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Background: Chronic kidney disease (CKD) imposes a growing global burden, 
with hemodialysis (HD) patients facing high malnutrition rates (28% ~ 54%). 
Nutritional management is critical but challenging due to strict dietary restrictions 
and limited healthcare monitoring. Digital health technologies (DHTs) offer 
dynamic, personalized interventions, yet their efficacy remains inconsistent. 
This systematic review and meta-analysis aims to assess the effects of DHT-
based nutritional interventions on the nutritional status of hemodialysis patients.
Methods: We systematically searched PubMed, Embase, Cochrane Library, Web 
of Science, CINAHL, Scopus, CNKI, CBM, WanFang, and VIP databases from their 
inception to 21 March 2025, to investigate the impact of DHTs-based nutritional 
interventions on the nutritional status of hemodialysis patients. Outcomes 
included biochemical parameters, anthropometric measures, and Modified 
Quantitative Subjective Global Assessment (MQSGA). Risk-of-bias assessment 
used Cochrane criteria, and meta-analyses employed RevMan 5.4 with random/
fixed-effects models.
Results: A total of 23 literatures were included, involving 6 countries and 2,762 
hemodialysis patients. DHT interventions improved the following 13 outcome 
measures: MQSGA, hemoglobin, albumin, prealbumin, phosphorus, potassium, 
BMI, mid-arm muscle circumference, triceps skinfold thickness, relative increase 
in body weight (%), weight gain, blood urea nitrogen, and serum creatinine. 
However, it had no significant effect on transferrin and calcium. The intervention 
forms are mainly applications and mobile platforms.
Conclusion: Overall, DHT-based nutritional interventions effectively enhance 
multiple nutritional indicators in HD patients. However, variability in study 
quality, intervention formats, and regional disparities limits generalizability. 
Future research should prioritize high-quality, multicenter RCTs to optimize 
intervention protocols and explore emerging technologies.
Systematic review registration: Identifier PROSPERO: CRD420251023133.
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1 Introduction

Chronic kidney disease (CKD) is a progressive disease characterized 
by a gradual decline in renal function, caused by various factors that 
induce chronic kidney structural and functional impairments, with a 
history of kidney damage lasting over 3 months. According to the 
Global Burden of Disease (GBD) study, CKD’s ranking in the list of 
global mortality causes has been rising steadily, securing the 13th 
position in 2016, climbing to 12th in 2017, and is projected to become 
the fifth leading cause of death globally by 2040 (1, 2). End-stage renal 
disease (ESRD) is the final stage of chronic kidney disease, characterized 
by toxin accumulation in the body, uremic symptoms, and various 
complications; patients in this stage often need dialysis (3, 4). 
Hemodialysis (HD) is a common method of renal replacement therapy 
for patients with acute and chronic renal failure. It involves periodically 
diverting blood outside the body via artificial means to remove 
metabolic waste and excess fluid, followed by the return of the purified 
blood to the body (5). Most Hemodialysis patients undergo regular 
long-term dialysis sessions lasting 3.5–4.5 h, three times a week. 
Globally, approximately 89% of ESRD patients undergo Hemodialysis 
(6). As of 2013, approximately one million individuals worldwide were 
undergoing hemodialysis, with the total number of patients receiving 
dialysis increasing at an annual rate of 10% (7). In China, the number 
of hemodialysis patients reached 910,000 by 2023 and is anticipated to 
continue rising significantly (8).

Hemodialysis patients, due to renal dysfunction, suffer from 
accumulated uremic toxins and insufficient erythropoietin production. 
Although long-term hemodialysis is life-saving, it is an invasive 
procedure that can induce chronic inflammation and increase 
nutritional consumption; additionally, these patients often require 
adherence to a low-protein diet, which may further contribute to 
malnutrition (9, 10). Studies indicate that the global malnutrition 
prevalence in such patients is as high as 28–54%, and in China, the rate 
of malnutrition in hemodialysis patients is even higher, ranging from 
30.0 to 66.7% (11, 12). If hemodialysis patients are chronically 
malnourished, they may experience various adverse outcomes such as 
cognitive impairment, frailty, falls, disability, death, and a reduced 
quality of life (13, 14). Therefore, nutritional management for 
hemodialysis patients is crucial to prevent these adverse outcomes. At 
the same time, hemodialysis patients typically do not require constant 
hospitalization. After dialysis, they often return home, with some even 
undergoing treatment at home or in community settings. These 
challenges render continuous monitoring by healthcare professionals 
impractical. The strict dietary restrictions imposed on these patients 
make long-term adherence particularly difficult (15). Furthermore, 
existing nutritional interventions, which are typically guided by 
standardized protocols, are often challenging to implement rigorously 
due to significant individual differences among patients, such as age, 
comorbidities, and duration of dialysis (16).

The World Health Organization defined digital health as the field of 
knowledge and practice associated with the development and use of 
digital technologies to improve health in the “Global Strategy on Digital 
Health 2020–2025” (17). Digital health technologies are those that can 
remotely access personal health-related information, including 
electronic health records, telemedicine or telehealth services, robotic 
technologies, and mobile health technologies supported by 
smartphones, wearable devices, applications, and various monitoring 
devices (17). The development of digital health technology provides 
new strategies for the nutritional management of hemodialysis patients. 

Compared with traditional methods, it features dynamic assessment, 
real-time feedback, efficiency, cross-spatiotemporal accessibility, 
precision, and personalization. In recent years, it has shown advantages 
in practical applications for hemodialysis patients. However, current 
research indicates inconsistent effects of digital health technology on the 
nutritional management of these patients. Some studies suggest it can 
improve hemoglobin, albumin, and BMI in hemodialysis patients, while 
others show no significant effects of the intervention (18, 19). Notably, 
hemoglobin is not only a key indicator of nutritional status but also the 
core marker for assessing anemia, one of the most common and 
clinically critical complications of hemodialysis, closely linked to 
malnutrition. Anemia affects 91.6–98.2% of hemodialysis patients (20), 
and its control directly impacts patients’ quality of life and prognosis. 
Thus, clarifying whether digital health technology-based nutritional 
interventions can effectively improve hemoglobin (and thereby alleviate 
anemia) is an essential part of confirming their overall value for 
nutritional management. This study uses meta-analysis to evaluate the 
effects of this technology on the nutritional intervention of hemodialysis 
patients. It aims to provide evidence-based support for developing 
feasible and effective intervention strategies, ultimately reducing 
malnutrition in hemodialysis patients.

2 Methods

We adhered to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses 2020 (PRISMA 2020) guidelines (21).

