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Background: Obesity is associated with cognitive function impairment. 
We previously found that male, but not female, mice have poorer performance 
in learning and memory tasks and impaired hippocampal synaptic plasticity 
after long-term high-fat diet (HFD) consumption, compared to regular chow-
fed counterparts. To elucidate the potential morphological mechanism(s), 
here we  further performed morphometric analysis of hippocampal dendritic 
morphology and complexity in HFD and control groups of both sexes.
Methods: C57BL/6 J mice with both sexes were fed HFD (45% kcal% fat) 
after weaning for 12 months. Age-matched control mice were fed regular 
chows (13.5 kcal% fat). Morphometric analysis of Golgi-stained dendrites in 
hippocampal slices was performed to compare the dendritic morphology and 
complexity of CA1 pyramidal neurons between HFD and control groups in male 
and female mice.
Results: Compared with the control group, HFD-fed male mice showed lower 
dendritic spine density in both apical and basal dendrites, and lesser dendritic 
complexity in basal dendrites, which was indicated by fewer bifurcation nodes, 
terminal endings and dendritic segments, and shorter total dendritic length. 
However, in female mice, HFD did not affect dendritic spine density and 
induced subtle changes in dendritic complexity. Nevertheless, in control groups, 
male mice inherently had higher dendritic spine density and more dendritic 
complexity than females.
Conclusion: The present study provides the structural evidence, including the 
reduction of dendritic complexity and spine density, for HFD-induced male-
specific functional impairments in hippocampal synaptic plasticity and memory 
performance.
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Introduction

Hippocampus is an evolutionarily conserved brain region crucial 
for navigation and episodic memory in mammals (1, 2). Morphological 
changes in this region are often associated with memory-loss 
conditions such as dementia and Alzheimer’s disease (AD) (3, 4). 
Especially in AD patients, obesity is one of the risk factors that 
negatively impact the hippocampal-dependent memory (5, 6). A 
neuroimaging study has shown that overweight adults, compared to 
normal controls, have a higher degree of hippocampal atrophy (7), a 
condition highly associated with memory impairment (8). This 
association was, surprisingly, also observed in children with obesity 
(9). Although the manifestation of memory loss usually commences 
in older adults, numerous studies have revealed detrimental changes 
in earlier life. The impact of juvenile obesity-induced memory 
impairment is across the lifespan (10, 11) and highly correlated with 
daily diet (12–14).

High-fat diet (HFD)-induced obesity models in rodents can 
recapitulate large parts of the pathogenesis of human obesity (15), 
compared to the genetically-manipulated obesity model, like ob-ob 
mice. In HDF-induced obesity models, impairment of hippocampal-
dependent memory has been reported in juvenile/adolescent (16), 
middle-aged (17), and aged (18) rodents. Especially, in our previous 
study, we found a sex difference in the negative impact of HFD on 
the learning and memory performance of mice (17). Mice fed HFD 
after weaning until 1-year-old (HFD-mice), beside exhibited 
significant obesity-related metabolic changes, such as elevation of 
plasma glucose, cholesterol, insulin, leptin and adiponectin, also had 
poorer performance in hippocampus-dependent learning and 
memory tasks and impaired hippocampal synaptic plasticity, long-
term potentiation (LTP), in the male, but not female, group (17). Our 
findings were in-line with the recent report (19) that male mice are 
more vulnerable than female juvenile mice in HFD-induced 
reduction of hippocampus-dependent aversive memory. Such 
interplay between obesity and sex has also been reported in AD 
patients (20).

Morphological changes in hippocampal dendritic spines are a 
histological biomarker of synaptic plasticity (21), which is crucial in 
memory formation and consolidation (22). For example, hippocampal 
CA1 dendritic spine density is directly proportional to the memory 
capacity of mice (23) and rats (24). The dendritic spine number and 
length of hippocampal CA1 neurons were decreased in an AD mouse 
model (25). However, so far, there is no morphological analysis for the 
impact of long-term HFD on hippocampal dendritic morphology 
between sexes, while the available literature revolves around the 
hippocampal dendritic spine density affected by obesogenic diet in 
male rodents (26–28). Therefore, in this study, we investigated whether 
long-term HFD induced changes, with relation to sex differences, in 
the dendritic morphology of hippocampal CA1 pyramidal neurons 
using morphometric analyses.

