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Puerariae lobatae Radix aqueous
extract ameliorates asymptomatic
hyperuricemia in a potassium
oxonate-induced rat model by
dual modulation of uric acid
production and excretion

Danping Zhao', Yuannan Wang?, Tingting He?, Yingna Chen?,
Yu Bai* Yuchun Huang?, Kaiyue Ding?, Junnan Ma' and
Lin Zhang'*

!Institute of Integrative Medicine, Dalian Medical University, Dalian, China, ?The Second Hospital of
Dalian Medical University, Dalian, China, The First Affiliated Hospital of Dalian Medical University,
Dalian, China, “Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, China

Background: Puerariae lobatae Radix (PLR) is a well-known traditional Chinese
medicine and edible natural nutrient, with diverse biological activities, including
anti-diabetes, anti-inflammatory, anti-oxidant and liver protection. However, the
effects and underlying mechanisms of PLR in hyperuricemia (HUA) are unclear.
Methods: The present study focused on the regulatory effects of aqueous
extract from PLR on the asymptomatic hyperuricemia rat model, induced by
potassium oxonate. Serum uric acid (SUA), serum blood urea nitrogen (BUN),
creatinine (CRE), serum inflammatory factors, anthine oxidase activity, hepatic
and renal tissue morphology were measured to assess the anti-hyperuricemia
effect. After which, 16SrDNA sequencing and the UHPLC-Q-Orbitrap-MS/MS
with network pharmacology, gRT-PCR and molecular docking were employed
to elucidated the potential mechanism.

Results: PLR treatment led to a significant improvement in HUA rats, including
lower SUA, BUN, CRE and serum inflammatory factors (TNF-«, IL-6, IL-15, and NF-
kB); inhibited xanthine oxidase activity like xanthine oxidase (XOD), Adenosine
deaminase (ADA), regulated the abundance of Firmicutes, Actinobacteriota and
Bacteroidota. And the network pharmacological analysis combined with gRT-
PCR and molecular docking revealed 4 active compounds of PLR, including
hispidulin, cirsimaritin, galangin, and diosmetin, that act on HUA therapeutic
targets, like CASP3, NF-kB, PTGS2, PARP1 and JAK2.

Conclusion: Our finding suggest that PLR could effectively ameliorate HUA
symptoms by modulating multiple compounds, targets, and pathways.
Specifically, hispidulin, cirsimaritin, galangin, and diosmetin are proposed as
the key active ingredients in PLR for HUA alleviation. The primary mechanism
involves inhibiting xanthine oxidase activity to reduce UA production, promoting
UA excretion by restoring the abundance of intestinal flora, and eliminating the
negative feedback regulatory mechanism of renal tissue. This study provided a
new perspective for the precise exploitation of PLR as a functional food.
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1 Introduction

Hyperuricemia (HUA) is formed by the disorder of purine
metabolism, and marked by overproduction or insufficient excretion
of uric acid (UA) (1). As a metabolic disease, the formation of HUA is
closely related to the alterations in diet structure and lifestyle, like
excessive intake of purine-rich foods, sugar-sweetened drinks, obesity
and alcohol consumption (2). As report shown the prevalence of HUA
is 2.6-36%, with an upward trend in global, and which is higher in the
developed countries especially in coastal areas (3). In China, the
prevalence is 6.4% among middle-aged and older Chinese (4), and
17.4% among the general population of the Chinese mainland (5),
there is a notable trend of younger individuals. This demographic shift
is anticipated to impose a substantial strain on China’s healthcare
infrastructure in the foreseeable future. Initial stage of HUA
characterized by elevated serum uric acid levels, and without the
specific clinical symptoms, also called asymptomatic hyperuricemia
(AH) (6). AH is a non-pathological condition, which is defined as
serum uric acid level > 6.2 mg/dL, 7 mg/dL in female and male (7).
Persistently elevated serum levels in AH lead to the formation of
monosodium urate crystalsx, causes chronic arthritis, known as gout
(8). In addition, a substantial reports indicate that HUA is a significant
risk factor for diabetes hypertension, hyperlipidemia, cardiovascular
disease, kidney disease and so on (9, 10). Currently, the clinical
approach to managing HUA centers on three aspects. Firstly, the
inhibition of UA synthesis via XOD inhibitors. Secondly, the
facilitation of uric acid excretion. Lastly, the enhancement of uric acid
metabolic decomposition. Prominent pharmacological agents
embodying these strategies encompass allopurinol, febuxostat,
benzbromarone, rasburicase among others (11). Despite the potential
therapeutic advantages, the clinical utility of medications is often
constrained by the occurrence of adverse reactions, including allergic
reactions, gastrointestinal discomfort, hepatic and renal toxicities as
well as cardiovascular complications (12, 13). Consequently, there is
an urgent need to explore natural herbal alternatives that may offer
therapeutic efficacy for the treatment of HUA while minimizing the
risk of adverse effects.

The medical and edible homologous traditional Chinese medicine
(TCM) has garnered significant attention in treating HUA, attributed
to its favorable safety and demonstrated therapeutic efficacy (14, 15).
Puerariae lobatae Radix (PLR), derived from the dried root of the
leguminous plant Pueraria lobata (Willd.) Ohwi, is a traditional
medicinal and edible plant that has been utilized in China (Ge-Gen in
Chinese), Southeast Asia, and Australia for millennia (16, 17). In
China and Japan, PLR has long been revered as a vital edible natural
resource, colloquially referred to as “Asian ginseng,” “longevity
powder;” and “Royal Special Food” As documented in the Chinese
Pharmacopeia, PLR possesses properties that clearing heat, generating
fluids, inducing diuresis, dredging meridians, and alleviating stiffness,
and has been used as an antipyretic, diaphoretic, wasting-thirst agent
(18). In recent years, PLR has been increasingly incorporated into
various health foods, such as soft sweets, beverages, tea, bread (19, 20),
due to its rich nutrient composition, including flavonoids,
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polysaccharides, saponins, triterpenoids, alkaloids and amino acids.
These nutrients contribute to its excellent performance in regulating
blood circulation, reducing alcohol dependence, hypotensive,
hypoglycemic, hypolipidemic effect (21, 22). Recent studies have
demonstrated that puerarin and pueraria isoflavones exhibit potent
antihyperuricemic activity through the inhibition of XOD, urate
transporter and inflammatory (23, 24). Furthermore, PLR is a key
component in several Chinese herbal formulas which have uric acid-
lowering effect, such as Gegen Qinlian Decoction, Fuling-Zexie
Formula (25, 26). These documented bioactivities align with the key
pathological mechanisms of hyperuricemia and lending further
credence to PLR’s potential anti-hyperuricemia efficacy. Nevertheless,
a systematic pharmacological evaluation of PLR specifically for
hyperuricemia remains relatively limited, and its underlying
mechanisms require further elucidation.

