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Background: Alzheimer's disease (AD) is a multifactorial neurodegenerative
disorder, characterized by amyloid-g deposition, tau pathology,
neuroinflammation, and metabolic dysfunction. While conventional treatments
have been widely studied, food-based interventions are emerging as potential
neuroprotective strategies. Pueraria, a nutrient-rich food, has shown promise in
promoting brain health, but its mechanisms in AD prevention and management
remain insufficiently understood.

Methods: In this study, we utilized network pharmacology, transcriptomics, and
machine learning to investigate the neuroprotective effects of Pueraria. Through
analysis of five transcriptomic datasets (GSE5281, GSE29378, GSE36980,
GSE37263, and GSE138260), we identified genes associated with AD and
screened 15 active compounds from Pueraria lobata using HERB and TCMSP
databases. Machine learning models prioritized key targets, and molecular
docking simulations assessed the binding affinities of Pueraria compounds to
these targets. In vivo validation was performed in AD model mice to evaluate the
cognitive-enhancing effects of Pueraria.

Results: We identified 45 overlapping targets between Pueraria and AD, primarily
related to synaptic plasticity and neurotransmission. Among these, PFKFB3
emerged as a key mediator of Pueraria’s neuroprotective effects. Molecular
docking confirmed strong binding affinities between Pueraria compounds
and PFKFB3, supporting their functional role. Experimental data showed that
Pueraria improved cognitive function in AD mice, underscoring its potential as
a neuroprotective agent.

Conclusion: This study highlights Pueraria as a promising functional food for AD
prevention and management, emphasizing the potential of plant-based dietary
interventions for brain health. Our findings provide a basis for further exploration
of food-derived neuroprotective strategies.
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative
disorder in the elderly, characterized by progressive cognitive decline
and memory loss (1). As the global population ages, the prevalence of
AD is rising, presenting a significant public health challenge.
Projections suggest that by 2050, more than 139 million people will
be living with AD and related dementias (2, 3). Underscoring the
urgent need for effective prevention and intervention strategies.
Despite decades of research, AD remains incurable, and current
treatments fail to substantially slow disease progression (4, 5). The
pathogenesis of AD is multifactorial, involving intricate interactions
between genetic, environmental, and lifestyle factors (6, 7). Key
pathological features of AD include the accumulation of amyloid-f
plaques, tau tangles, neuroinflammation, and mitochondrial
dysfunction. These processes collectively contribute to synaptic
dysfunction, neuronal loss, and cognitive decline (8-10). Traditional
drug therapies typically target individual factors, such as amyloid-f or
tau, but their limited efficacy highlights the need for more
comprehensive approaches. Consequently, there has been growing
interest in holistic, food-based interventions capable of addressing
multiple pathways in AD pathology simultaneously (11, 12).

In this context, functional foods are emerging as promising
candidates for the prevention and management of chronic diseases
like AD (13, 14). Pueraria, a plant native to East Asia, has garnered
attention for its diverse array of bioactive compounds, many of which
exhibit neuroprotective properties (15, 16). Widely used in East Asian
culinary practices, Pueraria is incorporated into soups, teas, and
starches, enhancing flavor and texture while potentially offering health
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benefits (17, 18). Active compounds in Pueraria, including daidzein,
puerarin, and genistein, have been shown to modulate key AD-related
pathways (19, 20). These compounds reduce amyloid-/ production,
enhance its clearance, inhibit tau hyperphosphorylation, and protect
against neuroinflammation and oxidative stress (21, 22). Although
most research has focused on the medicinal benefits of Pueraria, its
potential as a dietary supplement remains underexplored. Given the
growing interest in functional foods and the increasing demand for
natural, plant-based alternatives to synthetic drugs, exploring the
neuroprotective effects of Pueraria as part of a daily diet is essential.
This study aims to investigate the neuroprotective mechanisms of
Pueraria from a food perspective, using network pharmacology,
transcriptomics, and machine learning to understand how its bioactive
compounds interact with key molecular targets in AD. By evaluating
Pueraria as a functional food, we highlight its potential role in AD
prevention and management and offer new insights into plant-based
neuroprotective strategies. Figure | shows the study flow chart.

