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Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative 
disorder, characterized by amyloid-β deposition, tau pathology, 
neuroinflammation, and metabolic dysfunction. While conventional treatments 
have been widely studied, food-based interventions are emerging as potential 
neuroprotective strategies. Pueraria, a nutrient-rich food, has shown promise in 
promoting brain health, but its mechanisms in AD prevention and management 
remain insufficiently understood.
Methods: In this study, we utilized network pharmacology, transcriptomics, and 
machine learning to investigate the neuroprotective effects of Pueraria. Through 
analysis of five transcriptomic datasets (GSE5281, GSE29378, GSE36980, 
GSE37263, and GSE138260), we  identified genes associated with AD and 
screened 15 active compounds from Pueraria lobata using HERB and TCMSP 
databases. Machine learning models prioritized key targets, and molecular 
docking simulations assessed the binding affinities of Pueraria compounds to 
these targets. In vivo validation was performed in AD model mice to evaluate the 
cognitive-enhancing effects of Pueraria.
Results: We identified 45 overlapping targets between Pueraria and AD, primarily 
related to synaptic plasticity and neurotransmission. Among these, PFKFB3 
emerged as a key mediator of Pueraria’s neuroprotective effects. Molecular 
docking confirmed strong binding affinities between Pueraria compounds 
and PFKFB3, supporting their functional role. Experimental data showed that 
Pueraria improved cognitive function in AD mice, underscoring its potential as 
a neuroprotective agent.
Conclusion: This study highlights Pueraria as a promising functional food for AD 
prevention and management, emphasizing the potential of plant-based dietary 
interventions for brain health. Our findings provide a basis for further exploration 
of food-derived neuroprotective strategies.
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative 
disorder in the elderly, characterized by progressive cognitive decline 
and memory loss (1). As the global population ages, the prevalence of 
AD is rising, presenting a significant public health challenge. 
Projections suggest that by 2050, more than 139 million people will 
be  living with AD and related dementias (2, 3). Underscoring the 
urgent need for effective prevention and intervention strategies. 
Despite decades of research, AD remains incurable, and current 
treatments fail to substantially slow disease progression (4, 5). The 
pathogenesis of AD is multifactorial, involving intricate interactions 
between genetic, environmental, and lifestyle factors (6, 7). Key 
pathological features of AD include the accumulation of amyloid-β 
plaques, tau tangles, neuroinflammation, and mitochondrial 
dysfunction. These processes collectively contribute to synaptic 
dysfunction, neuronal loss, and cognitive decline (8–10). Traditional 
drug therapies typically target individual factors, such as amyloid-β or 
tau, but their limited efficacy highlights the need for more 
comprehensive approaches. Consequently, there has been growing 
interest in holistic, food-based interventions capable of addressing 
multiple pathways in AD pathology simultaneously (11, 12).

In this context, functional foods are emerging as promising 
candidates for the prevention and management of chronic diseases 
like AD (13, 14). Pueraria, a plant native to East Asia, has garnered 
attention for its diverse array of bioactive compounds, many of which 
exhibit neuroprotective properties (15, 16). Widely used in East Asian 
culinary practices, Pueraria is incorporated into soups, teas, and 
starches, enhancing flavor and texture while potentially offering health 

benefits (17, 18). Active compounds in Pueraria, including daidzein, 
puerarin, and genistein, have been shown to modulate key AD-related 
pathways (19, 20). These compounds reduce amyloid-β production, 
enhance its clearance, inhibit tau hyperphosphorylation, and protect 
against neuroinflammation and oxidative stress (21, 22). Although 
most research has focused on the medicinal benefits of Pueraria, its 
potential as a dietary supplement remains underexplored. Given the 
growing interest in functional foods and the increasing demand for 
natural, plant-based alternatives to synthetic drugs, exploring the 
neuroprotective effects of Pueraria as part of a daily diet is essential.

This study aims to investigate the neuroprotective mechanisms of 
Pueraria from a food perspective, using network pharmacology, 
transcriptomics, and machine learning to understand how its bioactive 
compounds interact with key molecular targets in AD. By evaluating 
Pueraria as a functional food, we highlight its potential role in AD 
prevention and management and offer new insights into plant-based 
neuroprotective strategies. Figure 1 shows the study flow chart.