Materials and methods

All experimental protocols were conducted in adherence to the 
ethical guidelines approved by the Institutional Animal Care and Use 
Committees in College of Medicine, National Taiwan University and 
in National Health Research Institute, Taiwan.

Animals

HFD-induced obese C57BL/6 J mice and normal diet-fed mice in 
both sexes were raised as reported previously (17). The mice were 
purchased from the National Laboratory Animal Center, Taiwan. 
Briefly, both male and female mice were randomly divided into HFD 
and normal diet groups. Mice in HFD and normal diet groups were 
fed rodent chows consisting of 45% (research diets Inc., NJ, 
United  States, product ID: D12451) and 13.5% (LabDiet®, PA, 
United States. product ID: 5010) kcal% fat, respectively, after weaning 
(3–4 weeks old), for 12 months. The body weight was measured 
individually twice and once a week, respectively, before and after 
12 weeks of age. Mice were housed in groups of 5 per cage under 
controlled temperature and 12:12 h light–dark cycle with 
abovementioned diets and water ad libidum

Golgi-Cox impregnation

After deeply anesthetized with 5% isoflurane, mice were sacrificed 
by intracardiac perfusion with 4% paraformaldehyde. The brains were 
isolated and post-fixed for later morphological studies. Brain sections 
of 200 μm-thick containing the hippocampus were sliced horizontally 
with Microslicer (DTK-1000, D. S. K., Japan) and collected.

The Golgi-Cox impregnation method was used for visualizing 
dendritic structures as reported previously (29) with modifications. 
Briefly, hippocampal slices were immersed into an impregnation 
solution, which was prepared by mixing solution A (1.0 g potassium 
dichromate and 1.0 g mercuric chloride in 85 mL water) and solution 
B (0.8 g potassium chromate and 0.5 g sodium tungstate in 20 mL 
water), at room temperature for 2 weeks. Sections were then collected 
and reacted with 15% ammonium hydroxide for 2 min and rinsed 
thoroughly in distilled water. Subsequently, sections were placed in 
diluted rapid fixer solution (1:5; Ilford, Marly, Switzerland) for 10 min 
and rinsed thoroughly in distilled water. Finally, all sections were 
mounted with a glycerol-based mounting medium.

Morphometric analysis

Dendritic spines
The dendritic spines from both basal and apical dendrites of 

Golgi-Cox-impregnated hippocampal CA1 pyramidal neurons were 
captured with an Olympus light microscope (Olympus BX51, Tokyo, 
Japan) under a 60 × lens, and their numbers were counted using the 
ImageJ software (NIH, MA, United  States). For basal dendrites, 
we counted spine numbers in the dendritic segments of orders over 
three. Since the spine density is usually low and varied in the primary 
and secondary orders, we chose segments over order 3 to reduce the 
intra-group variation (30). For apical dendrites, spine numbers 
beyond the distance of 150–200 μm apart from the soma were 
counted, as the spine density in the proximal segments (beyond 50 μm 
from the soma) is usually low and varied (31).