2.1 Literature search

Zhang Kai and Wang Ruixue searched PubMed, Embase, Cochrane 
Library, Web of Science, CINAHL, Scopus, China National Knowledge 
Infrastructure (CNKI), China Biology Medicine disc (CBMdisc), 
WanFang, and Weipu (VIP) databases. The search strategy integrated 
Medical Subject Headings (MeSH) and free terms and was customized for 
each database’s unique characteristics. Search terms included 
“hemodialysis,” “MHD,” “hemodialysis,” “renal dialysis,” “mobile 
applications,” “smartphone,” “wearable electronic devices,” “digital health,” 
“telemedicine,” “artificial intelligence,” “internet,” “mhealth,” “web,” 
“wechat,” “virtual reality,” “VR,” “virtual environment,” “virtual simulation,” 
“nutrition,” “nutri*,” “supplement*,” “diet therapy,” “diet*,” “dietary.” 
We conducted a manual search using the literature tracing method to 
comprehensively supplement the literature. Our search encompassed the 
period from the establishment of each database to 21 March 2025. The 
study is registered in PROSPERO: CRD420251023133. For illustration, 
the specific search strategy is detailed in Supplementary Table S1.

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria
Population (P): Patients undergoing hemodialysis and age 

≥18 years. Intervention (I): Nutrition interventions delivered through 
digital health technologies (core components including mobile health, 
artificial intelligence, telehealth, or virtual reality) specifically designed 
for HD patients. Comparison (C): Usual care, routine care, conventional 
care, or standard care without integration of m-health/digital health 
components. Outcomes (O): Nutritional outcomes included the 
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following: Biochemical parameters (e.g., serum albumin, prealbumin, 
and phosphorus); anthropometric measurements (e.g., body mass index 
and mid-arm muscle circumference); scores from internationally 
recognized nutritional assessment scales (e.g., Modified Quantitative 
Subjective Global Assessment, MQSGA). Study type (S): Randomized 
controlled trials (RCTs) reporting means, standard deviations, and 
explicit sample sizes to allow effect size pooling for primary/secondary 
outcomes. Language: Studies published in Chinese or English.

2.2.2 Exclusion criteria
(1) Meetings, policy documents, or research proposals. (2) The 

interventions were not specific and were only follow-up interventions 
conducted via telephone, email, or WeChat. (3) Repeated publication.

2.3 Data extraction

Two researchers (Zhang Kai and Wang Ruixue), who had received 
training in evidence-based nursing, searched the literature independently. 
Two researchers independently read the title and abstract for preliminary 
screening and carefully read the full text. According to the inclusion and 
exclusion criteria of the literature, the included literature was determined. 
Two researchers extracted literature information, including the literature 
author, publication time, country, sample size, age, dialysis age, 
intervention cycle, carrier format, intervention content, and outcome 
measures. If there were any differences, the third researcher (Ni Cuiping) 
was consulted to assist in the judgment.

2.4 Risk-of-bias assessments

Three reviewers (Zhang Kai, Wang Ruixue, and Zhang Nan) 
assessed the quality of the studies according to the Cochrane 
Collaboration’s tool for risk of bias, which included seven categories of 
risk of bias: randomized sequence generation, allocation concealment, 
participant blinding, outcome assessor blinding, incomplete data, 
selective reporting, and other bias (22). Each item was evaluated as 
“high risk,” “low risk,” and “unclear.” Disagreements were adjudicated 
by a fourth reviewer (Ni Cuiping). The methodological quality of the 
included trials was categorized into three tiers using the following 
evaluation framework: (1) Low-quality trials were defined as those 
exhibiting high risk of bias in either randomization procedures or 
allocation concealment, irrespective of other methodological domains; 
(2) High-quality trials required both robust randomization and 
allocation concealment, with all remaining methodological components 
demonstrating low or unclear risk; (3) Moderate-quality trials 
encompassed studies that neither satisfied the stringent criteria for high 
quality nor met the threshold for low-quality classification (23).

2.5 Statistical analysis

Data analysis was performed using Review Manager (RevMan) 
software version 5.4. All continuous outcomes were pooled using 
Standardized Mean Differences (SMD) with 95% confidence intervals 
(CI). This approach was chosen because the outcomes encompassed 
heterogeneous measures, including unitless comprehensive scores 
(MQSGA), biochemical parameters with differing units (e.g., albumin, 
phosphorus), and anthropometric measures (e.g., BMI, mid-arm muscle 

circumference). Although units were standardized for the same indicator 
where necessary, SMD allows for the comparison of effect magnitudes 
across these fundamentally different types of outcomes, thereby 
facilitating an integrated assessment of the intervention’s impact on 
multidimensional nutritional status. Heterogeneity was evaluated through 
the Chi-square test and Cochran’s Q statistic. A fixed-effects model was 
applied when heterogeneity was non-significant (p ≥ 0.1 and I2 < 50%), 
while a random-effects model was utilized in cases of substantial 
heterogeneity (p < 0.1 or I2 ≥ 50%). For heterogeneous outcomes 
(I2 ≥ 50%), subgroup analyses were conducted to explore potential 
sources of heterogeneity, stratified by 1. Digital health technology types 
(application program vs. mobile platform); 2. Intervention duration (≥ 
6 months vs. < 6 months). Publication bias was assessed via funnel plot 
symmetry inspection. Sensitivity analyses were implemented through a 
leave-one-out approach to verify result robustness. Statistical significance 
was defined as a two-tailed p-value < 0.05.

3 Results

3.1 Literature screening process and results

A total of 1,838 records were identified from databases and registers, 
including CNKI (n = 89), WanFang (n = 529), VIP (n = 29), CBM 
(n = 92), PubMed (n = 146), Web of Science (n = 363), Cochrane 
Library (n = 72), Embase (n = 199), CINAHL (n = 31), and Scopus 
(n = 288). After removing 613 duplicate records, 1,225 records were 
screened, and 1,158 records were excluded because they were not 
relevant to the research topic. Subsequently, 67 reports were sought for 
retrieval, with none being unretrieved. Following eligibility assessment 
of these 67 reports, 45 were excluded for the following reasons: the study 
subjects were not eligible (n = 27), reviews or meta-analysis (n = 5), 
meeting abstracts (n = 3), self before-and-after control (n = 7), case 
analysis (n = 1), and outcome measures not presented as means and 
standard deviations (n = 2). Additionally, 3 records were identified by 
screening the reference lists of original studies; all 3 reports were 
retrieved successfully, and after eligibility assessment, 2 records were 
excluded because the study subjects were not eligible. Finally, a total of 
23 studies were included in this review. This study adheres to the 
PRISMA guidelines, and the literature searching and screening process 
is outlined in Figure 1.

