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This study aimed to evaluate the impact of bioactive-based edible coatings
on the shelf life of tomatoes. Bioactive compounds were extracted from
rice and wheat straw. Different concentrations of phenolic extracts (0.2–1.0
g/mL) were blended with 1% chitosan and applied to fresh tomatoes stored at
28 ◦C and 74%−84% relative humidity (RH) for 30 days. Periodic evaluations
revealed that tomatoes coated with 1.0 g/mL extract of rice and wheat straw
coatings were highly effective in maintaining tomato quality as compared to
controls. Tomatoes coated with 1.0 g/mL extract of wheat straw exhibited the
most favorable results, including delayed weight loss (1.29%), slowed ripening,
reduced pH levels, and lower lycopene (2.79 mg/100 g) and beta-carotene (0.62
mg/100 g) contents as compared to those coated with coatings containing
rice straw extracts. Additionally, wheat straw extract-coated tomatoes had the
lowest disease incidence (2%) after 30 days, as compared to 100% incidence in
control samples. Overall, using edible coatings enriched with rice and wheat
straw extracts presents a promising approach to extending the shelf life of
tomatoes while preserving their nutritional value, inhibiting microbial growth,
and offering a more sustainable and eco-friendlier alternative to conventional
packaging methods.
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Highlights

• Wheat straw extract (1.0 g/mL) coating reduced weight loss to 1.29 % and minimized
ripening in tomatoes during 30 days of storage.

• Coated tomatoes retained lower lycopene (2.79 mg/100 g) and beta-carotene (0.62
mg/100 g), indicating better nutritional preservation.
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GRAPHICAL ABSTRACT

• Edible coatings enriched with bioactive compounds from
rice and wheat straw extracts were successfully developed,
offering an eco-friendly solution for extending the shelf life
of tomatoes.

• Tomatoes coated with a higher concentration of bioactive
extracts showed significantly lower disease occurrence and
severity compared to control samples.

1 Introduction

Currently, agriculture faces the dual challenge of meeting the
increasing global demand for food production while adopting
sustainable practices to minimize waste generated from agricultural
activities. Over the past 50 years, the global population has
increased from 3.7 billion to 7.9 billion and is projected to reach
8.6 billion by 2030, 9.8 billion by 2050, and 11.2 billion by 2100,
according to a United Nations report (1). This rapid population
growth has driven the need for increased agricultural output,
which, in turn, has resulted in the generation of sustainable
amounts of agricultural waste (2). Such waste contains valuable
polyphenolic compounds, including flavonoids, tannins, phenolic
acids, and anthocyanins, which offer potential for reuse in
sustainable technologies such as edible coatings and films. Utilizing
these compounds presents a promising solution for extending the
shelf life and maintaining the quality of fruits and vegetables during
postharvest storage. In recent times, consumers have become more
worried about their food habits, rejecting products with additives
and giving preference to fresh ones. Therefore, there is a dire
need to develop a biodegradable edible coating for prolonging the
shelf life of fruits and vegetables and preserving the nutritional
quality of the fruit by minimizing the degradation of vitamins and
antioxidants, potentially making them a sustainable alternative to
traditional packaging methods.

Tomato (Solanum lycopersicum L.) is one of the most widely
cultivated and significant crops, ranking second only to potatoes
in annual global production (3). Despite being a rich source of

vitamins and antioxidants, tomatoes are highly perishable, with
a typical shelf life of 4 to 8 days at room temperature. Their
rapid spoilage is primarily due to pathogenic infections, leading
to significant postharvest losses (4, 5). Traditional packaging
materials, such as polyethylene and polyvinyl chloride, have been
widely used to mitigate these losses (6). However, these non-
biodegradable materials pose significant environmental challenges,
prompting increased interest in sustainable alternatives (7).
Recently, biodegradable packaging materials have gained attention
for their eco-friendly characteristics (8, 9). Edible coatings,
composed of materials classified as Generally Recognized as Safe
(GRAS), offer a promising solution for extending the shelf life
of perishable produce (10). Among these, edible films, primarily
composed of proteins or polysaccharides, have emerged as a
promising solution, with polysaccharide-based packaging materials
receiving particular focus (11–13). Among polysaccharide-based
coatings, chitosan stands out for its favorable properties, including
film-forming ability, biodegradability, antimicrobial activity, and
antioxidant capacity (14, 15). However, its limitations, such
as water sensitivity and poor mechanical strength, necessitate
the incorporation of bioactive compounds such as polyphenols
and compatible plasticizers to overcome this limitation by
increasing the free volume and molecular mobility within the
amorphous polymer matrix, thereby reducing intermolecular
hydrogen bonding interactions and improving film flexibility (16,
17).