Dendrites
The morphology of Golgi-Cox-impregnated pyramidal neurons 

in the CA1 region was examined under a 20 × lens of the Olympus 
BX51 light microscope. The image stacks were captured with 1.5 μm 
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Z-axis interval under the control of the Stereo Investigator system 
(MicroBrightField, MBF Bioscience, VT, United  States). The 
morphology of CA1 pyramidal neurons with basal and apical dendrites 
was reconstructed by the Neurolucida software (MBF Bioscience). 
Morphometric analyses of basal dendrites of CA1 pyramidal neurons 
were performed according to the anatomical definition (32). The 
dendrites derived directly from the soma are the first-order branches 
or primary dendrites. The daughter branches arising from that are 
second-order branches, and so on. The highest branching order was 
determined by the maximum order of the selected neurons. The point 
at which a dendrite gives rise to two daughter branches was defined as 
a bifurcation node. The termination of a dendrite was counted as a 
terminal ending. The portion between two bifurcation nodes was 
defined as a segment. The Neurolucida Explorer program was used to 
count the numbers of primary dendrites, bifurcation nodes, terminal 
endings, and the highest orders of dendritic branching of the collected 
CA1 neurons in various groups. Due to the steric distribution of 
lengthy apical dendrites, it was technically challenging to obtain 
sufficient CA1 pyramidal neurons with complete apical dendrites. 
We only performed morphometric analysis for basal dendrites.

Statistical analysis

Data are expressed as mean ± SEM. For body weight comparisons 
(Figure 1), we employed two-way ANOVA with repeated measures 
over time followed by Bonferroni’s post-hoc test. For dendritic spine 
density (Figure 2), the data was analyzed with two-way ANOVA over 
diet and sex factors, followed by Bonferroni’s post-hoc test, and passed 
the Shapiro–Wilk normality test. For morphological analyses of 
dendrites (Figure 3), the data underwent logarithmic transformations 
then analyzed with two-way ANOVA over diet and sex factors, 
followed by Bonferroni’s post-hoc test, and passed the Shapiro–Wilk 

normality test. Spearman’s test was used to test for heteroscedasticity 
in these datasets. p < 0.05 was considered to be significant.

Results

Body weight

Figure 1 shows the growth curves of normal diet control-male 
(empty squares), normal diet control-female (empty circles), 
HFD-male (filled squares) and HFD-female (filled circles) groups of 
mice. A two-way ANOVA with repeated measures over Age shows 
main effects of Age [F(52, 2080) = 841.5, p < 0.001, η2p = 0.955], 
Group [F(3, 40) = 115.0, p < 0.001, η2p = 0.958] and a significant 
interaction between Age and Group [F(156, 2080) = 47.90, p < 0.001, 
η2p = 0.782]. Post hoc analyses with the Bonferroni’s test show that in 
normal diet control groups, male mice grew significantly heavier than 
females starting at 32-day old (upward gray arrow, Figure 1, p = 0.032), 
and throughout the feeding duration till 1-year-old (p < 0.001, main 
Group effect). On the other hand, consistent with our previous study 
(17), HFD groups gained significantly more weight than control 
groups in both sexes. Compared with control groups of the same sex, 
HFD-male mice significantly gained more weights starting at 43-day 
old (downward black arrow, Figure 1, p = 0.041), in contrast with 
HFD-females at 109-day old (upward black arrow, Figure 1, p = 0.042).

Effects of HFD on the spine density of 
hippocampal CA1 apical and basal 
dendrites

Figure 4 shows the morphology of Neurolucida-reconstructed CA1 
pyramidal neurons with well-impregnated apical and basal dendrites 
in hippocampal sections taken from control-male, HFD-male, control-
female and HFD-female groups of mice, respectively. Representative 
micrograms of dendritic spines on basal dendrites (upper panel) and 
apical dendrites (lower panel) from four groups were also shown.

First, we compared the dendritic spine density of basal and apical 
dendrites among four groups. The detailed statistical parameters of 
datasets in Figures 2, 3 are listed in Supplementary Table S1. Two-way 
ANOVA followed by Bonferroni’s post-hoc test shows that, in basal 
dendrites (Figure 4 upper panel), HFD-males had significantly lower 
dendritic spine density than control-males (open square bar vs. filled 
square bar, Figure 2A, P = 0.009, Bonferroni’s test). However, there was 
no significant difference in the basal spine density between HFD-female 
and control-female groups (Figure 4 upper panel; filled circle bar vs. 
open circle bar, Figure  2A, P = 0.999). Interestingly, in normal-diet 
control groups, males had significantly higher basal spine density than 
females control group (Figure 4 upper panel; open square bar vs. open 
circle bar, Figure 2A, P = 0.002, Bonferroni’s test). Similar trend was also 
observed in the apical dendrites (Figure 4 lower panel; Figure 2B). HFD 
significantly decreased the apical dendritic spine density in male mice 
(p < 0.001), but not in female mice (p > 0.999), as compared with the 
control group with the same-sex (Figure 2B, two-way ANOVA followed 
by Bonferroni’s post-hoc test). Interestingly, compared with females, 
control males also had a significantly higher spine density on apical 
dendrites (Figure 4 lower panel; Figure 2B open square bar vs. open circle 
bar, p < 0.001, Bonferroni’s test), as observed on basal dendrites.