3.2 The basic characteristics of the 
included literature

A total of 23 studies were included in the analysis, originating from 
6 countries: China (n = 18) (18, 24–40), South Korea (n = 1) (19), 
Thailand (n = 1) (41), Iran (n = 1) (42), Malaysia (n = 1) (43), and the 
United States (n = 1) (44). In terms of publication timeframe, one study 
was published between 2011 and 2015 (44), four studies were published 
between 2016 and 2020 (24, 25, 27, 28), and 18 studies were published 
between 2021 and 2025 (18, 19, 26, 29–39, 41–43). These studies 
involved 2,762 hemodialysis patients in total, with 1,382  in the 
intervention group and 1,380 in the control group. Of the included 
studies, 19 focused on application-based interventions, including those 
utilizing WeChat and apps (19, 24–31, 33–35, 37, 38, 40–44). The 
remaining four studies adopted a mobile platform (18, 32, 36, 39). The 
basic characteristics of the included literatures are shown in Table 1.
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3.3 The results of the risk of bias 
assessments

In total, 13 studies were assessed as having low risk of bias in 
randomized sequence generation (18, 25–29, 32, 39–44); 4 studies 
were rated as high risk due to the use of pseudo-randomization 
(24, 31, 34, 35); 6 studies, although stating the use of 
randomization, did not specify the type of randomization method 
used and were therefore rated as unclear (19, 30, 33, 36–38). 
Three studies reported allocation concealment and were rated as 
low risk (26, 32, 41); the remaining 20 studies were rated as 
unclear (18, 19, 24, 25, 27–31, 33–40, 42–44). Blind outcome 
assessment is challenging due to the unique nature of nutritional 
interventions, and 22 studies did not report blind outcome 
assessment, leading to unclear ratings (18, 19, 24–31, 33–44); one 
study reported blind outcome assessment, leading to low risk 
(32). Since the outcome measures in this study are mostly 
laboratory test results, which are relatively objective, the lack of 
blinding of outcome assessors has minimal impact on the results, 
and thus all 23 studies were rated as low risk (18, 19, 24–44). A 
total of 16 studies had complete outcome data and were rated as 
low risk (18, 24, 25, 27, 29–31, 33, 36–43); 7 studies reported 
reasons for dropout but did not describe whether an intention-
to-treat analysis was conducted, resulting in an unclear rating 
(19, 26, 28, 32, 34, 35, 44). In total, 4 studies did not exhibit 
selective reporting and were rated as low risk (19, 41–43); 19 
studies, although reporting both positive and negative results, did 
not report whether the RCT was registered, leading to an unclear 
rating (18, 24–40, 44). Three studies had no other biases and were 

rated as low risk (26, 28, 32); the remaining 20 studies did not 
report on quality control measures and were rated as unclear (18, 
19, 24, 25, 27, 29–31, 33–44). The four studies were evaluated as 
low quality (24, 31, 34, 35), three studies as high quality (26, 32, 
41), and the remaining 16 studies as medium quality (18, 19, 25, 
27–30, 33, 36–40, 42–44). The figure of the risk of bias is shown 
in Supplementary Figure S1, while a summary of the risk of bias 
is shown in Supplementary Figure S2.

3.4 Meta-analysis results

3.4.1 Main outcome measures

3.4.1.1 MQSGA
Seven studies reported the MQSGA score (18, 27, 31, 32, 34, 35, 

37). The meta-analysis showed a significant pooled effect on the 
MQSGA score (SMD = −1.48, 95% CI: −1.93 to −1.03). Considerable 
heterogeneity was observed (I2 = 95%, p < 0.001). The forest diagram 
is shown in Supplementary Figure S3.

3.4.2 Biochemical indicators

3.4.2.1 Hemoglobin
A total of 11 studies reported hemoglobin levels (18, 24, 26–30, 

32, 33, 35, 38). The meta-analysis showed a significant pooled effect 
on the hemoglobin (SMD = 0.86, 95% CI: 0.67 to 1.05). Considerable 
heterogeneity was observed (I2 = 80%, p < 0.001). The forest diagram 
is shown in Supplementary Figure S4.

FIGURE 1

PRISMA diagram of searching and screening process.
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TABLE 1  Basic information of the included literature.

Author, 
year

Country Sample 
size 

(T/C)

Age (T/C) Dialysis 
age 

(months)

Intervention 
cycle

Carrier 
format

Intervention 
content

Outcome measures

Kong YX, 

2017 (24)
China 50/50

45.45 ± 6.52

44.65 ± 6.78
- 3 months

Application 

program 

(WeChat)

Conducted dietary 

education and answered 

questions via WeChat

Relative increase in body weight 

(%), Serum albumin, 

hemoglobin, potassium, and 

phosphorus

Wang J, 

2020

(25)

China 250/250
36.45 ± 12.98

35.12 ± 12.81
- 2 months

Application 

program 

(WeChat)

Delivered knowledge on 

disease and dialysis, 

provided diet and 

exercise guidance, and 

adjusted intervention 

plans based on 

nutritional status

Albumin, prealbumin, and 

transferrin

Fan JZ, 

2022 (26)
China 44/45

75.65 ± 10.78

75.45 ± 11.32

68.78 ± 30.25

69.32 ± 31.17
5 months

Application 

program 

(WeChat)

Provided nutrition 

education via WeChat 

and face-to-face, and 

developed personalized 

meal plans

Hemoglobin, potassium, 

calcium, phosphorus, creatinine, 

blood urea nitrogen, and 

transferrin; mid arm muscle 

circumference, triceps skinfold 

thickness, and BMI.

Zhang N, 

2022 (18)
China 79/79

67.07 ± 13.28

67.53 ± 12.12

36.57 ± 8.96

34.12 ± 8.52
3 months

Mobile 

platform

Nutrition team 

conducted a nutritional 

index assessment, precise 

nutrition and dry weight 

management, and 

provided targeted 

guidance based on a 

3-day diet record analysis

Hemoglobin, prealbumin, 

albumin, phosphorus, 

potassium; MQSGA; BMI.

Zeng T, 

2020 (27)
China 50/50

51.10 ± 9.57

53.10 ± 9.56
- 6 months

Application 

program 

(WeChat, QQ)

Nutrition management 

team provided 

psychological counseling, 

outcome feedback, meal 

planning, and 

personalized guidance

MQSGA, Albumin, transferrin, 

hemoglobin; mid arm muscle 

circumference, triceps skinfold 

thickness.

Deng FY, 

2019 (28)
China 61/61 - - 6 months

Application 

program 

(WeChat)

The intervention was 

structured around five 

phases based on the 

Timing It Right theory.

Hemoglobin, serum protein, 

potassium, blood urea nitrogen, 

and serum creatinine.

Zhang JQ, 

2024 (29)
China 50/50

69.14 ± 3.11

69.28 ± 3.19

90.12 ± 13.44

91.68 ± 14.28
3 months

Application 

program 

(WeChat)

Conducted family 

education, provided diet 

management reports and 

family peer support, 

shared experiences, and 

kept diet diaries via 

WeChat

Hemoglobin, albumin, 

prealbumin, and transferrin.

Shi LR, 

2023 (30)
China 55/55

56.64 ± 9.39

57.38 ± 9.84
- 3 months

Application 

program 

(WeChat)

Provided personalized 

nutrition guidance and 

regular nutrition 

knowledge 

dissemination, and 

carried out online 

interactive sharing and 

plan assessment-

adjustment

Hemoglobin, albumin, triceps 

skinfold thickness.

