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Background: The rising global epidemic of metabolic dysfunction-associated
steatotic liver disease (MASLD), coupled with the urgent need for sustainable
food systems, highlights the importance of dietary approaches that support both
human well-being and environmental resilience. This research examined the
correlation between compliance with the Planetary Health Diet Index (PHDI) and
MASLD.

Methods: A multi-level analytical framework was adopted to investigate the
association between the PHDI and MASLD. At the country level, we applied
generalized additive mixed models (GAMMs) to longitudinal data from the
Global Dietary Database (GDD) and the Global Burden of Disease (GBD)
study (1990-2018) to assess dynamic temporal trends. For individual-level
analyses, multivariable regression models were used with data from the National
Health and Nutrition Examination Survey (NHANES), adjusting for potential
confounding variables.

Results: From 1990 to 2018, PHDI scores exhibited variation across
demographic subgroups. Progressive improvements were observed among
older adults (> 75 years), urban residents, and higher-educated groups. Notably,
women consistently demonstrated higher adherence than men. The GAMMs
analysis indicated a non-linear association between country-level PHDI and
incidence of MASLD, exhibiting a U-shaped partial effect curve. After adjusting
for confounders, the protective association reached its maximum at a PHDI of
50.69. In contrast, individual-level analyses revealed a linear inverse relationship
between PHDI and MASLD.

Conclusion: This study integrated global and individual-level data to elucidate
the association between PHDI and MASLD, revealing reduced adherence
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among specific sociodemographic groups. These findings underscored the
necessity of targeted public health interventions and further longitudinal
research to establish causal relationships and develop culturally adapted
implementation strategies.

KEYWORDS

planetary health diet index, metabolic dysfunction-associated steatotic liver disease,
Global Burden of Disease, Global Dietary Database, National Health and Nutrition

Examination Survey

1 Introduction

The Planetary Health Diet Index (PHDI) is a quantitative tool
designed to operationalize the dietary framework proposed by the
EAT-Lancet Commission on Healthy Diets from Sustainable Food
Systems (1). This reference diet is specifically formulated to support
human health while ensuring that food production remains within
planetary ecological limits. The PHDI evaluates adherence across
14 key food groups and nutrients. It encourages high consumption
of fruits, vegetables, whole grains, legumes, nuts, and unsaturated
oils, while strongly discouraging the intake of red meat, processed
foods, added sugar, and starchy vegetables such as potatoes (2,
3). Higher PHDI scores reflect greater alignment with this dual
framework of health and sustainability.

Research has indicated that following the PHDI is significantly
linked to a lower risk of major chronic diseases in prospective
cohort studies. Higher PHDI scores have been consistently linked
to lower rates of cardiovascular disease (CVD) (4, 5), type 2
diabetes (T2DM) (6), colorectal cancer (7), and all-cause mortality
(8). These protective effects are attributed to the synergistic
components of the diet: high fiber, antioxidants, and unsaturated
fats that promote cardiometabolic health, combined with limited
intake of saturated fats, sodium, and refined carbohydrates
that help reduce inflammation and metabolic dysfunction—key
mechanisms in the development of chronic diseases (9-12).

Metabolic  dysfunction-associated steatotic liver disease
(MASLD), which affected approximately 30% of adults worldwide
(13), is a significant metabolic disorder whose prevalence mirrors
the increasing prevalence of obesity and T2DM. The progression
of MASLD can lead to severe complications, including cirrhosis,
hepatocellular carcinoma (HCC), and heightened cardiovascular
mortality (14, 15). Currently, no pharmacotherapies are approved
for the treatment of MASLD, making lifestyle interventions—
particularly dietary changes—the primary approach to its
management (16, 17). Well-established dietary patterns that
protect against MASLD, such as the Mediterranean diet (MEDI)
and the Dietary Approaches to Stop Hypertension (DASH),
share key principles with the PHDI. These include prioritizing
plant-based foods, healthy fats, and minimizing intake of processed
sugar, refined grains, and red meat (18).

Despite the PHDI's structural similarity to MASLD-preventive
diets and its demonstrated benefits for related cardiometabolic
conditions (CVD, T2DM), its specific relationship with the risk of
MASLD has not been sufficiently explored. Therefore, this research
seeks to investigate this critical research gap by examining the
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association between PHDI adherence and MASLD incorporating
multi-level evidence—both at the global population level and the
individual level. Our objective is to generate robust evidence to
inform dietary guidelines that simultaneously promote metabolic
liver health and environmental sustainability.