Agricultural wastes such as rice straw and wheat straw are
rich in phenolic compounds with antioxidant and antimicrobial
properties. Utilizing these extracts in chitosan-based films can
reduce respiration rates, limit oxidative damage, and inhibit
microbial growth, making them highly effective for extending the
shelf life of tomatoes (18). Considering the present issue of the short
shelf life of tomato fruits, this study aimed to develop and evaluate
chitosan-based edible coatings enriched with phenolic extracts
from agricultural waste to improve the postharvest quality and shelf
life of Hisar Arun tomatoes, providing a sustainable alternative to
conventional preservation methods. The objective of this study was
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to analyze the physiochemical (physiological loss, color, firmness,
pH, and titrable acidity) and nutritional (ascorbic acid, lycopene,
and β-carotene content) parameters of tomato during different
intervals of storage.

2 Material and methods

2.1 Materials

Agricultural waste, such as rice straw and wheat straw, was
collected from fields of CCS Haryana Agricultural University,
Hisar, Haryana, India. All chemicals used in the study were of
analytical grade and purchased from Thermo Scientific (Rockford,
IL, USA). Fresh fruits of tomato (Hisar Arun) at the light red stage
of ripening were procured from the farm of the Department of
Vegetable Sciences, CCS Haryana Agricultural University, Hisar
(Haryana) at 11:00 a.m. and transported in perforated plastic crates
under ambient field temperature conditions (∼30 ◦C).

2.2 Methods

Dried powder of rice and wheat straw was pretreated with
NaOH (1.5%) and 5% H2SO4 at 90 ◦C with continuous stirring
for 2 h as described by Kim and Han (78). Ultrasound-assisted
extraction (UAE) (Vibra CellTM VCX750, Sonics & Materials,
Inc., Newtown, CT, USA) was used for extraction of bioactive
compounds from pretreated rice and wheat straw using 80%
methanol as a solvent under ultrasonic field conditions at
40 ◦C for 55 min (maintaining the sample in an ice bath to
prevent heating), using 750 W power, 20 kHz frequency, and 50%
sonication amplitude. The solvent was further removed using a
rotary evaporator (86, 89). The extracted bioactive compounds
were dehydrated using anhydrous sodium sulfate and stored at 4 ◦C
until further use.

2.2.1 Preparation bioactive compound-based
coating solution

To prepare the chitosan solution, 1% chitosan was dissolved
in a 0.5% aqueous citric acid solution to enhance solubility. The
solution was homogenized at 10,000 rpm for 10 min and stirred
continuously for 60 min at room temperature (25 ± 2 ◦C) using a
magnetic stirrer (Accumax, Neuation, iStir HP 10M). Next, 5 mL of
rice straw (RS) and wheat straw (WS) extracts, with concentrations
of 0.2 g/mL, 0.4 g/mL, 0.6 g/mL, 0.8 g/mL, and 1.0 g/mL (Table 1),
along with 1 % glycerol as a plasticizer, were added to the prepared
chitosan solution. This mixture was stirred for another 60 min at
room temperature (25 ± 2 ◦C). The resulting solution was then
used to prepare an edible coating.

2.2.2 Coating of bioactive-based film on Hisar
Arun tomatoes

Uniform-sized tomatoes were selected for coating. Initially,
tomatoes were rinsed with sodium hypochlorite solution (50 ppm)
for 1 min; excess sodium hypochlorite was removed by rinsing

TABLE 1 Formulation of chitosan-based edible coating enriched with
phenolic extract.

