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pediatric obesity-associated 
asthma: insights from the SOAP 
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Background and aims: Evidence suggests that diet influences the 
pathophysiology of asthma, but its role in pediatric obesity-related asthma is 
unclear. This case–control study aimed to explore the relationships between 
nutrient intake and the pathophysiology of asthma in children who are 
overweight or obese.
Methods: Participants of the Sphingolipids in Childhood Asthma and Obesity 
study (100 children aged 6–17 years) were divided into four groups: normal 
weight with asthma (NW-A, n  = 16); overweight or obese with asthma (OO-
A, n = 26); normal weight (NW, n = 33); overweight or obese (OO, n  = 25). 
Dietary intake was recorded via 3-day food diaries. Diet quantity and quality 
were assessed using UK Government Dietary Recommendations and dietary 
inflammatory index (DII) scores. Nutrient intake was compared across groups, 
and regression analyses were applied to identify the top contributors to asthma 
and obesity-associated asthma. Correlation analyses were used to assess the 
associations between the most important nutrients and clinical parameters.
Results: Fatty acids (FAs), including saturated, monounsaturated, and 
polyunsaturated FAs, were identified as the most significant contributors to 
asthma and obesity-associated asthma, followed by several vitamins, fibers, 
and sugars. The relationships between nutrients and clinical parameters 
showed different patterns in the NW-A and OO-A groups. In NW-A, intakes of 
saturated, monounsaturated, and polyunsaturated FAs, including α-linolenic 
acid (PUFA 18:3, n-3), were positively associated with vital capacity and total 
lung capacity and inversely related to plasma levels of interleukin (IL)-10; while 
soluble fiber intake was negatively correlated with lung clearance index. In OO-
A, FAs, including linoleic acid (PUFA 18:2, n-6) and α-linolenic acid, and vitamin 
E isoforms were positively associated with vital capacity, total lung capacity, 
inspiratory capacity, and forced vital capacity, and negatively associated with 
lung clearance index and forced expiratory volume in 1 s. Multiple saturated FA 
intakes were negatively associated with levels of IL-10, IL-17A, and IL-2.
Conclusion: This study suggests that certain dietary components, such as FAs 
and fiber, may have different effects on asthma in overweight or obese children 
compared to normal weight children. Thus, tailored dietary modifications, 
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guided by body mass index, could improve asthma symptoms. Randomized 
controlled trials are needed to confirm these associations and guide dietary 
recommendations.
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1 Introduction

Asthma and obesity are among the most prevalent chronic 
diseases affecting children and adolescents worldwide. In the State of 
Qatar, asthma affects 35% of school-aged children (1), nearly half of 
whom are classified as overweight or obese (2).

Excess weight and obesity significantly elevate the risk of developing 
asthma in childhood (3, 4); meta-analyses studying this association have 
reported a 20% increase in asthma risk in overweight children (5) and 
up to a two-fold increase in those with obesity (6). Obesity is also a 
disease modifier of asthma (7) and has been linked to reduced asthma 
control, an elevated risk of exacerbations (8), increased severity and 
morbidity (4), and a lower quality of life (7). The relationship between 
asthma and obesity is not fully understood but may involve mechanisms 
such as obesity-mediated inflammation, the immunomodulatory effects 
of obesity, gene regulation, metabolic dysregulation, a sedentary lifestyle, 
and macro- and micronutrient intakes (6, 9).

Diet plays a critical role in the prevention, development, and 
management of obesity. The rise in childhood obesity is closely 
linked to the increasing prevalence of Western dietary patterns (10), 
which are characterized by the high consumption of processed and 
energy-dense foods, saturated fat, and sugar and the low 
consumption of fruits, vegetables, and whole grains. These types of 
diets promote excessive caloric intake and the suboptimal intake of 
vital nutrients.

Nutrition has been suggested to modulate the risk, severity, and 
presentation of allergic diseases including asthma, eczema, and 
rhinitis (11–23). Indeed, nutrients such as vitamin D, n-3 
polyunsaturated fatty acids (PUFAs), and antioxidants have anti-
inflammatory and immunoregulatory effects in asthma (24–26). 
Moreover, evidence suggests that adherence to dietary patterns, such 
as the Mediterranean diet, may reduce the risk of asthma and its 
associated symptoms in children (4, 27, 28). Conversely, diets high in 
saturated fat, such as Western diets, have been suggested to increase 
the risk and severity of asthma (24, 28, 29). Imbalances in 
macronutrient intake have also been suggested to negatively impact 
asthma severity (24, 30–32).

Despite these advances, the role of nutrition in pediatric 
obesity-related asthma remains poorly understood. We  thus 
conducted this study to explore the relationships between dietary 
intake and the pathophysiological features of obesity-related 
asthma in children in Qatar. Specifically, we focused on identifying 
dietary components associated with pulmonary function and 
inflammatory biomarkers in children with asthma, stratified by 
BMI, and on determining whether the influence of specific 
nutrients on asthma outcomes differs by obesity status. This study 
was conducted as part of the Sphingolipids in Childhood Asthma 
and Obesity (SOAP) project, a cross-sectional study investigating 
the role of altered sphingolipid metabolism in children with asthma 
and obesity (33).