FIGURE 1

Growth curves of male and female mice fed normal chow and high-
fat diet (HFD), respectively. Body weights of male (squares) and 
female (circles) mice fed normal chow (empty symbols) or HFD 
(filled symbols) after weaning (P21) for 1 year were measured twice 
and once a week, respectively, before and after 12 weeks of age. 
Data are mean ± SEM *p < 0.05 vs. the sex-specific control group 
(black arrows) or vs. the control male group (gray arrow) from the 
indicated ages (Two-way ANOVA followed by Bonferroni’s post-hoc 
test.) The numbers in parentheses are the numbers of animals in 
each group.
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Effects of HFD on the morphology of basal 
dendrites of hippocampal CA1 neurons

Next, we  compared the complexity of basal dendrites of 
hippocampal CA1 neurons in four groups of mice. Morphological 
analyses on the dendritic branching pattern using the Neurolucida 

Explorer software (Figure 3) showed that the HFD-male group (filled 
square bars) had significantly fewer bifurcation nodes (Figure 3C, P = 
0.017), terminal endings (Figure  3D, P = 0.035) and dendritic 
segments (Figure 3E, P = 0.034, two-way ANOVA with Bonferroni’s 
post-hoc test) than the control male group (open square bars). 
Nevertheless, both groups had similar numbers of primary dendrites 

FIGURE 2

Effects of HFD on the spine density of basal and apical dendrites of hippocampal CA1 neurons. The dendritic spines of basal (A) and apical 
(B) dendrites of CA1 pyramidal neurons in both sexes of HFD-fed mice (HFD♂ and HFD♀) and normal control mice (NC♂ and NC♀). Dendritic spines 
from dendritic segments collected from each group were analyzed by Image J. Data are the mean ± SEM. n: the number of dendritic segments. 
**p < 0.01, ***p < 0.001 vs. the sex-specific control group, ##p < 0.01, ###p < 0.001 vs. the control male group, two-way ANOVA followed by 
Bonferroni’s post-hoc test.

FIGURE 3

Morphometric analysis of the branching pattern of basal dendrites of CA1 pyramidal neurons in different groups. The number of primary dendrites 
(A), the highest dendritic branching order (B), the number of bifurcation nodes, terminal endings (D) and dendritic segments (E) in the basal 
dendrites of CA1 pyramidal neurons collected from HFD-fed mice (HFD♂, n = 24 neurons from 3 animals; HFD♀, n = 20 neurons from 6 animals) 
and normal control mice (NC♂, n = 20 neurons from 3 animals; NC♀, n = 22 neurons from 5 animals) were analyzed by the Neurolucida Explorer 
software. Data are the mean ± SEM. *p < 0.05 vs. the sex-specific control group. #p < 0.05 vs. the control male group, two-way ANOVA followed by 
Bonferroni’s post-hoc test.
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(Figure 3A, P > 0.999) and the highest branching order (Figure 3B, P 
= 0.583, Bonferonni’s post-hoc test). On the other hand, HFD did not 
induce a significant change in the branching pattern of basal dendrites 
in female mice (open circle bars vs. filled circle bars, Figure  3). 
Interestingly, as compared with the control male group, the basal 
dendrites of CA1 neurons in control females had fewer bifurcation 
nodes (Figure 3C, P = 0.018), terminal endings (Figure 3D, P = 0.05) 
and dendritic segments (Figure  3E, P = 0.045, Bonferroni’s post-
hoc test).