In recent years, with the advancement of microbiomic
technologies such as 16S rDNA and metagenomic sequencing, an
increasing body of evidence has demonstrated that gut microbiota
play a crucial role in the pathogenesis of HUA (27, 28). The elimination
of UA in humans is promoted by uricase is facilitated by uricase,
however, uricase has been lost as a functional gene during human
evolution and is now a “pseudogene” This congenital genetic
deficiency renders individuals highly susceptible to the development
of hyperuricemia, influenced by acquired factors such as diet. A recent
study has revealed that anaerobic bacteria in the gut microbiota are
capable of metabolizing uric acid, maintaining low serum uric acid
levels and reducing the risk of gout (29). This finding highlights the
compensatory role of the gut microbiota in mitigating the deficiency
of the uricase gene and underscores the potential of microbiota-
targeted therapies in the treatment of hyperuricemia.

In this research, we aimed to explore the beneficial effects of PLR
aqueous extract on HUA rat, and the possible mechanisms were tried
to investigate by the integrated strategy of network pharmacology and
intestinal flora sequencing. The findings of our research may provide
crucial scientific evidence for the preventive and therapeutic potential
of PLR in the clinical management of HUA. Additionally, this work
offers a novel theoretical foundation for the development of multi-
target derived from traditional

hypouricaemic  agents

Chinese medicines.

2 Materials and methods
2.1 Chemicals and reagents

Potassium oxonate and sodium carboxymethyl cellulose were
purchased from Shanghai yuanye Bio-Technology Co., Ltd. (Shanghai,
China). Allopurinol was purchased from Shanghai sine wanxiang
pharmaceuticals Co., Ltd. (Shanghai, China). The uric acid assay kit
was purchased from Biosino Bio-Technology And Science
Incorporation (Beijing, China). The blood urea nitrogen (BUN),
creatinine (CRE), and Adenosine deaminase (ADA) were purchased
from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
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The xanthine oxidase (XOD) assay kit was purchased from Elabscience
Biotechnology Co., Ltd. The aspartate aminotransferase (AST),
alanine aminotransferase (ALT), TNF-a, NF-kB, IL-6, IL-1/ assay kit
were purchased from Shanghai Enzyme-linked Biotechnology Co.,
Ltd. (Shanghai, China).

2.2 Preparation of PLR aqueous extract

Puerariae lobatae Radix (PLR) was purchased from Bozhou city
Jing Wan Chinese medicine slices factory (Bozhou, Anhui, China, Lot
240,301), and was identified by professor Zhang Lin of the institute
(College) of Integrative Medicine, Dalian Medical University. PLR
occurs as irregular thick slices, thick shreds, or square blocks with a
side length of 0.5-1.2 cm. The cut surface is light yellowish-brown to
brownish-yellow with a tough texture and prominent fibrous
characteristics. It has a slight odor and a slightly sweet taste. The
aqueous extract of PLR was prepared by decoction (30). Specifically,
PLR was boiled in deionized water at a ratio of 1:12 (w/v) for 1.5 h,
followed by two subsequent decoctions in deionized water at a ratio
of 1:10 (w/v) for 1 h each. After extraction, the mixture was filtered,
concentrated to a final concentration of 1 g crude drug per mL, and
store at —80 °C.

2.3 Analysis of the constituents in PLR
aqueous extract

The components analysis of PLR was conducted using an UPLC-
ESI-MS/MS system (UPLC, ExionLC™ AD, https://sciex.com.cn/)
and Tandem mass spectrometry system' in positive and negative
modes. Briefly, 200 pL of the PLR aqueous extract was mixed with
200 pL of 70% methanol with internal standard extraction solution.
The mixture was vortexed for 15 min, followed by centrifugation at
12000 r/min for 3 min at 4 °C. The supernatant was then collected,
filtered through a microporous membrane (0.22 pm pore size) and
transferred to an injection vial for LC-MS/MS detection. An Agilent
SB-C18 column (100 x 2.1 mm, 1.8 pm) was used, with the mobile
phase consisting of 0.1% formic acid in pure water (solvent A) and
0.1% formic acid in acetonitrile (solvent B). The column oven
temperature was set to 40 °C, and the injection volume was 2 pL. The
parameters for the ESI source were as follows: source temperature,
500 °C; ion spray voltage, +5,500 V (positive/negative ion mode); gas
I (GSI), 50 psi; gas IT (GSII), 60 psi; curtain gas (CUR), 25 psi; and
collision-activated dissociation (CAD), high.

2.4 HUA rat model and intervention
experiments

2.4.1 Establishment of HUA rat model and
administration

Six-week-old, specific pathogen-free (SPF) male Sprague-Dawley
(SD) rats were purchased from Liaoning Changsheng Biotechnology

1 https://sciex.com.cn/
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Co., Ltd. (Benxi, China), and housed in Dalian Medical University
Laboratory Animal Center under standard environmental conditions,
with ad libitum access to sterile water and food. The experimental
protocols adhered to the ethical guidelines set forth by the Ethics
Committee of Dalian Medical University (No. AEE21053). Following
a one-week acclimatization period, the rats were randomly divided
into five groups, each containing of six rats: (1) the normal control
group (NC), (2) the model group (M), (3) an allopurinol-treated
positive control group (PC), (4) the high-dose PLR group (PLR-H),
and (5) the low-dose PLR group (PLR-L). The hyperuricemic rat
model was established by administering potassium oxonate via gavage
(31, 32) at a dose of 1,000 mg/kg to all groups except NC group. After
a 6-h interval, rats in the PC group, PLR-H group, and PLR-L group
were administered oral gavage with allopurinol (27 mg/kg) or PLR
[0.4 g/kg and 0.2 g/kg, respectively. Equivalent to a human daily
dosage of 4 gand 2 g (33)] at a volume of 1 mL per 100 g body weight.
In contrast, rats in the NC group and M group received an equal
volume of distilled water via oral gavage. The study spanned a total of
28 days, with the experimental design illustrated in Figure 1 A. Weekly
body weight measurements were taken, and serum uric acid levels
were measured biweekly throughout the experiment, where serum
was collected from the inner canthus of the eyes of rats anesthetized
with isoflurane. On the final day of treatment, rats were euthanized via
abdominal aorta blood collection under anesthesia induced by 20%
urethane (0.5 mL/100 g body weight), and samples of liver, kidney,
spleen, and colonic contents were collected and preserved at —80 °C
for subsequent analysis.

