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Background: Gastrointestinal (GI) cancers collectively account for over 30% 
of global cancer-related mortality, with diet and nutrition playing crucial roles 
in their development. We investigated the burden, trends and disparities of GI 
cancers attributable to dietary risks.
Methods: Data was collected from the Global Burden of Disease Study 2021. 
Disease burden was measured by deaths and disability-adjusted life years 
(DALYs), along with age-standardized rates (ASRs). Joinpoint regression, with 
average annual percent changes (AAPCs) were used to assess temporal trends. 
ARIMA models were employed to project the ASRs till 2040.
Results: Between 1990 and 2021, the AAPC of the age-standardized mortality 
rate (ASMR) and age-standardized DALY rate (ASDR) of colorectal cancer (CRC) 
attributable to dietary risks were −0.87 (95% CI: −0.89, −0.84) and −0.88 (95% 
CI: −0.90, −0.86). Esophageal cancer showed the greatest declining rate, with 
ASRs declining more than 3% annually. The ASRs of stomach cancer decreased 
by more than 2% per year. The burden of stomach cancer and esophageal 
cancer were highest among low and low-middle SDI countries and regions, 
particularly East Asia and Sub-Saharan Africa, respectively. High-SDI countries 
and regions showed the highest burden of CRC but the greatest declining rates. 
Future projections suggest constant decreasing burden for stomach cancer and 
CRC, but stable trends for esophageal cancer.
Conclusion: Diet-attributed GI cancer remains a significant public health 
challenge globally, especially among low SDI and lower-middle SDI countries. 
Given the disparity of risk exposures and disease burden, we  recommend 
promoting screening practices and improving healthcare accessibility in low SDI 
countries, while emphasizing lifestyle modifications in higher SDI countries to 
combat this pressing issue.
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Introduction

Gastrointestinal (GI) cancers constitute a range of malignant 
conditions affecting the digestive system, including gastric, 
colorectal, liver, esophageal, and pancreatic cancer (1, 2). Recent 
statistics from the GLOBOCAN database indicate that GI cancers 
collectively represent approximately one-fourth of all cancer 
incidences and a third of all cancer-related mortalities (3–5). A 
recent population-based systematic analysis has revealed that the 
lifetime risk of developing and dying of GI cancers stands at 8.2 
and 6.17%, respectively (6). Moreover, previous projection 
analyses have highlighted an expected increase in the incidence 
and mortality burden of various GI cancer subtypes in the 
future (7, 8).

Despite the substantial and steadily increasing burden of GI 
cancers on global public health, it is noteworthy that the majority 
of these cancers are attributable to modifiable, and therefore 
preventable, risk factors. Evidence from U.S. cancer registries and 
large-scale pooled cohort studies indicates that over 40% of GI 
cancer incidence and mortality can be  attributable to such 
modifiable factors (9, 10). Among them, dietary risks represent a 
particularly critical determinant, as the consumption of specific 
foods and nutrients may either elevate or reduce cancer risk (11–
13). A growing body of evidence has established clear associations 
between GI cancers and various dietary patterns. For example, a 
systematic review and meta-analysis demonstrated that 
consumption of red meat and processed meat increased the risk of 
colorectal cancer by 10 and 18%, respectively (14). Conversely, a 
daily intake of three servings of whole grains was associated with a 
17% reduction in colorectal cancer risk (15).

While the strong association between GI cancers and diet is 
well-established, limited research focused on quantifying the 
disease burden of GI cancers attributable to dietary risks. Previous 
Global Burden of Disease (GBD) studies have quantified the overall 
burden of GI cancers, but a detailed, longitudinal analysis focusing 
specifically on dietary risk factors, such as diets high in red meat 
and low in fruits, fiber, and whole grains, has been lacking. 
Consequently, critical knowledge gaps persists regarding the 
temporal trends and geographical disparities of GI cancers 
attributable to dietary risks. To address this need, we utilized data 
from the Global Burden of Disease (GBD) 2021 study, which is the 
most comprehensive global effort to estimate disease burden and 
risk factors. Drawing on this dataset, our study systematically 
investigates the burden, temporal trends, and regional as well as 
national disparities of GI cancers attributable to dietary risks. 
We also quantified and assessed the disease burden attributable to 
specific dietary risk factors (diet high in red meat, diet low in whole 
grains) to gain a deeper understanding of the nutritional 
epidemiology. We  further projected and forecasted the disease 
burden till 2040. Ultimately, our studies aim to provide critical 
evidence to inform public health dietary guidelines and support the 

development of effective nutritional interventions to reduce the 
global burden of GI cancers.

Methods

Data source

We obtained our data from the Global Burden of Disease Study 
2021, which is a comprehensive global health study coordinated by the 
Institute of Health Metrics and Evaluation (IHME) at the University 
of Washington. GBD 2021 provides the most up-to-date estimates of 
over 300 diseases and injuries, along with more than 80 risk factors 
across 204 countries and territories (16). Data was publicly available 
through the online query tool Global Health Data Exchange.1 Our 
study followed the Guidelines for Accurate and Transparent Health 
Estimates Reporting Guidelines for cross-sectional studies 
(GATHER) (17).

Definitions

Dietary risks were defined as the average daily consumption of 
specific food groups and items lower or higher than the optimal level 
or range of intake. Dietary data was obtained from various sources, 
including dietary recall, food frequency questionnaires, household 
budget surveys, food availability data from the Food and Agriculture 
Organization and so on. The detailed definitions, data sources and 
estimation process has been previously reported by GBD 2021 
collaborators (16, 18). In our study, we  used deaths and DALYS 
(disability-adjusted life years) to measure disease burden. Mortality 
data was primarily obtained from cancer registries, vital registration 
systems and verbal autopsy studies. DALYs is a metric that sums the 
years of life lost (YLLs) with premature mortality and years of life with 
disability (YLDs), thereby capturing both the fatal and nonfatal 
components of disease burden. One DALY represents 1 year of loss of 
optimal health. Various statistical techniques, such as garbage code 
redistribution and misclassification correction were employed to 
ensure consistency of the data. Disease burden estimates were 
performed with Bayesian meta-regression and ensemble modelling 
strategies including CODEm (Cause of Death Ensemble model) and 
Dis-Mod-MR 2.1.

A comparative risk assessment method (CRA) was employed to 
quantify the disease burden of GI cancers attributable to dietary 
risks, with detailed methodologies provided within previous 
publications (18). In brief, this method involves four main steps: (1) 
estimation of the exposure and distribution of each attributable risk 
factor; (2) calculation of relative risks (RRs) for each risk-outcome 
pair based on pooled studies and meta-analyses of epidemiological 
studies; (3) specification of the theoretical minimum risk exposure 
level (TMREL), which represents the counterfactual level of 
exposure associated with the lowest population risk, which may 
correspond to zero intake (e.g., processed meat) or to the optimal 
range of consumption (e.g., whole grains) and (4) calculation of the 

1  https://vizhub.healthdata.org/gbd-results/

Abbreviations: GBD, Global burden of disease; GI, Gastrointestinal; DALYs, 

Disability-adjusted life years; CRC, Colon and rectum cancer; ASMR, 

Age-standardized mortality rate; ASDR, Age-standardized DALY rate; SDI, Socio-

demographic index.
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population attributable fraction (PAF) based the RR and TMREL, 
with the formula expressed as below:

	

( ) ( ) ( )( )
( ) ( )
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where P(x) represents the population distribution of exposure, 
RR(x) presents the relative risk at exposure level x and RR(x*) 
representing the counterfactual relative risk at the TMREL level. PAF 
estimates the proportional reduction in disease burden that would 
be  achieved if exposure level was shifted to the TMREL. CRA 
incorporates a risk mediation matrix to address the non-independence 
among risk factors, which ensures overlapping effects are partitioned 
appropriately, thereby avoiding over-counting of attributable burden.