Coating formulations Chitosan
mL (v/v)

Phenolic extract
(5%) (v/v)

Control 0 0

RS1 95 0.2 g/mL

RS2 95 0.4 g/mL

RS3 95 0.6 g/mL

RS4 95 0.8 g/mL

RS5 95 1.0 g/mL

WS1 95 0.2 g/mL

WS2 95 0.4 g/mL

WS3 95 0.6 g/mL

WS4 95 0.8 g/mL

WS5 95 1.0 g/mL

RS, rice straw; WS, wheat straw.

with distilled water. The fruits were coated using the immersion
method as described by Mhd Haniffa et al. (19). A total of 10
formulations were prepared using rice and wheat straw extracts at
concentrations of 0.2, 0.4, 0.6, 0.8, and 1.0 g/mL, along with an
uncoated control (C), all maintained at room temperature (25 ±
2 ◦C). Three tomatoes per sample were used, and each treatment
was conducted in three replications during the experiment. Fresh
tomatoes were dipped into the coating solution for 1 min, allowed
to drain, and air-dried at room temperature to remove excess
coating. This process was repeated three times. The tomatoes were
then allowed to dry at 25 ◦C, forming a thin-film coating (Figure 1).
After drying, they were placed in polypropylene plastic covers and
stored at room temperature. The coated tomatoes were weighed
and stored at 25 ± 2 ◦C and 75 ± 5% relative humidity (RH) for
30 days.

2.3 Effect of coating on physicochemical
parameters of tomatoes during the storage
period

Various physicochemical parameters were analyzed during
storage at 25 ± 2 ◦C and 75 ± 5% RH. Fruit weight loss,
color, firmness, pH, and titrable acidity were analyzed at intervals,
specifically on days 0, 7, 15, and 30. In addition, the incidence and
severity of diseases were assessed on days 15 and 30 of storage to
monitor the development of postharvest diseases.

2.3.1 Weight loss
Tomato samples (three fruit per replication) were weighed at

day 0 and the end of days 7, 15, and 30 of storage. The difference
between the initial and final weight of the fruit was considered
as total weight loss during the storage interval and calculated as
percentages on a fresh weight basis by the standard (74) method.
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FIGURE 1

Schematic representation of bioactive compound-based coating on tomato.

The results were reported as a weight loss percentage using the
following formula:

% Weight loss = Initial weight − Final weight
Initial weight

× 100

2.3.2 Change in fruit firmness
The firmness of Hisar Arun tomatoes was evaluated using

a handheld fruit pressure tester penetrometer (model BGS - 25
Make Biogen Scientific), equipped with a cylindrical plunger of
8 mm diameter and a firmness scale of 13 kg cm−2. To ensure
accurate measurements, firmness was assessed on both sides of
the equatorial region of each fruit. A total of three tomatoes were
tested, with four random measurements taken on each tomato.
The firmness of two tomatoes per treatment was measured, and it
was expressed in kg cm−2. The average of these measurements was
recorded and expressed in units of kg cm?².

2.3.3 Change in color and hue angle
The change in color of treated and untreated tomato samples

was evaluated using a high-quality colorimeter (BCM-200). The
L∗, a∗, b∗ color spaces were employed to evaluate the impact of
coatings on color change. The following parameters were recorded:
L∗ value (lightness), ranging from 0 (black) to 100 (white); an a∗

value ranging from negative (green) to positive (red); and b∗ value
ranging from negative (blue) to positive (yellow). The color of
tomatoes on day 0 was used as the reference point, and subsequent
color changes were compared to this baseline. To ensure accurate
and representative color measurements, multiple surface readings

were taken from each sample by randomly repositioning the tomato
fruits (20). To obtain the real color change during storage, a∗ and
b∗ values were evaluated to calculate the hue angle value using the
following equation (21):

Hue0 = arctg
b
∗

a∗

where Hue0 = 0 represents purple red, 900 represents yellow, 1800

represents green–blue, 2700 represents blue.