2 Materials and methods
2.1 Animal experiments

Male C57BL/6] mice were purchased from Jiangsu Jicui Yao
Kang Biotechnology Co., Ltd. All animals were housed in the
Animal Experiment Center of the Experimental Center of Wannan
Medical College under standard laboratory conditions, and all
procedures were conducted in accordance with relevant animal
All were certified in

welfare guidelines. experimenters
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experimental animal handling, and the protocol was approved by
the Animal Ethics Committee of Wannan Medical College
(Approval Number: WNMC-AWE-2025199). At 16 weeks of age,
mice underwent behavioral assessment of learning and memory
functions using the Morris water maze (MWM), novel object
recognition (NOR), and Y-maze tests. All behavioral testing was
performed during the animals’ active photoperiod (08:00-12:00)
with n = 8 mice per group for each behavioral test (MWM, NOR,
and Y-maze).

2.2 Construction of the Abeta;_s,-induced
Alzheimer’'s disease mouse model

AP, 4, was dissolved in 1% NH;-H,O to a concentration of 1 pg/
pL and incubated at 37 °C for 5 days to promote oligomer (fibril)
formation. Following skull drilling at the designated stereotactic
coordinates using a dental drill, AP, 4, (4 pg) was bilaterally injected
into the hippocampi of male C57BL/6 mice using a microinjector.
After injection, the scalp was sutured, and mice were maintained at
37.5 °C+0.5 °C. Behavioral
after injection.

testing commenced 2 weeks

2.3 Morris water maze test

The MWM test was used to evaluate spatial learning and long-
term memory. A circular pool was divided into four quadrants, each
marked by distinctive wall patterns and colors (red, green, yellow,
blue) serving as spatial cues. The transparent circular platform was
placed in the target quadrant, designated as the third quadrant in the
software system, with the farthest quadrant designated as the first
quadrant. Each trial lasted 60 s, and mice were required to remain on
the platform for 5 s upon location.

2.4 Novel object recognition test

The NOR test was used to assess short-term working memory.
Mice were habituated to a dimly lit plastic box (without objects) for
10 min. During the familiarization phase, two identical cube-shaped
objects (A and B; 3 cm sides) were placed 8.5 cm from the left and
right box walls in the front third of the arena. Mice were allowed to
explore for 10 min, and exploration trajectories, time, and frequency
were recorded. After a 1-h interval, the test phase was conducted by
replacing object B with a novel cylindrical object (C) of similar
volume but different color and shape, positioned identically. Mice
were placed back in the same starting position, and exploration data
were recorded.

2.5 Y-maze test

The Y-maze test assessed hippocampus-dependent spatial
working memory. Mice were allowed to freely explore the three arms
for 5 min, during which the sequence and frequency of arm entries
were recorded. The time spent in the starting arm, central area, and
novel arm was analyzed.
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2.6 Immunofluorescence staining

After 21 days of continuous administration, eight mice per
group were anesthetized and transcardially perfused with ice-cold
4% paraformaldehyde. Brains were removed, post-fixed overnight
in 4% paraformaldehyde, and cryoprotected sequentially in 20 and
30% sucrose/PBS at 4 °C (overnight each). Tissues were embedded
in optimum cutting temperature compound (Sakura Finetek,
United States) and coronally sectioned at 30 pm thickness using a
cryostat. Sections were blocked with 10% fetal bovine serum in PBS
for 1 h at room temperature, incubated overnight at 4 °C with
mouse anti-NeuN primary antibody (ab104224, Abcam), and then
incubated for 30 min at 37 °C with Alexa Fluor-conjugated
secondary antibody (Invitrogen). Nuclei were counterstained with
4’,6-diamidino-2-phenylindole (DAPI). Images were acquired
using a Leica TCS SP8 confocal microscope. Throughout the 21-day
experimental period, all mice were monitored daily for signs of
toxicity, including body weight changes, behavioral abnormalities,
food and water consumption, and general health status. Body
weights were recorded every 3 days. No adverse effects, mortality,
or significant body weight changes (>10% loss) were observed in
any treatment group. Additionally, gross necropsy examination
revealed no visible organ abnormalities in treated animals.

