
avoids potential bias caused by population stratification.

2.1.2 Instrumental variable screening

In this study, the TwoSampleMR package in R was used to screen
single-nucleotide polymorphisms (SNPs), thus ensuring a strong
association between instrumental variables (IVs) and the exposure
(p < 5% 107°). To enhance the independence of selected SNPs, we set
the clumping parameter to clump = TRUE. Using the parameter kb =
5,000 to define clustering window; within this window, SNPs with
pairwise correlations exceeding the predefined threshold (r* = 0.001)
were considered correlated. Finally, we calculated and reported the
F-statistic for each SNP and the mean F-statistic for each set of genetic
instruments to confirm they are strong instruments (F-value >10),
mitigating concerns about weak instrument bias.

2.1.3 Analysis process

We used the VariantAnnotation, gwasglue, and TwoSampleMR
packages to investigate the causal relationships between exposure
factors and outcome variables. We applied methods including MR
Egger, weighted median, inverse variance weighted (IVW), simple
mode, and weighted mode to assess the causal relationships between
multiple micronutrients and gout. Furthermore, we used reverse MR
to explore the potential effects of the disease on exposure factors and
to investigate the direction of causal relationships. Finally,
we performed multivariable MR with the TwoSampleMR and
MendelianRandomization packages in R, thereby accounting for the
effects of multiple exposure factors.

2.1.4 Sensitivity analysis

We identified potential biases and confounding factors through
the leave-one-out method, heterogeneity test, and horizontal
pleiotropy test. Leave-one-out analysis was conducted to evaluate the
effect of each SNP on the overall effect by excluding each SNP one by
one. The heterogeneity test was used to evaluate differences in effects
associated with genetic variations by examining whether the effects of
multiple IVs were consistent, according to the Q-statistic (MR Egger

:Q—df

method) and I* ( 12 x100% ). The horizontal pleiotropy test
used the MR-PRESSO and the MR Egger intercept method to examine
whether the IVs directly affect the results through exposure factors.

Finally, we visualized the results by generating funnel charts, leave-
one-out forest plots, and scatter plots.

1 https://www.finngen.fi/en
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FIGURE 1
The flowchart has been revised. Specifically, the term “Two-sample MR" has been updated to "Univariable MR", and the title of the second part has
been changed to “Chinese Cross-Sectional Study”.

Frontiers in Nutrition 03 frontiersin.org


https://doi.org/10.3389/fnut.2025.1688095
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Jiao et al.

2.2 Clinical data validation

2.2.1 Research design and sample size calculation
This study used a cross-sectional study design to obtain

clinical data. According to literature reports (14), the overall

standardized prevalence of gout in Chinese adults is 3.2%

(p = 0.032). We set the error range (d) to 0.01 and the confidence

level (a=0.05) to 95% (Z =1.96). According to the formula

2
N:w . The minimum required sample size was
d
calculated to be 1,190 people. The sample size in this study
exceeded this estimate.

2.2.2 Data collection and processing

The research sample comprised patients who received inpatient
treatment in a nephrology department (January 1, 2023 — December
31, 2023). According to prevailing international guidelines, applying
the 2015 American College of Rheumatology/European League
Against Rheumatism gout classification criteria (15), whereby a score
of > 8 points indicates definite gout, or by confirming a documented
prior history of gout established. Basic data collection was performed
with a dual independent input system, including the following core
variables: demographic characteristics (age and sex); laboratory test
findings (serum magnesium concentration in mg/dL, reference
ranges: 1.63-2.80 mg/dL); diagnostic information (diagnosed gout);
health related behaviors [smoking history, alcohol consumption
history, and body mass index (BMI)] and other clinical diagnoses
(chronic kidney disease [CKD], acute kidney injury [AKI], nephrotic
syndrome [NS], and glomerulonephritis [GN]). Since all clinical data
in this study were derived from nephrology patients. We estimated
glomerular filtration rate (eGFR, mL/min/1.73 m?) using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation
(16) and incorporated eGFR into the study. The data processing flow
strictly followed clinical research standards, and data cleaning and
analysis were conducted in R.

