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Approximately 1 in 8 women experience postpartum depression (PPD), which is a 
serious public health concern. The adverse effects of antidepressant medications and 
the stigma attached to receiving mental health care impede the adoption of these 
approaches. Conventional treatments are seen to be low-risk and give women a 
feeling of control over their improved physical and emotional well-being. Postpartum 
depression (PPD) is a complex psychiatric condition increasingly understood through 
the lens of microbiota-gut-brain axis dysregulation. Recent studies underscore 
the influence of gut microbiota on neuroendocrine balance, serotonin synthesis, 
and inflammatory pathways, all crucial factors in the onset and progression of 
PPD. Asparagus racemosus (Shatavari), an Ayurvedic herb traditionally prescribed 
for women’s reproductive health, is now gaining recognition for its psychobiotic 
potential. High-Performance Thin-Layer Chromatography (HPTLC) analyses have 
demonstrated that dry Shatavari contains a significantly richer concentration of 
bioactive phytoconstituents, such as steroidal saponins and flavonoids, compared 
to its wet form. These compounds exhibit prebiotic activity, influence microbial 
composition, and support the modulation of neurotransmitters. This mini review 
examines the intersection of phytochemical richness in dry A. racemosus and its 
emerging role in microbiota-mediated mood regulation. It highlights its potential 
as a botanical psychobiotic and proposes directions for future clinical validation 
within the context of postpartum mental health frameworks.
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1 Introduction

The postpartum period represents a time of profound physiological and emotional 
transition. While often celebrated, it is also a window of vulnerability, with postpartum 
depression (PPD) affecting nearly one in five women globally (1). Traditional explanations for 
PPD focused largely on hormonal changes, yet emerging evidence highlights the central role 
of the microbiota-gut- brain axis a complex communication network involving microbial, 
endocrine, immune, and neural signaling pathways. Gut dysbiosis has been implicated in the 
onset and severity of PPD, with disruptions in microbial diversity shown to influence serotonin 
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synthesis, inflammation, and hypothalamic–pituitary–adrenal (HPA) 
axis function (2). Beyond affective disorders, similar mechanisms have 
also been implicated in neurodegenerative conditions such as 
Parkinson’s disease, where alterations in microbial composition 
contribute to neuroinflammation and neurodegeneration. This 
broader evidence underscores the pivotal role of the gut-brain axis in 
shaping both mental and neurological health (3). Within this context, 
botanical psychobiotics, plant-based agents that modulate the 
gut-brain axis, offer a promising, low-risk intervention for 
PPD. Asparagus racemosus (Shatavari), an Ayurvedic herb traditionally 
used to support women’s reproductive and mental health, has recently 
garnered scientific interest for its prebiotic, neuroprotective, 
adaptogenic and nootropic properties in preclinical settings (4).

These include evidence for modulation of the HPA axis, restoration 
of disturbed neurotransmitter levels, enhancement of antioxidant 
enzyme activity, and promotion of neuroplasticity and neurogenesis 
in brain regions such as the hippocampus and prefrontal cortex (5).

Together, these findings support its potential role as a botanical 
psychobiotic for mood regulation, especially in contexts of stress 
and depression.

High-Performance Thin- Layer Chromatography (HPTLC) profiling 
reveals that dry Shatavari root is notably richer in bioactive compounds 
compared to its wet counterpart, including steroidal saponins and 
flavonoids known to affect microbial and neuroendocrine pathways (6). 
This review explores the intersection of Shatavari’s phytochemical 
composition and its potential role in modulating the microbiota-gut-
brain axis, with a particular focus on postpartum depression.

PPD affects approximately 10–20% of new mothers globally, with 
increased burden in underserved populations (7). Traditional 
antidepressant therapies face limitations due to lactation safety concerns 
and stigma, creating a need for low-risk, effective alternatives. The 
gut-brain axis, a communication network between intestinal microbiota 
and the central nervous system has emerged as a critical regulator of 
emotional health (8). Disruption of gut microbiota has been linked to 
impaired neuroendocrine signaling and altered neurotransmitter 
production. Psychobiotics, natural compounds that positively influence 
mental health through the gut represent a novel therapeutic strategy (9). 
Among these, Asparagus racemosus is gaining recognition for its 
phytochemical diversity and multifaceted neurobiological potential.