GBD estimated disease burden attributable to risk factors with a 
hierarchy of four levels, with level 1 being environmental/occupational 
risks, behavioral risks and metabolic risks while level 4 being the most 
detailed risk factor. In this study, we used the level 2 risk of dietary 
risks, which is a composite estimate of the dietary risk exposures, with 
eight level three detailed risk factors. GBD has identified three GI 
cancers attributable to dietary risks, which are stomach cancer, 
esophageal cancer, and colorectal cancer. Stomach cancer and 
esophageal cancer were attributable to a single dietary risk, which is 
diet high in sodium and diet low in vegetables, respectively. Colorectal 
cancer (CRC) was attributable to a total of six dietary risks, including 
diet low in whole grains, fiber, milk, calcium and diet high in red and 
processed meat. Socio-demographic index (SDI) indicates the social 
and economic conditions of a certain region that influences health 
outcomes. SDI is calculated as the geometric mean of total fertility 
rate, lag distributed income per capita and mean education level on a 
scale of 0 to 100. Countries and territories were defined as low, 
low-middle, middle, high-middle and high SDI according to quintiles 
of the location-specific SDI values.

Statistical analysis

We analyzed the disease burden of GI cancers attributable to 
dietary risks across various demographics, including age, sex, 
temporal dimensions and geographical locations. The total number 
of deaths and DALYs, age-standardized rates (ASR), along with the 
95% uncertainty interval (95% UI) was reported. ASRs were 
calculated with adjustments based on the global age structure. The 
95% UIs were defined as the 25th and 975th values of the 1000 draw 
estimates. Joinpoint regression (National Cancer Institute, Rockville, 
MD, United  States) was used to calculate the annual percentage 
change (APC) and average annual percentage change (AAPC) of the 
ASRs of GI cancer attributable to dietary risks. An increasing trend 
was determined with the lower limits of the 95% confidence interval 
greater than 0 while the upper limit of the 95% confidence intervals 
less than 0 indicates decreasing trends. Locally estimated scatterplot 
smoothing (LOWESS) regression models were used to explore the 
association between SDI with the disease burden of GI cancers 
attributable to dietary risks across different locations and years. 
ARIMA (autoregressive integrated moving average) models were 
used to project and forecast the disease burden till 2040. All data 
analysis, visualizations were performed with RStudio (v.2024.04.2).

Results

The overall impact and the temporal trends

In 2021, dietary risks were estimated to account for approximately 
406,000 deaths and 9.46 million DALYs from colorectal cancer (CRC), 
56,900 deaths and 1.4 million DALYs from esophageal cancer, and 
75,700 deaths and 1.8 million DALYs from stomach cancer (Figure 1 
and Tables 1, 2). Between 1990 and 2021, the total deaths and DALYs 
from CRC nearly doubled (232,000 deaths and 5.81 million DALYs in 
1990), while esophageal cancer had significant decreases (74,400 
deaths and 2 million DALYs in 1990) and stomach cancer remained 
relatively stable (67,800 deaths and 1.8 million DALYs in 1990). 
Globally, age-standardized rates (ASRs) of all gastrointestinal cancers 
attributable to dietary risks decreased, with esophageal cancer 
showing the steepest decline and CRC the smallest. By 2021, the global 
age-standardized mortality rate (ASMR) and age-standardized DALY 
rate (ASDR) of esophageal cancer was 0.66 and 16.00 per 100,000 
population, respectively, with average annual percentage changes 
(AAPCs) of −3.32% (95% CI: −3.35 to −3.30) and −3.56% (95% CI: 
−3.58 to −3.53). For CRC, the ASMR and ASDR decreased annually 
by −0.87% (95% CI: −0.89 to −0.84) and −0.88% (95% CI: −0.90 to 
−0.86), corresponding to ASRs of 4.82 (95% UI: 1.64–7.46) and 109.7 
(95% UI: 37.7–168.5) per 100,000 population in 2021. Stomach cancer 
showed intermediate declines, with AAPCs of −2.17% (95% CI: −2.19 
to −2.15) for ASMR and −2.45% (95% CI: −2.47 to −2.43) for ASDR.

GI cancer burden attributable to dietary 
risks stratified by sex, age and geographical 
location

Globally, males consistently bear a significantly higher burden of all 
GI cancers attributable to dietary risks, marked by both higher global 
ASRs and lower decreasing temporal trends. The only exception was the 
AAPCs in the ASDR of esophageal cancer, where males exhibited an 
annual declining rate of −4.14% compared to −3.92% in females. Diet-
attributed CRC showed the greatest disparity with the temporal trends 
between 1990 and 2021. The AAPC of the ASMR and ASDR were 
−0.65% and −0.67% in males, compared to −1.30% and −1.36% in 
females, a two-fold difference. The sex disparity was consistent while 
stratified by age groups, as consistently higher age-specific rates were 
observed among males compared to females (Figure 2). In addition, the 
sex-specific rate increases in both males and females as age increases, 
with the highest DALY rates reported in the 85 + age group.

The global distribution of GI cancer burden attributable to dietary 
risks varied substantially across cancer types and regions (Figure 3). 
In 2021, East Asia had the highest burden of stomach cancer (ASMR: 
1.76 per 100,000; ASDR: 41.09 per 100,000), followed by Andean Latin 
America and Oceania, while high-income regions such as North 
America, Australasia, and Western Europe reported the lowest rates. 
Esophageal cancer showed its greatest burden in Sub-Saharan Africa, 
where ASDRs exceeded 50 per 100,000 and ASMRs surpassed 2 per 
100,000, whereas the lowest burdens were observed in North Africa 
and the Middle East, Central Asia, and high-income Asia Pacific. For 
CRC, higher burdens were concentrated in higher-SDI regions such 
as Central and Eastern Europe and Southern Latin America, while the 
lowest ASRs were seen in low-SDI regions including South Asia, 
Western Sub-Saharan Africa, and Oceania.
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Regional disparities also persisted in temporal trends (Figure 4 
and Tables 1, 2). Although stomach cancer attributable to dietary risks 
declined consistently across all 21 regions, high-SDI and high–
middle-SDI regions experienced the most pronounced reductions, 
exceeding 3% annually in areas such as high-income Asia Pacific, 
Eastern Europe, and Western Europe (Figure  4A). Country-level 
analyses further revealed a negative association between SDI and 
stomach cancer burden (Figure  5A), a pattern also evident for 
esophageal cancer (Figure 5B). Regionally, East Asia and Central Asia 
showed the steepest declines in esophageal cancer, while Western 
Sub-Saharan Africa was the only region with rising rates (AAPC: 
1.94% for ASMR; 1.80% for ASDR) (Figure 4B). For CRC, high-SDI 
regions showed the largest decreases, outpacing global averages, 
whereas low-SDI and low-middle-SDI regions exhibited increasing 
trends (Figure 4C). At the global level, analysis of 204 countries and 
territories revealed a positive association between SDI and diet-
attributed CRC burden, as ASDR increased with SDI but plateaued 
when SDI exceeded 0.75 (Figure 5C).

CRC burden attributable to specific dietary 
risks (level 3 risks)

GBD identified six dietary risks contributing to CRC. We compared 
the ASDRs of CRC attributable to these risks globally and across 21 

regions in 1990 and 2021 (Figures 6A,B). In both years, diets low in 
whole grains, low in milk, and high in red meat were consistently the 
three leading dietary risks. In 2021, the ASDRs of CRC attributable to 
these factors were 50.19, 42.99, and 41.99 per 100,000 population, 
respectively. Substantial regional disparities were observed in the risk-
specific burden. Central and Eastern Europe, Southern Latin America, 
and several high-income regions bore the greatest burden of CRC 
attributable to low whole-grain intake and high red meat consumption. 
These regions also exhibited elevated ASDRs linked to high processed 
meat intake, with several surpassing 30 per 100,000 population. In 
contrast, diets low in milk and calcium had stronger impacts in parts 
of Asia and Africa, including Southeast Asia and Sub-Saharan Africa 
regions. Among all dietary risks, low fiber intake contributed the 
smallest burden overall. However, Southeast Asia was disproportionately 
affected, with an ASDR of 12.40 per 100,000 population in 2021.

Projection and forecasts of GI cancer 
burden attributable to dietary risks in 2040

We projected the disease burden of GI cancers attributable to 
dietary risks through 2040 using ARIMA models (Figure 7). The 
ASRs of stomach cancer and colorectal cancer (CRC) are expected 
to decline steadily, whereas the ASRs of esophageal cancer are 
projected to remain largely stable over the next two decades. By 

FIGURE 1

The total deaths (A) and DALYs (C) of gastrointestinal cancers attributable to dietary risks from 1990 and 2021; The temporal trends, average annual 
percent changes (AAPCs) of the age-standardized mortality rate (ASMR) (B) and age-standardized DALY rate (ASDR) (D) of gastrointestinal cancers 
attributable to dietary risks.
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TABLE 1  Deaths, age-standardized mortality rates (ASMR) and average annual percent changes (AAPC) of gastrointestinal cancers attributable to dietary risks in 1990 and 2021*.