2.4.2 Biochemical parameter detection

The collected blood samples were centrifuged at 4 °C and 3,000 g
for 15 min, The resulting serum supernatant was subsequently utilized
for the quantitative analysis of serum UA, BUN, CRE, ADA and XOD,
following the manufacturer’s instructions. Hepatic XOD activity was
evaluated using an XOD activity assay kit.

2.4.3 ELISA analysis

Serum samples were utilized for ELISA tests. The concentrations
of AST, ALT, TNF-a, IL-6, IL-1f3, NF-kB were measured in strict
accordance with the manufacturers’ protocols.

2.4.4 Histopathologic analysis of kidney and liver

Rat liver and kidney tissues were fixed in 4% paraformaldehyde.
Subsequently, the fixed tissues underwent a series of processing steps,
including dehydration, embedding, sectioning, and hematoxylin-
eosin (H-E) staining. The histomorphological changes such as edema,
degeneration, necrosis, hyperplasia, fibrosis, and inflammatory
changes were meticulously observed under microscope.

2.5 16S rRNA sequencing

Initially, DNA was extracted from the samples using the CTAB
method (34), following the manufacturer’s instructions. Subsequently,
PCR amplification was conducted. The PCR products were purified
and quantified using AMPure XT beads (Beckman Coulter
Genomics, Danvers, MA, United States) and Qubit (Invitrogen,
United States), respectively. The purified PCR products were then
evaluated with the library quantification kit of the Agilent 2,100
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FIGURE 1
UPLC-ESI-MS/MS analysis of PLR. (A) Positive ion mode. (B) Negative ion mode.

Bioanalyzer (Agilent, United States) and Illumina (Kapa Biosciences, 2.6 Data mining for network pharmacology

Woburn, MA, United States). Duplex sequencing with a read length

of 2 x 250 bp was performed on a NovaSeq 6,000 sequencer. Finally, The chemical components of PLR were retrieved from multiple

the raw sequencing data were processed by splitting to remove  online databases, such as CNKI>, PubMed®, TCMSP*, TCMID?,

barcodes and primer sequences, followed by splicing, filtering, and
DADA?2 denoising. Alpha diversity and beta diversity analyses were
then conducted based on the derived ASV feature sequences and https://www.cnki.net/
ASV abundance table. Species annotation was performed using the
SILVA  database  (Release 138,  https://www.arbsilva.de/

documentation/release138/) and the NT-16 s annotation database.

https://pubmed.ncbi.nlm.nih.gov/
https://www.tcmsp-e.com/
https://www.bidd.group/TCMID/
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BATMAN®, which was integrated with the results of UPLC-MS
analysis. Subsequently, the PubChem’ platform was used to obtain the
SMILES number for the identified components, which were then
subjected to target prediction using the Swiss Target Prediction
platform.® Using “Hyperuricemia” as the keyword, a comprehensive
retrieval of disease-associated targets was executed across multiple
authoritative databases: GeneCards’, Drugbank'’, and OMIM." The
Venny 2.1.0 platform' was employed to identify the intersection
targets between the disease and components. Protein - protein
interaction (PPI) analysis was carried out using the STRING
database', and the results were visualized with Cytoscape software.

For the core targets, GO and KEGG pathway enrichment analyses
were conducted using the DAVID database' (35), with a significance
level set at p < 0.05. The top 10 signaling pathways were visualized
using a micro—information platform." The outcomes highlighted the
top 10 significantly implicated signaling pathways, which were vividly
depicted through a micro-information platform, offering insights into
the molecular mechanisms underpinning the therapeutic potential of
PLR in hyperuricemia management.

The predicted key target proteins were validated using quantitative
real-time PCR (qRT-PCR) analysis. Total RNA was extracted from the
kidney tissue samples from rats utilizing an RNA extraction kit. The
concentration and purity of the extracted RNA were measured with a
Nanodrop 2000 spectrophotometer. Subsequently, the RNA was
subjected to reverse transcription followed by quantitative
amplification. The relative gene expression levels were calculated using
the AACT method. The primer sequences for the target genes are
detailed in Supplementary Table S1.

Molecular docking was further employed to evaluate the binding
affinity of key compounds with the core target (36). The crystal
structures of the proteins were obtained from the RCSB PDB
database'®, while the chemical structures of the compounds were
retrieved from the PubChem database (see text footnote 7). Proteins
and compounds preparation were conducted using PyMOL (The
PyMOL Molecular Graphics System, Version 2.6.2 Schrodinger, LLC)
and ChemBio3D Ultra 14.0.0.117 respectively, including the removal
of non-protein molecules (e.g., water, bound ligands). The processed
structures were then converted into PDBQT format using AutoDock
Tools 1.5.7. A docking grid box was subsequently drawn using
AutoDock Tools 1.5.7 with maximum spacing to ensure that the
binding pocket encompassed the majority of the protein. Finally,
molecular docking was performed using AutoDock Vina 1.1.2, and
binding energies were calculated. A binding energy of less than or
equal to —5.5 kcal/mol was set to define strong binding interactions.
The docking results were visualized using PyMOL.

6 http://bionet.ncpsb.org.cn/batman-tcm

7 https://pubchem.ncbi.nlm.nih.gov/

8 http://swisstargetprediction.ch/

9 https://www.genecards.org/

10 https://go.drugbank.com/

11 http://www.ncbi.nlm.nih.gov/omim

12 https://bioinfogp.cnb.csic.es/tools/venny/
13 https://cn.string-db.org/

14 https://davidbioinformatics.nih.gov/

15 https://www.bioinformatics.com.cn/

16 https://www.rcsb.org/

Frontiers in Nutrition

10.3389/fnut.2025.1685674

2.7 Statistical analysis

All experimental data were analyzed using SPSS 20.0 and
GraphPad Prism 10.1.2. Differences between groups were
determined by one-way ANOVA followed by an independent
Student’s ¢-test or Dunnett’s T3 test. The data are presented as
mean + standard deviation (SD), with p <0.05 considered
statistically significant.

3 Results

3.1 Chemical component analysis of PLR
aqueous extract

UPLC-ESI-MS/MS was used to analyze the components of
PLR. Figure 1 shows the total ion chromatography in positive and
negative ion mode. By using the Metware database, 23 compounds
were identified, including (—)-Medicocarpin, Formononetin,
Hispidulin, Glycitein, Genkwanin, Cirsimaritin, Aurantiamide
acetate, 3’-Methoxydaidzein, Isoformononetin, Dalbergin, Glepidotin
A, Phaseollidin, Pseudobaptigenin, Nobiletin, Eurycarpin A,
Galangin, Acacetin, Calycosin, 3-Methoxyapigenin, Glabrene,
Diosmetin, Medicarpin, Coumestrol. These compounds are listed in
Supplementary Table S2.