2.7 Transcriptome data processing

Five Alzheimer’s disease-related transcriptomic datasets (GSE5281,
GSE29378, GSE36980, GSE37263, and GSE138260) were obtained from
the Gene Expression Omnibus (GEO) database, comprising gene
expression profiles from AD patients and healthy controls. Batch effects
among datasets were corrected using the ComBat algorithm in the sva
R package (v3.40.0, R v4.1.0). Principal component analysis (PCA) was
performed to assess sample distribution before and after correction,
confirming effective removal of technical variability. Differentially
expressed genes (DEGs) were identified using the limma package
(v3.48.3) with criteria |log,FC| >0.585 (1.5-fold change) and adjusted
p <0.05. The ggplot2 package was used to generate volcano plots for
DEG distribution visualization, and the pheatmap package was used to
construct heatmaps displaying DEG expression patterns between groups.

2.8 Weighted gene co-expression network
analysis

Gene co-expression networks were constructed using the
weighted gene co-expression network analysis (WGCNA) package
(version 1.71) to identify disease-related gene modules. Pearson
correlation coefficients were calculated for all gene pairs, and a soft
threshold of =5 was selected to ensure scale-free topology
(R*>0.80). The dynamic tree cutting algorithm was employed to
cluster genes into modules, with a minimum module size of 60 genes.
Module eigengenes (MEs) were computed for each module, and
Pearson correlation analysis was performed to assess the association
between modules and Alzheimer’s disease (AD) phenotype. Modules
significantly associated with AD were selected and merged with
differentially expressed genes (DEGs) identified through Venn
diagram analysis, yielding candidate genes linked to AD.
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2.9 Network pharmacology analysis and
target prediction of Pueraria

Chinese medicine databases, including HERB and TCMSP,
were searched to identify the main bioactive components of
Pueraria, such as puerarin, daidzein, and genistein. Potential
target proteins for these compounds were predicted using the
Swiss Target Prediction platform, with a probability threshold set
at >0.5 for reliable target identification. Cytoscape software
(version 3.9.1) was utilized to visualize the interactions between
Pueraria bioactive components and their target proteins,
constructing a network of multi-component and multi-
target interactions.

2.10 Enrichment analysis

Common target genes, identified through Venn diagram analysis
of the intersection between predicted Pueraria targets and
AD-associated genes, were subjected to Gene Ontology (GO)
functional annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis using the cluster Profiler package
(version 4.0.5). The Benjamini-Hochberg method was used to adjust
<0.05 was considered

p-values, and a corrected p-value

statistically significant.

2.11 Machine learning model construction
and core gene selection

The merged transcriptomic datasets (GSE5281 and GSE36980)
were used for model training, while three independent datasets
(GSE138260, GSE29378, and GSE37263) served as external validation
sets. Machine learning models were constructed from 127 different
combinations, incorporating classification algorithms (Random Forest,
Support Vector Machine, XGBoost, Logistic Regression, and Neural
Networks) and feature selection methods (LASSO regression, recursive
feature elimination, and ANOVA). Ensemble learning strategies, such
as voting and stacking, were employed to improve model performance.
The models were evaluated via 10-fold cross-validation, using metrics
including the area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, accuracy, and F1 score. The
RF + XGBoost ensemble model (average AUC = 0.792) was selected
for further analysis due to its optimal performance in both the training
and validation sets. Based on feature importance rankings, 17 core
genes with AUC values exceeding 0.6 in individual ROC analyses were
identified. Decision curve analysis (DCA) was applied to assess the
clinical net benefit of these core genes at various threshold probabilities.

2.12 SHAP interpretability analysis

The SHAP framework (version 0.41.0) was employed to quantify
the contribution of the 17 core genes to the machine learning model’s
predictions. SHAP values and average absolute SHAP values were
calculated for each gene, and importance ranking and swarm plots
were generated to illustrate the direction and strength of each gene’s
impact on AD prediction.
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2.13 Mendelian randomization analysis

A two-sample Mendelian randomization (MR) approach was
applied to assess the causal association between core genes and
AD. Genetic variants linked to PFKFB3 and NR1D1 gene expression
were sourced from the GWAS database as instrumental variables (eQTL
p-value <5 x 107%). Genetic association data for AD were obtained from
the GWAS database (ieu-b-5067). Causal effects were estimated using
inverse variance weighting, MR-Egger regression, and weighted median
methods. The Cochran Q test was applied to evaluate heterogeneity,
while the MR-PRESSO method detected horizontal pleiotropy. The
leave-one-out approach was used to validate the robustness of the results.