(Continued)
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TABLE 1  (Continued)

Author, 
year

Country Sample 
size 

(T/C)

Age (T/C) Dialysis 
age 

(months)

Intervention 
cycle

Carrier 
format

Intervention 
content

Outcome measures

Duan F, 

2023 (31)
China 74/74

54.79 ± 5.98

55.34 ± 5.21

2.25 ± 0.53

2.27 ± 0.48
2 months

Application 

program 

(WeChat)

Provided guidance via 

educational videos and 

personalized diet-lifestyle 

plans, and conducted 

dietary counseling and 

supervision via WeChat

Albumin, prealbumin; MQSGA

Shi SH, 

2021 (32)
China 79/79

50.68 ± 11.09

49.24 ± 12.68

57.81 ± 31.80

56.37 ± 33.44
3 months

Mobile 

platform

Provided comprehensive 

personalized dietary 

guidance and dietary 

tips, and implemented 

intervention via 

educational animation 

videos, doctor-patient 

video interaction, and 

patient experience-

sharing sessions

MQSGA, serum albumin, 

hemoglobin, phosphorus, 

calcium, potassium, serum 

creatinine, and blood urea 

nitrogen.

Dong XY, 

2022 (33)
China 74/74

53.22 ± 10.07

54.12 ± 9.51

56.11 ± 13.08

61.77 ± 18.89
6 months

Application 

program 

(WeChat)

Conducted 

comprehensive dietary 

education: 6–18 videos; 

monitoring for unhealthy 

habits; food discussions; 

patient peer exchange; 

video Q&A sessions

Hemoglobin, albumin, and 

prealbumin

Pack S, 

2021 (19)
South Korea 37/38

52.00 ± 10.01

50.66 ± 9.15
- 8 weeks

Application 

program

Carried out dietary self-

management in 3 phases: 

introduction, 

implementation, and 

maintenance

Phosphorus, potassium, and 

albumin.

Wang LJ, 

2024 (34)
China 110/110 - - 3 months

Application 

program 

(WeChat)

Nutrition team 

conducted education via 

online consultation 

groups, needs assessment 

surveys, and PPT/video 

popularization, and 

adjusted diet via a food 

nutrient APP

Potassium, phosphorus, mid 

arm muscle circumference, 

albumin, prealbumin, 

transferrin, creatinine, and 

blood urea nitrogen, MQSGA

Teong LF, 

2022 (43)
Malaysia 33/33

47.5 ± 15.3

49.15 ± 13.63
- 3 months

Application 

program 

(phosphate 

mobile app, 

MyKidneyDiet-

Phosphate 

Tracker)

Provided dietary 

guidance via 6 animated 

educational videos and 

calculated personalized 

dietary intake

Phosphorus, calcium

Wu LF, 

2021 (35)
China 51/51

44.90 ± 10.02

45.43 ± 10.70

49.88 ± 23.01

51.27 ± 18.54
6 months

Application 

program (App)

The APP calculated 

recommended intake and 

monitored actual 

consumption, adjusted in 

a timely manner based 

on comparison, and 

provided food database 

queries

MQSGA, Relative increase in 

body weight (%), body Weight 

gain, albumin, hemoglobin, and 

mid-arm muscle circumference.

(Continued)
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TABLE 1  (Continued)

Author, 
year

Country Sample 
size 

(T/C)

Age (T/C) Dialysis 
age 

(months)

Intervention 
cycle

Carrier 
format

Intervention 
content

Outcome measures

Thongsunti 

A, 2024 

(41)

Thailand 40/40 - - 6 months

Application 

program (LINE 

application)

Watched 3 dietary 

education videos and 

received personalized 

dietary guidance and 

supervision

Phosphorus

Torabikhah 

M, 2023 

(42)

Iran 35/35
45.2 ± 1.4

46.7 ± 1.5

38.4 ± 2.4

40.8 ± 2.4
3 months

Application 

program (Di 

Care app)

Covered 7 topics via 

videos: the importance of 

HD, management of HD 

complications, diet, fluid 

intake restriction, 

physical activity, vascular 

access care, and 

medications

Potassium, phosphorus, 

albumin, ferritin, body weight 

gain

Zhou QQ, 

2024 (36)
China 30/30

55.08 ± 10.72

54.58 ± 10.27

108.36 ± 26.4

107.4 ± 25.8
2 months

Mobile 

platform

Carried out online 

consultation, doctor-

patient interaction, 

health education and 

assessment, and 

developed precise 

nutrition and dry weight 

plans

Prealbumin, phosphorus.

Wei DM, 

2024 (37)
China 30/30

45.91 ± 7.53

46.72 ± 7.48

37.12 ± 10.33

36.98 ± 10.26
3 months

Application 

program 

(WeChat)

Nutrition team provided 

dietary guidance via 

articles/videos, 

conducted personalized 

nutrition assessment and 

counseling, and 

organized online 

educational lectures, 

Q&A, and diet log 

supervision

MQSGA, calcium and 

phosphorus

Welch JL, 

2013 (44)

The 

United States
24/20

53.0 ± 15.1

47.1 ± 11.5
6 weeks

Application 

program 

(DIMA)

Recorded food and 

beverage intake, and 

provided assessment and 

feedback based on the 

entered data to meet the 

prescribed nutritional 

intake

Body weight gain

Zhu XB, 

2021 (38)
China 43/43

41.2 ± 14.9

40.4 ± 14. 8

141.6 ± 54

135.6 ± 55.2
6 months

Application 

program 

(WeChat)

Conducted one-on-one 

health education sessions 

every 3 weeks and 

developed personalized 

dietary plans

Albumin, hemoglobin

Li HT, 2024 

(39)
China 40/40

52.39 ± 6.53

50.14 ± 6.21

37.68 ± 5.76

36.64 ± 6.53
6 months

Mobile 

platform

Provided personalized 

plans and digital dietary 

education, conducted 

monitoring and 

interactive Q&A via the 

platform, and adjusted 

plans based on regular 

re-assessments

Phosphorus, calcium, albumin, 

and prealbumin

(Continued)
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3.4.2.2 Serum albumin
A total of 18 studies reported serum albumin levels (18, 19, 24–35, 

38, 39, 42, 43). The meta-analysis showed a significant pooled effect 
on albumin (SMD = 0.81, 95% CI: 0.63 to 0.99). Significant 
heterogeneity was observed (I2 = 88%, p < 0.001). The forest diagram 
is shown in Supplementary Figure S5.

3.4.2.3 Prealbumin
Seven studies reported prealbumin levels (18, 25, 29, 31, 33, 36, 

39). The meta-analysis revealed a significant pooled effect on 
prealbumin (SMD = 0.60, 95% CI: 0.48 to 0.72). Heterogeneity was 
observed (I2 = 41%, P < 0.001). The forest diagram is shown in 
Supplementary Figure S6.

3.4.2.4 Transferrin
Five studies reported serum transferrin levels (25–27, 29, 34). The 

meta-analysis showed no significant pooled effect on transferrin 
(SMD = 0.14, 95% CI: −0.84 to 1.11). Heterogeneity was substantial 
(I2 = 98%, p = 0.78). The forest diagram is shown in 
Supplementary Figure S7.

3.4.2.5 Calcium
Seven studies reported serum calcium levels (26, 32, 34, 37, 39, 40, 

43). The meta-analysis showed no significant pooled effect on calcium 
(SMD = −0.04, 95% CI: −0.65 to 0.58). Considerable heterogeneity 
was observed (I2 = 94%, p = 0.91). The forest diagram is shown in 
Supplementary Figure S8.