3.2 PLR promote weight gain and alleviates
the SUA in HUA rats

The animal experiment was conducted to investigate the potential
efficacy of PLR in HUA rats, with the experimental design and
administration scheme shown in Figure 2A. As illustrated in the bar
chart of body weight (Figure 2B), the weight of rats in all groups
exhibited an increasing trend throughout the experiment, which
indicates that the modeling and drug administration procedures did not
cause significant damage to the rats. However, compared with the control
group, the original weight percentage in the model group significantly
decreased (P<0.01, P<0.001). In contrast, both the high-dose and
low-dose of PLR significantly promoted weight gain in the model rats
(P<0.05, P<0.01). These preliminary results indicate that PLR exerts a
positive regulatory effect on HUA rats. Furthermore, the subsequent
therapeutic effects of PLR, such as serum uric acid reduction can
be attributed to its specific therapeutic action against HUA, rather than
non-specific improvement in overall animal health. Additionally, these
findings also provide valuable insights for optimizing modeling and
dosing administration in future experiments. Two weeks and at the end
of the fourth week of model establishment and drug administration, the
serum was collected from each group of rats to measure the UA level.
The results are presented in Figure 2C. Compared with the control
group, UA levels in the model group were significantly elevated
(P<0.001), confirming the successful establishment of the HUA model.
Moreover, allopurinol, as well as both the high-dose and low-dose of
PLR, could significantly reduce the UA levels (P<0.001). At the end of
the experiment, the high-dose PLR demonstrated the most significant
effect in reducing uric acid levels. These results indicate that PLR exhibits
a uric certain  dose-

acid-lowering effect and follows a

dependent relationship.
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FIGURE 2
The effect PLR on the weight gain and uric acid levels in HUA rats. (A) The experimental design and administration scheme. (B) Original weight
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3.3 PLR reduce the activity of UA
synthetase in HUA rats

Adenosine deaminase (ADA) and xanthine oxidase (XOD) are
pivotal enzymes in the uric acid synthesis pathway. ADA catalyzes the
conversion of adenine nucleosides to hypoxanthine, which is
subsequently oxidized to xanthine by XOD, and ultimately converted
to uric acid. Consequently, elevated activities of both ADA and XOD
are associated with increased UA production. Given that PLR
effectively alleviated UA level, we next investigated the regulatory
effects of PLR on UA synthetase. As shown in Figures 3A-C, compared
with the control group, the model group exhibited significantly
increased activities of ADA and XOD (P<0.001). In contrast, both the
XOD-inhibitor allopurinol group and the PLR groups significantly
suppressed ADA and XOD activities (P<0.01, P<0.001). The PLR-H
group showed better effects than the PLR-L group. These results
indicated that PLR has inhibitory activity against uric acid synthetase
and prevent the over production of UA in HUA rats (Figure 3C).

3.4 PLR alleviates the expression of
inflammatory factors in HUA rats

Elevated uric acid levels can activate signaling pathways such as
NF-kB, NLRP3 and TLRs, increase the production of reactive oxygen

10.3389/fnut.2025.1685674

species (ROS), and impair intestinal barrier function. These effects
promote the release of inflammatory factors and contribute to the
formation of hyperuricemia. ELISA kits were then used to measure the
levels of inflammation levels in serum of HUA rats. The results for the
levels of TNF-a, IL-6, IL-1f,
Figures 4A-D. Compared with the control group, the model group
showed significantly elevated levels of IL-6 and IL-1/3 (P<0.001), along
with increased TNF-a and a marked reduction in NF-kB (P<0.001).
Following drug administration, these alterations were significantly
attenuated (P<0.05, P<0.01, P<0.001), with the PLR-H group exhibiting
the most pronounced effect. Notably, while existing literature suggests that

and NF-xB were shown in

NF-kB expression generally correlates with cytokine levels, our findings
indicate that cytokine production in HUA rats may not be completely
dependent on NF-kB regulation. An alternative explanation involves
negative feedback: persistent NF-kB activation can induce powerful
feedback regulators like IkBa and A20, thereby suppressing its own
activity and subsequent cytokine production. Importantly, PLR appears
to restore the physiological regulatory mechanism.

3.5 PLR exhibits no hepatotoxicity and
alleviates renal function in HUA rats

The liver and kidneys are the primary organs responsible for uric
acid synthesis and excretion. Under conditions of hyperuricemia, both
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hepatic and renal functions may be affected. Serum BUN and Cre
levels serve as key indicators of renal function, while abnormally
elevated AST and ALT levels are common markers of liver injury. The
results of our research are shown in Figure 5, the levels of AST and
ALT among groups showed no significant difference (Figures 5A,B),
indicating that the potassium oxazenate-induced hyperuricemia
model did not cause obvious liver injury in rats and that the tested
drug PLR exhibited good safety. The levels of BUN and Cre in model
group were significantly higher than those in the control group
(P<0.001), confirming the association between hyperuricemia and
renal injury. Following PLR treatment, BUN and Cre levels in both
low-dose (PLR-L) and high-dose (PLR-H) groups were significantly
reduced toward control levels (P<0.01, P<0.001), and the effects were
superior to those of the allopurinol group (Figures 5C,D).

The above results initially indicate that there is certain renal injury
in HUA rats, and that PLR exerts a renal protective effect. However,
further in-depth analysis via histopathological examination is
necessary to validate these findings. The HE staining results revealed
that the pathological structure of liver in each group of rats was
essentially normal, with no obvious inflammatory cell infiltration or
hepatocyte edema observed (Figure 5E). In renal tissues of each group,
no significant pathological abnormalities were detected, instead,
glomerular and tubular structures remained intact, and tubular
epithelial cells were orderly arranged (Figure 5F).
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These results are inconsistent with the elevation of BUN and Cre
levels. This discrepancy may be attributed to the relatively short model
establishment duration and moderate severity of the model, which
may not have induced pathological structural damage. Additionally,
the tested agent PLR was medicinal and edible raw materials
administered at relatively low doses. This model also more closely
meets the requirements for asymptomatic hyperuricemia and
preventive medication. These findings demonstrate that PLR exerts a
the kidneys not

certain protective effect on and does

induce hepatotoxicity.