2.14 Molecular docking validation

The three-dimensional crystal structure of PFKFB3 was retrieved
from the Protein Data Bank (PDB) and preprocessed using PyMOL
software (version 2.5.2), removing water and other ligands, adding
polar hydrogens, and assigning Gasteiger charges with AutoDock
Tools. The chemical structures of key Pueraria active compounds
(daidzein, formononetin, and tuberosin) were obtained from
PubChem and optimized using Avogadro software (version 1.95.0)
with the MMFF94 force field. Molecular docking simulations were
conducted using AutoDock Vina software (version 1.2.0), with the
active site of PFKFB3 defined as a 10 A radius from the natural ligand.
Docking results were evaluated based on binding energy (kcal/mol),
with binding energies <—5.0 kcal/mol indicating strong interactions.
The best docking conformations were visualized using PyMOL
software to analyze protein-ligand interactions and key amino acid
residues involved in binding.

2.15 Statistical analysis

All statistical analyses were performed using R software.
Continuous variables were compared using Student’s ¢-test or Mann-
Whitney U test, while categorical variables were assessed using the
chi-square test. Multiple comparison corrections were performed
using the Benjamini-Hochberg method to control the false discovery
rate. A two-sided p-value <0.05 was considered statistically significant.
Mendelian randomization analyses were conducted using the
TwoSampleMR package, and molecular docking results were validated
through multiple independent runs to ensure reproducibility.
Quantitative data are presented as mean + standard deviation.

3 Result

3.1 Screening of differentially expressed
genes in Alzheimer's disease and weighted
gene co-expression network analysis

To investigate the gene expression patterns associated with
Alzheimer’s disease (AD) and integrate multi-dataset analysis, batch
correction was first performed on the gene expression data from the
GSE36980 and GSE5281 datasets. Principal component analysis
(PCA) confirmed that the batch effect was successfully removed, with
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the corrected samples uniformly distributed (Figure 2A), indicating
effective batch correction. Differentially expressed genes (DEGs) were
identified using a volcano plot, which revealed 558 significantly
upregulated genes (logFC >0.585 and adj. p-value <0.05) and 655
significantly downregulated genes (logFC <—0.585 and adj. p-value
<0.05) (Figure 2B). A heatmap of 25 DEGs showed clear patterns of
high expression (red) and low expression (blue) in the disease group
compared to the control group (Figure 2C). Additionally, weighted
gene co-expression network analysis (WGCNA) was applied to
construct a gene clustering tree and partition genes into modules
(Figure 2D). Module-trait relationship analysis revealed three
modules—MEred, MEyellow, and MEblack—that were highly
correlated with disease traits (Figure 2E). Finally, a Venn diagram was
used to merge the DEGs identified for Alzheimer’s disease with the
characteristic genes from the three WGCNA modules, yielding a total
of 2,491 potential target genes for AD (Figure 2F).

3.2 ldentification of common targets
between Pueraria and Alzheimer’s disease
and functional enrichment analysis

To explore the molecular mechanisms underlying the therapeutic
effects of Pueraria on Alzheimer’s disease (AD), we integrated network
pharmacology and bioinformatics approaches. First, an interaction
network was constructed between the active components of Pueraria
and 236 target genes (Figure 3A). A Venn diagram was used to identify
the intersection between Pueraria target genes and AD-associated
genes, revealing 45 common genes (Figure 3B). We then analyzed the
expression changes of these 45 genes in AD (Figure 3C) and
performed functional annotation. GO enrichment analysis highlighted
their significant involvement in synaptic plasticity, GABA-A receptor
activity, and other neural functions (Figure 3D). KEGG pathway
analysis revealed that these genes are associated with core pathways,
including GABAergic synapses and retrograde endocannabinoid
signaling (Figure 3E). These findings suggest that Pueraria regulates
AD-related neural pathways through these 45 key target genes,
supporting its multi-component, multi-target action as a therapeutic
agent for AD.