3.4.2.6 Phosphorus
Thirteen studies reported serum phosphorus levels (18, 19, 24, 26, 

32, 34, 36, 37, 39–43). The meta-analysis showed a significant pooled 
effect on phosphorus (SMD = −0.71, 95% CI: −0.97 to −0.46). 
Considerable heterogeneity was observed (I2 = 90%, p < 0.001). The 
forest diagram is shown in Supplementary Figure S9.

3.4.2.7 Potassium
In total, 8 studies reported serum potassium levels (18, 19, 24, 26, 

28, 32, 34, 42). The pooled effect size was statistically significant 
(SMD = − 0.67, 95% CI: −1.19 to −0.15). A high degree of 

heterogeneity was observed (I2 = 93%, p = 0.01). The forest diagram is 
shown in Supplementary Figure S10.

3.4.3 Anthropometric indicators

3.4.3.1 Relative increase in body weight (%)
In total, 2 studies reported the relative increase in body weight (%) 

(24, 35). The meta-analysis showed a statistically significant effect 
(SMD = −1.00, 95% CI: −1.72 to −0.28). Heterogeneity was 
substantial (I2 = 83%, p = 0.007). The forest diagram is shown in 
Supplementary Figure S11.

3.4.3.2 Body weight gain
In total, 2 studies reported body weight gain (42, 44). The 

meta-analysis showed a significant pooled effect (SMD = − 0.71, 
95% CI: −1.12 to −0.31). Moderate heterogeneity was observed 
(I2 = 44%, p < 0.001). The forest diagram is shown in 
Supplementary Figure S12.

3.4.3.3 BMI
In total, 2 studies reported body mass index (BMI) (18, 26). 

The meta-analysis showed a significant pooled effect (SMD = 0.31, 
95% CI: 0.06 to 0.56). Moderate heterogeneity was observed 
(I2 = 37%, p = 0.02). The forest diagram is shown in 
Supplementary Figure S13.

3.4.3.4 Mid-arm muscle circumference
In total, 4 studies reported mid-arm muscle circumference 

(26, 27, 34, 35). The meta-analysis showed a significant effect 
(SMD = 1.92, 95% CI: 0.46 to 3.38). High heterogeneity was 
observed (I2 = 98%, p = 0.01). The forest diagram is shown in 
Supplementary Figure S14.

3.4.3.5 Triceps skinfold thickness
In total, 2 studies reported triceps skinfold thickness (26, 27). 

The meta-analysis showed a significant effect (SMD = 1.16, 95% 
CI: 0.13 to 2.18). Considerable heterogeneity was observed 
(I2 = 91%, p = 0.03). The forest diagram is shown in 
Supplementary Figure S15.

TABLE 1  (Continued)

Author, 
year

Country Sample 
size 

(T/C)

Age (T/C) Dialysis 
age 

(months)

Intervention 
cycle

Carrier 
format

Intervention 
content

Outcome measures

Yao DD, 

2023 (40)
China 43/43

44.53 ± 4.41

44.38 ± 4.37

13.59 ± 3.61

13.38 ± 3.57
3 months

Application 

program 

(WeChat)

Developed personalized 

low-phosphorus 

(<800 mg/day) and high-

protein meal plans based 

on 3-day diet records 

(considering body fat, 

disease status, and 

calcium-phosphorus 

metabolism), and 

provided guidance on 

food selection and 

portion

Calcium, phosphorus

MQGSA, Modified Quantitative Subjective Global Assessment; BMI, Body Mass Index; HD, hemodialysis; Q&A, Question and Answer; -, no report.
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3.4.4 Secondary outcome indicators

3.4.4.1 Urea nitrogen
In total, 3 studies reported blood urea nitrogen levels (26, 28, 32). 

The meta-analysis showed a significant effect (SMD = −0.27, 95% CI: 
−0.48 to −0.06). No heterogeneity was observed (I2 = 0%, p = 0.01). 
The forest diagram is shown in Supplementary Figure S16.

3.4.4.2 Serum creatinine
In total, 3 studies reported serum creatinine levels (26, 28, 32). The 

meta-analysis showed a significant pooled effect (SMD = −0.80, 95% CI: 
−1.23 to −0.38). Considerable heterogeneity was observed (I2 = 74%, 
p < 0.01). The forest diagram is shown in Supplementary Figure S17.

3.5 Publication bias

For the outcomes with ≥ 10 included studies, funnel plots were used 
to assess publication bias for hemoglobin, albumin, and phosphorus. The 
funnel plots for hemoglobin and albumin showed slight asymmetry, 
indicating possible publication bias. This might be due to small sample 
sizes, low study quality, design differences, or reporting standardization 
in some included studies. The funnel plot for phosphorus was largely 
symmetric, suggesting minimal publication bias. The funnel plots are 
shown in Supplementary Figures S18–S20.

3.6 Sensitivity analyses

Sensitivity analyses were performed on outcome indicators with 
≥ 3 studies by sequentially removing individual studies. For 
transferrin, after excluding a study by Wang LJ (34), the pooled effect 
size became statistically significant (p < 0.001). For mid-arm muscle 
circumference, excluding a study by Zeng T made the result 
non-significant (p = 0.08) (27). Similarly, for blood urea nitrogen and 
serum creatinine, removing studies by Fan JZ (26) and Shi SH (32), 
respectively, also led to non-significant results (p = 0.09 and p = 0.05). 
These four indicators showed unstable results. In contrast, results for 
the other indicators remained stable after sensitivity analysis. The 
differential sensitivity analyses are presented in Table 2.

3.7 Subgroup analysis

3.7.1 MQSGA
Intervention duration: For ≥ 6 months, 202 patients, SMD = −3.06 

(95% CI: −3.54 to −2.57, p < 0.001) (27, 35); for < 6 months, 743 
patients, SMD = −0.84 (95% CI: −1.18 to −0.50, p < 0.001) (18, 31, 32, 
34, 37). Digital health technology types: application program-based 
nutrition intervention involving 630 patients, SMD = -1.92 (95% CI: 
-2.81 to -1.03, p < 0.001); mobile platform-based nutrition 
intervention in 315 patients, SMD = -0.46 (95% CI: -0.68 to -0.24, 
p < 0.001) (18, 32). The subgroup analysis is shown in Table 3 and 
Supplementary Figure S3.

3.7.2 Hemoglobin
Intervention duration: For ≥ 6 months of intervention involving 

479 patients, the SMD = 1.02 (95% CI: 0.53 to 1.51, p < 0.001) (27, 

28, 33, 35, 38); For < 6 months of intervention involving 678 
patients, the SMD = 0.73 (95% CI: 0.41 to 1.05, p < 0.001) (18, 24, 
26, 29, 30, 32). Digital health technology types: For application 
program-based nutritional interventions across 842 patients, the 
SMD = 0.99 (95% CI: 0.69 to 1.28, p < 0.001) (24, 26–30, 33, 35, 38); 
for mobile platform-based nutritional interventions across 315 
patients, the SMD = 0.36 (95% CI: 0.13 to 0.58, p = 0.002) (18, 32). 
The subgroup analysis is shown in Table  3 and 
Supplementary Figure S4.

