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Background: Obesity is associated with cognitive function impairment.
We previously found that male, but not female, mice have poorer performance
in learning and memory tasks and impaired hippocampal synaptic plasticity
after long-term high-fat diet (HFD) consumption, compared to regular chow-
fed counterparts. To elucidate the potential morphological mechanism(s),
here we further performed morphometric analysis of hippocampal dendritic
morphology and complexity in HFD and control groups of both sexes.
Methods: C57BL/6 J mice with both sexes were fed HFD (45% kcal% fat)
after weaning for 12 months. Age-matched control mice were fed regular
chows (13.5 kcal% fat). Morphometric analysis of Golgi-stained dendrites in
hippocampal slices was performed to compare the dendritic morphology and
complexity of CAl pyramidal neurons between HFD and control groups in male
and female mice.

Results: Compared with the control group, HFD-fed male mice showed lower
dendritic spine density in both apical and basal dendrites, and lesser dendritic
complexity in basal dendrites, which was indicated by fewer bifurcation nodes,
terminal endings and dendritic segments, and shorter total dendritic length.
However, in female mice, HFD did not affect dendritic spine density and
induced subtle changes in dendritic complexity. Nevertheless, in control groups,
male mice inherently had higher dendritic spine density and more dendritic
complexity than females.

Conclusion: The present study provides the structural evidence, including the
reduction of dendritic complexity and spine density, for HFD-induced male-
specific functional impairments in hippocampal synaptic plasticity and memory
performance.
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Introduction

Hippocampus is an evolutionarily conserved brain region crucial
for navigation and episodic memory in mammals (1, 2). Morphological
changes in this region are often associated with memory-loss
conditions such as dementia and Alzheimer’s disease (AD) (3, 4).
Especially in AD patients, obesity is one of the risk factors that
negatively impact the hippocampal-dependent memory (5, 6). A
neuroimaging study has shown that overweight adults, compared to
normal controls, have a higher degree of hippocampal atrophy (7), a
condition highly associated with memory impairment (8). This
association was, surprisingly, also observed in children with obesity
(9). Although the manifestation of memory loss usually commences
in older adults, numerous studies have revealed detrimental changes
in earlier life. The impact of juvenile obesity-induced memory
impairment is across the lifespan (10, 11) and highly correlated with
daily diet (12-14).

High-fat diet (HFD)-induced obesity models in rodents can
recapitulate large parts of the pathogenesis of human obesity (15),
compared to the genetically-manipulated obesity model, like 0b-ob
mice. In HDF-induced obesity models, impairment of hippocampal-
dependent memory has been reported in juvenile/adolescent (16),
middle-aged (17), and aged (18) rodents. Especially, in our previous
study, we found a sex difference in the negative impact of HFD on
the learning and memory performance of mice (17). Mice fed HFD
after weaning until 1-year-old (HFD-mice), beside exhibited
significant obesity-related metabolic changes, such as elevation of
plasma glucose, cholesterol, insulin, leptin and adiponectin, also had
poorer performance in hippocampus-dependent learning and
memory tasks and impaired hippocampal synaptic plasticity, long-
term potentiation (LTP), in the male, but not female, group (17). Our
findings were in-line with the recent report (19) that male mice are
more vulnerable than female juvenile mice in HFD-induced
reduction of hippocampus-dependent aversive memory. Such
interplay between obesity and sex has also been reported in AD
patients (20).

Morphological changes in hippocampal dendritic spines are a
histological biomarker of synaptic plasticity (21), which is crucial in
memory formation and consolidation (22). For example, hippocampal
CA1 dendritic spine density is directly proportional to the memory
capacity of mice (23) and rats (24). The dendritic spine number and
length of hippocampal CA1 neurons were decreased in an AD mouse
model (25). However, so far, there is no morphological analysis for the
impact of long-term HFD on hippocampal dendritic morphology
between sexes, while the available literature revolves around the
hippocampal dendritic spine density affected by obesogenic diet in
male rodents (26-28). Therefore, in this study, we investigated whether
long-term HFD induced changes, with relation to sex differences, in
the dendritic morphology of hippocampal CA1 pyramidal neurons
using morphometric analyses.