3.3 Core therapeutic target screening and
validation based on machine learning
algorithms

To assess the diagnostic value of the 45 intersecting genes from
Pueraria for Alzheimer’s disease (AD), we analyzed the expression
data of these genes using 127 machine learning models. The
performance of each model was evaluated based on the area under the
receiver operating characteristic curve (AUC) for both the training set
and multiple independent test sets (GSE138260, GSE29378,
GSE37263). The results indicated that the RF + XGBoost method
performed optimally, with an average AUC of 0.792 on both the
training and validation sets (Figure 4A). Using this RF + XGBoost
algorithm, we identified 17 core genes associated with the therapeutic
effects of Pueraria on AD. Receiver Operating Characteristic (ROC)
analysis of these 17 core genes revealed AUC values greater than 0.6,
with PFKFB3 achieving the highest AUC of 0.805 (Figure 4B).
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Decision curve analysis demonstrated that these genes provided a net
benefit within threshold probabilities ranging from 0.2 to 0.8, with the
maximum net benefit observed at approximately 0.4 (Figure 4C). Box
plots (Figure 4D) and volcano plots (Figure 4F) illustrated the
expression levels of these 17 core genes in the AD group. Among
them, PFKFB3, P2RX7, PDGFRB, EGFR, and NRIDI1 were
significantly upregulated, while CHRM1, CDK5, CDK7, FABP3,
GABRAS5, GABRB3, GABRG2, HTR2A, IMPDH2, MAPK9, MIF and
STS were significantly downregulated (p < 0.001).

3.4 Core target importance assessment and
causal association validation analysis

To investigate the role and predictive value of core genes in
Alzheimer’s disease (AD), we used the SHAP explainable machine
learning method to assess gene importance and performed a
Mendelian randomization (MR) experiment to evaluate causal
associations. In the SHAP analysis, the gene PFKFB3 exhibited the
highest importance, with a mean (|[SHAP value|) of approximately
0.0471 (Figure 5A). The SHAP swarm plot further revealed that higher
feature values of PFKFB3 (represented by red dots) positively
impacted prediction, with SHAP values ranging from 0 to 0.2
(Figure 5B). In the Mendelian randomization analysis, the inverse
variance-weighted method produced a p-value of 0.034 and an odds
ratio (OR) of 1.001 (95% CI, 1.000 to 1.001), indicating a significant
causal association between PFKFB3 and AD (Figure 5C). Scatter plots
and forest plots further supported a positive causal relationship
between PFKFB3 and Alzheimer’s disease (Figures 5D,E).

3.5 Molecular docking validation of active
components of Pueraria and PFKFB3 target

To explore the potential binding interactions between PFKFB3
and the active components of Pueraria (daidzein, formononetin, and
tuberosin), we performed molecular docking analysis. The results
showed that PFKFB3 exhibited significant binding affinity with all
three active components, with calculated binding energies consistently
below —8.0 kcal/mol (Figure 6D). According to established criteria in
molecular docking, a binding energy of <—5.0 kcal/mol indicates a
strong binding affinity. Visualization of the primary binding
conformations (Figures 6A-C) revealed stable docking complexes for
each active component-protein pair. These findings provide structural
evidence for direct molecular interactions between Pueraria and the
core target PFKFB3.

3.6 Active components of Pueraria improve
pathological behavior and neuronal loss in
AD mice

To evaluate the role of Pueraria active components in Alzheimer’s
disease (AD), we tested AD mice treated with these components using
the Morris water maze (MWM), novel object recognition (NOR), and
Y-maze tests (n = 8 for each test). In the MWM test (Figure 7A), AD
mice injected with Pueraria active components (daidzein,

formononetin, tuberosin) required less time to reach the platform
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FIGURE 2 (Continued)

partitioning. (E) Module-trait relationship heatmap: Modules are on the x-axis, and correlations are on the y-axis. The color intensity (red = positive
correlation, blue = negative correlation) and numerical values (correlation coefficients and p-values) indicate the strength of the association between
modules and traits. (F) Venn diagram: The orange circle represents DEGs, and the blue circle represents WGCNA feature genes. The numbers indicate

the size of the intersection, identifying key candidate genes.