3.7.3 Albumin
Intervention duration: For ≥ 6 months, 559 patients, SMD = 0.94 

(95% CI: 0.51 to 1.38), p < 0.001 (27, 28, 33, 35, 38, 39); for < 6 months, 
1757 patients, SMD = 0.74 (95% CI: 0.41 to 1.08), p < 0.001 (18, 19, 
24–26, 29–32, 34, 42, 43). Digital health technology types: application 
program-based nutrition intervention, 1957 patients, SMD = 0.87 
(95% CI: 0.56 to 1.18), p < 0.001; mobile platform-based nutrition 
intervention, 395 patients, SMD = 0.51 (95% CI: 0.23 to 0.79), p < 
0.001 (18, 32, 39). The subgroup analysis is shown in Table 3 and 
Supplementary Figure S5.

3.7.4 Calcium
Digital health technology types: application program-based 

nutrition intervention, 521 patients, SMD = 0.22 (95% CI: −0.47 to 
0.90), p = 0.54 (26, 34, 37, 40, 43); mobile platform-based nutrition 
intervention, 237 patients, SMD = −0.65 (95% CI: −1.44 to 0.14), 
p = 0.11 (32, 39). The subgroup analysis is shown in Table  3 and 
Supplementary Figure S8.

3.7.5 Phosphorus
Intervention duration: For ≥ 6 months, 160 patients, SMD = -1.12 

(95% CI: −2.62 to 0.39), p = 0.15; for < 6 months, 1141 patients, 
SMD = -0.65 (95% CI: −1.03 to −0.26), p = 0.001 (18, 19, 24, 26, 
32, 34, 36, 37, 40, 42, 43). Digital health technology types: 
application program-based nutrition intervention, 846 patients, 
SMD = −0.76 (95% CI: −1.17 to −0.35), p < 0.001 (19, 24, 26, 34, 
37, 40–43); mobile platform-based nutrition intervention, 455 
patients, SMD = −0.62 (95% CI: −1.38 to 0.14) (18, 32, 36, 39), 
p = 0.11. The subgroup analysis is shown in Table  3 and 
Supplementary Figure S9.

3.7.6 Potassium
Digital health technology types: application program-based 

nutrition intervention, 671 patients, SMD = −0.78 (95% CI: −1.47 to 
−0.09), p = 0.03 (19, 24, 26, 28, 34, 42); mobile platform-based 
nutrition intervention, 315 patients, SMD = −0.34 (95% CI: −0.56 to 
−0.11), p = 0.003 (18, 32). The subgroup analysis is shown in Table 3 
and Supplementary Figure S10.

For other outcome indicators, subgroup analysis could not 
be conducted due to the small number of included studies.

4 Discussion

A total of 23 studies were included, of which four were low quality, 
three high quality, and 16 moderate quality. Overall, quality was 
acceptable but not high. The overall meta-analysis indicated that 
digital health technology-based nutrition interventions had no 
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significant effects on transferrin and calcium but had significant 
effects on hemoglobin, albumin, prealbumin, phosphorus, potassium, 
MQSGA score, relative increase in body weight (%), weight gain, BMI, 
mid-arm muscle circumference, triceps skinfold thickness, blood urea 
nitrogen, and serum creatinine. This suggests these interventions may 
improve nutrition in hemodialysis patients. To further explore 
potential heterogeneity in the results, subgroup analyses were 

conducted on six outcomes: hemoglobin, albumin, calcium, 
potassium, phosphorus, and MQSGA. For phosphorus, subgroup 
analyses found no significant difference in the ≥ 6-month intervention 
subgroup and no significant effect of mobile platform-based 
interventions, inconsistent with the overall meta-analysis. However, 
regarding this result, since only 2 studies were included in the 
subgroup analysis, the strength of evidence is unstable. Thus, this 

TABLE 3  The results of subgroup analysis of each outcome indicator.

Variable Trials Participants Total SMD (95% CI) p value

MQSGA

≥ 6 months 2 101 202 -3.06 (-3.54, -2.57) < 0.001

<6 months 5 372 743 -0.84 (-1.18, -0.50) < 0.001

Application program 5 315 630 -1.92 (-2.81, -1.03) < 0.001

Mobile platform 2 158 315 -0.46 (-0.68, -0.24) < 0.001

Hemoglobin

≥ 6 months 5 240 479 1.02 (0.53, 1.51) < 0.001

<6 months 6 340 678 0.73 (0.41, 1.05) < 0.001

Application program 9 422 842 0.99 (0.69, 1.28) < 0.001

Mobile platform 2 158 315 0.36 (0.13, 0.58) 0.002

Albumin

≥ 6 months 6 280 559 0.94 (0.51, 1.38) < 0.001

<6 months 12 879 1757 0.74 (0.41, 1.08) < 0.001

Application program 15 978 1957 0.87 (0.56, 1.18) < 0.001

Mobile platform 3 198 395 0.51 (0.23, 0.79) < 0.001

Calcium

Application program 5 260 521 0.22 (-0.47, 0.90) 0.54

Mobile platform 2 119 237 -0.65 (-1.44, 0.14) 0.11

Phosphorus

≥6 months 2 80 160 -1.12 (-2.62, 0.39) 0.15

<6 months 11 570 1141 -0.65 (-1.03, -0.26) 0.001

Application program 9 422 846 -0.76 (-1.17, -0.35) < 0.001

Mobile platform 4 228 455 -0.62 (-1.38, 0.14) 0.11

Potassium

Application program 6 335 671 -0.78 (-1.47, -0.09) 0.03

Mobile platform 2 158 315 -0.34 (-0.56, -0.11) 0.003

In this table, “Participants” refers to the number of participants in the intervention group, and “Total” refers to the total number of participants (including both intervention and control 
groups).

TABLE 2  Sensitivity analysis of the variable results with differences.

Variable Trials Participants Total SMD (95% CI) p-value

Transferrin 5 504 1,009 0.14 (−0.84, 1.11) 0.78

After removing Wang LJ, 2024 (34) 4 394 789 0.58 (0.39, 0.78) <0.001

Serum creatinine 3 182 363 −0.80 (−1.23, −0.38) <0.001

After removing Shi SH, 2021 (32) 2 103 206 −0.78 (−1.15, −0.00) 0.05

Urea nitrogen 3 182 363 −0.27 (−0.48, −0.06) 0.01

After removing Fan JZ, 2022 (26) 2 138 274 −0.21 (−0.44, 0.03) 0.09

Mid-arm muscle circumference 4 255 511 1.92 (0.46, 3.38) 0.01

After removing Zeng T, 2020 (27) 3 205 411 1.55 (−0.20, 3.29) 0.08

In this table, “Participants” refers to the number of participants in the intervention group, and “Total” refers to the total number of participants (including both intervention and control groups).
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result should be interpreted with caution, and more follow-up studies 
with a duration of ≥ 6 months should be conducted in the future. 
Other subgroup analyses were generally in line with the overall results. 
Additionally, sensitivity analyses showed unstable results for 
transferrin, serum creatinine, blood urea nitrogen, and mid-arm 
muscle circumference. Caution is needed in interpreting the findings. 
More high-quality studies are required to validate these results.