2 Materials and methods

2.1 Animal experiments

Male C57BL/6J mice were purchased from Jiangsu Jicui Yao 
Kang Biotechnology Co., Ltd. All animals were housed in the 
Animal Experiment Center of the Experimental Center of Wannan 
Medical College under standard laboratory conditions, and all 
procedures were conducted in accordance with relevant animal 
welfare guidelines. All experimenters were certified in 

FIGURE 1

Complete analysis workflow.
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experimental animal handling, and the protocol was approved by 
the Animal Ethics Committee of Wannan Medical College 
(Approval Number: WNMC-AWE-2025199). At 16 weeks of age, 
mice underwent behavioral assessment of learning and memory 
functions using the Morris water maze (MWM), novel object 
recognition (NOR), and Y-maze tests. All behavioral testing was 
performed during the animals’ active photoperiod (08:00–12:00) 
with n = 8 mice per group for each behavioral test (MWM, NOR, 
and Y-maze).

2.2 Construction of the Abeta1-42-induced 
Alzheimer’s disease mouse model

Aβ1-42 was dissolved in 1% NH₃·H₂O to a concentration of 1 μg/
μL and incubated at 37 °C for 5 days to promote oligomer (fibril) 
formation. Following skull drilling at the designated stereotactic 
coordinates using a dental drill, Aβ1-42 (4 μg) was bilaterally injected 
into the hippocampi of male C57BL/6 mice using a microinjector. 
After injection, the scalp was sutured, and mice were maintained at 
37.5 °C ± 0.5 °C. Behavioral testing commenced 2 weeks 
after injection.

2.3 Morris water maze test

The MWM test was used to evaluate spatial learning and long-
term memory. A circular pool was divided into four quadrants, each 
marked by distinctive wall patterns and colors (red, green, yellow, 
blue) serving as spatial cues. The transparent circular platform was 
placed in the target quadrant, designated as the third quadrant in the 
software system, with the farthest quadrant designated as the first 
quadrant. Each trial lasted 60 s, and mice were required to remain on 
the platform for 5 s upon location.

2.4 Novel object recognition test

The NOR test was used to assess short-term working memory. 
Mice were habituated to a dimly lit plastic box (without objects) for 
10 min. During the familiarization phase, two identical cube-shaped 
objects (A and B; 3 cm sides) were placed 8.5 cm from the left and 
right box walls in the front third of the arena. Mice were allowed to 
explore for 10 min, and exploration trajectories, time, and frequency 
were recorded. After a 1-h interval, the test phase was conducted by 
replacing object B with a novel cylindrical object (C) of similar 
volume but different color and shape, positioned identically. Mice 
were placed back in the same starting position, and exploration data 
were recorded.

2.5 Y-maze test

The Y-maze test assessed hippocampus-dependent spatial 
working memory. Mice were allowed to freely explore the three arms 
for 5 min, during which the sequence and frequency of arm entries 
were recorded. The time spent in the starting arm, central area, and 
novel arm was analyzed.

2.6 Immunofluorescence staining

After 21 days of continuous administration, eight mice per 
group were anesthetized and transcardially perfused with ice-cold 
4% paraformaldehyde. Brains were removed, post-fixed overnight 
in 4% paraformaldehyde, and cryoprotected sequentially in 20 and 
30% sucrose/PBS at 4 °C (overnight each). Tissues were embedded 
in optimum cutting temperature compound (Sakura Finetek, 
United States) and coronally sectioned at 30 μm thickness using a 
cryostat. Sections were blocked with 10% fetal bovine serum in PBS 
for 1 h at room temperature, incubated overnight at 4 °C with 
mouse anti-NeuN primary antibody (ab104224, Abcam), and then 
incubated for 30 min at 37 °C with Alexa Fluor–conjugated 
secondary antibody (Invitrogen). Nuclei were counterstained with 
4′,6-diamidino-2-phenylindole (DAPI). Images were acquired 
using a Leica TCS SP8 confocal microscope. Throughout the 21-day 
experimental period, all mice were monitored daily for signs of 
toxicity, including body weight changes, behavioral abnormalities, 
food and water consumption, and general health status. Body 
weights were recorded every 3 days. No adverse effects, mortality, 
or significant body weight changes (>10% loss) were observed in 
any treatment group. Additionally, gross necropsy examination 
revealed no visible organ abnormalities in treated animals.