2.3 NHANES analysis

2.3.1 Study population

We downloaded health and nutrition data from the NHANES
database spanning 2011 to 2018, including demographic data (sex and
age), weight data (WTINT2YR, WTMEC2YR, SDMVPSU, and
SDMVSTRA), dietary intake data (Magnesium, in g), disease status
(gout), and other health-related conditions (smoking history, alcohol
consumption history, BMI, high blood pressure, high cholesterol,
and diabetes).

2.3.2 Data organization

We used 24-h dietary recall interviews from the NHANES
database to calculate the intake of trace elements. The first interview
was conducted at the Mobile Examination Center, and the second
interview was conducted via telephone follow-up after 3-10 days. On
the basis of the results of these two interviews, we calculated the
average of the two intake levels. If data from one interview were
missing, we used the results from the other interview. The outcome
was determined according to participants’ self-reported history of
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gout in the NHANES database. Finally, the mice package in R was
used to filter and fill in the gaps in the NHANES dataset.

2.4 Statistical analysis

This study performed MR analysis using the R language (Version
4.5.1), including univariate MR analysis, reverse MR analysis, and
And
we constructed a logistic regression model in R to explore the

multifactorial MR analysis (Supplementary material 1).

relationship between exposure factors and gout. We first constructed
a single-factor regression model (model 1), considering only the direct
effects of exposure factors on gout, as a preliminary analysis. On the
basis of the single-factor model, we extended the multiple regression
model (model 2) by adding sex and age as covariates. We also
constructed a more comprehensive regression model (model 3), which
added other factors potentially affecting the outcome variables,
including BMI, alcohol consumption, smoking status, and
comorbidities. We used the Forestplotter package to create a forest plot
for subgroup analysis, displaying odds ratios (OR), 95% confidence
intervals (Cls), and their significance levels. In addition, we explored
the nonlinear relationship between dietary intake of magnesium and
gout by using a restricted cubic spline (RCS) to analyze the effects of
dietary magnesium intake on gout. Both logistic regression and
restricted cubic spline models fully accounted for the complex
multistage survey design of NHANES by utilizing weighted data. This
study employed multiple imputation using the mice package to handle
missing data, with all analyses conducted based on the combined
effective sample size. All reported p-values represent two-tailed tests,
and the threshold for statistical significance is explicitly stated
(p < 0.05).

3 Results

3.1 Results of Mendelian randomization
analysis

3.1.1 Univariable Mendelian randomization
analysis

The outcome of this study was gout, which included 12,342 gout
cases and 315,115 controls. The SNPs with bias were excluded by the
MR-PRESSO test. A total of 171 SNPs were included in this study, and
their F values were all >10 (Supplementary Table 1). In the MR results
between 15 trace elements and gout (Supplementary Table 2;
Supplementary Figure 1), calcium, magnesium, and vitamin B6 were
screened out (Figure 2A). The IVW analysis results indicated p < 0.05,
and the results of other methods were consistent with the IVW
method direction. Specifically, the OR for calcium was 0.738 (95% CI:
0.586-0.930, p = 0.010), the OR for magnesium was 0.640 (95% CI:
0.502-0.817, p < 0.001), and the OR for vitamin B6 was 0.781 (95%
CI: 0.613-0.995, p = 0.045) (Figure 2B). These results suggested that
calcium, magnesium, and vitamin B6 might be protective factors
against gout.

3.1.2 Sensitivity analysis

The results of the sensitivity analysis of Calcium, magnesium, and
vitamin B6 are as follows. According to the sensitivity analysis with
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Mendelian randomization analysis results. (A) Heat map of univariate
MR analysis for 15 micronutrients. (B) Forest plot of MR analysis for
calcium, magnesium and Vitamin B6. (C) Forest plot of reverse MR
analysis. (D) Forest plot of multivariate MR analysis.

the leave-one-out method (Figures 3A-C), the overall results did not
significantly change after the exclusion of instrumental variables one
by one. A scatter plot visualizing the relationships between exposures
and the outcome (Figures 3D-F). The roughly symmetrical funnel
plot (Figures 3G-I) indicated no significant bias and supported the
reliability of the results. In the heterogeneity test, no significant
difference was observed (p > 0.05, I* = 0.00%), and the results of the
horizontal pleiotropy analysis were also not statistically significant
(p > 0.05), thus further indicating the robustness of the results of this
study. The results of other micronutrients are detailed in
Supplementary Tables 3-5 and Supplementary Figures 2-4.
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3.1.3 Reverse Mendelian randomization analysis