compared to untreated AD mice. Furthermore, on the sixth day of
testing, treated AD mice spent more time in the target quadrant
(Figures 7B,C) and crossed the platform more frequently (Figure 7D)
compared to the untreated group, suggesting improved learning and
memory. In the NOR test (Figures 7E,F), AD mice treated with
Pueraria active components spent more time exploring the novel
object and made more visits compared to untreated AD mice,
indicating improved recognition memory. In the Y-maze test
(Figures 7G,H), treated AD mice also spent more time in and traveled
a greater distance in the new arm, further suggesting improvements
in spatial memory. Additionally, NeuN staining was used to label
neurons in the hippocampal CA1 region. Compared to wild-type
(WT) mice, AD mice exhibited significant neuronal loss in the
hippocampal CA1 region. However, AD mice treated with Pueraria
active components (daidzein, formononetin, tuberosin) showed
varying degrees of increased neuronal numbers (Figure 8), indicating
that the active components help mitigate neuronal loss. These results
demonstrate that Pueraria active components improve learning and
memory deficits and reduce neuronal loss in AD mice.

4 Discussion

This study employed an integrated approach combining network
pharmacology, machine learning, and experimental validation to
systematically elucidate the molecular mechanisms underlying the
therapeutic effects of Pueraria against Alzheimer’s disease (AD).
Network pharmacological analysis identified 45 overlapping targets
between Pueraria and AD, representing key convergence points in the
complex pathological networks of neurodegeneration. The integration
of 127 distinct algorithmic combinations through machine learning
established a robust framework for therapeutic target prioritization,
with the RF + XGBoost model demonstrating superior performance
across multiple independent validation datasets (AUC = 0.792).
Notably, PFKFB3 emerged as the most promising therapeutic target,
exhibiting the highest diagnostic value (AUC = 0.805) and showing
significant causal relationships with AD through Mendelian
randomization analysis. Experimental validation further confirmed
that Pueraria’s bioactive compounds—daidzein, formononetin, and
tuberosin—effectively ameliorated Abeta, ,-induced cognitive
dysfunction and neuronal loss in AD mouse models, bridging
computational predictions with biological reality.

Our findings provide strong empirical support for the core
principles of traditional Chinese medicine’s “multi-component, multi-
target, multi-pathway” therapeutic intervention, particularly in
addressing complex neurodegenerative diseases. Functional
enrichment analysis revealed that the 45 overlapping targets
predominantly participate in critical neurobiological processes,
including synaptic plasticity, GABA-A receptor activity, and
GABAergic synaptic transmission—pathways that are severely
disrupted in AD (23, 24). This systems-level approach contrasts with

Frontiers in Nutrition

previous reductionist studies focusing primarily on single
components, representing a shift toward a more holistic phytochemical
constituent analysis.

The identification of PFKFB3 (6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase 3) as a primary therapeutic target
highlights the role of glucose metabolic dysfunction in AD
pathogenesis. In healthy neurons, PFKFB3 maintains low expression
levels through APC/C-Cdhl-mediated proteasomal degradation,
inhibiting glycolysis and promoting a pentose phosphate pathway
(PPP)-dominated metabolic profile that ensures NADPH generation
and glutathione regeneration to maintain redox homeostasis (25, 26).
During AD progression, Ap fragments and excitotoxic stimuli inhibit
APC/C-Cdh1, leading to abnormal stabilization of PFKFB3, driving
metabolic reprogramming and compromising the PPP’s antioxidant
capacity (27-30). This results in NADPH depletion, mitochondrial
ROS burst, oxidative stress, neuronal apoptosis, and ultimately,
synaptic loss and cognitive decline (31). This mechanism was validated
in AD models, where transgenic mice exhibited significantly elevated
PFKFB3
accompanied by astrocyte activation and neuronal dysfunction (32).

expression following amyloid plaque deposition,
Correspondingly, Ap-treated cortical neurons demonstrated dose-
dependent PFKFB3 accumulation and cell death (33). The small
molecule inhibitor AZ67, targeting this pathway, exhibited
effects by blocking Ap-induced glycolytic
restoring NADPH
mitochondrial ROS, thereby preventing neuronal apoptosis (34). Its

neuroprotective
hyperactivation, levels, and eliminating
in vivo advantages include efficient blood-brain barrier penetration
and neuronal selectivity.