A structured literature search was conducted across PubMed, 
Scopus, Web of Science, ScienceDirect to identify studies relevant to 
Asparagus racemosus and its role in gut–brain axis modulation. The 
search used combinations of the following core key terms: “Asparagus 
racemosus,” “Shatavari,” “gut-brain axis,” “microbiota-gut-brain,” 
“prebiotic,” “psychobiotic,” “short-chain fatty acids,” “neuroinflammation,” 
“GABA,” “serotonin,” “postpartum depression,” “maternal mental health,” 
“immune modulation,” “shatavarin,” “saponin,” “flavonoid,” “fructo-
oligosaccharide,” and “HPTLC/HPLC.” Boolean operators (AND/OR) 
were applied to refine retrieval, and no lower year limit was set to ensure 

inclusion of both classical ethnopharmacological evidence and 
contemporary mechanistic or clinical research. Only English-language 
manuscripts were considered. Eligible sources included clinical studies, 
animal experiments, in vitro mechanistic work, phytochemical analyses, 
and review articles with relevance to neuroendocrine, microbial, 
immunological, or hormonal pathways. Exclusion criteria comprised 
agricultural or botanical cultivation papers, non-medicinal reports and 
articles lacking mechanistic or therapeutic implications. The initial 
search yielded approximately 430 records, with an additional 35 articles 
identified through manual reference screening. After removal of 
duplicates (~70), 360 titles and abstracts were screened. Of these, 110 full 
texts were assessed for eligibility based on phytopharmacological 
relevance, mechanistic outcomes, or clinical applicability. A final set of 
approximately 74 articles were included in the qualitative synthesis.

2 The microbiota-gut-brain axis in 
PPD

Postpartum depression (PPD) is a debilitating mood disorder that 
affects a significant proportion of women following childbirth, 
manifesting as persistent sadness, anxiety, irritability, fatigue, and 
emotional disconnection from the newborn. Traditionally attributed 
to hormonal imbalances, psychosocial stressors, and genetic 
vulnerability, recent scientific advances have illuminated a novel and 
influential player in the onset and progression of PPD within the 
microbiota-gut-brain (MGB) axis (10). This complex, bidirectional 
communication network integrates the Central Nervous System 
(CNS), the enteric nervous system (ENS), the immune system, 
endocrine pathways, and the diverse community of microbes residing 
in the gastrointestinal tract (11). Gut microbiota influences the neural, 
hormonal, and immune signaling through multiple mechanisms, 
including vagus nerve activation, modulation of the hypothalamic–
pituitary–adrenal (HPA) axis, production of neuroactive metabolites 
like short- chain fatty acids (SCFAs), and regulation of systemic 
inflammation (12).

During pregnancy, a woman’s gut microbiota undergoes profound 
changes, characterized by a decline in microbial diversity and a relative 
increase in pro-inflammatory bacteria, particularly in the third 
trimester (13). These alterations are influenced by diet, stress, mode 
of delivery, antibiotic use, and hormonal shifts, and may persist into 
the postpartum period. Dysbiosis, or the disruption of a healthy 
microbial balance, has been closely linked to mood disorders, 
including PPD (14). It results in the compromised synthesis of crucial 
neurotransmitters such as serotonin, dopamine, and gamma-
aminobutyric acid (GABA), all of which are critical for mood 
regulation (15). Notably, over 90% of the body’s serotonin is 
synthesized in the gut from the amino acid tryptophan, a process that 
is heavily influenced by the composition of the gut microbiota (16).

Beneficial microbes such as Lactobacillus and Bifidobacterium 
enhance serotonin production, whereas pathogenic or opportunistic 
bacteria may divert tryptophan metabolism toward kynurenine 
pathways, producing neurotoxic compounds and lowering serotonin 
availability (17). Notably, species such as Clostridium perfringens, 
Escherichia coli, and Klebsiella pneumoniae have been shown to 
redirect tryptophan metabolism toward kynurenine derivatives, 
thereby reducing serotonin bioavailability and contributing to 
neurotoxicity (18).