Materials and methods

All experimental protocols were conducted in adherence to the
ethical guidelines approved by the Institutional Animal Care and Use
Committees in College of Medicine, National Taiwan University and
in National Health Research Institute, Taiwan.
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Animals

HFD-induced obese C57BL/6 ] mice and normal diet-fed mice in
both sexes were raised as reported previously (17). The mice were
purchased from the National Laboratory Animal Center, Taiwan.
Briefly, both male and female mice were randomly divided into HFD
and normal diet groups. Mice in HFD and normal diet groups were
fed rodent chows consisting of 45% (research diets Inc., NJ,
United States, product ID: D12451) and 13.5% (LabDiet®, PA,
United States. product ID: 5010) kcal% fat, respectively, after weaning
(3-4 weeks old), for 12 months. The body weight was measured
individually twice and once a week, respectively, before and after
12 weeks of age. Mice were housed in groups of 5 per cage under
12:12h  light-dark cycle with
abovementioned diets and water ad libidum

controlled temperature and

Golgi-Cox impregnation

After deeply anesthetized with 5% isoflurane, mice were sacrificed
by intracardiac perfusion with 4% paraformaldehyde. The brains were
isolated and post-fixed for later morphological studies. Brain sections
of 200 pm-thick containing the hippocampus were sliced horizontally
with Microslicer (DTK-1000, D. S. K., Japan) and collected.

The Golgi-Cox impregnation method was used for visualizing
dendritic structures as reported previously (29) with modifications.
Briefly, hippocampal slices were immersed into an impregnation
solution, which was prepared by mixing solution A (1.0 g potassium
dichromate and 1.0 g mercuric chloride in 85 mL water) and solution
B (0.8 g potassium chromate and 0.5 g sodium tungstate in 20 mL
water), at room temperature for 2 weeks. Sections were then collected
and reacted with 15% ammonium hydroxide for 2 min and rinsed
thoroughly in distilled water. Subsequently, sections were placed in
diluted rapid fixer solution (1:5; Ilford, Marly, Switzerland) for 10 min
and rinsed thoroughly in distilled water. Finally, all sections were
mounted with a glycerol-based mounting medium.

Morphometric analysis

Dendritic spines

The dendritic spines from both basal and apical dendrites of
Golgi-Cox-impregnated hippocampal CA1 pyramidal neurons were
captured with an Olympus light microscope (Olympus BX51, Tokyo,
Japan) under a 60 x lens, and their numbers were counted using the
Image] software (NIH, MA, United States). For basal dendrites,
we counted spine numbers in the dendritic segments of orders over
three. Since the spine density is usually low and varied in the primary
and secondary orders, we chose segments over order 3 to reduce the
intra-group variation (30). For apical dendrites, spine numbers
beyond the distance of 150-200 pm apart from the soma were
counted, as the spine density in the proximal segments (beyond 50 pm
from the soma) is usually low and varied (31).

Dendrites

The morphology of Golgi-Cox-impregnated pyramidal neurons
in the CA1 region was examined under a 20 X lens of the Olympus
BX51 light microscope. The image stacks were captured with 1.5 pm
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Z-axis interval under the control of the Stereo Investigator system
(MicroBrightField, MBF Bioscience, VT, United States). The
morphology of CA1 pyramidal neurons with basal and apical dendrites
was reconstructed by the Neurolucida software (MBF Bioscience).
Morphometric analyses of basal dendrites of CA1 pyramidal neurons
were performed according to the anatomical definition (32). The
dendrites derived directly from the soma are the first-order branches
or primary dendrites. The daughter branches arising from that are
second-order branches, and so on. The highest branching order was
determined by the maximum order of the selected neurons. The point
at which a dendrite gives rise to two daughter branches was defined as
a bifurcation node. The termination of a dendrite was counted as a
terminal ending. The portion between two bifurcation nodes was
defined as a segment. The Neurolucida Explorer program was used to
count the numbers of primary dendrites, bifurcation nodes, terminal
endings, and the highest orders of dendritic branching of the collected
CA1 neurons in various groups. Due to the steric distribution of
lengthy apical dendrites, it was technically challenging to obtain
sufficient CA1 pyramidal neurons with complete apical dendrites.
We only performed morphometric analysis for basal dendrites.