3.6 PLR alleviates the intestinal flora in HUA
rats

The intestine is another important pathway for uric acid excretion,
apart from the kidneys. Indeed, emerging evidence in recent years
indicates that dysbiosis of the intestinal flora is closely associated with
the pathogenesis of HUA. To evaluate the effect of PLR on the
intestinal flora of HUA rats, we conducted 16S rDNA sequencing of
rats’ colon contents. Firstly, the results of the a diversity of intestinal
flora are shown in Figure 6A. The chaol, Shannon, Simpson, observed
species, and pielou e indices were significantly lower compared to the
control group (P<0.01). Both allopurinol and PLR interventions
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significantly increased the values of these indices (P<0.05, P<0.01,
P<0.001), indicating that both HUA and PLR interventions directly
affect the abundance of the intestinal flora in rats.

To further elucidate the regulatory effect of PLR on the
intestinal flora, we analyzed the abundance of intestinal flora at the
phylum and genus levels. The results at the phylum level are shown
in Figure 6B. The dominant microbiota primarily comprised
Firmicutes, Bacteroidetes, Actinobacteria, Patescibacteria,
Desulfobacteria, Proteobacteria and Cyanobacteria. Statistical

analysis of the top three phyla (Firmicutes, Bacteroidetes, and

10.3389/fnut.2025.1685674

Actinobacteria) revealed that compared with the control group, the
abundances of Firmicutes was significantly increased (P<0.05), and
Actinobacteria showed an upward trend in the model group, while
Bacteroidetes abundance was significantly decreased (P<0.05). Both
the PLR-L and allopurinol groups could significantly regulate these
changes (P<0.05). The PLR-H exhibited a regulatory trend but
showed no significant difference from the model group. At the
genus level, as shown in Figure 6C, HUA rats exhibited significant
decreases in the relative abundance of Eubacterium, Clostridium,
Parabacteroides, Peptococcaceae, Lachnospiraceae, and Duncaniella
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(P<0.05, P<0.01), while showing significant increases in the relative
abundance of HTO002, Veillonella, Atopobiaceae_unclassified,
Coriobacteriaceae UCG-002, and Murimonas (P<0.001). PLR
intervention reversed the abundance of these genera (P<0.05,
P<0.01, P<0.001). Linear discriminant analysis (LDA) combined
with effect size (LEfSe) analysis revealed that PLR modulated the
intestinal flora from the phylum to genus levels (Figures 6D,E).

To explore the relationship between intestinal flora alterations and
HUA remission, Spearman correlation analysis was employed to
investigate the associations between bacteria and HUA-related
biochemical variables at the phylum and genus level. The results
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(Figure 6F) showed that UA was positively associated with
Actinobacteriota, Firmicutes (P<0.01), and negatively associated with
Bacteroidota, Cyanobacteria, and Elusimicrobiota (P<0.05, P<0.01).
BUN was positively associated with Patescibacteria, Verrucomicrobiota
(P<0.05, P<0.01), and negatively associated with Ruminococcus
(P<0.01). Cre was positively associated with HT002 (P<0.05), and
negatively associated with Proteobacteria, Campylobacterota,
Desulfobacterota, Lachnospiraceae NK4A136  group,
Ruminococcus (P<0.05, P<0.01).

These findings indicate that intestinal flora dysregulation occurs
in HUA rats, and PLR may exert an anti-hyperuricemia effect by

and
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significance was denoted as * P<0.05, ** P<0.01, *** P<0.001.

The dysregulation effect of PLR on the intestinal flora of HUA rats. (A) Alpha diversity analysis, including chao 1, Shannon, Simpson, observed species,
and pielou e. (B) Relative abundance analysis at phylum level and the intestinal flora exhibited significant differences in abundance. (C) Relative
abundance analysis at genus level and the intestinal flora exhibited significant differences in abundance. (D,E) Effect size (LEfSe) analysis and barplot
illustrating the significant differences in intestinal flora among groups as determined by linear discriminant analysis (LDA). (F) Correlation analysis of
biochemical indexes with intestinal flora at both phylum and genus levels. The darker the red color, the stronger the positive correlation; the darker the
blue color, the stronger the negative correlation. The correlations are * P<0.05, ** P<0.01. All the data are presented as the mean + SD, Statistical
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regulating these disturbed composition of gut microbiota. These
results provide valuable insights into the treatment of HUA.

3.7 PLR exerts an anti-HUA effect via
multi-pathway and multi-target based on
the network pharmacological analysis and
PCR, molecular docking verification

Despite the compelling evidence from our data demonstrating the
protective effect of PLR in the hyperuricemia (HUA) rat model, the
underlying mechanisms that confer these therapeutic benefits remain
largely unclear. To clarify the active constituents and potential targets
of PLR in HUA, a network pharmacological analysis was carried out.
Consequently, a total of 24 potential active compounds (screened
based on ADME-related criteria: oral bioavailability (OB) > 30%,
drug-likeness (DL) > 0.18, and high gastrointestinal absorption) and
376 corresponding targets associated with PLR were identified, while
800 targets related to HUA were retrieved, among which 53 were
found to overlap using the Venn tool (Figure 7A). Based on these
overlapping targets, we constructed a network of PLR components
and their intersection targets (Figure 7B). Subsequently, employing
STRING and Cytoscape analyses, we obtained a total of 10 core
targets, including CASP3, ABCG2, NFKBI1, PTGS2, JAK2, PARP1,
HDACI, XDH, GSR, and MAOA (Figure 7C). GO and KEGG
enrichment analyses were then performed. The results, presented in
Figures 5E,F respectively, show the top 10 pathways. Pathways such as
the pathways in cancer signaling pathway, NF-«B signaling pathway,
and IL-17 signaling pathway were significantly enriched. Additionally,
we constructed a  composition-target-pathway  network
(Figures 7D-F). To validate the reliability of these findings, we used
qRT-PCR to verify the expression levels of the top five core targets:
CASP3, NF-kB, PARP1, PTGS2, and JAK2. As depicted in Figure 7G,
the expression of the five core targets genes were significantly
downregulated (P<0.05, P<0.01, P<0.001) in the HUA rat model.
Administration of PLR significantly improved the expression of these
genes (P<0.05, P<0.01), indicating its anti-HUA effects.

We further employed molecular docking to verify the binding
interactions between the top five core targets-CASP3 (PDB ID: 1GFW),
NE-B (PDB ID: 2DBF), PARP1 (PDB ID: 7KK2), PTGS2 (PDB ID:
5F19), and JAK2 (PDB ID: 2XA4), and the candidate compounds
hispidulin, cirsimaritin, galangin, and diosmetin. As shown in Figure 8,
all core targets formed stable binding with the four compound, exhibiting
binding energies below —5.0 kcal/mol (Supplementary Table S3). The
results suggest that the aforementioned compounds from PLR can
modulate the critical targets associated with HUA and be and potentially
contribute to the biological processes of uric acid lowering.