2 Methods

2.1 Study population and clinical 
parameters

This study included 100 children, aged 6 to 17 years, who were 
selected from the SOAP study cohort based on the adequacy and 
availability of dietary intake data. Details regarding the characteristics of 
the SOAP cohort, original sample size, inclusion and exclusion criteria, 
recruitment procedures, and data collection methods can be found in the 
SOAP study protocol (33). The study was approved by the Sidra Medicine 
IRB committee (IRB No. 1500770, 7 October 2020), and all participants 
and their parents provided their written consent for data to be included 
in the study. Participants were allocated to one of four groups based on 
the presence of asthma and their body mass index (BMI) z-score for age 
and sex: normal weight with asthma group (NW-A), overweight or 
obesity with asthma group (OO-A), normal weight group (NW), and 
overweight or obesity group (OO). According to the WHO growth 
standards for children aged 5–19 years, overweight was defined as a 
BMI-for-age z-score greater than +1 standard deviation (SD), and 
obesity was defined as a z-score greater than +2 SD, adjusted for sex. The 
methods used for diagnosing asthma are described in the SOAP study 
protocol (33). A variety of clinical and anthropometric data were 
included in our analyses: BMI; fat mass; fat-free mass; total body water; 
basal metabolic rate; circumferences of the hip, waist, neck, and chest; 
allergies; medical conditions; serum levels of albumin, thyroid 
stimulating hormone, free thyroxine (free T4), vitamin D, C-peptide, 
CO2, and cytokines; full blood count; lipid profile; heart rate; respiratory 
rate; and lung function parameters. Data on plasma cytokine levels, 
including IL-2, IL-5, IL-10, IL-13, IL-17A, IL-22, IL-33, IFN-γ, TNF-α, 
and leptin, were obtained from a previous study (34).

Pulmonary function was assessed using spirometry parameters, 
including forced vital capacity (FVC), forced expiratory volume in 1 s 
(FEV1), FEV1/FVC ratio, and forced mid-expiratory flow (FEF 25–75%), 
and plethysmography parameters, including airway resistance (Raw), 
specific airway resistance (sRaw), vital capacity (VC), inspiratory 
capacity (IC), functional residual capacity by plethysmography 
(FRCpleth), expiratory reserve volume (ERV), total lung capacity (TLC), 
residual volume (RV), and RV/TLC ratio. Fractional exhaled nitric oxide 
(FeNO) and lung clearance index (LCI) were also measured. Spirometry 
and plethysmography parameters were expressed as percentages of the 
predicted values.

2.2 Dietary assessment

The participants’ dietary intake was captured using 3-day food 
diaries, completed either by the participants themselves or by 
their guardians, depending on the participant’s age. Dietary data 
were input into Nutritionist Pro™ nutrition analysis software 
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(Axxya Systems), and the 3-day diets were comprehensively 
analyzed for total energy and macro- and micronutrient contents, 
which were then averaged across the 3 days. The dietary 
inflammatory index (DII) was calculated based on each 
participant’s average daily nutrient intake to evaluate the quality 
of their diet (35, 36). Participants’ average nutrient intake was also 
evaluated against the UK Government Dietary Recommendations 
for energy, macronutrients, and fiber (37).

2.3 Statistical analyses

Normality of the data was tested using the Shapiro–Wilk test. 
Normally distributed clinical variables and nutrients were 
compared across the four groups using one-way analysis of 
variance (ANOVA), followed by Tukey’s honestly significant 
difference test for multiple comparisons. Clinical variables and 
nutrients that did not follow a normal distribution were compared 
across the groups via the Kruskal–Wallis test, followed by Dunn’s 
test for multiple comparisons with adjustments of p-values by 
Bonferroni correction. Categorical clinical variables were 
compared across the four groups via the chi-square test or Fisher’s 
exact test. The Mann–Whitney U test and the t-test were used to 
compare the intake of key nutrients between asthmatic groups. 
Ridge regression was used to identify the top nutrients associated 
with each phenotype. Nutrients with a Ridge coefficient larger 
than Q25 of the coefficients and an AUC > 0.5 were selected for 
correlation analyses. All variables were rank transformed to 
normalize the data before performing Pearson’s partial correlation 
analysis of nutrient intake levels and clinical variables, while 
controlling for sex. A two-sided p-value < 0.05 indicated statistical 
significance. Statistical analyses were performed using IBM SPSS 
v. 29, and GraphPad Prism 10.2.3. R version 4.4.0 was used for the 
Ridge regression (glmnet v4.1.8) and for plotting 
(ComplexHeatmap v2.18.0, ggplot2 v3.5.0).

3 Results

3.1 Study population and clinical 
characteristics

A sub-cohort from the SOAP study was selected for analysis 
based on the availability of dietary data. A total of 100 children 
were divided into four groups: NW-A (n = 16); OO-A (n = 26); 
NW (n = 33); and OO (n = 25). Demographic and clinical 
variables were compared across the four groups (Table 1). The 
analysis revealed a significantly higher percentage of males in 
NW-A and OO-A than OO. In accordance with the SOAP study 
inclusion criteria (17), BMI z-scores were significantly higher in 
OO-A and OO than in NW-A and NW. Among the pulmonary 
function parameters, the FEV1/FVC and RV/TLC ratios were 
lower in OO-A, and the sRaw was higher in NW-A. As expected, 
rhinitis, eczema, and other allergies were more prevalent in NW-A 
and OO-A than the control groups. Cardiometabolic parameters 
differed between normal weight and overweight or obese 
participants, with significantly higher systolic blood pressure and 
heart rate measured in OO-A and OO, and a significantly higher 
respiratory rate in NW-A (Table 1).

3.2 Nutrient intake and diet quality differ in 
asthmatic children according to BMI

The intake of several nutrients, including added sugar, fatty acids 
(FAs), minerals, vitamins, and bioactive compounds, differed 
significantly across the four groups (Figure 1), with specific intergroup 
differences identified through post-hoc pairwise comparisons 
(Supplementary Table 1).

Added sugar intake was significantly different among the groups, 
with NW-A exhibiting the highest intake (Figure 1a). Among the FAs, the 
intakes of stearidonic acid (SDA; 18:4, n-3), docosapentaenoic acid (DPA; 
22:5, n-3), and arachidonic acid (ARA; 20:4, n-6) were significantly 
different among groups, with NW-A showing the lowest intake 
(Figures 1b–d). No significant differences in the n-6/n-3 PUFA ratio were 
observed. Although not statistically significant, NW-A presented the 
highest n-6/n-3 ratio, with a median of 8.96 (IQR 8.16–10.22; Figure 1e).