Statistical analysis

Data are expressed as mean + SEM. For body weight comparisons
(Figure 1), we employed two-way ANOVA with repeated measures
over time followed by Bonferroni’s post-hoc test. For dendritic spine
density (Figure 2), the data was analyzed with two-way ANOVA over
diet and sex factors, followed by Bonferroni’s post-hoc test, and passed
the Shapiro-Wilk normality test. For morphological analyses of
dendrites (Figure 3), the data underwent logarithmic transformations
then analyzed with two-way ANOVA over diet and sex factors,
followed by Bonferroni’s post-hoc test, and passed the Shapiro-Wilk
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FIGURE 1

Growth curves of male and female mice fed normal chow and high-
fat diet (HFD), respectively. Body weights of male (squares) and
female (circles) mice fed normal chow (empty symbols) or HFD
(filled symbols) after weaning (P21) for 1 year were measured twice
and once a week, respectively, before and after 12 weeks of age.
Data are mean + SEM *p < 0.05 vs. the sex-specific control group
(black arrows) or vs. the control male group (gray arrow) from the
indicated ages (Two-way ANOVA followed by Bonferroni's post-hoc
test.) The numbers in parentheses are the numbers of animals in
each group.
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normality test. Spearman’s test was used to test for heteroscedasticity
in these datasets. p < 0.05 was considered to be significant.

Results
Body weight

Figure 1 shows the growth curves of normal diet control-male
(empty squares), normal diet control-female (empty circles),
HFD-male (filled squares) and HFD-female (filled circles) groups of
mice. A two-way ANOVA with repeated measures over Age shows
main effects of Age [F(52, 2080) = 841.5, p < 0.001, n’*p = 0.955],
Group [F(3, 40) = 115.0, p < 0.001, n’p = 0.958] and a significant
interaction between Age and Group [F(156, 2080) = 47.90, p < 0.001,
1’p = 0.782]. Post hoc analyses with the Bonferroni’s test show that in
normal diet control groups, male mice grew significantly heavier than
females starting at 32-day old (upward gray arrow, Figure 1, p = 0.032),
and throughout the feeding duration till 1-year-old (p < 0.001, main
Group effect). On the other hand, consistent with our previous study
(17), HFD groups gained significantly more weight than control
groups in both sexes. Compared with control groups of the same sex,
HFD-male mice significantly gained more weights starting at 43-day
old (downward black arrow, Figure 1, p =0.041), in contrast with
HFD-females at 109-day old (upward black arrow, Figure 1, p = 0.042).

Effects of HFD on the spine density of
hippocampal CA1 apical and basal
dendrites

Figure 4 shows the morphology of Neurolucida-reconstructed CA1
pyramidal neurons with well-impregnated apical and basal dendrites
in hippocampal sections taken from control-male, HFD-male, control-
female and HFD-female groups of mice, respectively. Representative
micrograms of dendritic spines on basal dendrites (upper panel) and
apical dendrites (lower panel) from four groups were also shown.

First, we compared the dendritic spine density of basal and apical
dendrites among four groups. The detailed statistical parameters of
datasets in Figures 2, 3 are listed in Supplementary Table S1. Two-way
ANOVA followed by Bonferroni’s post-hoc test shows that, in basal
dendrites (Figure 4 upper panel), HFD-males had significantly lower
dendritic spine density than control-males (open square bar vs. filled
square bar, Figure 2A, P = 0.009, Bonferroni’s test). However, there was
no significant difference in the basal spine density between HFD-female
and control-female groups (Figure 4 upper panel; filled circle bar vs.
open circle bar, Figure 2A, P = 0.999). Interestingly, in normal-diet
control groups, males had significantly higher basal spine density than
females control group (Figure 4 upper panel; open square bar vs. open
circle bar, Figure 2A, P = 0.002, Bonferronis test). Similar trend was also
observed in the apical dendrites (Figure 4 lower panel; Figure 2B). HFD
significantly decreased the apical dendritic spine density in male mice
(p <0.001), but not in female mice (p > 0.999), as compared with the
control group with the same-sex (Figure 2B, two-way ANOVA followed
by Bonferroni’s post-hoc test). Interestingly, compared with females,
control males also had a significantly higher spine density on apical
dendrites (Figure 4 lower panel; Figure 2B open square bar vs. open circle
bar, p < 0.001, Bonferroni’s test), as observed on basal dendrites.
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FIGURE 2

Effects of HFD on the spine density of basal and apical dendrites of hippocampal CAl1 neurons. The dendritic spines of basal (A) and apical

(B) dendrites of CAl pyramidal neurons in both sexes of HFD-fed mice (HFD3 and HFDQ) and normal control mice (NCg and NCQ). Dendritic spines
from dendritic segments collected from each group were analyzed by Image J. Data are the mean + SEM. n: the number of dendritic segments.
**p < 0.01, ***p < 0.001 vs. the sex-specific control group, #**p < 0.01, *#p < 0.001 vs. the control male group, two-way ANOVA followed by
Bonferroni's post-hoc test.
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FIGURE 3