Reverse MR analysis is used primarily to evaluate whether a
reverse causal relationship exists between an exposure and outcome
(Supplementary Table 6). The analysis demonstrated that gout did
not significantly (p > 0.05) affect the levels of calcium (OR = 0.993,
95% CI: 0.980-1.006), magnesium (OR = 0.996, 95% CI: 0.983-
1.009), and vitamin B6 (OR=0.999, 95% CI: 0.986-1.012)
(Figure 2C). The sensitivity analysis values are as follows: calcium
(Heterogeneity p =0.290; Pleiotropy p =0.868), magnesium
(Heterogeneity p = 0.375; Pleiotropy p = 0.463), and vitamin B6
(Heterogeneity p = 0.641; Pleiotropy p = 0.180). This result indicates
the direction of causality between the exposure factors and
the outcome.

3.1.4 Multivariable Mendelian randomization

analysis
A multivariable MR analysis was performed to investigate the
collective effects of three mineral exposures—calcium,

magnesium, and vitamin B6—on gout risk. We extracted IVs from
each exposure (p<5x107° kb=5,000kb, r*=0.001), then
merged these exposure-specific IVs for multivariate analysis. The
strength of IVs was assessed using conditional F-statistics, which
were 12.68 for calcium, 14.25 for magnesium, and 11.76 for
vitamin B6, all exceeding the conventional threshold of 10. The
proportion of variance explained by each exposure after adjusting
for others, denoted as conditional R? was 0.884 for calcium, 0.945
for magnesium, and 0.917 for vitamin B6. In the multivariable
MR, calcium and vitamin B6 were not significantly associated
with gout. In contrast, magnesium remained a significant
protective factor (OR = 0.630, 95% CI: 0.400-0.992, p = 0.046), as
illustrated in Figure 2D. Diagnostics for pleiotropy and
heterogeneity were conducted using MV-IVW and MV-Egger
regression. The Cochran’s Q statistic was 39.582 (p = 0.877),
suggesting no substantial heterogeneity, and the MR-Egger
intercept was —0.0008 (p = 0.909), indicating no evidence of
directional pleiotropy.

3.2 Clinical data validation

3.2.1 Baseline characteristics of the survey
population

Data for 4,536 patients were collected in this study, and those
for 4,359 patients (Control: 4225; Case: 134) who met the criteria
were included in the analysis (Figure 4). This study was approved
by the Institutional Review Board of Shengjing Hospital of China
Medical University. The clinical data indicated lower serum
magnesium in the gout group than the control group, although no
significant difference was observed between groups (p = 0.539).
Moreover, we observed significant differences in factors such as
age, sex, BMI, alcohol consumption, smoking habits, and eGFR
between the gout and control groups (Table 1). Because the data
all came from nephrology patients, we also explored the
relationship between gout and kidney disease. The results
indicated significant differences in the proportions of CKD (64%),
NS (14%), and GN (19%) between the gout group and the control
group (Figure 5).
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TABLE 1 Baseline information of clinical data.

10.3389/fnut.2025.1688095

Characteristics Overall \[e} Yes P-value
N 4,359 4,225 134
Serum magnesium 2.141 (0.348) 2.141 (0.349) 2.122(0.317) 0.539
Age 53.867 (14.428) 54.103 (14.405) 46.440 (13.155) <0.001
BMI 24.883 (4.059) 24.815 (4.022) 27.043 (4.593) <0.001
eGFR 60.583 (40.751) 61.080 (40.787) 44,901 (36.382) <0.001
Gender (%)
Female 1814 (41.6%) 1804 (42.7%) 10 (7.5%) <0.001
Male 2,545 (58.4%) 2,421 (57.3%) 124 (92.5%)
Alcohol (%)
No 3,270 (75.0%) 3,182 (75.3%) 88 (65.7%) 0.015
Yes 1,089 (25.0%) 1,043 (24.7%) 46 (34.3%)
Smoke (%)
No 2,783 (63.8%) 2,711 (64.2%) 72 (53.7%) 0.017
Yes 1,576 (36.2%) 1,514 (35.8%) 62 (46.3%)

The bold values indicate statistical significance (P < 0.05).