Abbreviations: PPD, Postpartum Depression; MGB axis, Microbiota-Gut-Brain 

Axis; racemosus, Asparagus racemosus; HPTLC, High-Performance Thin-Layer 

Chromatography; SKPD, Shatavari Ksheera Paka Dry; SKPW, Shatavari Ksheera 

Paka Wet; Rf, Retention factor; UV, Ultraviolet; MAO, Monoamine Oxidase; GABA, 

Gamma- Aminobutyric Acid; SCFAs, Short-Chain Fatty Acids; CNS, Central Nervous 

System; LPS, Lipopolysaccharide; ROS- Reactive Oxygen Species; QC, Quality 

Control.
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Additionally, microbial metabolites like SCFAs (butyrate, 
acetate, propionate) possess anti- inflammatory and 
neuroprotective properties that help maintain gut barrier integrity, 
modulate the blood–brain barrier, and influence microglial 
function within the brain (19). In dysbiotic states, reduced SCFA 
production and increased gut permeability often referred to as 
“leaky gut” allow bacterial endotoxins such as lipopolysaccharides 
(LPS) to enter systemic circulation, triggering a cascade of 
inflammatory responses (20).

Elevated pro-inflammatory cytokines like interleukin-6 
(IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha 
(TNF-α) have been consistently observed in women with PPD, 
further supporting the inflammatory hypothesis of depression and 
the involvement of the MGB axis (21). These cytokines not only 
affect mood by crossing the blood–brain barrier and altering 
neurotransmission, but also contribute to the dysregulation of the 
HPA axis (22). The HPA axis, central to the body’s response to 
stress, is frequently hyperactivated in depressive states. Under 
healthy conditions, gut microbes help regulate cortisol levels by 
modulating feedback mechanisms in the HPA axis (23). However, 
dysbiosis leads to exaggerated cortisol secretion, chronic stress 
responses, and impaired resilience, all of which are key features 
observed in PPD.

Experimental evidence from germ-free animal models has 
demonstrated the profound influence of the gut microbiota on brain 
development, stress reactivity, and emotional behavior. These models 
exhibit heightened anxiety and altered neurotransmitter levels, which 
normalize upon colonization with healthy microbiota, supporting the 
essential role of microbes in mood regulation (24).

In humans, several studies have identified distinct alterations in 
the gut microbiota of women with postpartum depression (PPD). 
Reductions in beneficial taxa such as Faecalibacterium prausnitzii, 
Bifidobacterium longum, and Lactobacillus have been reported, 
accompanied by elevations in pro-inflammatory species including 
Clostridium and Bacteroides fragilis (25). Recent high-resolution 
analyses have begun to resolve specific microbial taxa that associate 
with increased or decreased risk of PPD. In a large two-sample 
Mendelian randomization analysis, twelve bacterial taxa were 
identified as significantly associated with PPD risk: Veillonellaceae, 
Ruminococcaceae UCG-011, Bifidobacterium adolescentis, 
Paraprevotella clara, Clostridium leptum, Eubacterium siraeum, and 
Coprococcus catus were inversely associated with PPD risk, whereas 
Alphaproteobacteria, Roseburia, FamilyXIII AD3011 group, Alistipes 
onderdonkii, and Bilophila wadsworthia showed positive associations 
with PPD risk (26). These taxon-level associations are consistent with 
case–control and meta-analytic evidence showing reductions in 
canonical beneficial genera (for example, Faecalibacterium, 
Bifidobacterium, Lactobacillus) and relative increases in 
pro-inflammatory taxa (including members of Enterobacteriaceae and 
Bacteroides) in women with PPD (27). Mechanistically, pro-risk taxa 
such as Bilophila and species have been linked to mucosal 
inflammation and enhanced bile-acid / inflammatory signalling in the 
gut (28), while other opportunistic organisms can perturb tryptophan 
metabolism toward kynurenine pathways, reduce serotonin precursor 
availability, and generate neuroactive metabolites that influence 
neuroinflammation and HPA axis activity (17, 18). Together, these 
taxon-specific data strengthen the view that distinct microbial 
signatures—rather than a nonspecific “dysbiosis”—help define 