Colon and rectum cancer Esophageal cancer Stomach cancer

1990 2021 1990 2021 1990 2021

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Global 231,758 

(83,612, 

346,321)

6.33 (2.26, 

9.47)

406,099 

(138,056, 

628,056)

4.82 (1.64, 

7.46)

−0.87 

(−0.89, 

−0.84)

74,453 

(−16,380, 

147,090)

1.89 (−0.42, 

3.73)

56,939 

(−12,023, 

118,370)

0.66 (−0.14, 

1.38)

−3.32 

(−3.35, 

−3.30)

67,845 (0, 

339,513)

1.74 (0, 

8.74)

75,661 (0, 

372,194)

0.89 (0, 

4.37)

−2.17 

(−2.19, 

−2.15)

Sex

Male 112,991 

(37,861, 

171,949)

6.95 (2.28, 

10.55)

217,748 

(68,756, 

338,575)

5.74 (1.81, 

8.94)

−0.65 

(−0.68, 

−0.62)

51,410 

(−11,393, 

102,783)

2.82 (−0.63, 

5.66)

39,364 

(−8,479, 

83,291)

1.0 (−0.22, 

2.1)

−3.79 

(−3.97, 

−3.61)

43,642 (0, 

220,845)

2.46 (0, 

12.43)

50,374 (0, 

247,168)

1.29 (0, 

6.34)

−2.12 

(−2.21, 

−2.02)

Female 118,766 

(44,951, 

176,650)

5.84 (2.2, 

8.69)

188,351 

(68,045, 

280,577)

4.06 (1.47, 

6.04)

−1.30 

(−1.34, 

−1.25)

23,044 

(−4,415, 

46,696)

1.09 (−0.21, 

2.22)

17,575 

(−3,679, 

36,468)

0.38 (−0.1, 

0.79)

−3.86 

(−4.09, 

−3.62)

24,202 (0, 

123,378)

1.15 (0, 

5.86)

25,287 (0, 

129,118)

0.55 (0, 

2.79)

−2.57 

(−2.67, 

−2.48)

Region

Central 

Asia

1,900 (570, 

2,954)

4.09 (1.24, 

6.35)

2,375 (652, 

3,809)

3.04 (0.85, 

4.84)

−0.62 

(−0.75, 

−0.48)

1,046 

(−226, 

2,165)

2.31 (−0.5, 

4.76)

233 (−43, 

544)

0.32 (−0.06, 

0.74)

−7.52 

(−8.02, 

−7.00)

998 (0, 

4,972)

2.13 (0, 

10.58)

723 (0, 

3,725)

0.9 (0, 4.6) −2.54 

(−2.64, 

−2.44)

Central 

Europe

12,131 

(3,434, 

18,846)

8.33 (2.37, 

12.93)

19,615 

(5,014, 

30,483)

8.55 (2.16, 

13.44)

−0.01 

(−0.14, 

0.11)

782 (−169, 

1,603)

0.53 (−0.11, 

1.08)

691 (−140, 

1,454)

0.32 (−0.06, 

0.66)

−2.14 

(−2.31, 

−1.98)

2,259 (0, 

11,339)

1.54 (0, 

7.69)

1,600 (0, 

7,856)

0.71 (0, 

3.49)

−2.58 

(−2.67, 

−2.50)

Eastern 

Europe

21,111 

(5,045, 

32,306)

7.60 (1.83, 

11.63)

25,628 

(6,491, 

39,262)

7.18 (1.82, 

11.01)

−0.45 

(−0.59, 

−0.32)

2,242 

(−477, 

4,501)

0.8 (−0.17, 

1.6)

1,828 

(−361, 

3,730)

0.52 (−0.1, 

1.06)

−1.34 

(−1.66, 

−1.03)

6,323 (0, 

32,996)

2.25 (0, 

11.72)

3,241 (0, 

16,645)

0.92 (0, 

4.74)

−3.11 

(−3.21, 

−3.01)

Australasia 2,274 (562, 

3,614)

9.8 (2.42, 

15.59)

3,300 (800, 

5,254)

5.84 (1.4, 

9.29)

−1.86 

(−1.94, 

−1.78)

219 (−49, 

434)

0.93 (−0.21, 

1.84)

429 (−96, 

855)

0.77 (−0.17, 

1.53)

−0.70 

(−0.78, 

−0.62)

113 (0, 630) 0.49 (0, 2.7) 138 (0, 788) 0.25 (0, 

1.41)

−2.10 

(−2.22, 

−1.99)

High-

Income 

Asia Pacific

13,572 

(4,010, 

20,891)

7.01 (2.1, 

10.84)

30,819 

(9,926, 

47,993)

5.76 (1.76, 

8.94)

−0.67 

(−0.72, 

−0.61)

1,489 

(−303, 

3,087)

0.74 (−0.15, 

1.54)

1,767 

(−335, 

4,025)

0.35 (−0.06, 

0.79)

−2.32 

(−2.50, 

−2.14)

6,059 (0, 

29,937)

3.09 (0, 

15.62)

5,864 (0, 

29,532)

1.09 (0, 

5.43)

−3.44 

(−3.48, 

−3.39)

High-

income 

North 

America

29,383 

(6,726, 

45,806)

8.18 (1.86, 

12.74)

34,423 

(7,042, 

54,451)

5.2 (1.05, 

8.22)

−1.58 

(−1.64, 

−1.52)

2,418 

(−518, 

4,830)

0.69 (−0.15, 

1.39)

4,461 

(−975, 

8,984)

0.67 (−0.15, 

1.35)

−0.04 

(−0.20, 

0.13)

1,414 (0, 

7,466)

0.4 (0, 2.1) 1,482 (0, 

7,675)

0.23 (0, 

1.17)

−1.88 

(−1.92, 

−1.83)

(Continued)

https://doi.org/10.3389/fnut.2025.1677735
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TABLE 1  (Continued)

Colon and rectum cancer Esophageal cancer Stomach cancer

1990 2021 1990 2021 1990 2021

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Southern 

Latin 

America

3,633 

(1,137, 

5,561)

8.16 (2.58, 

12.46)

6,541 

(1,856, 

10,210)

7.35 (2.58, 

12.46)

−0.07 

(−0.22, 

0.08)

779 (−180, 

1,542)

1.73 (−0.4, 

3.42)

764 (−178, 

1,537)

0.86 (−0.2, 

1.72)

−2.23 

(−2.42, 

−2.03)

686 (0, 

3,455)

1.52 (0, 

7.61)

752 (0, 

3,767)

0.85 (0, 

4.26)

−1.69 

(−1.80, 

−1.58)

Western 

Europe

54,456 

(12,646, 

84,848)

9.18 (2.12, 

14.31)

62,171 

(13,416, 

98,755)

6.01 (1.27, 

9.52)

−1.41 

(−1.45, 

−1.37)

5,140 

(−1,127, 

10,310)

0.9 (−0.2, 

1.8)

6,828 

(−1,508, 

13,840)

0.72 (−0.16, 

1.45)

−0.73 

(−0.81, 

−0.65)

6,132 (0, 

32,292)

1.04 (0, 

5.47)

4,050 (0, 

21,331)

0.41 (0, 2.1) −3.00 

(−3.10, 

−2.90)

Andean 

Latin 

America

721 (358, 

1,044)

3.74 (1.87, 

5.42)

2,224 (888, 

3,420)

3.85 (1.54, 

5.91)

0.12 (0.02, 

0.22)

102 (−22, 

201)

0.53 (−0.12, 

1.05)

206 (−47, 

405)

0.36 (−0.08, 

0.71)

−1.33 

(−1.44, 

−1.22)

522 (0, 

2,645)

2.67 (0, 

13.48)

988 (0, 

4,999)

1.71 (0, 

8.65)

−1.64 

(−1.79, 

−1.50)

Caribbean 1,354 (564, 

2,021)

5.45 (2.26, 

8.12)

2,993 

(1,167, 

4,576)

5.54 (2.16, 

8.45)

0.14 (0.11, 

0.17)

252 (−59, 

492)

1.0 (−0.23, 

1.95)

428 (−95, 

860)

0.79 (−0.18, 

1.59)

−0.60 

(−0.73, 

−0.48)

236 (0, 

1,223)