2.3.4 Change in pH
Initially, the fresh tomatoes were juiced using an electric juicer,

and then the resulting liquid was filtered through filter paper to
remove any solids. The pH of the filtered tomato juice was then
measured using a digital pH meter (Eutech, pH 700, Thermo Fisher
Scientific) at storage intervals of 0, 7, 15, and 30 days to monitor
changes over time. Each sample was analyzed in triplicate.

2.3.5 Change in titrable acidity
The change in total acidity of tomato pulp during storage was

determined using titration with 0.1 N NaOH, according to the
method described by Ranganna (22). A total of 5 g of fruit pulp was
macerated in 5 mL of distilled water, and the mixture was diluted to
100 mL with distilled water. The solution was thoroughly shaken
and filtered through Whatman No. 1 filter paper to remove any
solids. An aliquot of 20 mL filtrate was titrated with 0.1 N NaOH
using 1% phenolphthalein as the indicator, and the endpoint was
noted by the appearance of a stable pink color. The acidity of the
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sample was calculated based on the volume of NaOH used and
expressed as a percentage (%).

Acidity (%) = Titre vol. (mL) × Normality of alkali × eq. wt. of acid × vol. made (mL) × 100
Vol. of aliquot (mL) × Wt. of volume of sample (g) × 1000

2.4 Effect of coating on the composition of
bioactive compounds of tomatoes during
storage

2.4.1 Change in lycopene content
One gram of fresh tomato fruit was extracted twice with 10 mL

of an acetone:n-hexane mixture (4:6 ratio). To facilitate extraction,
the mixture was allowed to stand in an ice bath for 10 min,
followed by centrifugation at 1,370 × g for 10 min. The supernatant
was then separated using a separating funnel. The absorbance of
the hydrophobic fraction was measured spectrophotometrically
at wavelengths of 663, 645, 505, and 453 nm using a UV Vis
spectrophotometer (Thermo ScientificTM GENESYSTM series, 180),
with acetone as a blank (72). Three replicates were performed for
each fruit sample. The lycopene concentration was quantified using
the equation proposed by Nagata and Yamashita (23):

[Lycopene (mg/100 mL) = −0.0458 A663 + 0.204 A645

+0.372 A505 − 0.0806 A453]

2.4.2 Change in β-carotene contents
The concentration of beta-carotene was determined using a

colorimetric assay developed by Biswas et al. (24). A total of 500 mg
of dried fresh tomato fruits was extracted twice with 5 mL of chilled
acetone. The mixture was allowed to stand in an ice bath for 15 min
with shaking and then mixed vigorously for 10 min. Subsequently,
the mixture was centrifuged at 1,370× g for 10 min. The resulting
supernatants were collected and filtered using Whatman No. 1
filter paper, and their absorbance was measured at wavelengths 663,
645, 505, and 453 nm using a UV-Vis spectrophotometer (Thermo
ScientificTM GENESYSTM series, 180). Each sample was analyzed
in triplicate. The beta-carotene content was calculated using the
following equation:

[β − carotene (mg/100 mL) = −0.216 A663 + 1.22 A645

−0.304 A505 + 0.452 A453]

2.4.3 Change in ascorbic acid
The ascorbic acid content was determined using the method of

Mukherjee and Choudhuri (25), which was based on the reduction
of 2,4-dinitrophenyl hydrazine. A 0.1 mL aliquot of the sample was
properly diluted and then mixed with 1.9 mL distilled water, 1 mL
2,4-dinitrophenyl hydrazine (2%), and a drop of 10% thiourea.
The mixture was thoroughly mixed and kept in a boiling water
bath for 15 min. After boiling, the mixture was cooled at room
temperature, and the absorbance was measured at 530 nm using
a UV-Vis spectrophotometer (Thermo ScientificTM GENESYSTM

series, 180). The quantity of ascorbic acid was determined by

comparing the absorbance reading to a standard curve of ascorbic
acid, using concentrations ranging from 10 to 100 μg.