3.2.2 Logistic regression analysis of serum
magnesium

According to the serum magnesium quartile (Q1 < 1.920 mg/dL,
Q2=1920 to <2.114mg/dL, Q3=2.114 to <2.309 mg/dL,
Q4 > 2.309 mg/dL), we divided participants into four groups: Q1 to
Q4. The distribution of eGFR differed significantly across serum
magnesium quartiles (p < 0.001), justifying the inclusion of eGFR as
a covariate in the multivariable logistic regression model to control
for its confounding effect (Supplementary Figure 5). In a logistic
regression model considering sex, age, BMI, smoking history, alcohol
CKD, AKI, NS, GN, and eGFR (Table 2;
Supplementary Table 7). We found the Q4 group may have a
potentially protective effect on gout than the Q1 group (OR = 0.546,
95% CI: 0.319-0.933, p = 0.027).

consumption,

3.2.3 Subgroup analysis of the link between
serum magnesium and gout

In the CKD subgroup, serum magnesium concentration was
significantly negatively correlated with gout risk (OR = 0.410, 95% CI:
0.223-0.753, p = 0.004) (Figure 6). This outcome was consistent with
eGFR. We found that in the subgroup with eGFR <60 mL/min/1.73 m?’,
magnesium may also be a protective factor against gout (OR = 0.473,
95% CI: 0.261-0.855, p = 0.013). However, among female participants,
greater serum magnesium concentrations were associated with a
higher risk of gout (OR = 3.998, 95% CI: 1.343-11.838, p = 0.013). It is
critical to interpret this finding with extreme caution due to the very
limited number of female gout cases in our study (Control: 1804; Case:
10), which considerably undermines the statistical reliability. This
caution is further warranted by the significant interaction effect
observed between sex and serum magnesium (p for interaction = 0.021).
Moreover, analysis conducted exclusively in males, which comprised
the majority of cases, showed no significant association (OR = 0.766,
95% CI: 0.440-1.334, p = 0.347). Collectively, given the instability of
the female subgroup estimate and the null finding in males. The result
should currently be considered exploratory, pending validation in
large-scale, prospective cohorts.
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3.3 NHANES analysis

3.3.1 Baseline characteristics of the study
population

After data processing and filtering of NHANES data, a total
of 13,902 valid samples were obtained, including 627 gout cases
and 13,275 controls (Figure 7). The baseline study data indicated
that magnesium intake in the gout patient group was significantly
lower than that in the control group (p < 0.001). Additionally,
significant differences were found in factors such as age, sex,
BMI, smoking status, high blood pressure, high cholesterol level,
and diabetes between the gout group and the control group
(Table 3).

3.3.2 Dietary magnesium intake and logistic
regression analysis

Dietary magnesium intake was categorized into quartiles:
Q1 <0.203 g, Q2 =0.203 to <0.272 g, Q3 = 0.272 to <0.358 g, and
Q4 > 0.358 g. In the univariate logistic regression model (model 1),
high magnesium intake (Q4) was significantly associated with lower
gout risk than low magnesium intake (Q1) (OR = 0.788, 95% CI:
0.628-0.990, p = 0.046). After adjustment for sex and age as covariates
in the multivariate model (model 2), magnesium intake remained a
protective factor (OR =0.685, 95% CI: 0.521-0.899, p = 0.009).
Finally, in the fully adjusted model (model 3), incorporating all
covariates, high magnesium intake (Q4) continued to demonstrate a
protective effect against gout (OR =0.738, 95% CI: 0.550-0.989,
p =0.049) (Table 4; Supplementary Table 8). This result has borderline
statistical significance, indicating that dietary magnesium intake is
possibly associated with gout risk and may have potential
protective effects.

3.3.3 Subgroup analysis of the association

between dietary magnesium intake and gout
Magnesium intake did not significantly differ among groups

stratified by age, smoking status, and BMI (Figure 8). Among
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FIGURE 5
Percentage stacked bar chart of kidney disease distribution. (A) Chronic kidney disease (CKD). (B) Acute kidney injury (AKI). (C) Nephrotic syndrome
(NS). (D) Glomerular nephritis (GN).

TABLE 2 The logistic regression model of exposure factor in clinical data.