2.7 Transcriptome data processing

Five Alzheimer’s disease-related transcriptomic datasets (GSE5281, 
GSE29378, GSE36980, GSE37263, and GSE138260) were obtained from 
the Gene Expression Omnibus (GEO) database, comprising gene 
expression profiles from AD patients and healthy controls. Batch effects 
among datasets were corrected using the ComBat algorithm in the sva 
R package (v3.40.0, R v4.1.0). Principal component analysis (PCA) was 
performed to assess sample distribution before and after correction, 
confirming effective removal of technical variability. Differentially 
expressed genes (DEGs) were identified using the limma package 
(v3.48.3) with criteria |log₂FC| >0.585 (1.5-fold change) and adjusted 
p ≤ 0.05. The ggplot2 package was used to generate volcano plots for 
DEG distribution visualization, and the pheatmap package was used to 
construct heatmaps displaying DEG expression patterns between groups.

2.8 Weighted gene co-expression network 
analysis

Gene co-expression networks were constructed using the 
weighted gene co-expression network analysis (WGCNA) package 
(version 1.71) to identify disease-related gene modules. Pearson 
correlation coefficients were calculated for all gene pairs, and a soft 
threshold of β = 5 was selected to ensure scale-free topology 
(R2 > 0.80). The dynamic tree cutting algorithm was employed to 
cluster genes into modules, with a minimum module size of 60 genes. 
Module eigengenes (MEs) were computed for each module, and 
Pearson correlation analysis was performed to assess the association 
between modules and Alzheimer’s disease (AD) phenotype. Modules 
significantly associated with AD were selected and merged with 
differentially expressed genes (DEGs) identified through Venn 
diagram analysis, yielding candidate genes linked to AD.
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2.9 Network pharmacology analysis and 
target prediction of Pueraria

Chinese medicine databases, including HERB and TCMSP, 
were searched to identify the main bioactive components of 
Pueraria, such as puerarin, daidzein, and genistein. Potential 
target proteins for these compounds were predicted using the 
Swiss Target Prediction platform, with a probability threshold set 
at >0.5 for reliable target identification. Cytoscape software 
(version 3.9.1) was utilized to visualize the interactions between 
Pueraria bioactive components and their target proteins, 
constructing a network of multi-component and multi-
target interactions.

2.10 Enrichment analysis

Common target genes, identified through Venn diagram analysis 
of the intersection between predicted Pueraria targets and 
AD-associated genes, were subjected to Gene Ontology (GO) 
functional annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis using the cluster Profiler package 
(version 4.0.5). The Benjamini–Hochberg method was used to adjust 
p-values, and a corrected p-value <0.05 was considered 
statistically significant.

2.11 Machine learning model construction 
and core gene selection

The merged transcriptomic datasets (GSE5281 and GSE36980) 
were used for model training, while three independent datasets 
(GSE138260, GSE29378, and GSE37263) served as external validation 
sets. Machine learning models were constructed from 127 different 
combinations, incorporating classification algorithms (Random Forest, 
Support Vector Machine, XGBoost, Logistic Regression, and Neural 
Networks) and feature selection methods (LASSO regression, recursive 
feature elimination, and ANOVA). Ensemble learning strategies, such 
as voting and stacking, were employed to improve model performance. 
The models were evaluated via 10-fold cross-validation, using metrics 
including the area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, accuracy, and F1 score. The 
RF + XGBoost ensemble model (average AUC = 0.792) was selected 
for further analysis due to its optimal performance in both the training 
and validation sets. Based on feature importance rankings, 17 core 
genes with AUC values exceeding 0.6 in individual ROC analyses were 
identified. Decision curve analysis (DCA) was applied to assess the 
clinical net benefit of these core genes at various threshold probabilities.

2.12 SHAP interpretability analysis

The SHAP framework (version 0.41.0) was employed to quantify 
the contribution of the 17 core genes to the machine learning model’s 
predictions. SHAP values and average absolute SHAP values were 
calculated for each gene, and importance ranking and swarm plots 
were generated to illustrate the direction and strength of each gene’s 
impact on AD prediction.

2.13 Mendelian randomization analysis

A two-sample Mendelian randomization (MR) approach was 
applied to assess the causal association between core genes and 
AD. Genetic variants linked to PFKFB3 and NR1D1 gene expression 
were sourced from the GWAS database as instrumental variables (eQTL 
p-value <5 × 10−8). Genetic association data for AD were obtained from 
the GWAS database (ieu-b-5067). Causal effects were estimated using 
inverse variance weighting, MR-Egger regression, and weighted median 
methods. The Cochran Q test was applied to evaluate heterogeneity, 
while the MR-PRESSO method detected horizontal pleiotropy. The 
leave-one-out approach was used to validate the robustness of the results.