The intakes of total folate, folic acid, and DFE were significantly 
lower in NW-A, whereas vitamin E was significantly higher in NW-A 
(Figures 1f–h). Other micronutrients showed different intakes among 
the four groups, including fluoride, selenium, glutamic acid, and 
bioactive compounds (β-sitosterol, isoflavones, betaine; Figures 1i–o). 
The detailed results of the pairwise group comparisons are available in 
Supplementary Table 1.

In summary, we observed lower nutrient intake in NW-A, except for 
added sugar and vitamin E, whereas children in OO-A showed a dietary 
intake similar to their non-asthmatic counterparts.

Due to the lower intake of many nutrients in NW-A compared to 
OO-A, we conducted a quantitative analysis to assess the adequacy of 
dietary intake in both groups when compared to the UK Government 
Dietary Recommendations for daily energy, macronutrient, and fiber 
intake (37). Average energy, macronutrient, and fiber intake per group 
were expressed as percentages of reference values and compared between 
NW-A and OO-A via the Mann–Whitney U test or t-test. No significant 
differences were found between the two groups in terms of energy or any 
of the nutrients. However, both groups exceeded the recommended 
average intake for protein by approximately 93%. Furthermore, NW-A 
and OO-A, respectively met only 73 and 63% of the recommended 
minimum carbohydrate intake and just 41 and 45% of the recommended 
minimum fiber intake (Figure 2a). This analysis was also performed for 
NW and OO and yielded very similar results to the asthmatic groups 
(Supplementary Figure 1). An assessment of diet quality using the DII 
indicated a high dietary inflammatory potential in all groups. 
Comparisons of average DII scores revealed no significant differences 
between groups; however, NW-A presented the highest DII score 
(Figure 2b; Supplementary Table 1). Although differences among the 
groups were not significant, diet quality showed negative trends in 
asthmatic patients.

Overall, single nutrients were consumed differently in NW-A and 
OO-A, with NW-A children consuming lower amounts of FAs, folates, 
minerals, and bioactive compounds, in contrast to their higher intake of 
added sugar. These differences are reflected in the poorer diet quality.

3.3 Single nutrients are associated with 
pulmonary function and clinical outcomes

To investigate the impact of diet quality and single nutrient intake 
on asthma, we next conducted correlation analyses to investigate the 
associations between various measures of pulmonary function and 
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nutrient intake in the study groups. To limit the collinearity effect 
between the measured 125 nutrients, we first ran a Ridge regression 
to identify nutrients predictive of NW-A vs. OO-A, NW-A vs. NW, 
OO-A vs. OO or NW vs. OO, and used them for the following 

correlation analyses. We selected the top best-performing nutrients 
with coefficients larger than the 25th percentile (Q25) and an 
AUC > 0.5, as shown in Figure 3. A full list of the significant nutrients 
is available in Supplementary Table 2. Among them, the SDA (PUFA 

TABLE 1  Demographic and clinical characteristics of the study participants.

Variables NW-A (n = 16) OO-A (n = 26) NW (n = 33) OO (n = 25) p-value Pairwise comparison 
(p-value)

Sex, n (%) NW-A vs. OO (p = 0.033)

Female 3 (18.8%) 4 (15.4%) 14 (42.5%) 13 (52%) 0.0161 OO-A vs. NW (p = 0.025)

Male 13 (81.3%) 22 (84.6%) 19 (57.6%) 12 (48%) OO-A vs. OO (p = 0.006)

Age (years)a 9.8 (8.5–13.4) 9.3 (7.7–12.6) 10.7 (8.56–13.7) 12.8 (9.4–14.8) ns# ns

BMI z-score a −0.36 (−1.06–0.38) 1.98 (1.4–2.33) −0.18 (−0.99–0.36) 1.96 (1.67–2.38) <0.001# NW-A vs. OO-A (p = 0.000)

NW-A vs. OO (p = 0.000)

OO-A vs. NW (p = 0.000)

NW vs. OO (p = 0.000)

FEV1 pp. (%)b 94.1 (11.5) 93.3 (11.6) 94.1 (11.5) 100.1 (17.8) ns* ns

FEV1/FVCa 92 (80–108) 92.5 (74–10) 101.5 (83–110) 99 (51–112) 0.003# OO-A vs. NW (p = 0.003)

FEF 25–75% pp. 

(%)b

77.7 (24.7) 74.0 (21.3) 85.4 (24.2) 89.7 (27.6) ns* ns

Raw pp. (%)a 171.8 (106.3–340.0) 176.85 (83.2–299.6) 146.5 (80–214.8) 152.5 (82.6–341.6) ns# ns

sRaw pp. (%)a 237.9 (173.9–342.7) 189.65 (106.2–388.6) 177.2 (85.3–311.0) 172.2 (118.5–307.0) 0.046# NW-A vs. NW (p = 0.046)

VC pp. (%) b 98.9 (10.0) 97.6 (10.3) 88.4 (12.5) 101.0 (13.2) p = 0.001* OO-A vs. NW (p = 0.033)

NW vs. OO (p = 0.001)

IC pp. (%) b 89.4 (27.9) 96.9 (20.9) 78.6 (19.0) 88.9 (26.1) p = 0.037* OO-A vs. NW (p = 0.023)

TLC pp. (%) a 102.6 (86.1–128.6) 98.0 (76.5–115.4) 89.5 (71.0–133.6) 94.3 (78.4–135.0) ns# ns

RV/TLC b 107.0 (25.4) 96.1 (21.3) 114.2 (21.8) 80.0 (23.9) <0.001* NW-A vs. OO (p = 0.009)

OO-A vs. NW (p = 0.025)