4 Discussion

Hyperuricemia (HUA), as a global health concern, is witnessing
arising prevalence annually, and current drug treatments are plagued
by notable adverse effects. Consequently, the exploration of safer and
more effective prevention and treatment approaches has become a
pressing need (3). In this context, medicinal and edible Chinese
medicine offers an alternative therapy for HUA. Numerous studies
have demonstrated that medicinal food homologous plant can reduce
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uric acid levels. A wide range of plant species and used part, like
Chinese quince, lemon, chicory, tea, Flos sophorae, lotus leaf,
chrysanthemum flowers, Dendrobium officinale leaves, and Agrocybe
aegerita, have been utilized in many countries such as China, Korea,
India, and Brazil for extended periods (37, 38). Furthermore,
flavonoids, alkaloids, polyphenols, phenolic acids, saponins, and other
phytochemicals derived from natural sources have also exhibited
beneficial properties in the prevention and treatment of HUA. The
underlying mechanisms primarily involve targeting xanthine oxidase
enzymes to inhibit uric acid production, modulating the activity of
transport proteins to enhance uric acid excretion, or alleviating
oxidative stress and inflammation (39). In the present study,
we focused on Puerariae lobatae Radix (PLR), given its traditional
applications in the management of metabolic diseases. However, there
is a paucity of research specifically examining the individual effects
and the underlying mechanisms of PLR aqueous extract against
HUA. Our findings demonstrate that PLR exerts favorable preventive
and therapeutic effects against hyperuricaemia. Mechanistically, this
study moves beyond the established role of xanthine oxidase inhibition
to reveal a more comprehensive mode of action. We show that PLR
also facilitates uric acid excretion by modulating the gut microbiota
and alleviating compensatory feedback mechanisms in renal tissue.
Furthermore, expanding beyond the well-characterized active
component puerarin, our research is the first to predict and
preliminarily validate hispidulin, cirsimaritin, galangin, and diosmetin
as potential key active constituents contributing to PLR’s UA-lowering
effect. This finding expands the current understanding of the material
basis underlying PLR’s anti-HUA efficacy, providing new insights into
the multi-component synergy of PLR.

Potassium oxonate (PO), a triazene compound structurally
analogous to the purine ring of urate. It can competitively bind to
uricase, thus blocking the degradation of uric acid to allantoin and
increasing the uric acid level. Commonly, it serves as a modeling agent
for establishing HUA animal models (14). Given that the gene
encoding uricase has been inactivated during human evolution (29),
this modeling approach can largely simulate the pathogenesis of
human hyperuricemia. In our study, PO was administered orally at a
dose of 1,000 mg/kg to induce an asymptomatic hyperuricemia (AH)
rat model, in accordance with previously published reports (32). The
results demonstrated that the serum uric acid (SUA) levels in the
model rats were significantly elevated compared to those in the control
group. Moreover, no overt symptoms such as arthritis were observed,
indicating the successful establishment of an AH model. Both high
and low doses of PLR administration have been observed to decrease
SUA levels, demonstrating its efficacy as an anti-HUA agent.

UA is the terminal metabolite of purine metabolism, which is
primarily derived from the degradation of nucleic acids and other
purine compounds via cellular metabolic processes, as well as from
dietary purines (40). UA homeostasis is meticulously regulated by a
coordinated interplay of multiple organs within the body, and
encompasses a variety of enzymes and complex biochemical processes.
Shortly, adenosine (ADA) in the liver catalyzes the degradation of
adenine nucleoside to hypoxanthine nucleoside, which is then
converted to hypoxanthine under the action of nucleoside
phosphorylase. Hypoxanthine is subsequently oxidized to xanthine by
xanthine oxidase (XOD), and xanthine is further oxidized to
UA. Following the formation of UA, approximately one-third is
excreted via the gastrointestinal tract, while two-thirds are eliminated
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Network pharmacology analysis revealed the potential targets and pathways of PLR in the management of HUA. (A) Venn diagram of PLR components
and disease targets. (B) The network of PLR components and their intersection targets in HUA. The blue circle represents the target, blue-green
dovetail shapes represents the components of PLR. (C) Protein—protein interaction (PPI) network of HUA targets modulated by PLR. Each node
corresponds to a protein, The intensity of the coloration, ranging toward red, signifies the heightened significance of the respective node.

(D) Composition-target-pathway network. The interactions between components of PLR and targets are depicted on the left, where red circles denote
the components of PLR and blue squares represent the targets. The size of the circles is proportional to the significance of the component's role in
mitigating hyperuricemia: larger circles indicate a more substantial contribution. On the right, the top six enriched pathways and their associated
targets are illustrated. (E) GO enrichment analysis ranked the top 10 signaling pathways. (F) KEGG enrichment analysis ranked the top 10 signaling
pathways. (G) Effects of PLR on the expression of the top three target protein genes. The data are presented as the mean + SD, Statistical significance
was denoted as * P<0.05, ** P<0.01, *** P<0.001 when compared to the model group, while #* P<0.05, ## P<0.01, ###P<0.001 indicated comparisons

through renal excretion (41). Therefore, ADA and XOD play crucial
roles in the UA synthesis pathway, and the pivotal functions render
them attractive targets for therapeutic interventions designed to
reduce uric UA levels (42). In the present study, our results
demonstrated that both high and low doses of PLR not only
significantly inhibited the activity of serum ADA but also reduced the
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activity of liver XOD. This effect was superior to that of allopurinol, a
well—known XOD inhibitor and the positive control in this study.
These findings suggest that PLR lowers UA levels by decreasing uric
acid production through its dual inhibitory effects on ADA and XOD.

The accumulation of UA in the body primarily hinges on
hepatic production and renal as well as intestinal excretion. An
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FIGURE 8