Morphometric analysis of the branching pattern of basal dendrites of CAl pyramidal neurons in different groups. The number of primary dendrites
(A), the highest dendritic branching order (B), the number of bifurcation nodes, terminal endings (D) and dendritic segments (E) in the basal
dendrites of CAl pyramidal neurons collected from HFD-fed mice (HFDg, n = 24 neurons from 3 animals; HFDQ, n = 20 neurons from 6 animals)
and normal control mice (NC@, n = 20 neurons from 3 animals; NCQ, n = 22 neurons from 5 animals) were analyzed by the Neurolucida Explorer
software. Data are the mean + SEM. *p < 0.05 vs. the sex-specific control group. #p < 0.05 vs. the control male group, two-way ANOVA followed by
Bonferroni's post-hoc test.

Effects of HFD on the morphology of basal Explorer software (Figure 3) showed that the HFD-male group (filled
dendrites of hi ppocCam pal CAl neurons square bars) had significantly fewer bifurcation nodes (Figure 3C, P =
0.017), terminal endings (Figure 3D, P = 0.035) and dendritic

Next, we compared the complexity of basal dendrites of  segments (Figure 3E, P = 0.034, two-way ANOVA with Bonferroni’s
hippocampal CA1 neurons in four groups of mice. Morphological ~ post-hoc test) than the control male group (open square bars).
analyses on the dendritic branching pattern using the Neurolucida ~ Nevertheless, both groups had similar numbers of primary dendrites
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dendritic segments.

The dendritic morphology and dendritic spines of hippocampal CAl pyramidal neurons of control males, control females, HFD-males and HFD-
females. The Neurolucida-reconstructed morphology of Golgi-Cox impregnated CA1 pyramidal neurons with well impregnated dendrites collected
from four groups of mice. The dendritic spines were omitted in this illustration. Representative photographs of basal (upper) and apical (lower)
dendritic segments containing dendritic spines were collected from CA1 neurons of different groups. Scale bar: 100 pm for CA1 neurons and 5 pm for

Normal HFD

(Figure 3A, P> 0.999) and the highest branching order (Figure 3B, P
= 0.583, Bonferonni’s post-hoc test). On the other hand, HFD did not
induce a significant change in the branching pattern of basal dendrites
in female mice (open circle bars vs. filled circle bars, Figure 3).
Interestingly, as compared with the control male group, the basal
dendrites of CA1 neurons in control females had fewer bifurcation
nodes (Figure 3C, P = 0.018), terminal endings (Figure 3D, P = 0.05)
and dendritic segments (Figure 3E, P = 0.045, Bonferroni’s post-
hoc test).

These results suggest that middle age male mice have more
dendritic arbors of CAl pyramidal neurons than age-matched
females, and that chronic HFD reduces the complexity of basal
dendritic of CA1 pyramidal neurons preferentially in male mice, but
not in females.

Discussion

In continuation with our previous study that revealed a sex
difference in the role of chronic HFD in memory impairment of
middle-aged mice (17), the present study further disclosed its possible
underlying morphological evidence in hippocampal CA1 pyramidal
neurons. The complexity of dendritic arbors determines the number
and distribution of receptive synaptic contacts (33, 34). In
hippocampal CAl pyramidal neurons, dendritic spines are the
primary postsynaptic sites for excitatory neurotransmission (35, 36).
The spine number and morphology of CA1l dendritic spines are
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vulnerable to the experience of the subject (35, 37, 38), and their
changes are associated with memory encoding and retrieval (39, 40).
Reduced dendritic spines and arbors in the hippocampal neurons have
been reported in animals with memory impairment (34, 36, 41) and
in patients with mild cognitive impairment and AD (34, 41-43).
Therefore, in the present study, the dendritic spine density and
dendritic arbors of hippocampal CA1 pyramidal neurons were chosen
as the structural base for the functional implications of HFD. As
summarized in Table 1, there was inherent sex difference in dendritic
structures of CA1 pyramidal neurons in 1 year-old normal chow-fed
mice. More importantly, our results demonstrated, for the first time,
that 1 year of HFD feeding in male, but not female, mice after weaning
leads to impairments of dendritic spine density and complexity in
hippocampal CA1 pyramidal neurons.