0.94 (0, 

4.83)

311 (0, 

1,671)

0.58 (0, 3.1) −1.48 

(−1.55, 

−1.40)

Central 

Latin 

America

2,125 (845, 

3,121)

2.75 (1.11, 

4.05)

8,360 

(2,900, 

12,896)

3.39 (1.18, 

5.23)

0.70 (0.60, 

0.79)

505 (−116, 

988)

0.66 (−0.15, 

1.29)

907 (−210, 

1,874)

0.37 (−0.09, 

0.77)

−2.00 

(−2.08, 

−1.91)

1,316 (0, 

6,625)

1.7 (0, 8.53) 2,295 (0, 

11,895)

0.93 (0, 

4.83)

−2.18 

(−2.26, 

−2.10)

Tropical 

Latin 

America

3,064 

(1,144, 

4,648)

3.64 (1.39, 

5.52)

10,847 

(3,358, 

16,765)

4.27 (1.33, 

6.6)

0.54 (0.46, 

0.62)

1,515 

(−344, 

2,948)

1.7 (−0.39, 

3.3)

2,971 

(−675, 

5,902)

1.15 (−0.26, 

2.28)

−1.23 

(−1.28, 

−1.19)

1,356 (0, 

6,802)

1.58 (0, 

7.95)

1,988 (0, 

10,206)

0.78 (0, 

4.01)

−2.36 

(−2.42, 

−2.31)

North 

Africa and 

Middle East

5,381 

(2,154, 

8,061)

3.45 (1.4, 

5.16)

13,716 

(5,050, 

21,143)

3.28 (1.22, 

5.07)

0.04 (−0.10, 

0.19)

745 (−148, 

1,532)

0.47 (−0.09, 

0.96)

1,051 

(−209, 

2,221)

0.25 (−0.05, 

0.54)

−2.31 

(−2.47, 

−2.15)

1,257 (0, 

7,341)

0.75 (0, 4.4) 1,977 (0, 

11,966)

0.45 (0, 

2.75)

−1.58 

(−1.64, 

−1.51)

South Asia 9,045 

(5,038, 

13,038)

1.64 (0.92, 

2.36)

22,076 

(10,679, 

31,369)

1.55 (0.76, 

2.19)

−0.27 

(−0.35, 

−0.19)

5,716 

(−1,372, 

11,352)

1.01 (−0.24, 

2)

11,825 

(−2,570, 

24,375)

0.81 (−0.18, 

1.68)

−0.92 

(−1.02, 

−0.82)

3,631 (0, 

18,683)

0.62 (0, 

3.21)

6,499 (0, 

32,700)

0.45 (0, 

2.25)

−0.95 

(−1.03, 

−0.86)

East Asia 51,053 

(23,740, 

75,640)

6.46 (3.07, 

9.56)

107,789 

(38,058, 

174,102)

5.15 (1.82, 

8.30)

−0.80 

(−0.86, 

−0.74)

45,020 

(−9,645, 

89,058)

5.36 (−1.14, 

10.61)

9,457 

(−1,822, 

26,400)

0.47 (−0.09, 

1.28)

−8.86 

(−9.24, 

−8.49)

31,816 (0, 

155,224)

3.77 (0, 

18.42)

37,862 (0, 

188,112)

1.76 (0, 

8.69)

−2.54 

(−2.74, 

−2.34)

Oceania 74 (37, 110) 2.89 (1.5, 

4.17)

172 (87, 

244)

2.53 (1.32, 

3.57)

−0.39 

(−0.47, 

−0.30)

14.73 (−3, 

30)

0.55 (−0.11, 

1.1)

32 (−7, 65) 0.47 (−0.1, 

0.94)

−0.53 

(−0.56, 

−0.51)

36 (0, 196) 1.36 (0, 

7.12)

72 (0, 381) 1.06 (0, 

5.52)

−0.83 

(−0.89, 

−0.78)

(Continued)
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TABLE 1  (Continued)

Colon and rectum cancer Esophageal cancer Stomach cancer

1990 2021 1990 2021 1990 2021

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Deaths ASMR Deaths ASMR AAPC 
of 

ASMR

Southeast 

Asia

12,856 

(8,126, 

16,936)

5.29 (3.37, 

6.94)

38,667 

(20,106, 

50,505)

5.91 (3.28, 

8.15)

0.30 (0.24, 

0.37)

1,747 

(−416, 

3,427)

0.7 (−0.17, 

1.37)

3,556 

(−806, 

7,101)

0.55 (−0.12, 

1.09)

−0.88 

(−0.93, 

−0.84)

2,264 (0, 

11,385)

0.91 (0, 

4.61)

3,572 (0, 

18,178)

0.56 (0, 

2.89)

−1.71 

(−1.78, 

−1.65)

Central 

Sub-

Saharan 

Africa

716 (413, 

1,005)

3.61 (2.14, 

5.02)

1,800 (987, 

2,681)

3.69 (2.05, 

5.61)

0.08 (−0.02, 

0.18)

655 (−143, 

1,321)

3.02 (−0.66, 

5.98)

1,215 

(−250, 

2,449)

2.33 (−0.47, 

4.62)

−1.00 

(−1.10, 

−0.90)

142 (0, 838) 0.68 (0, 

4.03)

262 (0, 

1,544)

0.51 (0, 

2.99)

−0.96 

(−1.00, 

−0.92)

Eastern 

Sub-

Saharan 

Africa

3,798 

(2,195, 

5,301)

5.44 (3.2, 

7.57)

7,193 

(3,756, 

9,833)

4.93 (2.63, 

6.71)

−0.51 

(−0.61, 

−0.41)

2,717 

(−630, 

5,109)

3.76 (−0.88, 

7.08)

4,766 

(−946, 

9,060)

2.96 (−0.59, 

5.6)

−0.99 

(−1.07, 

−0.91)

658 (0, 

3,325)

0.9 (0, 4.5) 852 (0, 

4,457)

0.54 (0, 

2.79)

−1.90 

(−1.99, 

−1.81)

Southern 

Sub-

Saharan 

Africa

1,030 (556, 

1,464)

4.12 (2.25, 

5.87)

2,797 

(1,466, 

3,911)

5.24 (2.79, 

7.33)

0.87 (0.60, 

1.15)

772 (−177, 

1,488)

2.88 (−0.66, 

5.63)

1,582 

(−347, 

3,043)

2.8 (−0.61, 

5.38)

−0.47 

(−0.95, 

0.00)

148 (0, 796) 0.55 (0, 3) 255 (0, 

1,387)

0.45 (0, 

2.48)

−0.69 

(−1.01, 

−0.37)

Western 

Sub-

Saharan 

Africa

2,081 

(1,179, 

2,851)

2.63 (1.52, 

3.58)

4,581 

(2,159, 

6,430)

2.68 (1.31, 

3.73)

0.18 (0.13, 

0.23)

578 (−124, 

1,141)

0.68 (−0.15, 

1.35)

1,942 

(−430, 

3,930)

1.05 (−0.23, 

2.13)

1.94 (1.73, 

2.15)

479 (0, 

2,559)

0.57 (0, 

3.06)

880 (0, 

4,609)

0.49 (0, 

2.54)

−0.28 

(−0.37, 

−0.20)

*Age-standardized mortality rates are calculated as per 100,000 population. Data were presented with 95% uncertainty intervals.
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TABLE 2  DALYs and age-standardized DALY rates, and average annual percent changes (AAPCs) of gastrointestinal cancers attributable to dietary risks in 1990 and 2021*.