These results suggest that middle age male mice have more 
dendritic arbors of CA1 pyramidal neurons than age-matched 
females, and that chronic HFD reduces the complexity of basal 
dendritic of CA1 pyramidal neurons preferentially in male mice, but 
not in females.

Discussion

In continuation with our previous study that revealed a sex 
difference in the role of chronic HFD in memory impairment of 
middle-aged mice (17), the present study further disclosed its possible 
underlying morphological evidence in hippocampal CA1 pyramidal 
neurons. The complexity of dendritic arbors determines the number 
and distribution of receptive synaptic contacts (33, 34). In 
hippocampal CA1 pyramidal neurons, dendritic spines are the 
primary postsynaptic sites for excitatory neurotransmission (35, 36). 
The spine number and morphology of CA1 dendritic spines are 

vulnerable to the experience of the subject (35, 37, 38), and their 
changes are associated with memory encoding and retrieval (39, 40). 
Reduced dendritic spines and arbors in the hippocampal neurons have 
been reported in animals with memory impairment (34, 36, 41) and 
in patients with mild cognitive impairment and AD (34, 41–43). 
Therefore, in the present study, the dendritic spine density and 
dendritic arbors of hippocampal CA1 pyramidal neurons were chosen 
as the structural base for the functional implications of HFD. As 
summarized in Table 1, there was inherent sex difference in dendritic 
structures of CA1 pyramidal neurons in 1 year-old normal chow-fed 
mice. More importantly, our results demonstrated, for the first time, 
that 1 year of HFD feeding in male, but not female, mice after weaning 
leads to impairments of dendritic spine density and complexity in 
hippocampal CA1 pyramidal neurons.

Inherent sex difference in the dendritic 
spine density and morphology of 
hippocampal CA1 neurons of middle-aged 
mice

As summarized in Table 1, there was sex difference in the number 
of dendritic spines in both basal and apical dendrites as well as the 
arborization of basal dendrites of hippocampal CA1 neurons. 
Compared with female mice in the control group, males had a higher 
spine density in both basal and apical dendrites of hippocampal CA1 
neurons (Figure 2). Besides, morphometric analysis also showed that 

FIGURE 4

The dendritic morphology and dendritic spines of hippocampal CA1 pyramidal neurons of control males, control females, HFD-males and HFD-
females. The Neurolucida-reconstructed morphology of Golgi-Cox impregnated CA1 pyramidal neurons with well impregnated dendrites collected 
from four groups of mice. The dendritic spines were omitted in this illustration. Representative photographs of basal (upper) and apical (lower) 
dendritic segments containing dendritic spines were collected from CA1 neurons of different groups. Scale bar: 100 μm for CA1 neurons and 5 μm for 
dendritic segments.
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the control male group had higher dendritic complexity in basal 
dendrites of hippocampal CA1 neurons (Figure 3). Taken together 
with our previous findings that control male mice, at the same age as 
employed here, exhibited better hippocampus-dependent memory 
and synaptic plasticity than age-matched control females (17), it can 
be speculated that higher inherent CA1 dendritic spine density in both 
basal and apical dendrites, and probably higher basal CA1 dendritic 
complexity may contribute to the inherent sex difference in 
hippocampus-dependent memory and synaptic plasticity in normal 
middle-aged mice. This observation is in-line with previous literature 
regarding the presence of sex difference in hippocampal-dependent 
memory processing in rodents (27, 44–47).

The inherent sex difference in the dendritic spine density and 
morphology of hippocampal CA1 neurons could largely be attributed 
to complex interactions of sex hormones, particularly estrogen and 
testosterone, which both promote the hippocampal dendritic spine 
density in the respective sex (48, 49). The plasma testosterone levels of 
male C57BL/6 mice did not drop drastically between ages 4 and 
12 months (50). However, the plasma estrogen level decreased 
drastically in a similar age comparison (80), probably due to the 
gradual regression of ovarian function in female mice at 12 months.