2.5 Disease incidence (DI)

The proportion of tomatoes affected by diseases is referred to as
disease incidence. DI was determined as a percentage of fruit having
symptoms of diseases such as dots and rots in each batch of storage
(5). The percentage of disease incidence of tomatoes was calculated
by using the following formula

Disease incidence (DI) = number of tomatoes infected
total number of tomatoes

× 100

2.6 Disease severity

Tomato disease severity (DS) was assessed following the
method described by Mohamed et al. (26). The severity scale is
used as follows: 0 = 0% (no visible symptoms); 1 = 1%−25%
(fruit surface slightly necrotic spots and fungal mycelia); 2 =
26%−50% (fruit covered by necrotic spots and fungal mycelia); 3 =
51%−75% (presence of spore mass); and 4 = >75% (fruit appears
soft and decayed).

2.7 Statistical analysis

The experimental data were statistically analyzed using analysis
of variance techniques (ANOVA), using Duncan’s multiple range
test following the completely randomized design (CRD) method
with the OPSTAT software available on the CCS HAU homepage
(http://www.opstat.somee.com/). To visualize the results, heatmap
and contour maps of representative data were constructed using
R 2019 [3.3.2 (64-bit)] and Origin 2018 (64-bit) software.
These analytical tools facilitated a more precise presentation and
interpretation of the data by elucidating underlying patterns and
variations within the results (82).

3 Results and discussion

3.1 Effect of coating on physiological
weight loss of tomatoes

The percentage of weight loss during storage was affected by the
maturity stage and biological variances of fruits (5). The different
concentrations of extract used in coating treatments significantly
affect the loss of weight of tomatoes over the 30 days of storage.
Tables 2, 3 show the average weight loss of control and treated
tomatoes with different concentrations of rice straw extract and
wheat straw extract. After 30 days of storage, the percentage of
weight loss was maximum in the control as compared to the treated
samples. The minimum weight loss was observed in tomatoes
treated with WS5. The RS5-treated sample exhibited physiological
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TABLE 2 Physiological loss of weight (%) of tomato using different
concentrations of rice straw extract (RS).

Treatments Physiological loss of weight (%)

Days after treatment

7 15 30

Control 2.31 ± 0.102d 3.62 ± 0.116e 5.42 ± 0.035f

RS1 2.19 ± 0.055d 3.23 ± 0.045d 5.11 ± 0.065e

RS2 1.86 ± 0.050c 2.53 ± 0.061cd 4.19 ± 0.047de

RS3 1.23 ± 0.075b 2.46 ± 0.051c 3.87 ± 0.031c

RS4 1.02 ± 0.032b 1.79 ± 0.026b 3.11 ± 0.025b

RS5 0.43 ± 0.099a 1.09 ± 0.041a 1.79 ± 0.038a

C.D @5% 0.24 0.20 0.15

RS, rice straw.
Values are mean ± standard deviation (n = 3) by a one-way ANOVA with Duncan’s multiple
range test (a, b, c, d, e, and f superscripts showed significant differences).

TABLE 3 Physiological loss of weight (%) of tomato using different
concentrations of wheat straw extract (WSE).

Treatment Physiological loss of weight (%)

Days after treatment

7 15 30

Control 2.31 ± 0.11f 3.62 ± 0.12e 5.42 ± 0.03ef

WS1 2.03 ± 0.04e 2.76 ± 0.14d 4.76 ± 0.08e

WS2 1.52 ± 0.06de 2.23 ± 0.04bc 4.03 ± 0.08d

WS3 1.18 ± 0.02c 2.19 ± 0.05b 3.52 ± 0.06cd

WS4 0.83 ± 0.09b 1.22 ± 0.07ab 2.86 ± 0.03b

WS5 0.26 ± 0.03a 1.02 ± 0.03a 1.29 ± 0.09a

C.D @5% 0.21 0.29 0.17

WS, wheat straw.
Values are mean ± standard deviation (n = 3) using a one-way ANOVA with Duncan’s
multiple range test (a, b, c, d, e, and f superscripts showed significant differences).

losses of 0.43%, 1.09%, and 1.79% at 7, 15, and 30 days of storage,
respectively, while the WS5-treated sample showed losses of 0.26%,
1.02%, and 1.29% over the same period. Jiang and Li (27) reported
that 2% chitosan coating resulted in minimal weight loss in longan
fruit. A notable difference was observed with the coating of rice and
wheat straw extract. Das et al. (28) recorded a 3.53% reduction in
weight loss in tomatoes coated with rice starch and coconut oil-
based edible coating enriched with tea leaf extract compared to the
uncoated fruits during storage at 24 ◦C for 20 days, demonstrating
the moisture barrier properties of lipid-based edible coatings.