Our research suggests that Pueraria exerts therapeutic effects
in AD through inhibition of PFKFB3 expression. Comprehensive
behavioral assessments confirmed that Pueraria’s core bioactive
constituents (daidzein, formononetin, tuberosin) significantly
ameliorated cognitive dysfunction in Abeta, ,-induced AD mice.
In spatial memory tests (Morris water maze), treated mice
exhibited reduced escape latencies, increased target quadrant
dwelling times, and more platform crossings, indicating restored
spatial learning and memory. These findings align with network
pharmacological predictions that Pueraria modulates GABAergic
synaptic pathways, a fundamental mechanism for hippocampus-
dependent memory. Additionally, novel object recognition (NOR)
and Y-maze tests validated the enhancement of non-spatial
working memory in AD mice treated with Pueraria.
Immunofluorescence results further demonstrated that Pueraria
treatment reduced neuronal loss in the hippocampal CA1 region.
Combined with mechanistic studies, these neuroprotective effects
are likely mediated through metabolic reprogramming, where
inhibition of PFKFB3 reverses AP-induced glycolysis/PPP
imbalance, reduces NADPH depletion and ROS accumulation, and
maintains synaptic function via Pueraria-activated p38MAPK-
CREB pathways that promote synaptin expression and synaptic
plasticity (34). Moreover, neuroinflammation is likely alleviated
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Identification of common targets between Pueraria and Alzheimer's disease and functional enrichment analysis. (A) Interaction network between the
active components of Pueraria (diamond nodes) and target genes (hexagonal nodes, 236 in total), showing multi-component-multi-target regulatory
characteristics through the connections. (B) Venn diagram showing the intersection of 45 genes (1.7%) between Pueraria target genes (orange circle,
198 genes, 74%) and AD characteristic genes (blue circle, 2,446 genes, 91.0%), indicating potential intervention targets. (C) Expression pattern network
diagram of the intersecting genes in AD, with red nodes (increased expression) and blue nodes (decreased expression), and connections representing
gene interaction relationships. (D) GO enrichment analysis of the intersection genes, presented in bar (left) and bubble (right) charts. The analysis
shows significant enrichment in cellular components, biological processes, and molecular functions, with gene ratio and adjusted p-values. (E) Bar
chart of KEGG pathway enrichment for the intersecting genes, with the vertical axis representing pathways and the horizontal axis representing the
number of genes. The color gradient indicates enrichment significance, with red indicating smaller p-values.
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FIGURE 4

Core therapeutic target screening and validation based on machine learning algorithms. (A) Heatmap of the results from 127 machine learning models:
Shows the AUC values of different model combinations on the training and test sets. Color gradients represent performance levels (blue for low values
and red for high values). (B) ROC curves for 17 core genes: The x-axis represents specificity, and the y-axis represents sensitivity. The curves display the
classification performance of each gene, with AUC values ranging from 0.715 to 0.829. (C) Decision curves for 17 core genes: The horizontal axis
represents the threshold probability, and the vertical axis represents net benefit. The curves assess clinical utility at different cost-effectiveness ratios,
with higher curves indicating greater net benefits. (D) Box plot of the expression of 17 core genes in Alzheimer's disease: Compares gene expression
levels between AD patients (Treat) and control subjects (Control). (E) Volcano plot of the expression of 17 core genes: The x-axis represents logFC
(threshold +0.585 corresponds to a 1.5-fold difference), and the vertical axis represents —log10(adj. p-value) (threshold 1.3 corresponds to adj.

p-value = 0.05). Red points indicate significantly upregulated genes, blue points indicate downregulated genes, and gray points indicate non-
significant genes.

through targeted inhibition of microglial PFKFB3, providing  nature of neurodegenerative diseases and the limitations of current
synergistic benefits for the neuroinflammatory microenvironment  synthetic drugs.