NW vs. OO (p < 0.001)

FeNO (ppb)a 34.6 (5–181.9) 28.6 (5.8–174.5) 17.3 (3.0–164.0) 21.6 (6.5–172.5) ns# ns

LCI a 6.6 (5.4–9.0) 6.9 (6.1–9.2) 6.5 (5.5–9.2) 6.7 (5.4–8.0) ns# ns

Eczema, n (%) 7 (43.8%) 5 (19.2%) 0 2 (8%) <0.0012 NW-A vs. NW (p < 0.001)

NW-A vs. OO (p = 0.018)

OO-A vs. NW (p = 0.013)

Allergies, n (%) 7 (43.8%) 4 (15.4%) 1 (3%) 2 (8%) 0.0012 NW-A vs. NW (p < 0.001)

NW-A vs. OO (p = 0.017)

Rhinitis, n (%) 5 (31.3%) 13 (50%) 1 (3%) 0 <0.0012 NW-A vs. NW (p = 0.011)

NW-A vs. OO (p = 0.006)

OO-A vs. NW (p < 0.001)

OO-A vs. OO (p < 0.001)

Systolic blood 

pressure (mm Hg)a

109.5 (96.1–114) 112.8 (106.6–118.6) 100.7 (98.7–106.3) 113 (105.3–120) <0.001# OO-A vs. NW (p = 0.001)

NW vs. OO (p < 0.001)

Diastolic blood 

pressure (mm Hg)b

66.2 (6.74) 70.2 (6.22) 66.9 (6.06) 71 (7.22) 0.031* ns

Heart rate (bpm)a 79.3 (72.9–85.3) 89.2 (81.7–102.9) 83 (74.0–90.5) 90.3 (83.3–101) 0.003# NW-A vs. OO-A (p = 0.021)

NW-A vs. OO (p = 0.047)

Respiratory rate 

(breaths/min)a

24.7 (20.2–29.2) 19.5 (18.6–26.2) 19.7 (18–22.2) 20 (18–25) 0.009# NW-A vs. NW (p = 0.005)

aMedian (IQR), bMean (SD). Continuous variables were compared across groups via ANOVA (*) or Kruskal–Wallis test (#), followed by Tukey’s honest significant difference or Bonferroni-
corrected Dunn’s  post-hoc test, respectively, according to data distribution. Categorical variables were compared via the chi-square test (1) or Fisher’s exact test (2). BMI, body mass index; 
bpm, beats per minute; breaths/min, breaths per minute; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FEV1/FVC, forced expiratory volume in 1 s/forced vital 
capacity ratio; FVC, forced vital capacity; LCI, lung clearance index; ns, not significant; NW, normal weight; NW-A, normal weight with asthma; OO, overweight or obesity; OO-A, overweight 
or obesity with asthma; pp., percent predicted; Raw, airway resistance; RV, residual volume; sRaw, specific airway resistance; TLC, total lung capacity.
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18:4) and total isoflavones reached the highest AUC (0.84 and 0.88, 
respectively) and exhibited a stronger negative association with 
asthma in NW-A compared to NW (Figure 3). ARA (PUFA 20:4, n-3), 

eicosapentaenoic acid (EPA; PUFA 20:5, n-6), docosahexaenoic acid 
(DHA; PUFA 22:6, n-3), DPA (PUFA 22:5), palmitoleic acid (MUFA 
16:1), and total isoflavones showed the strongest negative predictive 

FIGURE 1

Comparisons of nutrient intakes and dietary n-6/n-3 PUFA ratio across the four groups. Box plots showing the four groups’ levels of (a) added sugar, 
(b) stearidonic acid, (c) docosapentaenoic acid, (d) arachidonic acid, (e) omega-6/omega-3 ratio, (f) total folate, (g) folic acid, (h) dietary folate 
equivalents, (i) vitamin E, (j) fluoride, (k) selenium, (l) glutamic acid, (m) β-sitosterol, (n) isoflavones, and (o) betaine. Data are presented as means and 
standard deviations for normally distributed nutrients (h,l) and medians and interquartile ranges for non-normally distributed nutrients (a–g,i–k,m–o). 
ANOVA or the Kruskal–Wallis test was used to test differences based on data distribution, followed by Tukey’s honestly significant difference or 
Bonferroni-corrected Dunn’s post-hoc test, respectively. Only nutrients with significant overall group differences (p < 0.05) are shown. *p < 0.05. ARA, 
arachidonic acid; DFE, dietary folate equivalents; DPA, docosapentaenoic acid; NW, normal weight; NW-A, normal weight with asthma; OO, 
overweight or obesity; OO-A, overweight or obesity with asthma; PUFA, polyunsaturated fatty acid; SDA, stearidonic acid.

FIGURE 2

Comparison of diet quantity and quality between study groups. Panel (a) shows energy, macronutrient, and fiber intake in NW-A and OO-A compared 
to the UK Government Dietary Recommendations. Nutrient reference values represent either 1average, 2maximum, or 3minimum recommended intake. 
Groups were compared via the Mann–Whitney U test or t-test. Panel (b) shows the distribution of DII scores across the four groups. Data are 
presented as medians and interquartile ranges. Group comparisons were performed via the Kruskal–Wallis (KW) test. MUFA, monounsaturated fatty 
acids; NW, normal weight; NW-A, normal weight with asthma; OO, overweight or obesity; OO-A, overweight or obesity with asthma; PUFA, 
polyunsaturated fatty acids.
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scores and highest AUCs (>0.70) for obesity-associated asthma 
(NW-A vs. OO-A). Conversely, vitamin E was the strongest positive 
predictor (AUC = 0.73). Comparisons of OO-A vs. OO and NW vs. 
OO yielded weaker associations overall, with AUCs lower than 0.60 
for all nutrients (Figure 3).