Inherent sex difference in the dendritic
spine density and morphology of
hippocampal CAl neurons of middle-aged
mice

As summarized in Table 1, there was sex difference in the number
of dendritic spines in both basal and apical dendrites as well as the
arborization of basal dendrites of hippocampal CA1l neurons.
Compared with female mice in the control group, males had a higher
spine density in both basal and apical dendrites of hippocampal CA1
neurons (Figure 2). Besides, morphometric analysis also showed that
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TABLE 1 Comparisons of hippocampal CA1 dendritic morphology, synaptic plasticity and functions between different sexes and diets.

Comparisons NCg vs. NCQ HFD@& vs. NCg HFD® vs. NCQ
Dendritic spine density
Basal dendrites (Figure 2A) NCg& > NC9Q HEDG < NCg HFDQ = NC9
Apical dendrites (Figure 2B) NCg > NCQ HFD@ < NC@ HEDQ = NC9
Basal dendrite morphology
Branching pattern (Figure 3) NCg > NCQ HFD@& < NCg& HFDQ = NCQ
CAl-associated functions®
Synaptic plasticity NCg > NCQ HFD@J < NCg HFD® = NCQ
Memory performance NCg > NCQ HFD@& < NCg@ HFDQ = NCQ

NCg, normal diet control male; NC@, normal diet control female; HFD@, high-fat diet male; HFD®, high-fat diet female. Mice in the HFD group were fed HFD after weaning for 1 year.

“Based on the data in our previous study (17).

the control male group had higher dendritic complexity in basal
dendrites of hippocampal CA1 neurons (Figure 3). Taken together
with our previous findings that control male mice, at the same age as
employed here, exhibited better hippocampus-dependent memory
and synaptic plasticity than age-matched control females (17), it can
be speculated that higher inherent CA1 dendritic spine density in both
basal and apical dendrites, and probably higher basal CA1 dendritic
complexity may contribute to the inherent sex difference in
hippocampus-dependent memory and synaptic plasticity in normal
middle-aged mice. This observation is in-line with previous literature
regarding the presence of sex difference in hippocampal-dependent
memory processing in rodents (27, 44-47).

The inherent sex difference in the dendritic spine density and
morphology of hippocampal CA1 neurons could largely be attributed
to complex interactions of sex hormones, particularly estrogen and
testosterone, which both promote the hippocampal dendritic spine
density in the respective sex (48, 49). The plasma testosterone levels of
male C57BL/6 mice did not drop drastically between ages 4 and
12 months (50). However, the plasma estrogen level decreased
drastically in a similar age comparison (80), probably due to the
gradual regression of ovarian function in female mice at 12 months.

HFD reduces the dendritic spine density
and arborization of hippocampal CAl
neurons in male, but not female, mice

The impact of HFD on the dendritic spine density of
hippocampal CA1 pyramidal neurons was similar between basal and
apical dendrites (Figure 2). Interestingly, these changes were only
observed in male but not female mice (Table 1). Similarly,
HFD-induced reduction of dendritic complexity was also observed
in male but not in female mice (Table 1). These male-specific changes
in hippocampal dendritic morphology after HFD are coincident
with our previous finding in HFD-induced decline in the
performance of hippocampal CAl-dependent memory tasks and
hippocampal synaptic plasticity (17). It is therefore suggested that
the loss of dendritic spines in both apical and basal dendrites and the
impaired basal dendritic complexity of hippocampal CA1 neurons
contribute to the male-specific change in memory performance
affected by HFD.

Frontiers in Nutrition

In the present study, we could not obtain sufficient CA1 neurons
with thoroughly impregnated apical dendrites for analysis due to the
limitation that apical dendrites were mostly truncated during sample
preparation. Nonetheless, several studies have reported that the
morphometric complexity of both apical and basal dendrites of
hippocampal CA1 neurons was simultaneously impacted under
various conditions, such as chronic stress (51), radiation (52), and
chemotherapy (53). It remains to be further elucidated whether long-
term HFD may affect the morphometric complexity of CA1 apical
dendrites in a similar trend to basal dendrites.

HFD induces male-specific changes in
hippocampal CAl dendritic morphology,
synaptic plasticity and memory
performance

It has been reported that the hippocampus-dependent associative
and spatial learning is associated with an increased dendritic spine
density specifically in the basal, but not apical, dendrites of CAl
neurons (39, 40). Basal dendrites of CA1 neurons receive fewer
inhibitory inputs from GABA interneurons than apical dendrites (54).
and thus exhibit a lower threshold to induce LTP (55). Thus, basal
dendrites may have a higher capacity for synaptic plasticity, the
essence of memory formation (56). Nonetheless, apical dendritic
spines of CA1 pyramidal cells are also crucial in memory consolidation
and retrieval via LTP formation (57).