Materials and methods

2.1 Data sources

2.1.1 Global Burden of Disease database

Data on MASLD epidemiology and population statistics were
sourced from the Global Health Data Exchange (GHDx). The
dataset covered 204 countries and territories from 1990 to 2018,
broken down by sex (male/female) and 5-year age groups (15 sex
(male/. .., > 95 years). GBD 2021 offered a global analysis of 371
diseases, 288 mortality causes, and 88 risk factors (19).

2.1.2 Global Dietary Database

To assess potential dietary determinants of MASLD patterns,
we analyzed data from the GDD 2018 (20). The GDD compiled
nationally representative dietary surveys from 185 countries
(1990-2018) using a Bayesian hierarchical modeling approach.
Standardized dietary tools, including 24-h recalls and food
frequency questionnaires, were used to collect data (21). Intakes
were categorized by age, sex, education, and residence (22). To
ensure demographic consistency with the GBD data, our analysis
was limited to individuals aged 15 years and older. Age-specific
energy intake guidelines established limits of 2000 kcal/day for
individuals aged 15-74 and 1700 kcal/day for those aged 75 and
older (23).

2.1.3 National Health and Nutrition Examination
Survey

Individual-level data were sourced from the NHANES,
administered by the National Center for Health Statistics (NCHS)
under the Centers for Disease Control and Prevention (CDC).
As a cross-sectional study, NHANES evaluates the health and
nutritional status of the non-institutionalized civilian population
in the United States through in-person interviews and medical
examinations carried out in mobile examination centers. We
analyzed data from 10 NHANES cycles (1999-2000 through 2017-
2018), culminating in a final analytical cohort of 7,758 participants.
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Following NHANES analytical guidelines, the study incorporated
sample weights, pseudo-primary sampling units (sdmvpsu), and
pseudostrata (sdmvstra) to adjust for the complex, stratified,
multistage sampling methodology. Sample weights were computed
as 1/5 x WTSAF4YR for the combined 1999-2002 cycles and
1/10 x WTSAF2YR for the 2003-2018 cycles.

2.2 Dietary assessment

The PHDI assessed intake levels of 14 food groups within
the GDD: whole fruits, whole grains, nuts and seeds, non-starchy
vegetables, legumes and soy food, unsaturated oils, fish, starchy
vegetables, dairy, eggs, red and processed meat, poultry, saturated
oils, and added sugar (2, 3). Each component received a score
ranging from 0 to 10 points, indicating the extent to which the
recommended intake guidelines were followed. Dietary data were
adjusted to a standard energy intake of 2,500 kcal/day through the
residual method. Due to the absence of poultry intake data in the
GDD, the maximum attainable PHDI score for the global analysis
). For the US-
specific analysis using NHANES data, a modified version of the
index—PHDI-US—was developed, incorporating two additional

was capped at 130 points (

metrics related to vegetable diversity: the proportion of dark green
and red/orange vegetables. This adaptation expanded the index to
16 components, with each of the two proportion-based metrics
scored from 0 to 5, resulting in a maximum total score of 150
points ( ). The adapted PHDI-US has been
validated in US populations and demonstrates closer alignment
with the EAT-Lancet dietary guidelines (24, 25).

2.3 Metabolic dysfunction-associated
steatotic liver disease defintion

Global MASLD incidence data were drawn from GBD
2021 estimates generated by DisMod-MR 2.1, a Bayesian meta-
regression method applied consistently across all regions and
). Within the NHANES dataset, MASLD
status was determined using the US Fatty Liver Index (US-
FLI), calculated as follows: US-FLI = (¢’)/(1 + ¢’) x 100,
where y = -0.8073 x Non-Hispanic Black + 0.3458 x Mexican
American + 0.0093 x age + 0.6151 x In(GGT) + 0.0249 x waist
circumference + 1.1792 x In(insulin) + 0.8242 x In(glucose) —

time periods (26,

14.7812. Ethnicity variables were dichotomized (1 = yes, 0 = no).
Individuals with a US-FLI score of 30 or higher were categorized
as having MASLD, if they had negative viral hepatitis test results
and did not consume excessive amounts of alcohol, defined as more
than 2 drinks per day for men and 1 drink per day for women

(28, 29).