susceptibility to PPD and point to targeted microbiome-based 
hypotheses for intervention. More recently, another Mendelian 
randomization study highlighted protective associations for 
Prevotellaceae and Bifidobacteria, likely mediated through circulating 
metabolites such as xanthine and lysophosphatidylinositol, which 
influence immune and neuroendocrine signaling (29). Taken 
together, this body of evidence suggests that gut dysbiosis is not only 
correlated with PPD but may actively contribute to its onset and 
severity through disrupted microbial composition, impaired 
metabolite signaling, neuroinflammation, and altered 
neurotransmitter availability.

Such findings have propelled the exploration of therapeutic 
strategies targeting the gut microbiota as a means to prevent and 
manage PPD. Probiotics, defined as live microorganisms that confer 
health benefits to the host, have shown promise in reducing symptoms 
of perinatal anxiety and depression (30). Maternal supplementation 
with Lactobacillus rhamnosus HN001 during pregnancy has been 
associated with a significant reduction in postpartum depression scores 
(31). Similarly, prebiotics such as fructo- oligo saccharides (FOS) and 
inulin selectively stimulate the growth of beneficial bacteria and 
enhance the production of SCFAs and other mood-regulating 
compounds (32).

3 Asparagus racemosus and its potent 
modulating effect on gut microbiota

Asparagus racemosus (Shatavari), a revered herb in Ayurveda, 
possesses significant potential in modulating gut microbiota, 
making it a promising candidate for gut-brain axis regulation (33). 
Rich in bioactive compounds such as Shatavarin IV, flavonoids, 
and fructo- oligo saccharides (FOS), A. racemosus exhibits strong 
prebiotic activity by selectively promoting the growth of beneficial 
gut bacteria like Lactobacillus and Bifidobacterium (34). These 
microbes are key players in maintaining gut homeostasis, 
producing short-chain fatty acids (SCFAs) such as butyrate, 
acetate, and propionate that support gut barrier integrity, regulate 
immune responses, and influence central nervous system 
function (35).

Studies have shown that dry A. racemosus extracts, due to their 
higher concentration of phytochemicals, exert more pronounced 
effects in enhancing microbial diversity and richness compared to wet 
preparations (36). The FOS content serves as a fermentable substrate 
for commensal bacteria, while the saponins and flavonoids possess 
anti-inflammatory properties that reduce gut and systemic 
inflammation (37). By restoring microbial balance, A. racemosus 
indirectly impacts neurotransmitter synthesis, particularly serotonin, 
produced in the gut, contributing to mood regulation and emotional 
resilience (38).

Furthermore, its adaptogenic and estrogenic actions 
complement its microbiota-modulating potential, making it 
particularly valuable in conditions like postpartum depression 
(PPD), where gut dysbiosis, hormonal changes, and 
neuroinflammation intersect (19). Overall, Asparagus racemosus acts 
as a natural synbiotic agent offering both prebiotic nourishment and 
pharmacological benefits, positioning it as a safe, multi-targeted 
therapeutic for improving gut health and modulating the 
microbiota-gut-brain axis (39).
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4 Prebiotic and synbiotic potential of 
Asparagus racemosus

The prebiotic components of Shatavari, particularly in its dry 
form, make it a compelling candidate for psychobiotic interventions 
(40). When used synergistically with probiotic milk, which is known 
to improve mood and cognitive function, a synbiotic formulation 
may offer enhanced efficacy (41). Prebiotics nourish these beneficial 
microbes, boosting the production of short-chain fatty acids (SCFAs) 
like butyrate, which play vital roles in neurotransmission and gut 
barrier integrity (42). Through modulation of the kynurenine 
pathway and reduction in neuroinflammation, these agents may 
together address both microbial and neurochemical roots of 
PPD (16).