Turning to the specific methods employed, the included studies 
primarily employed the following approaches: 1. Application 
programs: Mobile applications (Apps): Customized features such as 
dietary logging, nutrient calculation, and real-time feedback were 
used to deliver personalized guidance. For instance, Teong et al. (43) 
developed a hyperphosphatemia management app integrated with a 
food database and phosphorus intake tracker, enabling patients to 
generate daily phosphorus reports and receive adjustment 
recommendations. Similarly, Wu et al. (35) combined IoT-enabled 
smart water bottles and scales to monitor fluid and nutrient intake in 
real time, using algorithms to compare actual values with 
recommended targets and dynamically optimize dietary plans. Social 
media platforms (e.g., WeChat): These were utilized for health 
education, interactive consultations, and peer support. For example, 
Kong et al. (24) disseminated low-protein diet educational videos via 
WeChat and established patient groups for recipe sharing and 
management experience exchanges. Additionally, Wang et al. (34) 
employed a WeChat mini-program (“Food Nutrient Handbook”) to 
provide daily meal recommendations and dynamically assess patient 
needs through online questionnaires. 2. Mobile platforms: Remote 
monitoring and online education: Shi et  al. (32) implemented an 
“Internet Plus” nutrition education model, uploading animated 
tutorials, hosting virtual classrooms, and facilitating video-based 
Q&A sessions between clinicians and patients, to identify nutritional 
gaps. Zhou et al. (36), meanwhile, made real-time adjustments to 
patients’ dry weight and dietary structures through online 
consultations and precision nutrition planning. Furthermore, Duan 
et  al. (31) combined animated video education, face-to-face 
counseling, and WeChat-based supervision to enhance dietary 
adherence through phased interventions, while Li et al. (39) delivered 
personalized nutrition plans via web platforms and monitored patient 
activity levels, achieving diet management.

To understand how these interventions exert their effects, it is 
critical to examine key nutritional indicators. Biochemical indicators 
like hemoglobin, prealbumin, albumin, transferrin, calcium, 
potassium, and phosphorus are crucial for nutrition assessment in 
hemodialysis patients. The MQSGA is also a validated clinical 
nutrition evaluation tool (12, 45, 46). Overall, meta-analysis showed 
digital health technology-based nutrition interventions improved 
MQSGA, hemoglobin, albumin, prealbumin, phosphorus, and 
potassium but not transferrin and calcium. Specifically, for 
hemoglobin, while hemoglobin levels in hemodialysis patients are 
primarily influenced by erythropoietin (Epo) dosing, inflammatory 
status, and access-related blood loss, digital health interventions may 
provide supportive benefits. By offering personalized dietary guidance 
and promoting adherence to prescribed treatments, including 
medication and supplemental iron, digital tools may help optimize 
conditions for hemoglobin synthesis. It is important to note that 
intravenous iron is commonly used to manage iron deficiency in this 
population when indicated, and vitamin B12 deficiency is routinely 
screened for and is relatively uncommon. Thus, the role of digital 

interventions may lie mainly in enhancing overall treatment adherence 
and integrating nutritional support with medical management (47). 
Albumin and prealbumin: With the help of digital health technology, 
patients can more accurately control protein intake, avoid malnutrition 
caused by excessive restriction, and adjust dietary structure in time to 
ensure a sufficient high-quality protein supply, which is conducive to 
maintaining and improving serum albumin and prealbumin levels. 
Moreover, diet education helps patients understand protein 
metabolism, encouraging better adherence to diet plans. For 
phosphorus and potassium: Digital health technology monitors intake 
in real time and promptly reminds patients to adjust their diet within 
set safe ranges (48). For example, when the intake of phosphorus is 
close to the upper limit, the patient is reminded to reduce the intake 
of high-phosphorus foods, and at the same time, the patient is 
recommended to replace foods with low phosphorus and rich in other 
nutrients, so as to maintain the levels of phosphorus and potassium in 
a relatively stable range and avoid complications caused by abnormal 
phosphorus and potassium metabolism. However, transferrin is 
influenced by factors like inflammation, which is common in 
hemodialysis patients, potentially limiting improvement (49, 50). 
Meanwhile, calcium levels are regulated by complex mechanisms like 
PTH, vitamin D, and mineral metabolism, which may not be directly 
affected by nutritional interventions (51). Notably, sensitivity analysis 
showed unstable results for transferrin, which became significant after 
excluding a study by Wang LJ (34), indicating caution in interpreting 
results. More high-quality studies are needed. Subgroup analysis on 
phosphorus also showed no significant difference in the ≥ 6 months 
intervention subgroup or in mobile-platform-based interventions, 
inconsistent with the overall meta-analysis. Possible reasons include 
small sample sizes in subgroup analyses and reduced intervention 
effects due to declining patient compliance or adapted dietary habits 
over long-term interventions. Thus, future research should address 
compliance issues in long-term interventions, design 1- to 3-year 
follow-up studies, and conduct more large-sample, multicenter studies.

Beyond biochemical markers, anthropometric indicators provide 
complementary insights into nutritional status. In the context of 
anthropometric indicators, BMI is considered an independent 
predictor of mortality in MHD patients (52). Skinfold thickness 
measurement can be used to assess energy stored in the body in the 
form of fat, while mid-arm muscle circumference can reflect the 
retention of muscle protein (53). All of these are commonly used 
nutritional assessment indicators for hemodialysis patients. Nutrition 
interventions based on digital health technology can improve five 
outcome indicators during hemodialysis, namely the relative increase 
in body weight (%), weight gain, body mass index, mid-arm muscle 
circumference, and triceps skinfold thickness. Among these, for 
weight-related indicators, digital health technology can develop a 
personalized calorie intake plan for patients, combined with exercise 
guidance, to help patients control their body weight within a 
reasonable range. Regular weight monitoring and reminder functions 
enable patients to understand weight changes in a timely manner, 
adjust their diet and exercise habits, and thus effectively control weight 
gain. For BMI: By comprehensively considering the height, weight, 
and other information of patients, digital health technology can 
provide targeted diet and exercise advice to help patients maintain a 
healthy weight and body fat ratio, thereby improving BMI. For 
mid-arm muscle circumference and skinfold thickness: With the 
nutrition education function of digital health technology, patients can 
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learn how to increase muscle protein intake through a reasonable diet, 
combined with appropriate resistance exercise, which can help 
increase muscle mass and improve mid-arm muscle circumference 
(54). At the same time, the precise control of fat intake can also help 
to regulate the distribution and thickness of subcutaneous fat and 
improve the skinfold thickness. However, for the outcome indicator 
of mid-arm muscle circumference, only four studies were included in 
the sensitivity analysis. The limited number of included studies 
resulted in a p ≥ 0.05, indicating poor stability of the results. Therefore, 
the study findings should be interpreted with caution. Future research 
should focus on conducting more high-quality studies to further 
explore this area.