2.4 Covariates

Within the global analysis investigating the link between
national PHDI levels and the incidence of MASLD, adjustments
were restricted to age, sex, year, and population due to data
limitations. For the individual-level analysis within NHANES,
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covariates included age, sex, race, marital status, education, family
income, smoking, alcohol use, BMI, physical activity, hypertension,
and diabetes. Race was classified into the following categories:
Mexican American, Other Hispanic, Non-Hispanic White, Non-
Hispanic Black, and Other Race. Educational attainment was
divided into three levels: less than high school, high school
graduate or equivalent, and beyond high school (30). Family
income was classified using the Poverty Income Ratio (PIR) into
three levels: low (< 1.3), medium (1.3-3.5), and high (> 3.5).
Smoking and alcohol use were based on behavioral history,
while hypertension and diabetes were determined by self-reported
physician diagnosis. Physical activity was assessed through the
calculation of the weekly duration of occupational, household,
leisure, and commuting activities, with results reported in MET-
min/week (31).

2.5 Statistical analysis

We examined global temporal trends in the PHDI from
1990 to 2018 across various demographic strata, investigating
their associations with MASLD incidence using both cross-
sectional and longitudinal analytical approaches. In the 2018 cross-
sectional analysis, population-weighted bubble plots with LOESS
smoothing (95% ClIs) were employed to visualize country-level
relationships (32, 33). For longitudinal analyses, we constructed
three hierarchical models using generalized additive mixed
modeling (GAMM): (1) a linear mixed model including fixed
effects for PHDI, sex, age, population, and year, along with random
location intercepts; (2) a semiparametric model that combined
linear PHDI effects with non-linear cubic regression splines for age,
population, and year; and (3) a fully non-linear model extending
spline terms to all continuous predictors. The GAMM framework
was chosen to model complex non-linear relationships and account
for the hierarchical structure of our longitudinal global data. It
captures temporal trends flexibly without restrictive parametric
assumptions and handles spatial clustering through location-level
random effects (34). All models incorporated analytic weights
based on population size and were fitted using restricted maximum
likelihood (REML) estimation with computational acceleration
techniques. Spatial clustering was accounted for through random
intercepts at the location level, and year variables were median-
centered to enhance interpretability. Model selection was based
on comparisons of Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIC), and the percentage of deviance
explained. Non-linear effects were formally tested using spline-
specific p-values.

The NHANES data described using weighted
means =+ standard deviation (SD) for continuous variables,

were

while categorical variables were presented using unweighted
counts and weighted percentages. To investigate the connection
between PHDI and MASLD, survey-weighted logistic regression
was employed, with results expressed as odds ratios (ORs) and
95% confidence intervals (CIs). Additionally, a restricted cubic
spline (RCS) regression model incorporating four knots located at
the 5th, 35th, 65th, and 95th percentiles was applied within fully
adjusted models to assess potential non-linear associations. All
statistical analyses and graphical representations were conducted
using R software (version 4.2.2).
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3.1 Demographic trends in PHDI

Between 1990 and 2018, the PHDI demonstrated divergent

temporal trends across various demographic subgroups
( ). Specifically, individuals aged 75 years
and older exhibited a consistent upward trajectory in PHDI
scores over time, whereas younger age groups did not display
statistically significant changes. Urban populations experienced a
significant annual increase of 0.206 (P = 0.007), in contrast to rural
populations, which showed a significant annual decline of —0.239
(P =0.008). Educational attainment was a key determinant of these
trends; individuals with more than 12 years of education exhibited
an annual increase of 0.45 (P < 0.001), while no notable changes
were observed among individuals with lower levels of education.
Furthermore, females consistently achieved higher PHDI scores
than males across all demographic categories, and this gender
difference remained stable across age groups, education levels, and

residential settings.

3.2 Geographical and dietary
composition disparities in PHDI

In 2018, PHDI scores demonstrated considerable global
variation ( ; ). The Democratic
Socialist Republic of Sri Lanka achieved the highest score
(69.01), followed by the Independent State of Samoa (68.25)
and the Republic of Serbia (64.26). In contrast, the Republic of
Iceland recorded the lowest PHDI score (26.95), with similarly
low values observed in the Kingdom of Sweden (30.45) and
the Lao People’s Democratic Republic (31.52). An analysis of
individual dietary component scores revealed that non-starchy
vegetables and unsaturated oils were the highest-performing food
groups, whereas red and processed meat, eggs, saturated oils, and
added sugar received significantly lower scores (