HFD reduces the dendritic spine density 
and arborization of hippocampal CA1 
neurons in male, but not female, mice

The impact of HFD on the dendritic spine density of 
hippocampal CA1 pyramidal neurons was similar between basal and 
apical dendrites (Figure 2). Interestingly, these changes were only 
observed in male but not female mice (Table  1). Similarly, 
HFD-induced reduction of dendritic complexity was also observed 
in male but not in female mice (Table 1). These male-specific changes 
in hippocampal dendritic morphology after HFD are coincident 
with our previous finding in HFD-induced decline in the 
performance of hippocampal CA1-dependent memory tasks and 
hippocampal synaptic plasticity (17). It is therefore suggested that 
the loss of dendritic spines in both apical and basal dendrites and the 
impaired basal dendritic complexity of hippocampal CA1 neurons 
contribute to the male-specific change in memory performance 
affected by HFD.

In the present study, we could not obtain sufficient CA1 neurons 
with thoroughly impregnated apical dendrites for analysis due to the 
limitation that apical dendrites were mostly truncated during sample 
preparation. Nonetheless, several studies have reported that the 
morphometric complexity of both apical and basal dendrites of 
hippocampal CA1 neurons was simultaneously impacted under 
various conditions, such as chronic stress (51), radiation (52), and 
chemotherapy (53). It remains to be further elucidated whether long-
term HFD may affect the morphometric complexity of CA1 apical 
dendrites in a similar trend to basal dendrites.

HFD induces male-specific changes in 
hippocampal CA1 dendritic morphology, 
synaptic plasticity and memory 
performance

It has been reported that the hippocampus-dependent associative 
and spatial learning is associated with an increased dendritic spine 
density specifically in the basal, but not apical, dendrites of CA1 
neurons (39, 40). Basal dendrites of CA1 neurons receive fewer 
inhibitory inputs from GABA interneurons than apical dendrites (54). 
and thus exhibit a lower threshold to induce LTP (55). Thus, basal 
dendrites may have a higher capacity for synaptic plasticity, the 
essence of memory formation (56). Nonetheless, apical dendritic 
spines of CA1 pyramidal cells are also crucial in memory consolidation 
and retrieval via LTP formation (57).

Here, we found that the spine density of both basal and apical 
dendrites of hippocampal CA1 neurons was decreased by chronic 
HFD for 12 months, which also impaired CA1 LTP and hippocampal-
dependent memory performance, specifically in male mice (17). Thus, 
both basal and apical dendritic spine loss in male mice may contribute 
to their inferior performance in hippocampus-dependent memory 
tasks. Interestingly, previous studies showed that HFD administration 
in mice after weaning until 8–12 week-old enhanced LTP (58) and 
dendritic spine turnover (59) at hippocampal CA1 synapses, while 
disrupted LTP in younger (6–7 month-old) (60) and older 
(12 month-old) (17) mice. It would be interesting to study the gradual 
time-progression effect of HFD from 1 to 12 months of administration 
or longer on hippocampal morphology and electrophysiological 
properties in mice of both sexes in the future.

TABLE 1  Comparisons of hippocampal CA1 dendritic morphology, synaptic plasticity and functions between different sexes and diets.

Comparisons NC♂ vs. NC♀ HFD♂ vs. NC♂ HFD♀ vs. NC♀
Dendritic spine density

 � Basal dendrites (Figure 2A) NC♂ > NC♀ HFD♂ < NC♂ HFD♀ = NC♀

 � Apical dendrites (Figure 2B) NC♂ > NC♀ HFD♂ < NC♂ HFD♀ = NC♀

Basal dendrite morphology

 � Branching pattern (Figure 3) NC♂ > NC♀ HFD♂ < NC♂ HFD♀ = NC♀

CA1-associated functionsa

 � Synaptic plasticity NC♂ > NC♀ HFD♂ < NC♂ HFD♀ = NC♀

 � Memory performance NC♂ > NC♀ HFD♂ < NC♂ HFD♀ = NC♀

NC♂, normal diet control male; NC♀, normal diet control female; HFD♂, high-fat diet male; HFD♀, high-fat diet female. Mice in the HFD group were fed HFD after weaning for 1 year. 
aBased on the data in our previous study (17).
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Possible factors contributing to 
HFD-induced CA1 dendritic morphological 
changes in different sexes