For the secondary outcome of serum urea nitrogen levels, changes 
can reflect both the clearance efficiency of hemodialysis and the 
nutritional status of patients. In hemodialysis patients, the loss of renal 
function and decreased glomerular filtration rate, along with a chronic 
state of low-grade inflammation, can lead to elevated serum urea 
nitrogen levels. Serum creatinine is an important indicator of renal 
function, and in hemodialysis patients with compromised renal 
function, serum creatinine levels are often elevated. Specifically, for 
urea nitrogen, nutritional intervention reduces blood urea nitrogen 
production by improving the nutritional status of patients, increasing 
muscle protein synthesis, and reducing muscle breakdown (55). In 
addition, good nutritional support can enhance the patient’s immunity 
and overall body function, reduce the chronic inflammatory state, and 
also help to reduce urea nitrogen levels. Regarding serum creatinine, 
it is important to emphasize that serum creatinine levels are influenced 
by both muscle mass and dialysis clearance efficiency. Rational 
nutritional intake aims to improve the patient’s muscle mass and 
function. The reduction in serum creatinine observed in this study 
may be  attributed primarily to the following mechanisms: diet 
management assisted by digital health technology optimizes fluid 
control and treatment compliance, significantly improving dialysis 
efficiency and enhancing creatinine removal; concurrently, nutritional 
support helps reduce pathological muscle breakdown, potentially 
moderating creatinine generation. Thus, the net effect is manifested as 
a decrease in serum creatinine levels (56). To further clarify the 
specific pathways by which DHT improves dialysis efficiency, its 
mechanisms can be broken down into three concrete aspects: (1) Real-
time monitoring of nutritional intake (e.g., protein, fluids, potassium, 
and phosphorus) enables personalized dietary adjustments that 
prevent excessive inter-dialytic weight gain and solute accumulation, 
thus reducing the osmotic and volumetric burden during dialysis (57); 
(2) Medication and treatment reminders improve adherence to 
phosphate binders, erythropoiesis-stimulating agents, and dialysis 
sessions themselves, supporting more stable metabolic conditions 
(58); (3) Integration of serial biomarker trends (e.g., pre- and post-
dialysis creatinine and urea reduction ratio) provides clinicians with 
actionable insights to adjust dialysis prescriptions, such as session 
duration, blood flow rate, or dialysate composition, enabling more 
precise and efficient solute clearance. It should be noted that serum 
creatinine is positively correlated with muscle mass (5). In healthy 
individuals or those with stable renal function, creatinine levels should 
correspond to muscle mass; low levels may indicate insufficient muscle 
tissue, while high levels may suggest impaired renal function (59). 
Therefore, the clinical goal is to maintain creatinine within a range 
that corresponds to adequate muscle mass and nutritional status, 
rather than simply reducing it. In this study, the overall meta-analysis 

results for serum urea nitrogen levels showed that nutrition 
interventions based on digital health technology can reduce both 
serum urea nitrogen and creatinine levels. However, the sensitivity 
analysis of these two outcomes included only three RCTs each. After 
sequentially excluding every one of these RCTs, the limited number 
of included studies resulted in poor stability of the results and no 
statistical significance. Therefore, more high-quality studies are still 
needed in the future to further validate these findings.

Notably, the core advantages of these digital health interventions 
lie in their dynamic adaptability, personalization, and accessibility: 
App-based algorithms enable real-time data analysis and instant 
feedback, social media platforms foster clinician-patient 
communication and behavioral monitoring, and remote technologies 
transcend spatiotemporal limitations of traditional care. However, 
their efficacy and widespread adoption are constrained by multiple 
practical and resource-related challenges. First, disparities in digital 
access and the complexity of digital solutions pose significant barriers. 
Since digital interventions rely on internet connectivity and smart 
devices, some patients, particularly those in resource-limited settings, 
may face obstacles in accessing such tools (60, 61). Additionally, 
developing specialized software or securing expert backend support 
demands substantial resources, complicating implementation (62, 63). 
Addressing these requires expanding digital infrastructure to ensure 
equitable access (64) and collaborating with information technology 
experts to design user-friendly applications with reliable systems, 
thereby minimizing technical barriers (65). Second, healthcare 
workforce constraints and workflow disruptions hinder adoption. 
Insufficient staff struggle to manage the extra workload introduced by 
digital interventions, such as data collection and follow-up (66, 67). 
Modifying workloads where feasible can help reduce disruptions and 
streamline integration. Third, broader economic, regulatory, and 
sociocultural factors impact viability. Excessively high costs for 
intervention groups (68), conflicts with local laws (65), and 
mismatches with cultural contexts (69) all impede uptake. Economic 
evaluations (e.g., cost–benefit analyses) can demonstrate long-term 
value, while adapting interventions to align with legal requirements 
and cultural norms is critical for acceptance. Looking ahead, future 
research should further leverage emerging technologies like AI-driven 
personalized recommendations and wearable biosensors, while 
exploring hybrid methodologies (e.g., gamification, family 
involvement) to enhance patient engagement. Prioritizing cultural 
adaptability, such as simplified interfaces for elderly users or 
multilingual support, will also be key to improving global applicability, 
alongside addressing the aforementioned barriers to ensure effective 
and equitable implementation.

5 Conclusion

The meta-analysis showed that digital health technology-based 
nutrition interventions can improve 13 indicators in hemodialysis 
patients: hemoglobin, albumin, prealbumin, phosphorus, potassium, 
MQSGA score, relative increase in body weight (%), weight gain, BMI, 
mid-arm muscle circumference, triceps skinfold thickness, blood urea 
nitrogen, and serum creatinine. However, no significant effects were 
found for transferrin and calcium. Due to the limited number of 
studies included for some outcomes and unstable results from 
sensitivity analyses and subgroup analyses, these findings should 
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be  interpreted with caution. Future research should focus on 
expanding the applications of digital health technologies, determining 
the optimal intervention methods, frequency, and duration, and 
conducting more large-scale, multicenter, high-quality randomized 
controlled trials to identify the best intervention protocols.

5.1 Limitations

(1) Due to the researchers’ language limitations, only Chinese 
and English studies were included. Moreover, most of the included 
studies were conducted in China, which indicates a geographical 
bias. Thus, the results of this study may have regional characteristics, 
and differences across regions need to be  considered when 
generalizing the conclusions. (2) Among the 23 included studies, 4 
were rated as low-quality, 3 as high-quality, and 16 as moderate-
quality. The overall quality of the included studies was suboptimal, 
which might affect the stability of the results. (3) The studies were 
conducted in six countries, and differences in development, economy, 
and nursing environments may have influenced the findings. (4) 
Moreover, due to the limited number of included studies, subgroup 
analyses based on age and dialysis duration were not feasible. (5) 
Most included studies failed to adequately address or adjust for key 
baseline confounders (e.g., diabetes status and inflammatory 
markers), which significantly influence nutritional outcomes. This 
omission introduces a potential for confounding bias, meaning the 
observed effects may not be  solely attributable to the digital 
interventions. (6) The analysis of some specific outcome measures 
may result in unstable estimates due to the small number of 
included studies.
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