We then performed correlation analyses between the selected 
nutrients from the regression analysis and the pulmonary function 
and other clinical parameters, separately. In NW-A, significant 
positive correlations were observed between VC and TLC and a range 
of SFAs, MUFAs, and PUFAs, including the α-linolenic acid (ALA; 
18:3, n-3). FEF 25–75% and the FEV1/FVC ratio showed strong 
negative correlations with ALA, available carbohydrates, tryptophan, 
niacin equivalents, and β-sitosterol, while sRaw showed positive 
correlations with these nutrients and sucrose. LCI was strongly 
negatively correlated with soluble fiber and FeNO with biotin 
(Figure 4a). The full results can be found in Supplementary Table 3.

In OO-A, significant positive correlations were seen between 
VC, TLC, IC, FVC, FEV1, and many SFAs, MUFAs, and PUFAs, 
including arachidic acid (SFA 18:2) and ALA. VC, TLC, IC, and 
FVC were also positively correlated with niacin equivalents, 
tryptophan, and vitamin E isoforms, including α-, β-, γ-, and 
δ-tocopherol. VC, IC, and FVC were positively correlated with total 
folate, total dietary fiber, and carbohydrates. Negative correlations 
were observed between LCI and arachidic acid (SFA 20:0), oleic 
acid (MUFA 18:1), total MUFAs, ALA (PUFA 18:3, n-3), and 
vitamin E (α-tocopherol). The FEF 25–75% and FEV1/FVC ratio 
were negatively correlated with protein, carbohydrate, cholesterol 
intake, and vitamin E (β- and γ-tocopherol, Figure 4b). The full 
results can be found in Supplementary Table 4. The OO-A group 
showed a higher number of associations between FA consumption 
and pulmonary function, indicating dietary fats have a stronger 
impact in obese asthmatic patients.

FIGURE 3

Ridge regression analysis of nutrient intake among the study groups. Ridge regression was performed on nutrient data, controlling for sex, in NW-A vs. 
OO-A, NW-A vs. NW, OO-A vs. OO, NW vs. OO. The image displays the most predictive nutrients among those with a coefficient larger than Q25 and 
an AUC > 0.5. MUFA, monounsaturated fatty acid; NW, normal weight; NW-A, normal weight with asthma; OO, overweight and obese; OO-A, 
overweight or obese with asthma; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.
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To further explore the associations between nutrient intake and 
other clinical outcomes in children with asthma, we  conducted 
additional correlation analyses of both NW-A and OO-A data. The 
analyses yielded different results in each group, with several nutrients 
showing correlations with C-peptide, serum vitamin D, and rhinitis. 
In NW-A specifically, high C-peptide, eosinophils, and serum vitamin 
levels were the most impactful. Serum vitamin D levels were positively 
correlated with fructose, food folate, and soluble fiber. Eosinophils 
were negatively correlated with lactose and positively with folic acid 
and total dietary fiber. High C-peptide was associated with a lower 
intake of glucose, fructose, fibers, and folic acid (Figure  5a; 
Supplementary Table 5). Fiber intake was associated with most of the 
clinical parameters in NW-A.

In OO-A, the incidence of rhinitis showed the strongest 
negative associations with the intake of theobromine and caffeine. 
Heart rate was also negatively correlated with caffeine, MUFA 
16:1, and iron, while C-peptide levels were negatively correlated 
with phytosterols and theobromine. Albumin showed the highest 
positive correlation with iron intake. Red blood cells were 
positively associated with the intake of iron, phytosterols, and 
caffeine. Serum vitamin D levels were positively correlated with 
phytosterol intake and available carbohydrates, and HDL 
cholesterol was positively correlated with lactose consumption 
(Figure  5b; Supplementary Table  6). In OO-A, associations 
between nutrients and clinical parameters were generally isolated, 

occurring with single parameters rather than showing consistent 
links across multiple parameters.

In summary, both pulmonary function and clinical outcomes 
showed strong correlations with single nutrients, mainly fatty acids, 
folic acid, sugars, and fibers, with a higher number of associations seen 
in the NW-A group.

3.4 Single nutrients are associated with 
inflammatory cytokines

Because proinflammatory diets were consumed by all groups, 
we  analyzed nutrient intake in relation to plasma inflammatory 
cytokine levels to investigate the potential downstream effects. Firstly, 
when cytokine levels were compared across groups, significant 
differences in IL-5, IL-13, IL-33, TNF-α, and leptin levels were 
revealed. NW-A, OO-A, and OO had the highest levels of all these 
cytokines, except leptin, although they were significantly higher in the 
obese groups only (Supplementary Table 7).

We then performed correlation analysis to identify the single 
nutrients associated with variations in plasma cytokine levels 
(Figure 6). In NW-A, IL-10, IL-13, IL-17A, and IFN-γ showed multiple 
significant correlations with individual nutrients, the majority of 
which were FAs. IL-10 demonstrated the strongest correlations and 
was negatively correlated with several nutrients, including dietary 