Female gonadal hormones play an important role in 
modulating the plasticity of dendritic spines in the central nervous 
system (49), particularly in the hippocampus (61, 62). Li et al. (63) 
has shown that hippocampal-dependent memory and dendritic 
spines were reduced in ovariectomized female mice in a manner 
improved by estrogen. Luine and Frankfurt (64) also found reduced 
dendritic spines on both CA1 apical and basal dendrites of 
ovariectomized female rats, while estrogen restored the spines only 
on basal, but not on apical, dendrites. Thus, it can be postulated 
that the surge of gonadal hormones during the estrus cycle may 
provide neuroprotection against HFD-induced morphological 
impacts in female mice. However, in female mice, there was a 
fluctuation in hippocampal dendritic spine density between 
diestrus and proestrus phases (65). In the present study, the estrus 
staging of the tested female mice was not measured. Given that 
female mice are predominantly acyclic at the age of 13 months 
(66–68), the impact of the estrus cycle and estrogen level is 
expected to be minimal. Nonetheless, the influence of the estrus 
cycle in these cohorts of female mice still cannot be ruled out and 
thus poses a limitation of the current study, which requires further 
studies in the future.

Neuro-inflammation due to diet-induced obesity can be induced 
in several brain regions, including the hippocampus, and thus results 
in cognitive deficit in mice (26, 69). This is due to obesity-induced 
systemic inflammation that leads to increased infiltration of peripheral 
immune cells through the blood–brain barrier, elevated 
pro-inflammatory cytokines, and activation of microglia in the 
hippocampus (70). Microglial activation induced by dietary obesity 
can lead to reduced hippocampal dendritic spine density, due to 
“synaptic stripping” (26), i.e., an internalization of synaptic terminals 
induced by microglia (71). It was reported that the dendrites of CA1 
neurons in male obese mice fed by HFD for 3 months suffered from 
the same fate, although females were not examined (72). However, 
13-week-old male mice have been reported to inherently have more 
and larger microglia cells in the hippocampus than age-matched 
female mice (73). Besides, the number of microglia in the mouse 
hippocampus does not change with age (74). It remains to be further 
elucidated whether the inherently more hippocampal microglial cells 
in male mice may result in more microglia activation and synaptic 
stripping after neuroinflammation due to chronic HFD-induced obesity.

Moreover, current trends indicate that the microbiota-gut-
brain axis may influence cognitive functions. Long-term 
consumption of a high-fat diet, recognized for its impact on 
cognitive function (17, 75), can also alter microbiota composition 
(76). However, a previous preclinical study indicates that, 
irrespective of microbiota composition, a high-fat diet will 
inevitably lead to obesity (77). Nevertheless, it remained unclear if 
the cognitive functions, particularly those reliant on the 
hippocampus, are influenced by the composition of the microbiota. 
HFD has been demonstrated to affect the microbiome in a 
sex-dependent manner (78), similar to HFD-induced obesity (17, 
75). Although many studies indicate estrogen-dependent variations 
in HFD-altered gut microbiota (78, 79), no research has directly 
compared the microbiota compositions of males and females in 

relation to hippocampus-dependent cognitive function. This may 
necessitate additional research on the potential sexual dimorphism 
in the microbiome alterations related to HFD-induced obesity and 
cognitive impairment.

Conclusion

The present study provides the morphological evidence showing 
the sex difference in CA1 neurons that could be  linked to the 
impairment of memory performance in chronic HFD-induced obese 
mice. It is suggested that the deficits in the synaptic plasticity and 
learning and memory performance in obese male, but not female, mice 
are associated with the morphological changes, including the reductions 
in dendritic arbors and spine density, of hippocampal CA1 
pyramidal neurons.
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