Molecular docking of candidate compounds (hispidulin, cirsimaritin, galangin, and diosmetin) with core targets of HUA (CASP3, NF-kB, PTGS2, PARP1,
and JAK2).
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elevated UA concentration can thus augment the burden on both
the liver and kidneys, with the kidneys being particularly affected
as approximately two—thirds of uric acid is excreted through
them. This can lead to significant renal damage and even progress
to chronic kidney disease (43). Clinically, serum blood urea
nitrogen (BUN) and creatinine (CRE) levels are commonly used
clinical indicators for evaluating renal function. With their
elevation often reflecting severe renal insufficiency (44). An
increase in these levels often indicates severe renal insufficiency.
Additionally,
aminotransferase (AST) and alanine aminotransferase (ALT) levels

abnormal changes in serum aspartate
are often associated with hepatic damage (45). In this study, the
serum BUN and CRE levels in the model rats were significantly
higher than those in the control group, there was no significant
difference in serum AST and ALT levels among all groups, and
histopathological analysis of rat liver and kidney performed using
H&E staining had no obvious abnormality was found. The results
indicated that under the experimental modeling conditions, the
hyperuricemic rats exhibited a certain degree of kidney damage,
yet no pathological alterations were observed. As a medicinal and
edible material, it has been reported that high doses of PLR water
extract (25 g/kg) is relatively safe for SD rats (46). In this study,
PLR was administered at a relatively low dosage (equivalent to the
dosages of 2 g and 4 g, respectively, for human administration),
and significantly reduce the levels of BUN and CRE. These results
suggest that PLR has no toxic effect and exerts certain
nephroprotective effects, which is consistent with previous reports
(47). However, the long-term safety profile of PLR and its precise
effective dosage for hyperuricaemia treatment require further
elucidation. Future studies should systematically investigate these
aspects by incorporating at least three dose groups to establish a
robust dose-response relationship, alongside a test substance-only
control group (administering PLR to normal, non-modeled
animals). This control is essential to distinguish whether the
therapeutic effect arises from correcting the pathological state or
altering normal physiology.

The intestine serves as a crucial potential organ for uric acid
excretion, complementing the kidneys. Approximately one-third
of urinary uric acid is excreted through the action of uric acid
transporters and the metabolic activity of intestinal microflora
(48). Extensive researches have demonstrated that the intestinal
flora plays a significant role in regulating hyperuricemia. This
association is primarily mediated through three ways: participating
in purine metabolism, decomposing uric acid, and reducing uric
acid concentrations; facilitating the excretion of uric acid via
metabolites of intestinal microflora; and alleviating inflammation
by repairing the intestinal barrier (49, 50). Therefore, regulating
gut flora abundance is expected to be a promising strategy for the
treatment and prevention of hyperuricemia. In this study,
we utilized 16S rDNA sequencing to investigate the potential
effects of PLR on the intestinal flora of hyperuricemia—model rats.
As the results shown HUA induced significant alterations in the
intestinal flora. At the phylum level, the abundance of Firmicutes
and Actinobacteriota was significantly increased, while the
abundance of Bacteroidota was significantly decreased in the
model rats. These findings are consistent with previous studies
(51). At the genus level, significant decreases were observed in the
relative abundance of Eubacterium, Clostridium, Peptococcaceae,
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Parabacteroides, Lachnospiraceae, and Duncaniella, whereas
significant increases were noted in the relative abundance of
HTO002, Veillonella, Atopobiaceae_unclassified, Coriobacteriaceae_
UCG-002, and Murimonas. These changes were partially alleviated
by the intervention of PLR.

It has been reported Eubacterium (52), Clostridium (53),
Lachnospiraceae (54), Peptococcaceae (55) can produce butyrate
and other short-chain fatty acid (SCFA), which plays a key role in
immune regulation and intestinal inflammation inhibition.
Parabacteroides have a close relationship with host health by
regulating immunity, relieving inflammation and secreting
metabolites, with the physiological characteristics of carbohydrate
metabolism and secreting short-chain fatty acids (56). Duncaniella
belongs to the Muribaculaceae family, a potential probiotic
bacterial family, which can produce short-chain fatty acids, and has
an active effect on regulating intestinal barrier, metabolic disorders
and immune inflammation (57). Veillonella is a inflammatory
pathogenic bacteria, which has a highly positive correlation with
the concentrations of IL-1f4, IL-6 and TNF-a (58). Veillonella
parvula metabolizes immunosuppressive thiopurine drugs through
xdhA xanthine dehydrogenase (59). In patients with elevated uric
acid coronary heart disease complicated with nonalcoholic fatty
liver disease, the abundance of Veillonella increased and the
abundance of Parabacteroides reduced (60). While the reports had
proved HTO002 (61), Atopobiaceae (62), Coriobacteriaceae
UCG-002 (63) and Murimonas (64) shown a positive correlation
with pro-inflammatory cytokines, lipid metabolism, and the
intestinal permeability. The intervention of PLR on HUA indicate
that it can promote uric acid excretion through intestinal
metabolites and improve inflammation by increasing the
abundance of beneficial bacteria and decreasing the abundance of
harmful bacteria.

Similar to other traditional Chinese medicines, PLR exhibits a
complex and diverse profile of chemical constituents (20). This
inherent property poses challenges to the exploration of its active
ingredients and the corresponding mechanisms of efficacy. The
integrated research strategy combining ultra—high—performance
liquid chromatography/mass spectrometry (UHPLC/MS) with
network pharmacology offers a novel perspective for addressing
this issue (65). In this study, we utilized UPLC-MS to
the of
PLR. Subsequently, network pharmacology was applied to

comprehensively analyze chemical composition
investigate the potential targets and signaling pathways associated
with the active ingredients. As a result, 23 main compounds in PLR
were identified by UPLC-MS. Combined with the Traditional
Chinese Medicine Systems Pharmacology (TCMSP) database, 24
active ingredients were determined for the network pharmacology
analysis. Eventually, four components with the most therapeutic
targets in HUA were predicted: hispidulin, cirsimaritin, galangin,
and diosmetin. Moreover, five core targets of PLR for HUA
treatment, such as CASP3, NF-kB, PTGS2, PARP1 and JAK2 were
initially screened. Hispidulin is a naturally occurring flavonoid,
which has an excellent anti-inflammatory effect (66). In uric acid
nephropathy rat model, hispidulin can inhibit the release of IL-14,
IL-8, TNF-«, and IL-6, and intercept the activation of NF-xB
signaling, thus effectively improve renal function injury (67).
Additionally, hispidulin ameliorates endotoxin-induced kidney
injury by suppressing inflammation, oxidative stress, and tubular
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cell death mediated by caspase-3 pathway (68). Hispidulin also can
suppress the expressions of PTGS2 and NLRP3 inflammasome to
improve cyclophosphamide-induced cystitis (69). Meanwhile,
studies have reported that Hispidulin exerted xanthine oxidase
inhibitory activity (70). Cirsimaritin can inhibit NF-kB nuclear
translocation and NLRP3 inflammasome activation, and then
inhibit maturation and release of IL-1f (71), it has an excellent
anti-inflammatory activity (72). Galangin has demonstrated the
capacity to inhibit xanthine oxidase (XO) activity (73). Galangin
exerted an improvement on HUA by ameliorating gut-kidney axis
dysfunction (74), and alleviate hyperuricemic nephropathy
through regulating metabolic profiles and the JAK2/STAT3
signaling pathway (75). In uric acid treated tubular epithelial cells,
galangin can suppress renal inflammation by the inhibition of
NF-kB, PI3K/AKT and NLRP3 (76). Diosmetin is also an XO
inhibitor (77), which can decrease UA production in hepatocytes
(78), and has the potential to reduce inflammation (79). These
studies suggest that hispidulin, cirsimaritin, galangin, and
diosmetin are likely the key bioactive components in PLR
responsible for its anti-hyperuricemic effects. Future work will
involve in wvitro enzymatic inhibition assays and in vivo
pharmacodynamic studies to directly compare the efficacy of these
their
contributions to the observed uric acid-lowering effects.