Here, we found that the spine density of both basal and apical
dendrites of hippocampal CA1 neurons was decreased by chronic
HED for 12 months, which also impaired CA1 LTP and hippocampal-
dependent memory performance, specifically in male mice (17). Thus,
both basal and apical dendritic spine loss in male mice may contribute
to their inferior performance in hippocampus-dependent memory
tasks. Interestingly, previous studies showed that HFD administration
in mice after weaning until 8-12 week-old enhanced LTP (58) and
dendritic spine turnover (59) at hippocampal CA1 synapses, while
disrupted LTP in younger (6-7 month-old) (60) and older
(12 month-old) (17) mice. It would be interesting to study the gradual
time-progression effect of HFD from 1 to 12 months of administration
or longer on hippocampal morphology and electrophysiological
properties in mice of both sexes in the future.
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Possible factors contributing to
HFD-induced CA1 dendritic morphological
changes in different sexes

Female gonadal hormones play an important role in
modulating the plasticity of dendritic spines in the central nervous
system (49), particularly in the hippocampus (61, 62). Li et al. (63)
has shown that hippocampal-dependent memory and dendritic
spines were reduced in ovariectomized female mice in a manner
improved by estrogen. Luine and Frankfurt (64) also found reduced
dendritic spines on both CA1l apical and basal dendrites of
ovariectomized female rats, while estrogen restored the spines only
on basal, but not on apical, dendrites. Thus, it can be postulated
that the surge of gonadal hormones during the estrus cycle may
provide neuroprotection against HFD-induced morphological
impacts in female mice. However, in female mice, there was a
fluctuation in hippocampal dendritic spine density between
diestrus and proestrus phases (65). In the present study, the estrus
staging of the tested female mice was not measured. Given that
female mice are predominantly acyclic at the age of 13 months
(66-68), the impact of the estrus cycle and estrogen level is
expected to be minimal. Nonetheless, the influence of the estrus
cycle in these cohorts of female mice still cannot be ruled out and
thus poses a limitation of the current study, which requires further
studies in the future.

Neuro-inflammation due to diet-induced obesity can be induced
in several brain regions, including the hippocampus, and thus results
in cognitive deficit in mice (26, 69). This is due to obesity-induced
systemic inflammation that leads to increased infiltration of peripheral
through the
pro-inflammatory cytokines, and activation of microglia in the

immune cells blood-brain barrier, elevated
hippocampus (70). Microglial activation induced by dietary obesity
can lead to reduced hippocampal dendritic spine density, due to
“synaptic stripping” (26), i.e., an internalization of synaptic terminals
induced by microglia (71). It was reported that the dendrites of CA1l
neurons in male obese mice fed by HED for 3 months suffered from
the same fate, although females were not examined (72). However,
13-week-old male mice have been reported to inherently have more
and larger microglia cells in the hippocampus than age-matched
female mice (73). Besides, the number of microglia in the mouse
hippocampus does not change with age (74). It remains to be further
elucidated whether the inherently more hippocampal microglial cells
in male mice may result in more microglia activation and synaptic
stripping after neuroinflammation due to chronic HFD-induced obesity.

Moreover, current trends indicate that the microbiota-gut-
brain axis may influence cognitive functions. Long-term
consumption of a high-fat diet, recognized for its impact on
cognitive function (17, 75), can also alter microbiota composition
(76). However, a previous preclinical study indicates that,
irrespective of microbiota composition, a high-fat diet will
inevitably lead to obesity (77). Nevertheless, it remained unclear if
the cognitive functions, particularly those reliant on the
hippocampus, are influenced by the composition of the microbiota.
HFD has been demonstrated to affect the microbiome in a
sex-dependent manner (78), similar to HFD-induced obesity (17,
75). Although many studies indicate estrogen-dependent variations
in HFD-altered gut microbiota (78, 79), no research has directly
compared the microbiota compositions of males and females in
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relation to hippocampus-dependent cognitive function. This may
necessitate additional research on the potential sexual dimorphism
in the microbiome alterations related to HFD-induced obesity and
cognitive impairment.

Conclusion

The present study provides the morphological evidence showing
the sex difference in CAl neurons that could be linked to the
impairment of memory performance in chronic HFD-induced obese
mice. It is suggested that the deficits in the synaptic plasticity and
learning and memory performance in obese male, but not female, mice
are associated with the morphological changes, including the reductions
in dendritic arbors and spine density, of hippocampal CAl
pyramidal neurons.
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