FIGURE 4

Correlations between nutrient intake and pulmonary function parameters. Pearson’s partial correlation was performed on ranked data, controlling for 
sex, in NW-A (a) and OO-A (b). *p < 0.05, **p < 0.01, ***p < 0.001. DII, dietary inflammatory index; FEF 25–75%, forced mid-expiratory flow; FeNO, 
fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FEV1/FVC, forced expiratory volume in 1 s/forced vital capacity ratio; FRCpleth, 
functional residual capacity by plethysmography; FVC, forced vital capacity; IC, inspiratory capacity; LCI, lung clearance index; MUFA, 
monounsaturated fatty acids; NW-A, normal weight with asthma; OO-A, overweight or obesity with asthma; PUFA, polyunsaturated fatty acids; SFA, 
saturated fatty acid; sRaw, specific airway resistance; TLC, total lung capacity; VC, vital capacity.
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fiber, folate (DFE), thiamin, α-tocopherol, total MUFAs, and a range 
of individual FAs: hexadecenoic acid (MUFA 16:1), oleic acid (MUFA 
18:1), gondoic acid (MUFA 20:1), erucic acid (MUFA 22:1), LA (PUFA 
18:2, n-6), ALA (PUFA 18:3, n-3), lauric acid (SFA 12:0), palmitic acid 
(SFA 16:0), stearic acid (SFA 18:0), and arachidic acid (SFA 20:0). 
Conversely, iodine intake was positively correlated with IL-10 levels. 
Levels of IL-13 were negatively correlated with several individual SFAs 
and MUFAs, LA, and α-tocopherol, but positively correlated with 
vitamin D intake. Similarly, IL-17A showed a positive correlation with 
vitamin D intake and negative correlations with multiple SFAs and 
MUFAs, total PUFAs, and LA. IFN-γ was positively correlated with 
vitamin D intake and negatively correlated with a smaller subset of FAs 
than the other cytokines. TNF-α levels were negatively correlated with 
vitamin E, LA, and MUFA 22:1 intake. IL-33, IL-2, and IL-5 showed 
the lowest number of associations (Figure 6a). The full set of results 
can be found in Supplementary Table 8.

In OO-A, several nutrients showed negative correlations with both 
pro- and anti-inflammatory cytokines, with the strongest and most 
abundant correlations observed with IL-2, IL-17A, IL-10, and IL-13. 
IL-2 showed strong negative correlations with manganese, lactose, 
folates, iron, total MUFAs, trans FAs, salt, thiamin, and multiple SFAs, 
including butyric acid (SFA 4:0), myristic acid (SFA 14:0), and stearic 
acid (SFA 18:0). IL-17A was negatively correlated with manganese, 
β-sitosterol, lactose, folic acid, total folate, thiamin, iron, and butyric acid 
(SFA 4:0). Unlike in NW-A, IL-10 in OO-A was negatively correlated 
with manganese, β-sitosterol, thiamin, pantothenic acid (vitamin B5), 
zinc, total trans FAs and saturated fats, heptadecanoic acid (SFA 17:0), 
and stearic acid (SFA 18:0). IL-13 showed strong negative correlations 
with total energy, total FAs, vitamin E, galactose, and manganese 
(Figure  6b). The remaining cytokines showed a limited number of 
associations. The full results can be found in Supplementary Table 9.

Inflammatory cytokine levels, like pulmonary function and 
clinical parameters, were mainly correlated with the intake of various 

fatty acids and folates. The data indicate that different cytokines were 
associated with specific types of fatty acids, mainly MUFAs in NW-A 
and SFAs in OO-A.

Venn diagrams were used to identify nutrients that were common 
between the correlation analyses with pulmonary function parameters, 
clinical outcomes, and inflammatory biomarkers (Figures 7a,b). The 
analysis indicated that fatty acids and fibers were the nutrient groups 
consistently present across all three analyses.

4 Discussion

Nutrition can influence both the risk and management of asthma 
by modulating inflammatory and immune responses (4, 24–29). 
However, there is insufficient evidence to support specific dietary 
recommendations for pediatric asthmatic populations while 
considering the co-occurrence of obesity. Our study showed 
significant differences in the intake of various nutrients across the 
study groups, including PUFAs, added sugar, vitamins, minerals, and 
bioactive compounds. NW-A consistently exhibited the lowest intake 
of these nutrients, except for vitamin E and added sugar, which were 
highest in this group. Several nutrients, including PUFAs, folic acid, 
and bioactive compounds, have been previously linked to beneficial 
effects on asthma risk and symptoms (15, 38–42). Beyond respiratory 
outcomes, PUFAs are widely recognized for their anti-inflammatory, 
cardioprotective, and metabolic benefits (43, 44). On the other hand, 
added sugars have been suggested to exacerbate airway inflammation 
(45, 46). Our dietary quantitative analysis also revealed an excessive 
intake of protein and an inadequate intake of MUFAs, PUFAs, and 
fiber in both asthmatic groups.

The intake of FAs showed dissimilarities among our cohorts and 
was strongly associated with clinical parameters related to asthma 
and obesity. In alignment with our findings, studies have shown that 

FIGURE 5

Correlations between nutrient intake and clinical outcomes. Pearson’s partial correlation was performed on ranked data, controlling for sex, in NW-A 
(a) and OO-A (b). *p < 0.05, **p < 0.01, ***p < 0.001. DII, dietary inflammatory index; HDL, high density lipoprotein; MUFA, monounsaturated fatty acid; 
NW-A, normal weight with asthma; OO-A, overweight or obesity with asthma; RBC, red blood cell; SFA, saturated fatty acid; TSH, thyroid stimulating 
hormone.
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FIGURE 6

Correlations between nutrient intake and plasma cytokine levels. Pearson’s partial correlation was performed on ranked data, controlling for sex, in 
NW-A (a) and OO-A (b). *p < 0.05, **p < 0.01, ***p < 0.001. DII, dietary inflammatory index; DFE, dietary folate equivalents; IFN, interferon; IL, 
interleukin; MUFA, monounsaturated fatty acids; NW-A, normal weight with asthma; OO-A, overweight or obesity with asthma; PUFA, polyunsaturated 
fatty acids; SFA, saturated fatty acid; TNF, tumor necrosis factor.