)-

3.3 Association between PHDI and
incidence of MASLD

presented the connection between the PHDI and the
incidence of MASLD in 2018. Initial LOESS regression analysis
indicated no significant non-linear trends. Among the three
competing models, the fully non-linear GAM exhibited the best
performance, with a BIC of 733,584.43 and explaining 33.1% of the
deviance. This model outperformed both the semiparametric GAM
(BIC = 734,407.89) and the linear mixed model (BIC = 739,833.44),
as summarized in . The analysis identified a significant
sexual dimorphism, with females demonstrating a substantially
lower MASLD incidence (§ = -91.581, P < 0.001). All smooth
terms displayed statistically significant non-linear associations
(P < 0.001), as detailed in , particularly revealing a U-shaped
relationship between PHDI and MASLD incidence. Within most
of the PHDI range (scores 44.77-58.95), incidence rates remained
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below the population-average level, with the strongest protective
effect observed at a PHDI score of 50.69 (partial effect = -50.75),
as illustrated in

3.4 NHANES analysis

Participant selection followed the flow chart detailed in

. The NHANES cohort had a mean

weighted age of 49.67 years, with 54.22% of participants identifying

). Higher PHDI scores were
significantly associated with lower risk of MASLD in

as female (

Specifically, for every one-point increase in PHDI score, there
was a 1.1% decrease in risk for MASLD in the fully adjusted
model (95% CI: 0.982-0.995; P < 0.001). When stratified by
quartiles, individuals in the top quartile (Q4) demonstrated a 37.3%
reduced likelihood of developing MASLD in comparison to those
in the bottom quartile (Q1) (95% CI: 0.488-0.805; P < 0.001).
Furthermore, RCS analysis did not detect any statistically
significant non-linear associations (P for non-linearity > 0.05)

( ).

This study presented a comprehensive evaluation of PHDI
and its association with MASLD using a multi-level analytical
framework. The findings provided robust evidence in support of
dietary interventions that simultaneously promote human health
and planetary sustainability, while advancing the mechanistic
understanding of sustainable dietary patterns.

Demographic analyses revealed significantly higher adherence
to the PHDI among women, older adults, urban populations, and
individuals with higher educational attainment. These differences
could be attributed to a range of sociobehavioral and economic
factors. Gender differences were associated with women’s greater
health awareness and primary responsibility for food preparation,
). Although
men showed slightly higher fish consumption, their significantly

resulting in higher vegetable consumption (35,

greater intake of red meat may counteract potential health
benefits through pro-inflammatory effects, while also increasing
). Higher PHDI scores in older adults
were largely driven by economic benefits greater intake -based

cardiometabolic risks (37,

food consumption can save up to 21% in costs. Plant-predominant
diets also provided anti-inflammatory effects through polyphenols
and dietary fiber, offering dual advantages for both affordability
and health (39,
inequities: urban populations had superior access to diverse and

). Urban-rural disparities reflected structural

high-quality foods, whereas rural diets frequently lacked essential
PHDI components such as nuts and legumes (41). The role of
education extended beyond nutritional knowledge; it influenced
intentional and sustainable food choices. Individuals with higher
education demonstrated a stronger commitment to reducing meat
consumption (42-44). These findings underscored the necessity
of demographically tailored interventions. Key strategies should
include enhancing nutrition education programs specifically
designed for men, improving both physical and economic access
to diverse plant-based foods in rural areas, and implementing
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FIGURE 1

Distribution of PHDI scores among populations aged 15 years or older in 185 countries, 2018.
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FIGURE 2

Associations between PHDI and incidence of MASLD among populations aged 15 years or older, 2018.
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TABLE 1 Statistical modeling of PHDI and incidence of MASLD.

Model Type | AIC ’ BIC Deviance
explained (%)

Linear 739772.59 739833.44 22.67

Semiparametric 734268.85 734407.89 31.78

Full non-linear 733419.29 733584.43 33.10

AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.

subsidy initiatives to increase the affordability of healthy plant-
based options for elderly and low-income populations.

This study extended prior evidence (30) on the association
between PHDI and MASLD through a multilevel analytical
framework. The U.S. analysis confirmed a robust linear inverse
association through the application of adapted methodologies
(PHDI-US and US-FLI), thereby reinforcing the clinical
relevance of earlier NHANES-based evidence. These findings
align with international evidence: Iran’s RaNCD cohort reported
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TABLE 2 Mixed-effect modeling results for PHDI and
incidence of MASLD.