Colon and rectum cancer Esophageal cancer Stomach cancer

1990 2021 1990 2021 1990 2021

DALYs ASDR DALYs ASDR AAPC 
of ASDR

DALYs ASDR DALYs ASDR AAPC 
of ASDR

DALYs ASDR DALYs ASDR AAPC 
of ASDR

Global 5810.3 

(2146.0, 

8636.2)

144.9 (53.1, 

215.5)

9458.5 

(3251.7, 

14521.2)

109.7 (37.7, 

168.5)

−0.88 

(−0.90, 

−0.86)

2026.1 

(−443.0, 

4008.1)

49.0 (−10.7, 

96.9)

1396.8 

(−293.0, 

2888.4)

16.0 (−3.4, 

33.1)

−3.56 

(−3.58, 

−3.53)

1845.6 (0, 

9206.2)

44.5 (0, 

222.3)

1804.6 (0, 

8884.4)

20.8 (0, 

102.4)

−2.45 

(−2.47, 

−2.43)

Sex

Male 2974.0 

(1029.8, 

4522.4)

159.1 (54.1, 

241.1)

5302.7 

(1686.7, 

8243.1)

130.7 (41.6, 

203.4)

−0.67 

(−0.7, 

−0.65)

1452.0 

(−319.3, 

2893.3)

73.5 (−16.2, 

146.7)

981.6 

(−207.9, 

2060.3)

23.7 (−5.1, 

49.9)

−3.84 

(−3.92, 

−3.76)

1221.1 (0, 

6151.9)

62.2 (0, 

314.7)

1231.3 (0, 

6026.4)

29.9 (0, 

146.7)

−2.42 

(−2.52, 

−2.33)

Female 2836.3 

(1095.5, 

4187.8)

132.8 (51.1, 

196.2)

4155.7 

(1533.1, 

6163.7)

91.0 (33.6, 

134.7)

−1.36 

(−1.41, 

−1.31)

574.1 

(−110.4, 

1164.0)

26.7 (−5.1, 

54.0)

415.2 

(−87.1, 

844.9)

9.1 (−1.9, 

18.6)

−3.32 

(−3.40, 

−3.24)

624.6 (0, 

3176.9)

28.7 (0, 

146.2)

573.3 (0, 

2941.0)

12.6 (0, 

64.6)

−2.84 

(−2.93, 

−2.74)

Region

Central 

Asia

54.5 (16.1, 

85.1)

109.9 (32.7, 

171.5)

65.5 (17.7, 

105.1)

75.6 (20.6, 

121.2)

−0.98 

(−1.08, 

−0.87)

27.2 (−5.9, 

56.8)

56.5 (−12.2, 

117.9)

5.6 (−1.0, 

13.5)

6.9 (−1.3, 

16.4)

−8.06 

(−8.64, 

−7.49)

28.8 (0, 

143.2)

58.0 (0, 

288.4)

20.4 (0, 

105.9)

23.1 (0, 

119.4)

−2.80 

(−2.88, 

−2.73)

Central 

Europe

289.2 (79.9, 

450.0)

193.1 (53.5, 

300.4)

412.5 

(100.6, 

651.2)

192.1 (46.3, 

303.0)

−0.09 

(−0.21, 

0.04)

21.1 (−4.6, 

43.4)

14.1 (−3.0, 

28.9)

16.2 (−3.3, 

34.0)

7.9 (−1.6, 

16.7)

−2.38 

(−2.57, 

2.19)

55.1 (0, 

277.9)

36.7 (0, 

185.3)

34.9 (0, 

170.9)

16.7 (0, 

81.9)

−2.62 

(−2.71, 

−2.54)

Eastern 

Europe

539.2 

(125.2, 

826.0)

191.5 (44.6, 

293.5)

580.6 

(144.5, 

893.7)

167.8 (41.7, 

257.9)

−0.76 

(−0.91, 

−0.60)

60.7 (−13.0, 

121.9)

21.3 (−4.6, 

42.8)

47.9 (−9.4, 

98.2)

14.1 (−2.8, 

28.9)

−1.31 

(−1.63, 

−0.98)

173.7 (0, 

903.2)

61.6 (0, 

320.7)

79.2 (0, 

402.5)

23.5 (0, 

119.4)

−3.40 

(−3.52, 

−3.28)

Australasia 52.6 (12.5, 

83.3)

227.7 (53.9, 

360.3)

66.8 (15.7, 

106.0)

131.3 (30.5, 

207.9)

−1.99 

(−2.08, 

−1.90)

4.9 (−1.1, 

9.8)

21.1 (−4.8, 

42.1)

8.5 (−1.9, 

17.1)

16.6 (−3.7, 

33.4)

−0.81 

(−0.89, 

−0.73)

2.6 (0, 14.2) 11.3 (0, 

61.4)

2.8 (0, 15.5) 5.7 (0, 31.1) −2.16 

(−2.26, 

−2.05)

High-

Income 

Asia Pacific

334.0 (95.3, 

513.8)

164.6 (47.4, 

253.6)

555.4 

(165.7, 

866.4)

128.3 (36.5, 

199.5)

−0.85 

(−0.91, 

−0.79)

35.6 (−7.2, 

74.1)

17.2 (−3.5, 

35.9)

31.9 (−5.7, 

72.8)

7.4 (−1.3, 

16.8)

−2.56 

(−2.72, 

−2.19)

151.9 (0, 

743.7)

74.6 (0, 

365.7)

99.0 (0, 

495.3)

22.6 (0, 

112.1)

−3.92 

(−3.97, 

−3.87)

High-

income 

North 

America

640.8 

(139.4, 

997.2)

186.5 (40.2, 

290.3)

768.8 

(149.0, 

1206.4)

127.5 (24.3, 

199.7)

−1.30 

(−1.35, 

−1.25)

57.7 (−12.3, 

115.4)

17.4 (−3.7, 

34.8)

97.5 (−21.1, 

196.1)

15.6 (−3.4, 

31.4)

−0.25 

(−0.40, 

−0.09)

31.6 (0, 

165.4)

9.3 (0, 48.8) 32.6 (0, 

166.5)

5.5 (0, 28.1) −1.73 

(−1.77, 

−1.68)

(Continued)
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TABLE 2  (Continued)

Colon and rectum cancer Esophageal cancer Stomach cancer

1990 2021 1990 2021 1990 2021

DALYs ASDR DALYs ASDR AAPC 
of ASDR

DALYs ASDR DALYs ASDR AAPC 
of ASDR

DALYs ASDR DALYs ASDR AAPC 
of ASDR

Southern 

Latin 

America

83.2 (25.1, 

128.2)

180.1 (54.6, 

277.3)

141.7 (39.1, 

224.1)

165.2 (45.4, 

261.5)

−0.01 

(−0.14, 

0.12)

18.2 (−4.3, 

36.2)

39.3 (−9.2, 

78.0)

16.0 (−3.7, 

32.4)

18.5 (−4.3, 

37.4)

−2.41 

(−2.61, 

−2.22)

16.3 (0, 

82.3)

35.0 (0, 

176.9)

16.6 (0, 

83.0)

19.4 (0, 

97.0)

−1.73 

(−1.77, 

−1.68)

Western 

Europe

1123.8 

(251.7, 

1747.9)

199 (44.2, 

309.7)

1159.4 

(241.5, 

1811.5)

130.3 (26.6, 

203)

−1.40 

(−1.45, 

−1.35)

120.5 

(−26.7, 

240.9)

22.3 (−5.0, 

44.6)

139.4 

(−30.6, 

282.2)

16.6 (−3.6, 

33.6)

−0.97 

(−1.08, 

−0.87)

127.5 (0, 

667.8)

22.9 (0, 

119.2)

76.2 (0, 

392.3)

8.9 (0, 46.0) −2.96 

(−3.05, 

−2.88)

Andean 

Latin 

America

18.0 (8.8, 

26.2)

84.7 (41.6, 

122.6)

52.0 (20.3, 

81.3)

88.8 (34.1, 

135.4)

0.06 (−0.04, 

0.16)

2.5 (−0.5, 

4.9)

11.9 (−2.6, 

23.5)

4.5 (−1.0, 

8.9)

7.6 (−1.7, 

15.0)

−1.54 

(−1.66, 

−1.42)

13.4 (0, 

68.1)

62.4 (0, 

316.6)

23.1 (0, 

116.7)

38.5 (0, 

193.9)

−1.79 

(−1.93, 

−1.64)

Caribbean 32.5 (13.7, 

48.6)

123.9 (52, 

185)

68.5 (27.1, 

103.7)

127.6 (50.6, 

193.1)

0.20 (0.16, 

0.23)

6.3 (−1.5, 

12.2)

23.9 (−5.5, 

46.5)

10.9 (−2.4, 

21.8)

20.1 (−4.4, 

40.3)

−0.39 

(−0.52, 

−0.27)

5.8 (0, 30.3) 21.9 (0, 

114.6)

7.6 (0, 41.0) 14.2 (0, 

76.7)

−1.31 

(−1.41, 

−1.21)

Central 

Latin 

America

55.1 (21.3, 

80.7)

62.4 (24.3, 

91.6)

214.6 (72.2, 

332.7)

83.8 (28.3, 

130.0)

0.96 (0.87, 

1.05)