2.14 Molecular docking validation

The three-dimensional crystal structure of PFKFB3 was retrieved 
from the Protein Data Bank (PDB) and preprocessed using PyMOL 
software (version 2.5.2), removing water and other ligands, adding 
polar hydrogens, and assigning Gasteiger charges with AutoDock 
Tools. The chemical structures of key Pueraria active compounds 
(daidzein, formononetin, and tuberosin) were obtained from 
PubChem and optimized using Avogadro software (version 1.95.0) 
with the MMFF94 force field. Molecular docking simulations were 
conducted using AutoDock Vina software (version 1.2.0), with the 
active site of PFKFB3 defined as a 10 Å radius from the natural ligand. 
Docking results were evaluated based on binding energy (kcal/mol), 
with binding energies ≤−5.0 kcal/mol indicating strong interactions. 
The best docking conformations were visualized using PyMOL 
software to analyze protein-ligand interactions and key amino acid 
residues involved in binding.

2.15 Statistical analysis

All statistical analyses were performed using R software. 
Continuous variables were compared using Student’s t-test or Mann–
Whitney U test, while categorical variables were assessed using the 
chi-square test. Multiple comparison corrections were performed 
using the Benjamini–Hochberg method to control the false discovery 
rate. A two-sided p-value <0.05 was considered statistically significant. 
Mendelian randomization analyses were conducted using the 
TwoSampleMR package, and molecular docking results were validated 
through multiple independent runs to ensure reproducibility. 
Quantitative data are presented as mean ± standard deviation.

3 Result

3.1 Screening of differentially expressed 
genes in Alzheimer’s disease and weighted 
gene co-expression network analysis

To investigate the gene expression patterns associated with 
Alzheimer’s disease (AD) and integrate multi-dataset analysis, batch 
correction was first performed on the gene expression data from the 
GSE36980 and GSE5281 datasets. Principal component analysis 
(PCA) confirmed that the batch effect was successfully removed, with 

https://doi.org/10.3389/fnut.2025.1683852
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ye et al.� 10.3389/fnut.2025.1683852

Frontiers in Nutrition 05 frontiersin.org

the corrected samples uniformly distributed (Figure 2A), indicating 
effective batch correction. Differentially expressed genes (DEGs) were 
identified using a volcano plot, which revealed 558 significantly 
upregulated genes (logFC >0.585 and adj. p-value ≤0.05) and 655 
significantly downregulated genes (logFC <−0.585 and adj. p-value 
≤0.05) (Figure 2B). A heatmap of 25 DEGs showed clear patterns of 
high expression (red) and low expression (blue) in the disease group 
compared to the control group (Figure 2C). Additionally, weighted 
gene co-expression network analysis (WGCNA) was applied to 
construct a gene clustering tree and partition genes into modules 
(Figure  2D). Module-trait relationship analysis revealed three 
modules—MEred, MEyellow, and MEblack—that were highly 
correlated with disease traits (Figure 2E). Finally, a Venn diagram was 
used to merge the DEGs identified for Alzheimer’s disease with the 
characteristic genes from the three WGCNA modules, yielding a total 
of 2,491 potential target genes for AD (Figure 2F).

3.2 Identification of common targets 
between Pueraria and Alzheimer’s disease 
and functional enrichment analysis

To explore the molecular mechanisms underlying the therapeutic 
effects of Pueraria on Alzheimer’s disease (AD), we integrated network 
pharmacology and bioinformatics approaches. First, an interaction 
network was constructed between the active components of Pueraria 
and 236 target genes (Figure 3A). A Venn diagram was used to identify 
the intersection between Pueraria target genes and AD-associated 
genes, revealing 45 common genes (Figure 3B). We then analyzed the 
expression changes of these 45 genes in AD (Figure  3C) and 
performed functional annotation. GO enrichment analysis highlighted 
their significant involvement in synaptic plasticity, GABA-A receptor 
activity, and other neural functions (Figure  3D). KEGG pathway 
analysis revealed that these genes are associated with core pathways, 
including GABAergic synapses and retrograde endocannabinoid 
signaling (Figure 3E). These findings suggest that Pueraria regulates 
AD-related neural pathways through these 45 key target genes, 
supporting its multi-component, multi-target action as a therapeutic 
agent for AD.