5 Shatavari as a psychobiotic: 
mechanistic insights

Shatavari influences the gut-brain axis through:

5.1 Prebiotic effects

	•	 Contains inulin-type fructo-oligosaccharides (FOS) that 
selectively nourish probiotic strains like Lactobacillus and 
Bifidobacterium (43).

	•	 Promotes SCFA production, especially butyrate, linked with 
reduced inflammation and improved neuroplasticity (44).

5.2 Phytoestrogenic support

	•	 Mimics estrogen, counteracting the postpartum hormonal drop.
	•	 Interacts with microbial β-glucuronidase, influencing estrogen 

recirculation (45, 46).

5.3 Anti-inflammatory and adaptogenic 
action

	•	 Reduces neuroinflammation by suppressing pro-inflammatory 
cytokines (47).

	•	 Supports HPA axis stability, reducing cortisol dysregulation in 
PPD (21, 48).

5.4 Neurotransmitter modulation

	•	 Enhances serotonin synthesis by increasing available 
tryptophan (49).

	•	 Reduces kynurenine pathway activation, a depression-linked 
pathway (50).

To summarize the current evidence, Table 1 presents the principal 
phytochemical classes of A. racemosus, their effects on gut microbial 
composition and metabolism, and their corresponding neuroendocrine 
actions relevant to gut–brain axis modulation. Figure 1 illustrates the 
proposed mechanism by which Asparagus racemosus modulates the 
gut–brain axis to mitigate pathways implicated in postpartum depression.

TABLE 1  Principal phytochemicals of Asparagus racemosus (Shatavari) and reported effects relevant to the gut–brain axis.

Chemical class/extract Key constituents Reported effects on gut/
microbiota

Reported CNS/
neuroendocrine effects 
relevant to gut–brain axis

Steroidal saponins (4, 33) Shatavarin I-IV, X

Modulate gut microbial composition; 

may exert mild surfactant effects that 

alter microbial ecology; associated with 

prebiotic-like actions in some 

phytochemical studies

Estrogenic-like activity, immunomodulation, 

putative neuroprotective and adaptogenic 

effects (modulation of stress responses)

Non-digestible oligosaccharides 

(prebiotic) (4, 33, 34)

Inulin-type fructo-oligosaccharides 

(FOS)

Fermented by colonic bacteria → ↑ SCFA 

production (butyrate, acetate, 

propionate); supports growth of 

Bifidobacterium/ Lactobacillus

Indirect CNS effects via SCFAs: improved 

gut barrier, reduced systemic inflammation, 

modulation of serotonergic precursors

Polyphenols/flavonoids (4, 6, 33)
Flavonoids (glycosides: quercetin, 

kaempferol-like, rutin, ferulic acid)

Antimicrobial selectivity, can modulate 

microbial enzyme activity and favour 

beneficial taxa; may be metabolized by 

microbiota to bioactive metabolites

May influence microbial fermentation 

and exert immunomodulatory effects in 

the gut mucosa (preclinical)

Antioxidant, anti-inflammatory, GABAergic 

and neuroprotective actions demonstrated in 

preclinical studies

Complex carbohydrates (35) Polysaccharides (starch-like fractions)

Contribute fermentable substrate for 

commensals; support SCFA production 

and mucosal health

Indirect neuroimmune modulation via 

reduced gut permeability and systemic 

inflammation

Sterols (19) Phytosterols

Minor modulatory effects on microbiota 

composition reported in phytochemical 

surveys

Contribute to membrane stability and anti-

inflammatory signalling in preclinical work
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FIGURE 1

Proposed mechanism of Asparagus racemosus (Shatavari) in gut–brain axis modulation and Postpartum Depression. The figure also includes 
representative images of the Asparagus racemosus plant, its tuber, and dried tuber powder, illustrating the medicinal source material associated with 
neuroprotective, prebiotic, and adaptogenic actions. Original photograph of Asparagus racemosus by Dr. Priyalatha B, Professor, Department of 
Dravyaguna Vijnana, Amrita School of Ayurveda, Amrita Vishwa Vidyapeetham.
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6 Asparagus racemosus: clinical forms 
and combinations