Similarly, the color change in the contour map of tomatoes
(Figure 2) depicts the change in physiological loss in weight (%) of
treated and control samples of tomatoes during the storage period.
Initially, on day 0, there was no change in physiological weight as
indicated by the dark blue. As the storage period increased, a change
in color was observed from blue to red. The red color indicates the
maximum reduction in weight.

The incorporation of chitosan with different concentrations
of phenolic extract affects the structural integrity of the coating,
potentially increasing the number of pores through which moisture

may be more readily lost (29, 30). Weight loss in fresh produce
is a critical indicator of postharvest life, as it directly reflects the
extent of water loss, respiration, and overall quality degradation. In
this study, the storage environment and concentration of extract
significantly influenced the transpiration and respiration rates of
Hisar Arun tomato fruits, directly impacting their overall quality.

Similar results were observed in previous studies that indicated
coatings of biopolymers on pepper (31), beeswax on carrot (80),
carvacrol on tomatoes (85), cassava starch and citrus pectin on
mango (75), tara gum and lipid on strawberry (83), and whey
protein with oregano extract on guava (77) reduce the rate of
respiration, delay senescence, and reduce the loss of texture and
overall extend the shelf life of fruits and vegetables.

3.2 Effect of coating on firmness of
tomatoes

On day 0 of storage, control and treated tomatoes exhibited
similar firmness values, which gradually decreased over 7, 15, and
30 days, as shown in Figures 3, 4. Tomatoes treated with varying
concentrations of RS and WS extract coating solution consistently
showed significantly (p ≤ 0.05) higher firmness values as compared
to the control samples. Out of all the treated tomatoes, WS5-
coated tomatoes showed higher firmness values as compared to
those coated with RS5. During storage, the fruit firmness gradually
decreases due to metabolic and physiological processes, including
the activity of the polygalacturonase enzyme, which contributes to
cell wall softening (32).

A similar mechanism for firmness retention was reported by
Donjio et al. (88) in tomatoes coated with pineapple peel extract
and Arabic gum, which was attributed to the antioxidants present
in the pineapple peel extract. In addition, coating materials act
as semipermeable barriers that modify the internal atmosphere
by reducing oxygen levels and increasing carbon dioxide levels,
thereby slowing biochemical reactions and contributing to the
preservation of fruit firmness during storage (33). The findings of
the present study are consistent with those of Kumar et al. (34), who
observed that tomatoes coated with a chitosan–pullulan composite
edible coating enriched with pomegranate peel extract maintained
higher firmness than the uncoated control during storage at 23 ◦C
for 15 days. The coatings were effective in regulating the respiration
rate of the products during postharvest storage, which, in turn,
slowed down the ripening process and helped maintain fruit
firmness (35). The firmness of fruits is primarily influenced by two
key factors: the structural integrity of the cell wall and the turgor
pressure within the fruit cells (36). Similarly, the coating of extract
of aloe vera and sodium alginate increases the fruit firmness of
strawberry during storage (76). A similar study by Tilahun (37)
showed that mature green fruits have higher firmness values than
those at the fully ripe stage. Fruit firmness typically declines when
cell wall integrity is compromised or turgor pressure decreases.
In contrast, the minimum water loss was observed in tomatoes
treated with RS and WS extracts, i.e., this helped to preserve the
cell wall integrity and maintain higher turgor pressure, ultimately
leading to improved firmness of fruits (33). By minimizing water
loss, the bioactive edible coating played a crucial role in maintaining
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FIGURE 2

Contour map on physiological loss of weight (%) of control and treated tomatoes with different concentrations of rice straw (A) and wheat straw (B)
extract.