3.3 Core therapeutic target screening and 
validation based on machine learning 
algorithms

To assess the diagnostic value of the 45 intersecting genes from 
Pueraria for Alzheimer’s disease (AD), we analyzed the expression 
data of these genes using 127 machine learning models. The 
performance of each model was evaluated based on the area under the 
receiver operating characteristic curve (AUC) for both the training set 
and multiple independent test sets (GSE138260, GSE29378, 
GSE37263). The results indicated that the RF + XGBoost method 
performed optimally, with an average AUC of 0.792 on both the 
training and validation sets (Figure 4A). Using this RF + XGBoost 
algorithm, we identified 17 core genes associated with the therapeutic 
effects of Pueraria on AD. Receiver Operating Characteristic (ROC) 
analysis of these 17 core genes revealed AUC values greater than 0.6, 
with PFKFB3 achieving the highest AUC of 0.805 (Figure  4B). 

Decision curve analysis demonstrated that these genes provided a net 
benefit within threshold probabilities ranging from 0.2 to 0.8, with the 
maximum net benefit observed at approximately 0.4 (Figure 4C). Box 
plots (Figure  4D) and volcano plots (Figure  4E) illustrated the 
expression levels of these 17 core genes in the AD group. Among 
them, PFKFB3, P2RX7, PDGFRB, EGFR, and NR1D1 were 
significantly upregulated, while CHRM1, CDK5, CDK7, FABP3, 
GABRA5, GABRB3, GABRG2, HTR2A, IMPDH2, MAPK9, MIF and 
STS were significantly downregulated (p < 0.001).

3.4 Core target importance assessment and 
causal association validation analysis

To investigate the role and predictive value of core genes in 
Alzheimer’s disease (AD), we used the SHAP explainable machine 
learning method to assess gene importance and performed a 
Mendelian randomization (MR) experiment to evaluate causal 
associations. In the SHAP analysis, the gene PFKFB3 exhibited the 
highest importance, with a mean (|SHAP value|) of approximately 
0.0471 (Figure 5A). The SHAP swarm plot further revealed that higher 
feature values of PFKFB3 (represented by red dots) positively 
impacted prediction, with SHAP values ranging from 0 to 0.2 
(Figure 5B). In the Mendelian randomization analysis, the inverse 
variance-weighted method produced a p-value of 0.034 and an odds 
ratio (OR) of 1.001 (95% CI, 1.000 to 1.001), indicating a significant 
causal association between PFKFB3 and AD (Figure 5C). Scatter plots 
and forest plots further supported a positive causal relationship 
between PFKFB3 and Alzheimer’s disease (Figures 5D,E).

3.5 Molecular docking validation of active 
components of Pueraria and PFKFB3 target

To explore the potential binding interactions between PFKFB3 
and the active components of Pueraria (daidzein, formononetin, and 
tuberosin), we performed molecular docking analysis. The results 
showed that PFKFB3 exhibited significant binding affinity with all 
three active components, with calculated binding energies consistently 
below −8.0 kcal/mol (Figure 6D). According to established criteria in 
molecular docking, a binding energy of <−5.0 kcal/mol indicates a 
strong binding affinity. Visualization of the primary binding 
conformations (Figures 6A–C) revealed stable docking complexes for 
each active component–protein pair. These findings provide structural 
evidence for direct molecular interactions between Pueraria and the 
core target PFKFB3.

3.6 Active components of Pueraria improve 
pathological behavior and neuronal loss in 
AD mice

To evaluate the role of Pueraria active components in Alzheimer’s 
disease (AD), we tested AD mice treated with these components using 
the Morris water maze (MWM), novel object recognition (NOR), and 
Y-maze tests (n = 8 for each test). In the MWM test (Figure 7A), AD 
mice injected with Pueraria active components (daidzein, 
formononetin, tuberosin) required less time to reach the platform 
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FIGURE 2

Visualization of differentially expressed genes in Alzheimer’s disease transcriptomic data and WGCNA feature genes. (A) PCA plots before and after 
batch correction: The horizontal axis (PC1) and vertical axis (PC2) show the distribution of samples; the left plot shows the distribution before 
correction (red circles for GSE36980, blue triangles for GSE5281), and the right plot shows the distribution after correction, with mixed samples and 
ellipses indicating overlapping distributions, confirming that batch effects have been removed. (B) Volcano plot of differentially expressed genes: 
Displays the significance of gene expression changes, with the horizontal axis representing logFC (from −1 to 1) and the vertical axis representing −
log10(adj. p-value) (from 0 to 20). Red points indicate significantly upregulated genes, blue points indicate significantly downregulated genes, and gray 
points represent non-significant genes. (C) Heatmap of differentially expressed genes: Visualizes the expression patterns of 50 DEGs in the control 
group (left) and disease group (right). Red indicates high expression (logFC >0), blue indicates low expression (logFC <0), and white indicates 
intermediate levels, showing significant expression differences between groups. (D) Gene clustering tree and module color map: Genes are shown on 
the x-axis, and clustering height is on the y-axis. The color bars below indicate different modules (e.g., “merged dynamic”) used for gene module 