Variables

(Intercept) Parametric | 636.127 8.968 - < 0.001
Sex (female) Parametric | —91.581 2.649 - < 0.001
s(PHDI) Smooth - - 3978 | <0.001
s(age) Smooth - - 3.992 < 0.001
s(population) | Smooth - - 4.970 < 0.001
s(year) Smooth - - 1.971 < 0.001
Country Random - - 0.993 < 0.001

Fixed effects are presented as parametric coefficients () with standard errors (SE). Smooth
terms [denoted as s(variable)] represent non-linear relationships, with effective degrees of
freedom (EDF) indicating function complexity (EDF = 1 indicates linearity).

an association between greater compliance with plant-based
dietary patterns and a lower likelihood of hepatic fibrosis (45).
Similarly, the UK Biobank study found that optimal plant-based
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FIGURE 3

PHDI Score

Partial effects of PHDI on the incidence of MASLD within the generalized additive mixed model (GAMM).

50 75

TABLE 3 Associations between PHDI and MASLD.

Variables Model 12 Model 2° Model 3¢
OR (95% ClI) OR (95% ClI) OR (95% ClI)
PHDI 0.983(0.978, 0.988) <0.001 0.978(0.973, 0.984) <0.001 0.989(0.982, 0.995) <0.001
PHDI
T1 Ref Ref Ref
T2 0.863(0.732, 1.017) 0.078 0.743(0.619, 0.893) 0.002 0.690(0.532, 0.895) 0.006
T3 0.816(0.693, 0.961) 0.015 0.710(0.599, 0.842) <0.001 0.805(0.643, 1.009) 0.060
T4 0.541(0.455, 0.644) <0.001 0.452(0.373, 0.547) <0.001 0.627(0.488, 0.805) <0.001
Trend test < 0.001 <0.001 0.002

2Model 1: Adjusted for no covariates. ®Model 2: Adjusted for age, gender, race, marital status, PIR and education. “Model 3: Further adjusted BMI, MET, smoking, alcohol use,

hypertension, diabetes.

dietary patterns were associated with a lower incidence of MASLD
and reduced hepatic fat content, whereas unhealthy plant-based
patterns were linked to higher risks (46). Notably, longitudinal
analysis of global data demonstrated a non-linear association
between PHDI and incidence of MASLD, characterized by a
U-shaped partial effect curve, with the protective effect peaking at
a PHDI value of 50.69. This pattern was ecological in nature and
did not reflect individual-level risk. In contrast, NHANES analyses
revealed a linear inverse association among U.S. adults, providing
more direct individual-level evidence. This divergence arose from
key methodological and contextual differences. Methodologically,

Frontiers in Nutrition 06

the analyses differed in their dietary assessment tools, index
composition, and capacity for confounder adjustment. These
methodological variations, combined with contextual differences
between globally heterogeneous dietary patterns and the relatively
homogeneous U.S. dietary environment, collectively accounted
for the distinct association patterns observed across analytical
levels. The U-shaped relationship could be further elucidated by
examining dietary quality across the PHDI spectrum. At lower
PHDI levels, as was seen in nations with traditional animal-based
diets or those reliant on refined carbohydrates, diets were deficient
in protective plant compounds, leaving the liver more exposed

frontiersin.org
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Restricted cubic spline (RCS) analysis of the non-linear association between PHDI and risk of MASLD

to pro-inflammatory and lipogenic insults (46-48). Conversely,
very high PHDI scores in certain low-income countries reflected
nutritionally inadequate “passive” plant-based diets that were
driven by economic constraints rather than intentional, health-
promoting food choices (49, 50). These findings collectively
underscored that the association between PHDI and MASLD was
modulated by dietary quality and contextual factors. The observed
optimal PHDI score suggested that maximal protection against
MASLD was achieved not through extreme adherence to plant-
based diets, but at a balanced level of dietary intake. This finding
supported the prioritization of high-quality, diverse plant-based
dietary patterns as measurable targets for public health policy.
Consequently, the study indicated that public health strategies
should aim not only to promote plant-based eating, but also to
enhance overall diet quality and diversity. The analysis highlighted
that implementation must be context-specific: in high-income
countries, efforts should focus on shifting consumption patterns,
whereas in low-income settings, policies needed to address
nutrient inadequacies associated with monotonous, economically
constrained plant-based diets. Ultimately, this work demonstrated
that the alignment of human and planetary health depended
on balanced dietary optimization rather than the pursuit of
dietary extremes.