12.5 (−2.9, 

24.4)

14.7 (−3.4, 

28.7)

21.4 (−5.0, 

44.2)

8.4 (−2.0, 

17.4)

−1.93 

(−2.02, 

−1.84)

33.8 (0, 

170.5)

38.6 (0, 

194.2)

57.3 (0, 

297.9)

22.4 (0, 

116.5)

−2.00 

(−2.09, 

−1.92)

Tropical 

Latin 

America

81.4 (29.9, 

123.3)

84.5 (31.3, 

128.3)

274.6 (83.7, 

425.5)

105.3 (32.3, 

163.1)

0.68 (0.59, 

0.77)

42.5 (−9.7, 

82.9)

43.5 (−9.9, 

84.7)

78.6 (−17.9, 

156.5)

29.8 (−6.8, 

59.3)

−1.25 

(−1.31, 

−1.19)

35.9 (0, 

179.7)

37.3 (0, 

186.6)

49.2 (0, 

252.5)

18.9 (0, 

96.8)

−2.33 

(−2.39, 

−2.27)

North 

Africa and 

Middle East

154.0 (60.9, 

232.3)

84.3 (33.6, 

126.6)

370.0 

(134.3, 

570.9)

76.4 (27.9, 

117.9)

−0.17 

(−0.29, 

−0.04)

20.4 (−4.1, 

42.7)

11.4 (−2.3, 

23.6)

27.5 (−5.4, 

57.2)

5.7 (−1.1, 

12.0)

−2.62 

(−2.81, 

−2.43)

37.0 (0, 

214.6)

19.7 (0, 

114.8)

54.8 (0, 

325.7)

11.0 (0, 

65.9)

−1.83 

(−1.90, 

−1.77)

South Asia 271.5 

(150.0, 

390.5)

42.3 (23.5, 

60.8)

610.9 

(287.9, 

877.5)

39.0 (18.6, 

56.1)

−0.37 

(−0.45, 

−0.29)

170.0 

(−40.8, 

336.8)

26.5 (−6.4, 

52.5)

327.3 

(−70.6, 

675.4)

20.8 (−4.5, 

43.0)

−1.00 

(−1.10, 

−0.91)

112.6 (0, 

573.8)

17.0 (0, 

87.3)

180.8 (0, 

908.1)

11.5 (0, 

57.6)

−1.19 

(−1.26,-

1.11)

East Asia 1491.7 

(689.0, 

2203.4)

160.2 (74.6, 

236.3)

2676.9 

(928.0, 

4313.1)

124.4 (43.3, 

200.2)

−0.89 

(−0.97, 

−0.80)

1239.1 

(−269.4, 

2453.5)

133.7 

(−28.9, 

264.6)

195.2 

(−37.6, 

546.7)

9.0 (−1.8, 

25.3)

−9.81 

(−10.22, 

−9.40)

910.2 (0, 

4421.0)

96.6 (0, 

469.1)

906.4 (0, 

4574.2)

41.1 (0, 

206.6)

−2.88 

(−3.06, 

−2.70)

Oceania 2.3 (1.1, 

3.4)

69.8 (35.7, 

102.7)

5.2 (2.6,) 61.6 (31.2, 

87.1)

−0.38 

(−0.45, 

−0.31)

0.4 (−0.08, 

0.9)

13.5 (−2.6, 

27.5)

0.9 (−0.02, 

1.9)

11.3 (−2.3, 

22.9)

−0.56 

(−0.59, 

−0.53)

1.0 (0, 5.9) 32.7 (0, 

178.4)

2.1 (0, 11.6) 25.5 (0, 

135.0)

−0.82 

(−0.89, 

−0.76)

(Continued)
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TABLE 2  (Continued)

Colon and rectum cancer Esophageal cancer Stomach cancer

1990 2021 1990 2021 1990 2021

DALYs ASDR DALYs ASDR AAPC 
of ASDR

DALYs ASDR DALYs ASDR AAPC 
of ASDR

DALYs ASDR DALYs ASDR AAPC 
of ASDR

Southeast 

Asia

375.1 

(236.5, 

496.5)

133.6 (84.3, 

176.2)

990.5 

(537.0, 

1363.5)

143.6 (78.1, 

197.2)

0.17 (0.11, 

0.23)

50.4 (−11.9, 

98.9)

18.1 (−4.3, 

35.5)

97.6 (−22.1, 

197.0)

13.8 (−3.1, 

27.8)

−0.97 

(−1.01, 

−0.93)

66.7 (0, 

336.5)

23.5 (0, 

118.1)

97.7 (0, 

498.0)

14.0 (0, 

71.3)

−1.85 

(−1.91, 

−1.78)

Central 

Sub-

Saharan 

Africa

20.8 (11.7, 

29.5)

86.3 (49.9, 

120.8)

52.7 (28.4, 

79.0)

87.0 (47.9, 

129.9)

0.03 (−0.07, 

0.13)

19.3 (−4.2, 

39.1)

77.3 (−16.8, 

156.0)

35.8 (−7.4, 

72.3)

57.9 (−11.9, 

116.5)

−1.12 

(−1.22, 

−1.02)

4.2 (0, 25.0) 17.0 (0, 

100)

7.9 (0, 46.2) 12.5 (0, 

73.9)

−1.02 

(−1.06, 

−0.98)

Eastern 

Sub-

Saharan 

Africa

108.3 (62.4, 

152.3)

134.2 (77.6, 

187.9)

195.6 (98.6, 

268.9)

109.1 (56.7, 

149.0)

−0.91 

(−1.02, 

−0.80)

78.4 (−18.0, 

147.7)

96.4 (−22.3, 

181.3)

136.2 

(−26.7, 

258.9)

73.3 (−14.5, 

139.4)

−1.13 

(−1.22, 

−1.03)

19.7 (0, 

99.8)

23.4 (0, 

118.1)

24.5 (0, 

129.5)

12.9 (0, 

67.7)

−2.21 

(−2.32, 

−2.11)

Southern 

Sub-

Saharan 

Africa

27.7 (14.7–

39.4)

95.7 (51.2, 

136.6)

75.3 (38.5, 

105.8)

123.0 (63.7, 

172.4)

0.99 (0.70, 

1.28)

22.7 (−5.2, 

43.7)

76.8 (−17.5, 

147.6)

44.5 (−9.8, 

85.6)

71.2 (−15.7, 

137.6)

−0.65 

(−1.12, 

−0.17)

4.4 (0, 23.7) 14.0 (0, 

75.1)

7.3 (0, 39.1) 11.3 (0, 

59.3)

−0.75 

(−1.08, 

−0.43)

Western 

Sub-

Saharan 

Africa

54.4 (30.1–

75.2)

60.0 (33.6, 

82.5)

121.0 

(54.7–

172.3)

58.7 (27.4, 

82.7)

0.02 (−0.03, 

0.07)

15.7 (−3.4, 

31.4)

16.9 (−3.7, 

33.7)

53.4 (−11.9, 

107.9)

25.1 (−5.6, 

50.8)

1.80 (1.61, 

2.00)

13.2 (0, 

70.7)

14.6 (0, 

78.1)

24.1 (0, 

126.9)

11.5 (0, 

62.2)

−0.48 

(−0.55, 

−0.40)

*DALYs are represented with the unit of 1,000. Age-standardized DALY rates are calculated as per 100,000 population. Data were presented with 95% uncertainty intervals.
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2040, the global ASMR and ASDR for stomach cancer are projected 
to decrease to 0.59 (95% CI: 0.15–1.02) and 17.46 (95% CI: 0.03–
35.11) per 100,000 population, respectively. CRC is estimated to 
reach an ASMR of 3.94 (95% CI: 3.53–4.35) and an ASDR of 94.66 
(95% CI, 77.77–111.56) per 100,000 population. In contrast, the 
projected burden of esophageal cancer shows no significant change, 
with global ASMR and ASDR of 0.67 and 17.67 per 100,000 
population in 2040.