FIGURE 7

Venn diagrams showing the overlap of significant nutrients identified in the correlation analyses with pulmonary function parameters, clinical 
outcomes, and inflammatory biomarkers, in NW-A (a) and OO-A (b). Labels within the circles indicate common elements such as ‘sucrose’, ‘soluble 
fiber’, and ‘trans fat’. DII, dietary inflammatory index; MUFA, monounsaturated fatty acid/s; NW-A, normal weight with asthma; OO-A, overweight or 
obesity with asthma; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.
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patients with severe asthma tend to consume more dietary fat than 
their healthy counterparts (47, 48). Higher fat intake is related to 
increased airway responsiveness and inflammation, and poorer lung 
function (24, 48, 49). In a randomized controlled trial, the 
consumption of a high-fat meal resulted in a significant increase in 
plasma levels of total FAs, SFAs, MUFAs, and PUFAs, which were 
positively associated with levels of neutrophils and other 
inflammatory markers in sputum and negatively associated with 
FVC, FEV1, and the FEV1/FVC ratio of patients with asthma (50). 
Significant associations were observed between certain FAs, 
pulmonary function, and inflammation in the OO-A group. These 
findings suggest that dietary interventions specifically targeting FA 
intake may enhance clinical outcomes in obese patients with asthma. 
Additional research and clinical trials are necessary to validate 
this hypothesis.

To investigate the relationships between diet and inflammation 
in asthma, we assessed the inflammatory potential of the children’s 
diets and examined the associations between inflammatory 
biomarkers and individual nutrients. The DII analysis revealed 
proinflammatory dietary profiles in all groups, with NW-A showing 
the greatest inclination toward a proinflammatory diet, though 
significance was not reached. Recent studies reported a strong 
association between higher DII scores and the risk and burden of 
asthma (35, 51–54). Higher DII scores have also been associated 
with increased systemic inflammation and reduced lung function, 
including lower FVC, FEV1, mid-expiratory flow rate 25 to 75%, 
and PEF (35, 52, 54, 55). We found similar associations between the 
DII and lung function parameters, including VC, IC, FVC, and 
FEV1, but only in OO-A, implying that BMI is a key factor in the 
pathophysiology of asthma. NW-A had the highest DII score, 
whereas OO-A showed higher levels of leptin, an inflammatory 
cytokine, which is elevated in obesity (56) and plays an important 
role in respiratory diseases, including asthma (57). Current 
literature and our findings indicate that using the DII alongside 
conventional inflammatory biomarkers can serve as a reliable tool 
for assessing inflammation in patients at diagnosis. In addition, 
dietary improvements may help reduce symptoms, particularly in 
obese patients affected with asthma.

When we tested for nutrients associated with proinflammatory 
cytokines, FAs showed the most prominent negative associations with 
IL-2, IL-10, IL-13, and IL-17A, which play key roles in the 
inflammatory processes underlying asthma. Previous studies have 
shown the effects of FAs in modulating these cytokines. For instance, 
IL-2 promotes T cell proliferation and modulates cytokine production 
(58). An animal study found that a higher dietary content of SFAs, 
n-6 PUFAs, and n-3 PUFAs reduced IL-2 production in a dose-
dependent manner, with SFAs exhibiting the weakest effects and n-3 
PUFAs exhibiting the strongest effects (59). IL-13 is a key driver of 
Th2-mediated asthma, and it promotes airway hyperresponsiveness, 
mucus overproduction, and eosinophilic inflammation, making it a 
major contributor to airway remodeling and asthma severity (60). 
Docosahexaenoic acid (DHA; 22:6, n-3) has been shown to inhibit 
IL-13 promoter activation and IL-13 expression in mice (61). IL-17A, 
primarily associated with neutrophilic inflammation, is implicated in 
severe and steroid-resistant asthma; it enhances proinflammatory 
mediator production and works with IL-13 to amplify airway 
inflammation (60). Supplementation with the n-3 PUFAs DHA and 
EPA (20:5, n-3) in asthmatic children was reported to result in 

reduced plasma levels of IL-17A and TNF-α (62). In NW-A, 
we observed consistent negative associations between MUFA and 
PUFA intake and several proinflammatory cytokines. The 
mechanisms by which PUFAs and their metabolites influence 
inflammation remain unclear, though they are thought to modulate 
inflammatory processes by regulating signal transduction and 
cytokine gene expression (63, 64). Evidence has shown that 
metabolites of n-3 PUFAs can inhibit proinflammatory cytokine 
secretion by T cells (61, 65). These studies and others have indicated 
that individual FAs have distinct effects. We also found that MUFAs 
were primarily associated with cytokines in NW-A, while SFAs were 
linked to these markers in OO-A. Consequently, differences in 
dietary FAs may account for the contrasting inflammatory profiles 
observed between NW-A and OO-A, further supporting the role of 
dietary changes as a potential intervention for improving clinical 
outcomes in obesity-associated asthma.

We found IL-10 levels were inversely correlated with SFA, MUFA, 
and PUFA intake in NW-A and with trans FA intake in OO-A. IL-10, 
an immunosuppressive cytokine that inhibits leukocyte function and 
downregulates proinflammatory cytokine production (66–68), is 
critical for resolving inflammation in the lungs (69). IL-10 gene 
expression was previously reported to be  reduced in people with 
asthma (68, 70, 71). Interestingly, a higher intake of PUFAs is believed 
to reduce the expression of IL-10 (63, 72). Similarly, SFAs have been 
shown to decrease IL-10 production in murine adipocytes (73). 
Dietary FAs act through diverse biological pathways and may affect 
IL-10 levels in complex and nuanced ways. Rather than indicating a 
direct suppressive effect on IL-10, the inverse associations observed 
between IL-10 levels and the intake of unsaturated FAs may instead 
reflect a shared functional pathway. As described earlier, a higher 
consumption of nutrients such as n-3 PUFAs may be associated with 
reduced proinflammatory signaling and thereby diminished 
IL-10 expression.