Traditionally, Asparagus racemosus (Shatavari) has been used in 
its fresh tuber form, usually prepared as a milk decoction 
(ksheerapaka). The tubers are gently simmered in milk, which 
serves both as the base and as a nourishing vehicle (anupana), 
particularly valued in postpartum care and to support lactation. In 
present-day clinical settings, dried root powder (churna) and 
standardized aqueous or hydroalcoholic extracts; often in the form 
of capsules or tablets—are used most often as they provide improved 
availability, stability and dose standardization (51, 52). 
Phytochemical studies show that careful drying and extraction can 
enhance the yield of key compounds such as steroidal saponins 
(shatavarins) and inulin-type fructo-oligosaccharides (FOS). On 
the other hand, uncontrolled high-heat processing may diminish 
certain heat-sensitive components. For this reason, standardized 
extracts are generally preferred when reproducibility is important, 
as in clinical research. Shatavari can be  taken on its own or 
alongside other botanicals. Classical practice often combined the 
fresh decoction with ghee (ghrita) or incorporated it into compound 
formulations. It has also been paired with botanicals like Withania 
somnifera (Ashwagandha) and Emblica officinalis (Amalaki) to 
enhance rejuvenation and lactation benefits. Today, clinical use 
includes both standalone preparations—powder or extract—as well 
as commercial combination products. Reported clinical trial doses 
of dried powder or standardized extract typically fall between 
500 mg and 2 g per day, though the ideal dose for newer applications 
such as psychobiotic effects is still under investigation (4).

7 Asparagus racemosus: HPTLC 
evidence highlighting key 
components and the expected 
outcome at the level of microbiota

7.1 Key findings and interpretations

	 a)	 Higher phytochemical concentration in dry root:

The HPTLC chromatogram under 366 nm revealed consistently 
higher peak areas and intensities for dry root preparations across Rf values 
ranging from 0.03 to 0.93. Across all tested application volumes (4 μL, 
6 μL, and 8 μL), dry Shatavari demonstrated a greater cumulative area 
under the curve (AUC), indicating significantly higher concentrations of 
bioactive compounds compared to wet root preparations (53).

	b)	 Distinct and well-resolved phytochemical fingerprints:

Shatavari Ksheera Paka Dry (SKPD) samples showed sharper, 
denser, and more numerous bands, suggesting clear resolution and 
separation of diverse bioactive constituents. In contrast, Shatavari 
Ksheera Paka Wet (SKPW) samples exhibited poor separation and 
faint bands, indicative of lower phytochemical richness and 
extractability (54). Enhanced resolution in dry root enhances the 
reliability of fingerprinting for standardization and pharmacological 
correlation (55).

	 c)	 Dominant phytoconstituents identified:

Steroidal saponins (notably Shatavarin IV): implicated in estrogenic 
modulation, hormonal balancing, and neuroprotection via 
inhibition of monoamine oxidase (MAO) (56).

Flavonoids: known to exhibit antioxidant and anti-inflammatory 
properties, and contribute to modulation of GABAergic 
activity, which plays a critical role in anxiety and mood 
regulation (57).

Inulin-type oligosaccharides: act as fermentable prebiotic substrates, 
selectively nourishing beneficial gut bacteria such as 
Lactobacillus and Bifidobacterium, critical for maintaining 
microbial homeostasis (58).

	d)	 Greater microbiota-modulating potential in dry root:

The presence of inulin-type fructo-oligo saccharides (59) in 
higher abundance highlights the prebiotic strength of dry Shatavari. 
These non-digestible fibers enhance the abundance of short-chain 
fatty acid (SCFA)-producing bacteria, thereby influencing intestinal 
barrier integrity, immune signaling, and the production of neuroactive 
compounds (60, 61). This places dry Shatavari as a psychobiotic agent 
with microbiota-mediated modulation of brain function.

	 e)	 Bioactivity and therapeutic implications:

The superior phytochemical profile of SKPD translates into 
enhanced biological potential. The combined actions of steroidal 
saponins, flavonoids, and prebiotics contribute to anti- inflammatory, 
antioxidant, and neuroprotective effects attributes crucial for 
managing conditions like postpartum depression (PPD), which 
involve microbiota dysbiosis, systemic inflammation, and HPA-axis 
dysregulation (61). The identified phytoconstituents directly or 
indirectly influence the gut-brain axis via neurotransmitter regulation, 
immune signaling, and cortisol modulation.

	 f)	 Enhanced neuroprotective and gut-brain axis impact:

Comparative results demonstrate that SKPD exerts a more 
pronounced influence on gut-brain axis pathways due to its rich 
phytochemical reservoir. Higher Shatavarin IV content may support 
estrogen receptor-mediated neuroplasticity, while flavonoids and SCFA-
enhancing prebiotics act synergistically to reduce neuroinflammation and 
support mental well-being through gut microbial modulation (62).

Table  2 presents the HPTLC profiles of dry and wet roots of 
Asparagus racemosus, highlighting key phytochemical differences. 
This comparative analysis is included to provide a rationale for linking 
specific constituents—such as saponins, flavonoids, and fructo-
oligosaccharides—to their reported roles in gut microbiome 
modulation and gut–brain axis regulation.

	 g)	 Asparagus racemosus: safety and tolerability

Clinical and toxicological data indicate that Asparagus racemosus is 
generally well tolerated. Randomized clinical trials in lactating mothers 
reported no serious adverse events, with occasional mild gastrointestinal 
complaints. Subchronic animal studies have shown a wide margin of 
safety, even at high doses, while reviews highlight its safe traditional use. 
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However, due to its phytoestrogenic saponins, caution is suggested in 
women on concurrent estrogen therapy (62).

8 Discussion

Postpartum depression (PPD) is a multifactorial neuropsychiatric 
condition influenced by hormonal fluctuations, stress, inflammation, and 
emerging evidence suggests a key role for the microbiota-gut-brain axis in 
its pathophysiology (63, 64). Targeting this axis with natural agents 
possessing neuroprotective, hormonal, and microbiota-modulating 
properties presents a promising therapeutic approach. Asparagus 
racemosus (Shatavari), a well-documented adaptogenic herb in Ayurveda, 
stands out as a candidate due to its phytochemical richness and diverse 
biological actions (64). HPTLC-based profiling provides a 
phytopharmacological basis to support its potential use in PPD 
management (65).

HPTLC analysis comparing dry and wet preparations of A. racemosus 
roots revealed significantly higher concentrations and diversity of 
bioactive constituents in the dry form. The dry root powder (SKPD) 
exhibited stronger chromatographic fingerprints, with sharper and more 
intense bands across multiple Rf values (0.03–0.93) under UV 366 nm. 
This indicates a greater presence of steroidal saponins (notably Shatavarin 
IV), flavonoids, and inulin-type fructo-oligosaccharides compounds 
known for their neuroprotective, hormonal, and gut- modulating roles. 
These findings substantiate the dry root’s superior pharmacological 
potential compared to the wet-processed root (SKPW), which showed 
fewer bands and poor separation (66).

The steroidal saponins, particularly Shatavarin IV, mimic estrogenic 
activity, making them highly relevant in PPD, a condition associated with 
a steep decline in postpartum estrogen (56). Estrogen plays a neurotrophic 
role in maintaining mood, synaptic plasticity, and stress response 
regulation (67). Moreover, saponins are implicated in MAO (monoamine 
oxidase) inhibition, potentially preserving serotonin and dopamine levels, 
neurotransmitters often disrupted in depressive states (68).

Flavonoids identified in the dry root contribute to antioxidant 
defense and GABAergic modulation. Since PPD is linked to 
neuroinflammation and oxidative stress, these compounds offer 
neuroprotective support by reducing reactive oxygen species and 
enhancing inhibitory neurotransmission (69). In particular, the 
modulation of GABA pathways is known to alleviate anxiety and 
mood disturbances, aligning with the clinical profile of PPD.