Discussion

Our study systematically investigated the burden, trends and 
disparities of GI cancers attributable to dietary risks over the past 
three decades. Deaths and DALYs resulting from diet-attributable 
CRC nearly doubled on the global scale between 1990 and 2021. 
During this period, a decrease in deaths and DALYs associated with 
esophageal cancer was recorded, while the disease burden of stomach 

FIGURE 2

Age-specific DALY rates of (A) stomach cancer; (B) esophageal cancer and (C) colorectal cancer attributable to dietary risks between sex in 2021.
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cancer associated with a high-sodium diet exhibited minimal changes. 
Despite these fluctuations, numerous low SDI and lower-middle SDI 
countries continued to experience substantial increases in GI cancers 
attributable to dietary risks. A declining trend in global ASMRs and 
ASDRs was evident for all three GI cancers linked to dietary risks. 
Regions with high SDI and high-middle SDI consistently displayed 
significant decreases, whereas low SDI and lower-middle SDI regions 
demonstrated relatively minor changes or even increasing trends. 
Noteworthy is the approximately 2% annual increase in 
age-standardized rates of esophageal cancers attributable to diet low 
in vegetables in Western Sub-Saharan Africa, the sole region showing 
an increase.

Our findings are broadly consistent with previous GBD analyses 
that have documented evolving yet uneven trends in gastrointestinal 
cancers worldwide. Earlier GBD studies (GBD 2017 and GBD 2019) 
similarly reported a global rise in colorectal cancer incidence and 
mortality, contrasted by steady declines in stomach and esophageal 
cancers (19–21). The present analysis based on GBD 2021 data 
reaffirms these trajectories while highlighting widening disparities 
across socioeconomic regions. Consistent with prior evidence, 

high-SDI regions have achieved marked reductions in 
age-standardized mortality and DALYs through advances in 
screening, early detection, and treatment, whereas low- and 
middle-SDI regions continue to experience rising burdens linked to 
rapid dietary transitions and limited healthcare infrastructure (19–
21). The persistence of stomach cancer burden and the expanding 
impact of colorectal cancer in developing regions parallel the trends 
described in recent GBD updates, underscoring that uneven progress 
in dietary improvement and cancer control continues to shape the 
global landscape of GI cancers.

Our study findings align with prior research, revealing a higher 
incidence of deaths and DALYs attributed to diet-related GI cancers 
in males compared to females (22–24). In 2021, the global ASRs for 
esophageal and stomach cancers linked to dietary factors were 
approximately 2.5 times higher in males than in females, while the 
ASRs for CRC attributable to dietary risks were 40% higher in males 
compared to females. The prevalence of GI cancer burden in males is 
likely influenced by a combination of biological, behavioral, and 
environmental factors. Endogenous estrogen has been shown to exert 
protective effects, particularly against CRC, by modulating 

FIGURE 3

Age-standardized DALY rates of (A) stomach cancer (C) esophageal cancer (E) colorectal cancer attributable to dietary risks in 2021. Age-standardized 
death rates of (B) stomach cancer, (D) esophageal cancer and (F) colorectal cancer attributable to dietary risks in 2021.
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FIGURE 4

The ASDR of (A) stomach cancer, (B) esophageal cancer and (C) colorectal cancer attributable to dietary risks across 21 regions, 1990–2021.
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FIGURE 5

The ASDR of (A) stomach cancer, (B) esophageal cancer and (C) colorectal cancer attributable to dietary risks across 204 countries and territories in 
2021.
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inflammatory pathways, influencing bile acid metabolism, and 
regulating DNA repair mechanisms (25, 26). Estrogen may also 
reduce oxidative stress and limit colonic epithelial proliferation, 
thereby lowering carcinogenesis risk (27, 28). The Women’s Health 
Initiative study was a double-blinded, placebo controlled randomized 
controlled study to investigate the role of estrogen plus progestin with 
colorectal cancer risk. Data from 16,608 postmenopausal women 
showed an decreased risk of CRC among women receiving estrogen 
with extended follow-ups (29, 30). In stomach cancer, estrogen has 
been hypothesized to inhibit Helicobacter pylori-induced 
inflammation, contributing to the lower incidence observed in females 
(31). Behavioral and lifestyle factors further amplify these disparities. 
Men have higher rates of alcohol consumption and tobacco use, both 
established carcinogens for esophageal and stomach cancers (32–34). 

In addition, higher levels of visceral adiposity and central obesity in 
men promote insulin resistance, chronic inflammation, and altered 
adipokine signaling, which increase CRC risk (35–37). The less 
pronounced sex disparity in CRC may be attributed to a more even 
distribution of the dietary and lifestyle risk factors (e.g., diet, sedentary 
lifestyles, etc.) along with the widespread implementation of CRC 
screening programs among all genders (38). However, further research 
is essential to elucidate sex-specific mechanisms to enhance prevention 
and treatment strategies effectively.

With respect to the age-specific burden of GI cancers attributable 
to dietary risks, we observed a progressive increase in incidence with 
advancing age, peaking among individuals aged 85 years and older. 
Sharp rises in age-specific rates were consistently evident beginning 
in the 40–44 and 45–49 age groups across all three GI cancers. While 

FIGURE 6

(A) Age-standardized DALY rates of colorectal cancer attributable to dietary risks across GBD regions in 1990. (B) Age-standardized DALY rates of 
colorectal cancer attributable to dietary risks across GBD regions in 2021.
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individuals over 50 years old bear a significantly higher burden of GI 
cancers, the incidence rates have shown a downward trend in recent 
decades, which is likely due to the progress with enhanced screening 
practices, early diagnosis and treatment advances (39, 40). On the 
other hand, GI cancers occurring before the age of 50, which refers to 
early-onset GI cancers, have shown steadily increasing incidence rates, 
particularly among high-income countries (41, 42). The rising 

incidence of early-onset CRC has been reported since the middle 
1990s in the USA, with age-adjusted rates increasing from 5.9 to 8.4 
per 100,000 population between 2000 and 2017 (43). Similarly, data 
from regional and national cancer databases revealed rising CRC 
incidence among several European countries, with consistent and 
significantly positive annual increasing rates across different countries 
and age groups (44, 45). Although early-onset CRC has received 

FIGURE 7

The projection and forecasted age-standardized mortality and age-standardized DALY rate of GI cancers attributable to dietary risks till 2040.
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considerable attention, early-onset cancer diagnoses in other GI tract 
locations have also been investigated and reported (41). Data from the 
US Surveillance, Epidemiology and End Results (SEER) database 
indicated rising incidence rates of pancreatic cancer, esophageal 
cancer and introhepatic cholangiocarcinoma occurring among 
individuals between the age of 20 to 49 (46–48). Importantly, while 
improvements in diagnostic and screening practices may partially 
account for increased case detection, these changes are insufficient to 
explain the consistent upward trajectory across diverse digestive 
cancer sites. The drivers of early-onset GI cancers are multifactorial, 
with behavioral and environmental exposures playing crucial roles 
(41, 42). Previous research indicated Westernized diets, obesity and 
sedentary behaviors as main risk factors for early-onset GI cancers 
(49–51). Westernized dietary patterns characterized by high intake of 
red meat, sodium and saturated fats, with limited fruit, vegetable and 
whole grain consumption are well-established risk factors for various 
GI cancers. Studies have shown that Westernized diets elevate CRC 
risk by altering the gut microbiome to favor pro-carcinogenic species 
that generate genotoxic secondary bile acids and reduce protective 
short-chain fatty acids (52, 53). These dietary components directly 
promote DNA damage and oncogenic signaling through chronic 
mucosal inflammation and cellular proliferation. Studies have 
investigated other dietary components with the association of GI 
cancer risks. Data from the Nurse’s Health Study suggested that 
increased sugar-sweetened beverage intake, as well as reduced levels 
of vitamin D levels were associated with a higher risk of early-onset 
CRC (54, 55). These findings highlight the urgent need to adapt 
screening strategies in parallel with the shifting epidemiologic 
patterns. Given the robust evidence supporting the efficacy of 
screening and the escalating burden of early-onset GI cancers, it is 
recommended to streamline screening recommendations for younger 
adults (56). The American Cancer Society now advocates for CRC 
screening from the age of 45 onwards (57). Additionally, targeting 
individuals with elevated risks such as high BMI, a family history of 
GI cancers, or other GI tract conditions could enhance early detection 
efforts and alleviate the burden among younger adults (58, 59). 
Furthermore, expanding tailored screening beyond CRC, particularly 
in populations experiencing disproportionate increases in early-onset 
GI cancers, may be critical for mitigating the growing burden among 
younger adults.