(35). The distinct yet consistently beneficial effects of daidzein, Several important limitations must be considered when
formononetin, and tuberosin suggest structure-activity  interpreting our findings. While network pharmacological predictions
relationships warranting further exploration for therapeutic  were robust, systematic experimental validation of the remaining 16
optimization. These findings position Pueraria within the broader  core targets beyond PFKFB3 is necessary to fully realize the therapeutic
context of natural product-based AD therapeutics, offering  potential of our multi-target approach. Despite rigorous batch effect
advantages in safety profiles, multi-target engagement, and long-  correction, the use of public transcriptomic datasets may introduce
term use potential —important considerations given the chronic  limitations related to sample heterogeneity and technical variation,
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FIGURE 5

Comprehensive analysis of the importance and causal relationship of core genes in Alzheimer's disease. (A) SHAP importance bar chart: Shows the
average absolute SHAP value (mean ([SHAP valuel)) for each gene, with higher values indicating greater importance in the machine learning model.
Genes are sorted in descending order of importance. (B) SHAP swarm plot: Displays the distribution of SHAP values for each gene. Points represent
individual samples, with colors indicating the magnitude of feature values (blue for low, red for high), visualizing the influence of gene feature values on
prediction outcomes. (C) Mendelian randomization forest plot: Shows the odds ratio (OR) and 95% confidence interval for the association between
genes and Alzheimer's disease, using different MR methods. p-values are annotated to assess the significance of causal associations. (D) Mendelian
randomization scatter plot: Illustrates the relationship between the effect of SNPs on PFKFB3 and their effect on Alzheimer's disease, with colored
points representing different estimation methods. This plot visually displays the direction of causal effects. (E) Mendelian randomization forest plot
(SNP level): Shows the effect sizes and confidence intervals of individual SNPs and their combined methods, assessing the robustness of the causal
association between PFKFB3 and Alzheimer's disease.
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Molecular docking validation of active components of Pueraria and PFKFB3 target. (A—C) Binding conformation diagrams for the docking of daidzein,
formononetin, and tuberosin with the PFKFB3 protein. (D) Target protein binding energy bar chart: The vertical axis represents different target proteins
and active components (PFKFB3-daidzein, PFKFB3-formononetin, PFKFB3-tuberosin), while the horizontal axis represents binding energy (kcal/mol,
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FIGURE 7

Pathological behavior of AD mice improved by active components of Pueraria. (A—D) MWM test results: Time to reach the platform (A), escape
trajectory (B), time spent in the target quadrant (C), and number of platform crossings (D). (E,F) NOR test results: Time spent (E) and number of visits
(F) to the novel object. (G,H) Y-maze test results: Time (G) and distance (H) spent in the new arm. All values are presented as mean + SEM. #*p < 0.01
and *p < 0.001 compared with the WT group by t-test. *p < 0.05 and **p < 0.01, compared with the AD group by two-way ANOVA.

which may not fully capture AD’s complexity across diverse patient ~ observed in human AD, particularly with respect to amyloid
populations. Additionally, while the A, 4, injection model is well-  accumulation and tau pathology. Lastly, further research into the
established, it may not fully recapitulate the chronic progression  pharmacokinetics and bioavailability of Pueraria compounds, including

Frontiers in Nutrition 11 frontiersin.org


https://doi.org/10.3389/fnut.2025.1683852
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Ye etal. 10.3389/fnut.2025.1683852

NeuN DAPI Merge

WT

o)
<
g =
()
N
R
©
()]
+
a
<
£
©
c
(@)
c
(@)
=
—
(@)
L
+
a
<€
=
n
o
O]
Ko
=
-
-+
(@]
<
FIGURE 8

Active components of Pueraria improve neuronal loss in AD mice. Representative immunofluorescence images of NeuN, DAPI, and merge staining
The scale bar represents 100 pm

blood-brain barrier penetration and brain tissue distribution, is  Through network pharmacology, we identified 45 overlapping targets
essential for optimizing therapeutic formulations and dosing strategies. ~ between Pueraria and AD. Integrating machine learning and
Mendelian randomization, PFKFB3 emerged as a central target.

Molecular docking revealed that key bioactive compounds—daidzein,

formononetin, and tuberin—exhibited strong binding affinities to

PFKFB3. In vivo experiments further confirmed that Pueraria

In summary, this study demonstrates the potential of Puerariaas  administration enhanced cognitive performance and reduced

a neuroprotective functional food for Alzheimers disease (AD).  neuronal loss in AD model mice. Collectively, these findings support
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Pueraria as a promising dietary intervention that could complement
and potentially enhance current therapeutic strategies for AD.
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