Crucially, the presence of inulin-type fructo-oligo saccharides in dry 
A. racemosus enhances its role as a psychobiotic agent. These prebiotic 
fibres selectively nourish beneficial gut bacteria such as Lactobacillus and 
Bifidobacterium, which in turn produce short-chain fatty acids (SCFAs) 
(70). SCFAs have been shown to reduce systemic inflammation, 
strengthen gut barrier function, and influence neurochemical synthesis, 
particularly serotonin, which is predominantly produced in the gut. 
Thus, phytochemicals synergistically act on both central and enteric 
pathways of the neuro-gut axis (20).

The enhanced separation and resolution seen in HPTLC further 
validate the superior chemical integrity of dry root preparations, offering 
a reproducible and standardized method for quality control in 
psychopharmacological applications (71). These phytochemical insights 
justify the preferential use of dry A. racemosus root in therapeutic 
formulations targeting the gut-brain axis, particularly in sensitive 
populations such as postpartum mothers. The integration of HPTLC data 
with pharmacodynamic understanding underscores Asparagus racemosus 
(Shatavari) (72) as a potent neuro-gut modulator. Its phytochemical 
constituents target hormonal, inflammatory, and microbial dysregulations 
central to postpartum depression, positioning it as a promising plant-
based intervention in integrative neuropsychiatry (56).

9 Conclusion

With growing recognition of the microbiota-gut-brain axis in 
postpartum depression, Asparagus racemosus emerges as a powerful 
herb, offering multidimensional support for conventional treatments. 

TABLE 2  HPTLC profiles of wet and dry roots of Asparagus racemosus in milk with phytochemical links to gut–brain axis modulation.

Parameter Dry A. racemosus Shatavari 
Ksheerapaka Dry (SKPD)

Wet A. racemosus 
Shatavari Ksheerapaka 
Wet (SKPW)

Phytopharmacological relevance & 
supporting literature

Shatavarin IV content (HPTLC 

Rf)
High Moderate

Estrogenic, neuroprotective, MAO-inhibitory 

activity (56, 67)

Prebiotic potential
Strong (high inulin-type 

oligosaccharides)
Mild

Supports growth of Lactobacillus and 

Bifidobacterium, enhances SCFA production (20, 

70)

Antioxidant / Anti-inflammatory 

action
Higher (flavonoid-rich) Lower

Reduces neuroinflammation and oxidative stress 

(66)

Gut–brain axis modulation Enhanced Moderate
Modulates GABA, serotonin, and inflammatory 

pathways (68, 69)

Total bands observed (HPTLC) Higher in number and intensity Fewer and faint
Indicates chemical richness and efficient extraction 

(66)

Major compounds identified
Shatavarin IV, flavonoids, 

fructooligosaccharides
Trace saponins and flavonoids Key for hormonal, microbial, and CNS support (66)

Resolution and separation 

(HPTLC)
Clear, sharp, well-resolved bands

Poor separation and overlapping 

bands

Ensures precision in phytochemical profiling and 

standardization (53–55)

Bioactivity implication
Strong neuroprotective, prebiotic, and 

psychobiotic potential
Comparatively reduced efficacy

Relevant for postpartum depression and gut–brain 

axis modulation (62)
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HPTLC profiling reveals a phytochemical goldmine rich in Shatavarin 
IV, flavonoids, and prebiotic oligosaccharides, which directly influences 
mood, hormone balance, and gut microbial health. Acting as a natural 
psychobiotic, Asparagus racemosus bridges traditional wisdom and 
modern neuroscience, positioning itself as a safe, holistic, and evidence-
backed intervention for PPD. Its ability to nourish both the mind and 
the microbiome offers a compelling path forward in integrative 
postpartum care one rooted in nature, validated by science. Future 
research should prioritize well-designed randomized trials in 
postpartum women, standardized dry vs. fresh root comparisons, 
pharmacokinetic and safety studies, and integrated metagenomic–
metabolomic approaches to map microbiota–metabolite–host pathways.
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