(Continued)
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compared to untreated AD mice. Furthermore, on the sixth day of 
testing, treated AD mice spent more time in the target quadrant 
(Figures 7B,C) and crossed the platform more frequently (Figure 7D) 
compared to the untreated group, suggesting improved learning and 
memory. In the NOR test (Figures  7E,F), AD mice treated with 
Pueraria active components spent more time exploring the novel 
object and made more visits compared to untreated AD mice, 
indicating improved recognition memory. In the Y-maze test 
(Figures 7G,H), treated AD mice also spent more time in and traveled 
a greater distance in the new arm, further suggesting improvements 
in spatial memory. Additionally, NeuN staining was used to label 
neurons in the hippocampal CA1 region. Compared to wild-type 
(WT) mice, AD mice exhibited significant neuronal loss in the 
hippocampal CA1 region. However, AD mice treated with Pueraria 
active components (daidzein, formononetin, tuberosin) showed 
varying degrees of increased neuronal numbers (Figure 8), indicating 
that the active components help mitigate neuronal loss. These results 
demonstrate that Pueraria active components improve learning and 
memory deficits and reduce neuronal loss in AD mice.

4 Discussion

This study employed an integrated approach combining network 
pharmacology, machine learning, and experimental validation to 
systematically elucidate the molecular mechanisms underlying the 
therapeutic effects of Pueraria against Alzheimer’s disease (AD). 
Network pharmacological analysis identified 45 overlapping targets 
between Pueraria and AD, representing key convergence points in the 
complex pathological networks of neurodegeneration. The integration 
of 127 distinct algorithmic combinations through machine learning 
established a robust framework for therapeutic target prioritization, 
with the RF + XGBoost model demonstrating superior performance 
across multiple independent validation datasets (AUC = 0.792). 
Notably, PFKFB3 emerged as the most promising therapeutic target, 
exhibiting the highest diagnostic value (AUC = 0.805) and showing 
significant causal relationships with AD through Mendelian 
randomization analysis. Experimental validation further confirmed 
that Pueraria’s bioactive compounds—daidzein, formononetin, and 
tuberosin—effectively ameliorated Abeta1-42-induced cognitive 
dysfunction and neuronal loss in AD mouse models, bridging 
computational predictions with biological reality.

Our findings provide strong empirical support for the core 
principles of traditional Chinese medicine’s “multi-component, multi-
target, multi-pathway” therapeutic intervention, particularly in 
addressing complex neurodegenerative diseases. Functional 
enrichment analysis revealed that the 45 overlapping targets 
predominantly participate in critical neurobiological processes, 
including synaptic plasticity, GABA-A receptor activity, and 
GABAergic synaptic transmission—pathways that are severely 
disrupted in AD (23, 24). This systems-level approach contrasts with 

previous reductionist studies focusing primarily on single 
components, representing a shift toward a more holistic phytochemical 
constituent analysis.

The identification of PFKFB3 (6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase 3) as a primary therapeutic target 
highlights the role of glucose metabolic dysfunction in AD 
pathogenesis. In healthy neurons, PFKFB3 maintains low expression 
levels through APC/C-Cdh1-mediated proteasomal degradation, 
inhibiting glycolysis and promoting a pentose phosphate pathway 
(PPP)-dominated metabolic profile that ensures NADPH generation 
and glutathione regeneration to maintain redox homeostasis (25, 26). 
During AD progression, Aβ fragments and excitotoxic stimuli inhibit 
APC/C-Cdh1, leading to abnormal stabilization of PFKFB3, driving 
metabolic reprogramming and compromising the PPP’s antioxidant 
capacity (27–30). This results in NADPH depletion, mitochondrial 
ROS burst, oxidative stress, neuronal apoptosis, and ultimately, 
synaptic loss and cognitive decline (31). This mechanism was validated 
in AD models, where transgenic mice exhibited significantly elevated 
PFKFB3 expression following amyloid plaque deposition, 
accompanied by astrocyte activation and neuronal dysfunction (32). 
Correspondingly, Aβ-treated cortical neurons demonstrated dose-
dependent PFKFB3 accumulation and cell death (33). The small 
molecule inhibitor AZ67, targeting this pathway, exhibited 
neuroprotective effects by blocking Aβ-induced glycolytic 
hyperactivation, restoring NADPH levels, and eliminating 
mitochondrial ROS, thereby preventing neuronal apoptosis (34). Its 
in vivo advantages include efficient blood–brain barrier penetration 
and neuronal selectivity.