Significant disparities in the burden of gastrointestinal cancers 
attributable to dietary risks closely mirror the SDI, with low and 
low-middle SDI countries bearing a disproportionately high burden 
of esophageal cancers and stomach cancers. This pattern is likely due 
to the complex interplay of economic constraints and culturally 
ingrained food practices that are characteristic of many low-resource 
settings. Structural inequities, such as limited access to high-quality 
and fresh foods, as well as inadequate healthcare resources, contribute 
to the elevated burdens in low SDI countries (60, 61). Diet-attributed 
stomach cancer displayed the highest age-standardized rates in East 
Asia and Andean Latin America, aligning with findings from previous 
epidemiological studies (62). In East Asia, the dietary habits are 
historically high in salted, pickled, and preserved foods, which are 
merely cultural preferences but also practical, low-cost solutions for 
food preservation in the absence of widespread refrigeration (63). 
Excess sodium directly damages the gastric mucosa and enhances the 
pathogenicity of Helicobacter pylori, a well-established carcinogen 
strongly associated with gastric cancer (64, 65). The extremely high 

prevalence of chronic H. pylori infection in East Asian populations 
(often exceeding 50%) amplifies these dietary effects and helps explain 
the region’s persistently elevated stomach cancer rates (66). By 
contrast, the highest global burden of esophageal cancer attributable 
to dietary risks was observed in Sub-Saharan Africa. Insufficient 
vegetable intake, a major dietary risk factor, is widespread in this 
region due to limited food diversity, economic barriers, and reliance 
on starchy staples (67). Low intake of antioxidant and micronutrient-
rich foods (e.g., green leafy vegetables, fruits, legumes) reduces 
protection against oxidative stress and DNA damage in esophageal 
tissues, increasing susceptibility to carcinogenesis. Other region-
specific exposures, such as micronutrient deficiencies (zinc, selenium), 
frequent consumption of very hot beverages, alcohol use, and 
exposure to dietary carcinogens such as polycyclic aromatic 
hydrocarbons from poorly ventilated cooking methods, may further 
compound the impact of inadequate vegetable intake (68, 69). To 
address these burdens and achieve health equity requires interventions 
that move beyond public health messaging to include economic 
development, food system improvements, and culturally sensitive 
strategies that make healthier choices accessible and viable.

Colorectal cancers, the third leading cause of cancer mortality 
worldwide, remain most prevalent in high-SDI countries (58). 
Previous studies have consistently reported positive associations of 
CRC cancer burden with SDI, which is largely driven by lifestyle, 
demographic and environmental factors (20). Beyond established 
risks such as Westernized dietary patterns, obesity, hyperglycemia, 
and sedentary behaviors, emerging evidence suggests that early-life 
exposures, such as antibiotic use, may disrupt the gut microbiome and 
increase CRC susceptibility later in life (70). However, despite the 
heightened burden, high SDI counties and regions showed the greatest 
decline of CRC burden, which is likely due to improved diagnosis, 
treatment and public awareness among these locations (60). Our 
findings reflect these broader epidemiological transitions. Historically 
concentrated in high SDI regions, Western dietary and lifestyle 
patterns are now increasingly observed in middle and low SDI 
countries, contributing to the rising CRC burden in these settings. 
Our study indicated that diets high in red meat and diets low in milk 
and whole grains are the major dietary risks for the burden of CRC, 
with Europe, Southern Latin America and Southeast Asia regions 
having the highest risk-specific age-standardized rates. A previous 
large-scale meta-analysis concluded that CRC risk decreases 13% for 
each 400 g/day increase of dairy products intake. There are several 
mechanisms to explain why these nutrients are associated with CRC 
risk (71). For example, whole grains are rich in dietary fiber, 
antioxidants and phytochemicals, which play crucial roles in 
maintaining gut health, regulating insulin levels, and reducing 
inflammation in the colon, collectively lowering the risk of CRC (72, 
73). As CRC has been associated with multiple risk factors, it is 
essential to understand the dietary patterns and risk of CRC. A 
systematic review study conducted by the Global Cancer Update 
Programme (CUP Global) indicated strong-probable evidence with 
increased CRC risk with empirical dietary index for hyperinsulinemia 
(EDIH) and empirical dietary inflammatory patterns (EDIP) (74). 
Similarly, data from the Health Professional Follow-up study and 
Nurses’ Health Study suggested lowered CRC risk with prudent 
dietary patterns, which showed consistent effects regardless of 
anatomic or molecular subtype (75). The significant deviation among 
different dietary risk factors of CRC across various regions suggests 
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target-specific and content-specific dietary public health policy and 
interventions to be  implemented in the future. An overall healthy 
dietary pattern that promotes whole-grain and dairy consumption, 
reduces red and processed meat intake, and encourages microbiome-
supportive dietary patterns may be critical to alleviating the global 
burden of CRC.

Content-specific and evidence-based strategies are imperative to 
translate these findings into effective public health actions. For dietary 
interventions, public health policies should actively promote the 
adoption of guidelines established by the World Health Organization 
(WHO) and the World Cancer Research Fund (WCRF), which 
recommend limiting red and processed meat intake to under 500 g 
per week, reducing sodium consumption to less than 2 g/day, and 
increasing the daily intake of dietary fiber, fruits, vegetables, and 
whole grains (76, 77). These guidelines should be operationalized 
through fiscal policies (e.g., sugar-sweetened beverage taxes, subsidies 
for fresh foods), front-of-package nutrition labelling and restrictions 
on marketing unhealthy foods. Concurrently, public health policy 
should prioritize the strategic application of innovative, non-invasive 
screening technologies, coupled with enhanced, risk-stratified 
screening protocols. For colorectal cancer, the adoption of sensitive, 
non-invasive tests like fecal immunochemical tests (FIT) and multi-
target stool DNA (mt-sDNA) tests can significantly boost participation 
in screening programs, particularly among younger cohorts and in 
resource-limited settings where colonoscopy capacity is constrained 
(78, 79). Furthermore, screening must be proactively targeted to high-
risk individuals beyond age alone. This includes implementing early 
and more intensive surveillance for those with a family history of GI 
cancers, genetic predispositions (such as Lynch syndrome), personal 
history of conditions like inflammatory bowel disease, or those with 
metabolic risk factors like high BMI (80, 81). Collectively, these 
multifaceted strategies hold the potential to substantially reduce the 
global burden of GI cancers by addressing modifiable dietary risks and 
improving early detection across diverse populations.

There were several limitations with our study. The major limitation 
was the non-availability of data from cancer registries in certain 
countries and regions, particularly in low and low-middle income 
countries. Relying on alternative data sources like vital registration and 
verbal autopsy due to the absence of population-wide cancer registries 
likely led to an underestimation of the disease burden. Moreover, our 
study could not fully address various confounding factors, such as 
genetic predispositions and environmental risk exposures, potentially 
introducing bias to the estimates of disease burden patterns. 
Furthermore, our study was unable to estimate the attributable burden 
based on the anatomical or histological subtypes of GI cancers, such as 
the cardia and non-cardia subtypes of stomach cancer, along with the 
esophageal squamous cell carcinoma (SCC) and esophageal 
adenocarcinoma (OAC) subtypes of esophageal cancer, which might 
show distinct disease burden across different subtypes. Last but not 
least, limitations were present in the measurement of dietary exposures, 
including unaccounted dietary risk factors like the consumption of 
ultra-processed foods, which are strongly linked to various cancer 
phenotypes (82, 83). It is important to note that no singular dietary 
pattern or score can comprehensively capture a healthy diet. The 
evolving field of dietary pattern research has increasingly focused on 
sustainable healthy diets, which intertwine with biodiversity, climate 
change, and environmental health concerns (84).

In conclusion, our study conducted a comprehensive analysis of 
the global burden of gastrointestinal cancers attributed to dietary 

risks using the latest publicly available GBD 2021 database. Of the 
three GI cancers studied, colon and rectum cancer contributed the 
leading cause of mortality and DALYs worldwide. Despite observed 
declines in age-standardized rates, distinct patterns and trends of GI 
cancers are evident across diverse geographical regions, with diet-
attributed GI cancers are still significant public health challenges in 
low SDI and lower-middle SDI countries. Ensuring access to fresh 
and nutritious foods, enhancing screening practices, and improving 
healthcare availability are crucial strategies for low SDI and lower-
middle SDI countries to mitigate the burden of GI cancers. 
Conversely, lifestyle adjustments and dietary modifications are 
imperative for higher SDI countries. Addressing these issues will 
be vital in tackling the burden of GI cancers and advancing public 
health outcomes globally.
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