Serum Gout Model 1 Model 2 Model 3
magnesium
9 Yes No OR 95%Cl 95%Cl P- 95%CI 95%ClI P- 95%CI 95%ClI P-
low up value low up value low up value

QI: <1.920 mg/dL 38 1,119 | Reference
Q2:1.920 to

29 | 1,136 0752 0.460 1.227 0254 | 0.804  0.489 1.320 0388 0799  0.481 1.327 0.386
<2.114 mg/dL
Q3:2.114 to

39 973 1180 @ 0.749 1.860 0475 | 1293 0815 2.054 0275 | 1062  0.659 1.712 0.804
<2.309 mg/dL
Q4:>2.309 mg/dL | 28 997 | 0.827 = 0.504 1.357 0453 | 0985  0.59 1.629 0953 | 0546 0319 0.933 0.027

The bold values indicate statistical significance (P < 0.05).

participants who did not drink alcohol, magnesium intake was
associated with diminished risk of gout (OR =0.019, 95% CI:
0.003-0.120, p < 0.001). In the subgroup with high cholesterol level
(OR=0.133, 95% CI: 0.041-0.431, p=0.002) and diabetes
(OR =0.047, 95% CI: 0.010-0.222, p < 0.001), the association
between magnesium intake and gout was statistically significant.
Moreover, we observed interactions of sex, alcohol consumption,
high cholesterol level, and diabetes with magnesium intake
(p < 0.05).

3.3.4 Restricted cubic spline analysis

The RCS analysis of NHANES data revealed a dose-response
relationship between dietary magnesium intake and gout risk (p
for overall association = 0.013; p for nonlinearity = 0.619). As
shown in Figure 9, the curve exhibited a generally monotonic
downward trend, indicating that the risk of gout gradually
decreased with increasing magnesium intake. The inflection point
of the curve was observed at an intake level of approximately
0.27 g/day, beyond which the OR consistently remained below 1.
This suggests a potential threshold effect, whereby dietary
magnesium intake above this level may be associated with a
reduced risk of gout. Further clinical trials are required to validate
these findings.
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4 Discussion

This study integrated MR analysis with cross-sectional
epidemiological data from China and the United States to validate the
relationship between magnesium and gout through multilevel
approaches. First, we identified magnesium, a micronutrient strongly
associated with gout, through MR analysis. We then validated the
association between serum magnesium and gout by using clinical
data from China. Additionally, by analyzing the NHANES database,
we explored the relationship between dietary magnesium intake and
gout risk. Our findings suggested that magnesium might have a
protective role against gout, on the basis of a negative correlation
between dietary magnesium intake and gout risk.

4.1 Evidence of the association between
magnesium and gout risk

Magnesium, a critical trace element stored predominantly in bone
tissue with minimal circulating levels (17), serves as a cofactor and
activator for more than 300 enzymatic reactions (18). This
micronutrient plays critical roles in energy metabolism, protein
synthesis, muscle contraction, and neurotransmission (19). Magnesium
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Variable Group OR (95% CI) pvalue Interaction_pvalue
Age <=65 —e— 0.890 (0.516 to 1.534) 0.674 0.740
>65 —_— 1.155 (0.279 to 4.779) 0.842
Gender Female e 3.988 (1.343 to 11.838) 0.013 0.021
Male —_— 0.766 (0.440 to 1.334) 0.347
BMI Q1 —e——— 0.327 (0.079 to 1.350) 0.122 0.324
Q2 -—0 1.962 (0.508 to 7.580) 0.328
Q3 —_—— 1.129 (0.419 to 3.047) 0.810
Q4 —_—— 0.942 (0.433 to 2.049) 0.879
Alcohol No —— 0.865 (0.460 to 1.626) 0.652 0.896
Yes ——> 0.927 (0.399 to 2.157) 0.861
Smoke No ———— 0.886 (0.440 to 1.787) 0.736 0.966
Yes »—o—« 0.867 (0.417 to 1.804) 0.703
Chronic Kidney Disease No '—-0—> 1.137 (0.432 to 2.992) 0.795 0.091
Yes ro— | 0.410 (0.223 to 0.753) 0.004
Acute Kidney Injury No —o— 0.878 (0.520 to 1.482) 0.626 0.544
Yes +————— 0.444 (0.050 to 3.936) 0.466
Nephrotic Syndrome No — —'—i 0.700 (0.405 to 1.209) 0.201 0.874
Yes — —> 0.606 (0.112 to 3.271) 0.560
Glomerulonephritis No — —r—i 0.775 (0.449 to 1.338) 0.360 0.488
Yes ~+—o——t— 0.438 (0.094 to 2.041) 0.293
eGFR >=60 [ —— 1.090 (0.363 to 3.273) 0.877 0.206
<60 -— 0.473 (0.261 to 0.855) 0.013
0 1 2
FIGURE 6