Our research suggests that Pueraria exerts therapeutic effects 
in AD through inhibition of PFKFB3 expression. Comprehensive 
behavioral assessments confirmed that Pueraria’s core bioactive 
constituents (daidzein, formononetin, tuberosin) significantly 
ameliorated cognitive dysfunction in Abeta1-42-induced AD mice. 
In spatial memory tests (Morris water maze), treated mice 
exhibited reduced escape latencies, increased target quadrant 
dwelling times, and more platform crossings, indicating restored 
spatial learning and memory. These findings align with network 
pharmacological predictions that Pueraria modulates GABAergic 
synaptic pathways, a fundamental mechanism for hippocampus-
dependent memory. Additionally, novel object recognition (NOR) 
and Y-maze tests validated the enhancement of non-spatial 
working memory in AD mice treated with Pueraria. 
Immunofluorescence results further demonstrated that Pueraria 
treatment reduced neuronal loss in the hippocampal CA1 region. 
Combined with mechanistic studies, these neuroprotective effects 
are likely mediated through metabolic reprogramming, where 
inhibition of PFKFB3 reverses Aβ-induced glycolysis/PPP 
imbalance, reduces NADPH depletion and ROS accumulation, and 
maintains synaptic function via Pueraria-activated p38MAPK-
CREB pathways that promote synaptin expression and synaptic 
plasticity (34). Moreover, neuroinflammation is likely alleviated 

partitioning. (E) Module-trait relationship heatmap: Modules are on the x-axis, and correlations are on the y-axis. The color intensity (red = positive 
correlation, blue = negative correlation) and numerical values (correlation coefficients and p-values) indicate the strength of the association between 
modules and traits. (F) Venn diagram: The orange circle represents DEGs, and the blue circle represents WGCNA feature genes. The numbers indicate 
the size of the intersection, identifying key candidate genes.
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FIGURE 3

Identification of common targets between Pueraria and Alzheimer’s disease and functional enrichment analysis. (A) Interaction network between the 
active components of Pueraria (diamond nodes) and target genes (hexagonal nodes, 236 in total), showing multi-component-multi-target regulatory 
characteristics through the connections. (B) Venn diagram showing the intersection of 45 genes (1.7%) between Pueraria target genes (orange circle, 
198 genes, 7.4%) and AD characteristic genes (blue circle, 2,446 genes, 91.0%), indicating potential intervention targets. (C) Expression pattern network 
diagram of the intersecting genes in AD, with red nodes (increased expression) and blue nodes (decreased expression), and connections representing 
gene interaction relationships. (D) GO enrichment analysis of the intersection genes, presented in bar (left) and bubble (right) charts. The analysis 
shows significant enrichment in cellular components, biological processes, and molecular functions, with gene ratio and adjusted p-values. (E) Bar 
chart of KEGG pathway enrichment for the intersecting genes, with the vertical axis representing pathways and the horizontal axis representing the 
number of genes. The color gradient indicates enrichment significance, with red indicating smaller p-values.
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through targeted inhibition of microglial PFKFB3, providing 
synergistic benefits for the neuroinflammatory microenvironment 
(35). The distinct yet consistently beneficial effects of daidzein, 
formononetin, and tuberosin suggest structure–activity 
relationships warranting further exploration for therapeutic 
optimization. These findings position Pueraria within the broader 
context of natural product-based AD therapeutics, offering 
advantages in safety profiles, multi-target engagement, and long-
term use potential—important considerations given the chronic 

nature of neurodegenerative diseases and the limitations of current 
synthetic drugs.

Several important limitations must be  considered when 
interpreting our findings. While network pharmacological predictions 
were robust, systematic experimental validation of the remaining 16 
core targets beyond PFKFB3 is necessary to fully realize the therapeutic 
potential of our multi-target approach. Despite rigorous batch effect 
correction, the use of public transcriptomic datasets may introduce 
limitations related to sample heterogeneity and technical variation, 