At a mechanistic level, the biological pathways potentially
underlying the associations observed at both country and

Frontiers in

individual levels involve synergistic interactions among three
key classes of bioactive plant compounds. Polyphenols found in
fruits and vegetables reduce oxidative stress through free radical
scavenging, inhibit NF-kB-mediated inflammatory signaling,
and activate Nrf2-dependent antioxidant defenses (51). Dietary
fibers from whole grains and legumes are fermented by gut
microbiota into butyrate, which strengthens the intestinal barrier
to attenuate LPS-TLR4-driven inflammation, suppresses excessive
immune responses via regulatory T-cell activation, inhibits
pro-inflammatory macrophages, enhances insulin signaling
through GLP-1 secretion, and exerts direct hepatoprotective
anti-inflammatory effects. Meanwhile, unsaturated fats abundant
in nuts and seeds activate PPARa to promote mitochondrial
p-oxidation and inhibit SREBP-lc-dependent lipogenesis (52—

). This synergistic network operates through three central
mechanisms—enhanced antioxidant defense, improved gut-liver
axis function, and metabolic reprograming—that collectively
reduce hepatic lipid accumulation, alleviate insulin resistance,
and interrupt the inflammatory-fibrotic cascade driving MASLD
progression (55).

Traditional dietary patterns, such as the Mediterranean, DASH,
and HEI-2015 diets, share common goals with the PHDI—
promoting consumption of fruits, vegetables, and whole grains
while limiting added sugars and saturated fats (56). However,

in contrast to the Mediterranean diet, which permits moderate
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consumption of fish and dairy, or the DASH diet, which
includes lean meats, the PHDI introduces a paradigm shift by
integrating environmental sustainability principles. This innovative
approach sets stringent thresholds: red meat intake is limited
to 14 g/day (equivalent to one thin slice of beef), starchy
vegetables and added sugars are tightly regulated, and both
planetary ecological boundaries and human health outcomes
are addressed simultaneously. However, the implementation of
this unified framework encounters the challenge of reconciling
global standards with local settings, including misalignment
with traditional dietary patterns and economic barriers in low-
income regions (57, 58). This highlights a central paradox:
reconciling global standards with local realities. Future strategies
should therefore develop localized adaptations, not rigidly apply
universal metrics.

This study had several limitations. First, the observational
design, which included both aggregated national-level data from
the GBD/GDD and individual-level data from NHANES, did not
permit definitive causal inference. Therefore, future longitudinal
studies were needed to confirm the causal association between
PHDI adherence and MASLD risk. Second, the NHANES-based
analysis demonstrated a strong linear inverse association in the
U.S. population, but these findings may not be generalizable to
populations with different dietary patterns and socioeconomic
contexts. Future validation in diverse international cohorts was
recommended. Third, in the global analysis, data quality varied
across countries, and statistical adjustments were restricted to
age, sex, population, and year due to limited availability of
covariate data. As a result, key confounders, such as obesity
prevalence, physical activity levels, socioeconomic status, and
the prevalence of underlying conditions including hypertension
and diabetes, were not adjusted for, potentially affecting the
observed associations. Fourth, the GDD database exhibited
notable coverage gaps, particularly the absence of poultry
consumption data and insufficient differentiation between non-
soy legumes and soy-based food items, which might have
introduced measurement bias into PHDI calculations. Finally, at
the individual level, the analysis relied on self-reported dietary
intake, which was prone to recall bias, and used the US-FLI
as a proxy for MASLD diagnosis, a method that might have
entailed misclassification bias relative to imaging or histology-
based diagnostic criteria.

5 Conclusion

This study employed a multi-level analytical framework
to evaluate the association between the PHDI and MASLD,
demonstrating that greater adherence was significantly associated
with a lower disease risk. Notably, the identified protective
threshold of PHDI, together with the linear negative association
observed in PHDI-US, collectively indicated that the relationship
between PHDI and MASLD was complex and potentially
modulated by socioeconomic and cultural dietary contexts. These
findings provided empirical support for integrating liver health
objectives into sustainable dietary guidelines. Future longitudinal
studies are warranted to confirm the causal nature of this
association and to elucidate the hepatoprotective effects of the
planetary health diet.
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