Forest plot of subgroup analysis of the effect of serum magnesium on gout
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FIGURE 7
Flowchart of NHANES data sample screening.

deficiency has been associated with the pathogenesis of chronic
diseases, including metabolic disorders (20). Both gout and HUA arise
from impaired purine metabolism, and emerging evidence highlights
magnesium’s regulatory role in this context. A cross-sectional study in
5,168 Chinese participants has revealed an inverse association between
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dietary magnesium intake and HUA risk in males, while this effect was
not observed in females (21). Similarly, NHANES data have
corroborated the correlation between higher magnesium and lower
HUA risk (22), whereas magnesium deficiency has shown positive
associations with HUA prevalence (23) and gout incidence (24). In
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TABLE 3 All information of NHANES database in this study.

Characteristics ‘ Overall ‘ \[¢) ‘ Yes ‘ P-value
N 13,902 13,275 627
Dietary intake 0.295 0.274
0.294 (0.135) <0.001
magnesium (0.136) (0.126)
48.537 62.952
Age 49.187 (17.713) <0.001
(17.645) (12.892)
29.161 31.889
BMI 29.284 (7.051) <0.001
(7.004) (7.519)
Gender (%)
6,832 209
Female 7,041 (50.6%) <0.001
(51.5%) (33.3%)
6,443 418
Male 6,861 (49.4%)
(48.5%) (66.7%)
Alcohol (%)
3,795 159
No 3,954 (28.4%) 0.088
(28.6%) (25.4%)
9,480 468
Yes 9,948 (71.6%)
(71.4%) (74.6%)
Smoke (%)
7,585 270
No 7,855 (56.5%) <0.001
(57.1%) (43.1%)
5,690 357
Yes 6,047 (43.5%)
(42.9%) (56.9%)
High Blood Pressure (%)
8,602
No 8,764 (63.0) 162 (25.8) <0.001
(64.8)
4,673
Yes 5,138 (37.0) 465 (74.2)
(35.2)
High Cholesterol Level (%)
8,734
No 8,989 (64.7) 255 (40.7) <0.001
(65.8)
4,541
Yes 4,913 (35.3) 372 (59.3)
(34.2)
Diabetes (%)
11,283
No 11,672 (84.0) 389 (62.0) <0.001
(85.0)
1992
Yes 2,230 (16.0) 238 (38.0)
(15.0)

The bold values indicate statistical significance (P < 0.05).

addition, other studies have reported that high magnesium intake was
linearly correlated with all-cause mortality in patients with gout and
HUA, and demonstrated an association between higher magnesium
intake and lower risk of all-cause mortality (25).

4.2 Potential biological mechanisms linking
magnesium and gout risk

The biological mechanism between magnesium and gout risk has
not been fully elucidated, but it may be related to the inflammatory
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process. Emerging evidence indicates a significant inverse correlation
between serum magnesium levels and high-sensitivity C-reactive
protein (hs-CRP) concentrations (26, 27), and hypomagnesemia is
independently associated with elevated CRP (28). Notably, magnesium
supplementation has been shown to effectively attenuate CRP levels
(29), thus suggesting a potential modulatory role of magnesium in
inflammatory processes. Additionally, elevated CRP levels correlate
with elevated all-cause and cancer-specific mortality in patients with
gout (30). Studies have found that CRP is closely related to NLRP3.
Activation of NLRP3 inflammasomes plays a critical role in gout
pathogenesis (31, 32). Beyond enhancing NLRP3 expression through
FcyRs/NF-kB signaling (33), CRP promotes diabetic nephropathy
progression through Smad3-mediated activation of NLRP3
inflammasomes (34). Furthermore, magnesium may influence gout
risk by modulating uric acid production pathways. As an essential
cofactor for DNA and RNA synthesis, magnesium plays a critical role
in maintaining nucleic acid integrity (35). Research suggests that
magnesium deficiency can compromise DNA stability and repair
efficiency, potentially leading to aberrant purine nucleotide
degradation and consequently increasing endogenous uric acid
generation (23, 36). In summary, magnesium might play a protective
role in gout by modulating inflammation and uric acid levels. Its
precise mechanisms require further experimental validation.
We hypothesize that moderately increasing dietary magnesium intake
may help control inflammatory responses and decrease uric acid
levels, thereby potentially reducing the risk of gout.