The beneficial effects of FA intake in reducing inflammation 
may also contribute to improved lung function. In fact, 
we observed multiple positive correlations between SFA, MUFA, 
and PUFA intake and pulmonary function parameters in OO-A, 
including FVC, FEV1, VC, IC, and TLC. Similar associations 
were observed in NW-A but were much less pronounced. Several 
studies have demonstrated a relationship between FA intake and 
pulmonary function in asthma and chronic obstructive 
pulmonary disease, suggesting that dietary FAs have a key role in 
promoting respiratory health (74–76). A randomized controlled 
trial showed that supplementation with an n-3 PUFA-rich oil 
resulted in significantly increased FVC and FEV1 in participants 
with asthma, while an n-6 PUFA-rich oil did not (77). Farjadian 
et al. also reported improvements in the FEV1/FVC ratio and PEF 
in asthmatic children after supplementation with n-3 PUFAs 
(62). In a cross-sectional study, McKeever et al. did not find any 
protective effects of n-3 PUFA intake on asthma but suggested 
that n-6 PUFA intake could result in reduced FEV1 (75). Previous 
studies have also found inverse associations between the intake 
of n-3 PUFAs, particularly ALA, and levels of exhaled nitric oxide 
in patients with asthma (78). The discrepancies in these studies 
could have been due to the heterogeneity of the patients. As 
observed in our study, BMI can influence the immune response 
to PUFA intake. Another factor impacting n-3 PUFAs’ effects is 
the presence of their n-6 counterparts. Our analysis did not show 
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significant differences in the n-6/n-3 PUFA ratio among the four 
groups, but it was highest in NW-A. The balance of dietary 
PUFAs also plays a critical role in asthma. A higher n-6/n-3 ratio 
is associated with increased asthma morbidity, while a lower ratio 
may have protective effects (24, 78–81). A higher intake of n-3 
PUFAs may mitigate inflammatory effects. Therefore, 
maintaining a balanced or lower n-6/n-3 ratio, favoring n-3 
intake, may help reduce asthma severity and modulate 
inflammatory response (79).

In addition to FAs, fiber intake was also associated with 
improved lung function and clinical parameters in our study. In 
NW-A, a very strong negative correlation was observed between 
soluble fiber and LCI, and different types of fibers and C-peptide. 
In OO-A, total fiber intake was positively correlated with FVC, 
VC, IC, and FEV1. Higher fiber intake has been linked to 
improved lung function, e.g., higher FEV1, FVC, and FEV1/FVC 
ratios, in patients with asthma and other respiratory diseases (48, 
82, 83), and patients with severe asthma tend to consume less 
fiber than healthy individuals (24). In addition to these 
respiratory effects, dietary fiber contributes to reduced 
cardiometabolic risk, improved glycemic control and lower 
all-cause mortality (84, 85). Furthermore, inverse associations 
have been established between fiber intake and IL-6, TNF-α 
receptor-2, and C-reactive protein (86, 87). Dietary fiber exerts 
anti-inflammatory effects by altering the gut microbiota and 
metabolite composition (24, 88). Gut bacteria metabolize fiber 
into short-chain fatty acids, which have been shown to reduce 
airway inflammation in mice (89). Gut and lung microbiome 
dysbiosis has been implicated in the development and severity of 
asthma (90) and airway inflammation (91–93). Dietary fiber-
induced alterations in gut microbiota have been shown to 
modulate lung immunity through the gut-lung axis (94). 
Controversially, we detected a negative correlation between IL-10 
and total fiber intake in NW-A; this may be explained by the low 
fiber intake of this cohort (i.e., less than 50% of the recommended 
daily intake), which may be  insufficient to elicit the expected 
beneficial effects. Nevertheless, given the numerous negative 
associations between IL-10 and anti-inflammatory nutrients, 
such as α-tocopherol, fiber, and certain FAs in the asthmatic 
groups, it is plausible that these associations arise indirectly via 
a general reduction in inflammatory signaling, and further 
research is needed.

To our knowledge, this was the first study to undertake a 
comprehensive analysis of more than 100 nutrients in relation to 
BMI and clinical outcomes in pediatric asthma. However, there are 
some limitations worth noting. Dietary intake was assessed using 
food diaries, often completed by the participants’ guardians, which 
could have introduced bias due to misreporting. In addition, dietary 
intake was assessed over 3 days, limiting our ability to capture long-
term dietary patterns and raising the potential for reverse causality. 
Use of nutritional supplements was not queried, which may have 
led to an underestimation of nutrient intake. Physical activity was 
also not considered, despite being recognized as a potential 
confounding factor that may impact asthma outcomes (95). 
Another limitation was the combined grouping of overweight and 
obese participants, which may have masked or weakened obesity-
specific associations between nutrition and asthma due to differing 
metabolic characteristics.

5 Conclusion

This study has highlighted the importance of diet as a modifiable 
factor in improving asthma outcomes. We  demonstrated that 
normal-weight asthmatic children have a different nutrient intake 
profile compared with those who are overweight or obese. Key 
associations were identified between asthma-related clinical 
indicators and specific nutrients, including FAs and dietary fiber, 
suggesting that these nutrients have differential effects on 
inflammation and asthma outcomes depending on BMI. Our 
findings suggest that replacing dietary saturated fat with unsaturated 
fats, increasing fiber-rich foods, and reducing inflammatory food 
intake may aid asthma control. The variations in nutrient intake and 
clinical parameters between NW-A and OO-A reflect the intricate 
relationship between nutrition and asthma pathophysiology and 
emphasize the role of BMI in diet-disease interactions. Considering 
that chronic systemic inflammation is associated with obesity, 
interventions tailored to individual clinical profiles and BMI could 
be used to optimize asthma management in children. Structured 
randomized controlled trials are needed to evaluate the clinical 
efficacy of anti-inflammatory dietary interventions and to explore 
the complex mechanistic interplay between asthma, obesity, and 
nutrition. Finally, given the limitations of self-reported dietary data, 
biomarker-based analyses of nutrient status would strengthen the 
validity of the observed associations between micronutrients and 
clinical parameters and provide deeper insights into the mechanisms 
driving these relationships.
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