FIGURE 4

Core therapeutic target screening and validation based on machine learning algorithms. (A) Heatmap of the results from 127 machine learning models: 
Shows the AUC values of different model combinations on the training and test sets. Color gradients represent performance levels (blue for low values 
and red for high values). (B) ROC curves for 17 core genes: The x-axis represents specificity, and the y-axis represents sensitivity. The curves display the 
classification performance of each gene, with AUC values ranging from 0.715 to 0.829. (C) Decision curves for 17 core genes: The horizontal axis 
represents the threshold probability, and the vertical axis represents net benefit. The curves assess clinical utility at different cost-effectiveness ratios, 
with higher curves indicating greater net benefits. (D) Box plot of the expression of 17 core genes in Alzheimer’s disease: Compares gene expression 
levels between AD patients (Treat) and control subjects (Control). (E) Volcano plot of the expression of 17 core genes: The x-axis represents logFC 
(threshold ±0.585 corresponds to a 1.5-fold difference), and the vertical axis represents −log10(adj. p-value) (threshold 1.3 corresponds to adj. 
p-value = 0.05). Red points indicate significantly upregulated genes, blue points indicate downregulated genes, and gray points indicate non-
significant genes.
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FIGURE 5

Comprehensive analysis of the importance and causal relationship of core genes in Alzheimer’s disease. (A) SHAP importance bar chart: Shows the 
average absolute SHAP value (mean (|SHAP value|)) for each gene, with higher values indicating greater importance in the machine learning model. 
Genes are sorted in descending order of importance. (B) SHAP swarm plot: Displays the distribution of SHAP values for each gene. Points represent 
individual samples, with colors indicating the magnitude of feature values (blue for low, red for high), visualizing the influence of gene feature values on 
prediction outcomes. (C) Mendelian randomization forest plot: Shows the odds ratio (OR) and 95% confidence interval for the association between 
genes and Alzheimer’s disease, using different MR methods. p-values are annotated to assess the significance of causal associations. (D) Mendelian 
randomization scatter plot: Illustrates the relationship between the effect of SNPs on PFKFB3 and their effect on Alzheimer’s disease, with colored 
points representing different estimation methods. This plot visually displays the direction of causal effects. (E) Mendelian randomization forest plot 
(SNP level): Shows the effect sizes and confidence intervals of individual SNPs and their combined methods, assessing the robustness of the causal 
association between PFKFB3 and Alzheimer’s disease.
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which may not fully capture AD’s complexity across diverse patient 
populations. Additionally, while the Aβ1-42 injection model is well-
established, it may not fully recapitulate the chronic progression 

observed in human AD, particularly with respect to amyloid 
accumulation and tau pathology. Lastly, further research into the 
pharmacokinetics and bioavailability of Pueraria compounds, including 

FIGURE 6

Molecular docking validation of active components of Pueraria and PFKFB3 target. (A–C) Binding conformation diagrams for the docking of daidzein, 
formononetin, and tuberosin with the PFKFB3 protein. (D) Target protein binding energy bar chart: The vertical axis represents different target proteins 
and active components (PFKFB3-daidzein, PFKFB3-formononetin, PFKFB3-tuberosin), while the horizontal axis represents binding energy (kcal/mol, 
range from −10 to 0). Column colors indicate binding energy values (light yellow to red), with lower values (more negative) representing stronger 
binding affinity.

FIGURE 7

Pathological behavior of AD mice improved by active components of Pueraria. (A–D) MWM test results: Time to reach the platform (A), escape 
trajectory (B), time spent in the target quadrant (C), and number of platform crossings (D). (E,F) NOR test results: Time spent (E) and number of visits 
(F) to the novel object. (G,H) Y-maze test results: Time (G) and distance (H) spent in the new arm. All values are presented as mean ± SEM. ##p < 0.01 
and ###p < 0.001 compared with the WT group by t-test. *p < 0.05 and **p < 0.01, compared with the AD group by two-way ANOVA.
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blood–brain barrier penetration and brain tissue distribution, is 
essential for optimizing therapeutic formulations and dosing strategies.

5 Conclusion

In summary, this study demonstrates the potential of Pueraria as 
a neuroprotective functional food for Alzheimer’s disease (AD). 

Through network pharmacology, we identified 45 overlapping targets 
between Pueraria and AD. Integrating machine learning and 
Mendelian randomization, PFKFB3 emerged as a central target. 
Molecular docking revealed that key bioactive compounds—daidzein, 
formononetin, and tuberin—exhibited strong binding affinities to 
PFKFB3. In vivo experiments further confirmed that Pueraria 
administration enhanced cognitive performance and reduced 
neuronal loss in AD model mice. Collectively, these findings support 

FIGURE 8

Active components of Pueraria improve neuronal loss in AD mice. Representative immunofluorescence images of NeuN, DAPI, and merge staining. 
The scale bar represents 100 μm.
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Pueraria as a promising dietary intervention that could complement 
and potentially enhance current therapeutic strategies for AD.
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