4.3 Influences of subgroup factors on the
magnesium-gout association

Uric acid is excreted primarily via the kidneys. Renal dysfunction,
as occurs in CKD, AKI, NS, and GN, impairs uric acid excretion
capacity, thereby increasing the risk of gout development (37, 38). Our
clinical data further demonstrated that serum magnesium might
protect against gout risk in patients with CKD. Although gout shows
a male predominance (39), our data unexpectedly indicated an
association between higher serum magnesium and greater gout risk
in females, a finding potentially attributable to limited female cases in
our study (Control: 1805; Case: 10). Therefore, sex-specific magnesium
homeostasis mechanisms require further investigation. Our study
additionally identified significant interactions of magnesium intake
with alcohol consumption, hyperlipidemia, and diabetes status, in
agreement with previous reports (40-44). In summary, our findings
underscore the roles of lifestyle factors, diverse metabolic disorders,
and renal diseases in the pathogenesis of gout. We suggest
implementing a comprehensive multifactorial management strategy
in clinical practice to more effectively prevent and manage gout.

4 .4 Significance and assessment of dietary
magnesium intake in patients with gout

According to the Chinese dietary reference intakes, the

recommended daily magnesium intake is 330 mg for adults, and an
additional 40 mg is required for pregnant and lactating people. These
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TABLE 4 The logistic regression model of exposure factor in NHANES database.

Dietary Gout Model 1 Model 2 Model 3
msium  Yes No OR 95%CI 95%Cl P- 95%Cl 95%Cl  P- 95%Cl 95%CI  P-
low up value low up value low up value
Q1:<0.203 g 190 3,297 Reference
Q2:0.203 to
w0 161 | 3,314 | 0987 0772 1.261 0915 | 0920 0715 1.185 0523 0918 0711 1.185 0.514
Q3:0272to
0358 g 146 3,324 0892 0.640 1.243 0504 | 0797  0.563 1.129 0209  0.820  0.580 1.159 0.269
Q4:>0358 g 130 | 3340 | 0788  0.628 0.990 0.046 | 0.685 0521 0.899 0.009 | 0738  0.550 0.989 0.049
The bold values indicate statistical significance (P < 0.05).
Variable Group OR (95% Cl) pvalue Interaction_pvalue
Age <=65 —e——— 0.658 (0.260 to 1.667) 0.382 0.366
>65 l—.—i 0.288 (0.075 to 1.107) 0.077
Gender Female @ ' 0.028 (0.005 to 0.156) <0.001 0.022
Male Ho— , 0.251 (0.116 to 0.546) 0.001
Alcohol No i 0.019 (0.003 to 0.120) <0.001 0.002
Yes — —;—' 0.513 (0.239 to 1.105) 0.095
Smoke No — —'—' 0.519 (0.157 to 1.720) 0.289 0.587
Yes [ —I 0.293 (0.086 to 1.004) 0.057
BMI Q1 = ——' 0.239 (0.037 to 1.532) 0.138 0.887
Q2 +—o———  0.597 (0.086 to 4.162) 0.605
Q3 — —! 0.379 (0.083 to 1.728) 0.216
Q4 —o————  0.670 (0.148 to 3.035) 0.606
High Blood Pressure No l—.—'—> 0.390 (0.070 to 2.174) 0.289 0.669
Yes '_.._' 0.612 (0.261 to 1.438) 0.266
High Cholesterol Level No et |—> 0.948 (0.305 to 2.948) 0.926 0.045
Yes = 0.133 (0.041 to 0.431) 0.002
Diabetes No — :—' 0.811 (0.380 to 1.730) 0.591 0.001
Yes - 0.047 (0.010 to 0.222) <0.001
I I [
0 1 2
FIGURE 8
Forest plot of subgroup analysis of the effect of dietary magnesium intake on gout.