We further used qRT-PCR to verify the mRNA expression of
the five identified core targets in rat renal tissues. Notably, PLR

components and experimentally validate relative

reversed the downregulated expression of these genes in HUA rats,
whereas these proteins are typically thought to be highly expressed
in disease states. The molecular docking results further
demonstrate strong binding interactions between these five target
proteins and the four active compounds in PLR, with the average
binding energy being less than —7 kcal/mol. It is well known that
Caspase-3 (CASP3) is an executioner of cell apoptosis, however,
accumulating evidence indicates that its activity can also affect the
survival, proliferation, and differentiation of normal cells and
tissues through both “nonautonomous” and “cell autonomous”
mechanisms (80). NF-xB is one of the most important transcription
factors, which plays critical roles in multiple physiological and
pathological processes. Feedback inhibition arising from pathway
activation is critical for normal homeostasis and operates at all
levels in the pathway, from ligand-activated receptors to NF-xB
gene transcription itself like IkBa, A20, and p105 (81, 82). In the
present study, the reduced expression levels of NF-kB in the serum
and renal tissues of the HUA model group may be attributed to the
following mechanism: the modeling stimuli induced excessive
activation of the NF-xB signaling pathway, which in turn triggered
a robust negative feedback inhibition mechanism (e.g., sustained
overexpression of IkBa and A20 proteins). Ultimately, this process
caused the pathway to enter a state of “exhaustion” or “functional
inhibition.” In contrast, PLR was able to reverse this “exhaustion”
state, alleviate the excessive negative feedback, and restore the
NE-kB pathway to its normal physiological dynamic balance. Poly
ADP-ribose polymerase-1 (PARP1) plays a critical role in DNA
repair. Upon DNA is damaged, PARP1 is activated and binds to the
damaged site. Subsequently, PARPI recruits multiple proteins
involved in various aspects of DNA damage repair through
poly(ADP)ribosylation (PARylation), thereby initiating the DNA
repair mechanism (83). Prostaglandin-endoperoxide synthase 2
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(PTGS2), also known as cyclooxygenase-2 (COX-2), catalyzes the
conversion of arachidonic acid to prostaglandin precursors,
primarily prostaglandin G2 (PGG2) and prostaglandin H2
(PGH2). These intermediates are subsequently metabolized to
more stable, biologically active prostanoids, including
prostaglandin E2 (PGE2) and prostacyclin (PGI2). In the kidney,
COX2 is predominately expressed in renal medullary interstitial
cells, cortical thick ascending limb cells, and macula densa-
associated cells. Its products such as PGE2 and PGI2, play crucial
roles in regulating glomerular filtration rate (GFR), renin release,
and water/sodium excretion. Under pathological conditions, the
expression of PGE2 and PGI2 are upregulated to maintain renal
blood flow and GFR. However, sustained overexpression can
promote renal inflammation and fibrosis (84, 85). Janus kinase 2
(JAK2) belongs to the family of non-receptor tyrosine kinases.
When cytokines, primarily from the IL-6 family, bind to their
receptors on the cell membrane, JAK2 is activated. This activation
triggers the phosphorylation of the downstream molecule STAT3,
thereby initiating the JAK2-STAT3 signaling pathway. This
ubiquitous intracellular pathway plays critical roles in diverse
biological processes, including cell proliferation, differentiation,
apoptosis, and immune regulation. Additionally, this pathway is
subject to negative regulation by several factors, such as suppressors
of cytokine signaling (SOCS), protein inhibitors of activated STAT
(PIAS), and protein tyrosine phosphatases (PTP), which control
the magnitude and duration of signaling (86, 87). In this study, the
expression of these five core target genes was upregulated in HUA
rats, suggesting that renal tissues may have activated a negative
feedback regulatory mechanism to maintain normal kidney
function and prevent tissue damage. This observation was
consistent with the HE staining results, which showed no obvious
pathological changes in the renal tissues. PLR intervention
effectively modulated gene expression, indicating that the negative
feedback regulatory state in the kidneys may have been alleviated,
allowing the expression of these genes to return to baseline
physiological levels. This shift reflects the restoration of tissue
homeostasis and may signify the initiation of repair processes.
definitive demonstration of this

Nevertheless, regulatory

mechanisms ~ will  necessitate  targeted in-vivo and

in-vivo experiments.

5 Conclusion

In summary, this study investigated the preventive and therapeutic
effects of PLR on HUA, with the primary mechanism illustrated in
Figure 9. PLR could ameliorate serum uric acid concentrations by
inhibiting the activity of uric acid synthase, and decreased
inflammation and indicators of renal function, alleviate the hepatic
and renal function in PO-induced hyperuricemia rats. Additionally,
PLR altered the gut microbiota structure and increased the abundance
of beneficial bacteria like Clostridium and Duncaniella. Integrated
network pharmacology analysis coupled with PCR validation revealed
that hispidulin, cirsimaritin, galangin, and diosmetin in PLR may
modulate the expression of CASP3, NF-kB, PTGS2, PARP1, and JAK2.
This modulation appears to alleviate compensatory negative feedback
regulation in the kidneys and restore tissue homeostasis through the
regulation of multiple signaling. Our findings offer valuable insights
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Schematic diagram illustrating the potential mechanism of PLR in hyperuricemic rats. In the liver, PLR reduces uric acid levels by inhibiting the activity
of ADA and XOD. In the kidney and intestine, PLR exerts renoprotective effects and modulates the abundance of intestinal flora to promote the
excretion of uric acid. Furthermore, in the kidney, PLR may upregulate the expression of CASP3, NF-kB, PTGS2, PARP1, and JAK2, alleviate
compensatory negative feedback regulation and the restore tissue homeostasis.
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into the clinical application of the edible wild plant PLR in the
management of HUA. Nevertheless, further investigations are
required to fully elucidate two key aspects: (1) the isolation of these
candidate compounds and their targeted in vitro/in vivo validation to
definitively confirm their roles in anti-hyperuricemia; and (2) the
underlying mechanisms, particularly the potential involvement of the
intestinal flora in mediating PLR’s anti-hyperuricemic properties.
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