values closely align with the U.S. recommended dietary allowance of
310-420 mg/day (45). Currently, the dietary magnesium intake in
both Western and Eastern countries is substantially below
recommended daily levels and indicates widespread deficiency (46,
47). Therefore, increased dietary intake of magnesium-rich foods,
primarily leafy green vegetables (e.g., spinach), fruits (e.g., bananas),
whole grains (e.g., brown rice and oats), and nuts (e.g., cashews and
almonds), is reccommended (48). Furthermore, appropriate cooking
methods should be used to minimize magnesium loss during food
preparation (46). Additionally, under physician supervision,
magnesium supplementation (e.g., magnesium sulfate or magnesium
chloride) might be considered to address potential deficiencies (49,
50). From a translational perspective, this study, based on NHANES
data, revealed a significant association between a dietary magnesium
intake exceeding 0.27 g and diminished gout risk (OR <1), thus
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providing empirical support for defining intervention thresholds. Our
findings suggested that increasing dietary magnesium intake might
be associated with a reduced risk of gout. This finding requires further
validation through subsequent clinical trials or prospective
cohort studies.

4.5 Limitations

Herein, we not only conducted MR analysis on European cohort
data but also integrated Chinese clinical data and U.S. NHANES data,
thereby enhancing the generalizability of the findings. However, several
limitations should be acknowledged, as follows. (1) Lack of assessment
of magnesium storage status: the MR methods and clinical data used
in this study reflected only circulating magnesium levels but not
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FIGURE 9
The curve of OR with dietary magnesium intake and the distribution histogram.

storage status. (2) Inclusion bias of study participants: although the
sample size exceeded the epidemiological calculation thresholds, the
underrepresentation of female patients with gout might potentially
introduce bias. Additionally, because all collected clinical data came
from patients with kidney disease, a control group of healthy
individuals was lacking. Moreover, because of data collection and
organization constraints, the temporal baseline in the Chinese clinical
data differed from that in NHANES. (3) Observational analysis error:
Dietary magnesium intake data are derived from the 24-h recall
method, and inherent measurement errors in this method may affect
the accuracy of the assessment. In the NHANES data, gout outcomes
rely on patient self-reporting, and such misclassification may introduce
bias into the observed associations. Residual confounding is likely
present in Chinese clinical data, such as drug use (diuretics, allopurinol,
colchicine, steroids, PPIs, etc.), socioeconomic status, and total energy
and protein intake. (4) Multiple Testing Issue: To comprehensively
explore potential associations between exposure to 15 nutrients and
gout, this study did not perform multiple testing correction during the
preliminary analysis phase. While this strategy aids in identifying
potential factors, it correspondingly increases the risk of false positive
results. (5) Lack of intervention experiments: a prior study has reported
a positive correlation between magnesium deficiency and gout risk in
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U.S. adults, but dietary magnesium intake did not modify this
association (24). In Model 3 of NHANES in this study, dietary
magnesium intake had a potential protective effect on gout
(p = 0.049), which should be interpreted with caution. Therefore, the
efficacy of magnesium supplementation requires further validation
through randomized controlled trials. (6) Lack of mechanistic
validation: This study relied on a literature-based synthesis to
formulate hypotheses regarding the potential mechanisms of
magnesium in gout pathophysiology. However, the specific
mechanisms will require further experimental verification. In
summary, despite this study’s advancements in elucidating the
relationship between magnesium and gout, further exploration
remains necessary to address existing limitations. Future research
should prioritize expanding the study sample, incorporating healthy
individuals, and providing more robust experimental evidence to
strengthen the findings.

5 Conclusion

Our study integrated Mendelian randomization analysis,
clinical data validation, and dietary intake assessment across
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diverse populations. The results indicate that higher magnesium
intake may reduce the risk of gout. These findings support the
development of gout prevention strategies and dietary
interventions. Future randomized controlled trials are required to
elucidate the underlying mechanisms linking magnesium intake

to gout.
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