FIGURE 3

Change in fruit firmness of tomatoes during storage with coating of rice straw (RS) extract in different concentrations and uncoated tomatoes [values
are mean ± standard deviation (n = 3)].

the structural integrity of the fruit, resulting in a more stable and
firmer texture.

3.3 Effect of coating on pH of tomatoes

The observed variation in pH among the treated and untreated
samples of tomatoes could be attributed to differences in metabolic
processes and their interactions with the applied coating materials,
which may influence the rate of respiration and biochemical
activities in the fruit, leading to a change in pH. As shown in
Figures 5, 6, a significant (p ≤ 0.05) difference in pH values was
observed among the stored tomato samples. The lowest pH values,

5.5 and 5.8, were recorded in WS5- and RS5-treated samples
after 30 days of storage, whereas the highest pH value, 6.9, was
obtained in the control sample of tomatoes. This suggests that the
coating materials had a significant impact on the pH levels of the
tomatoes, with the WS5 and RS5 treatments resulting in a more
acidic environment.

A decrease in pH values may be associated with an increase
in the titrable acidity of the tomato fruits, potentially resulting
from a lowered respiration rate that slows down the breakdown
and consumption of organic acids during storage (27). As a result,
the organic acids accumulate, leading to a decrease in pH values
and an increase in titrable acidity. Several studies have reported
that as tomato fruits transition from the mature-green stage to
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FIGURE 4

Change in fruit firmness of tomatoes during storage with coating of wheat straw (WS) extract in different concentrations and uncoated tomatoes
[values are mean ± standard deviation (n = 3)].

FIGURE 5

Change in pH of tomatoes during storage with coating of rice straw (RS) extract in different concentrations and uncoated tomatoes [values are mean
± standard deviation (n = 3)].

FIGURE 6

Change in pH of tomatoes during storage with coating of wheat straw (WS) extract in different concentrations and uncoated tomatoes [values are
mean ± standard deviation (n = 3)].
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full ripeness, their pH tends to increase due to the degradation
of organic acids during the ripening process (38, 39, 79). Ribeiro-
Santos et al. (40) reported a slight increase in pH (from 4.62 to 5.77)
in tomatoes coated with cassava starch–chitosan coatings enriched
with Lippia sidoides essential oils and pomegranate peel extract
during storage at 25 ◦C for 12 days, compared to the uncoated
control. The pH results of the present study are also consistent with
those of Firdous et al. (41), who observed a slight increase from 4.98
to 5.00 in tomatoes coated with 80% aloe vera gel and 2% calcium
chloride after 30 days of storage. Fruits coated with chitosan have
exhibited lower acidity loss, and similar observations were also
found in previous studies conducted on strawberry (42, 84), guava
and litchi (43), and capsicum (73).

3.4 Change in titrable acidity (TA) of
tomatoes during storage

The titrable acidity of tomatoes was significantly affected by the
different concentrations of extract during the storage for 30 days.
The titrable acidity of the untreated or control sample of tomatoes
was significantly (p < 0.05) decreased from 0.62 to 0.30 during the
30 days of storage, but in the treated samples, the titrable acidity was
consistently decreased during the storage days. The RS5-treated
samples showed a minimum (0.46) decrease in titrable acidity,
followed by RS4 (0.41) and RS3 (0.39) (Figure 7). Similarly, the
WS5-treated sample showed a minimum (0.45) decrease in titrable
acidity, followed by WS4 (0.43) and WS3 (0.40) (Figure 8).

A higher loss of titrable acidity in tomatoes is often associated
with increased respiration and ripening rates, as organic acids are
utilized as substrates in the respiration process (44). Adjouman
et al. (45) reported a significant delay in titrable acidity (TA)
changes in tomatoes coated with cassava starch-based composite
edible coatings compared to both uncoated fruits and those
coated with commercial SemperfreshTM. Moreover, another study
by Saliba-Colombani et al. (46) had shown that total sugars
were positively correlated to pH and titrable acidity. Additionally,
studies have found a positive correlation between total sugars and
pH/titrable acidity, indicating that fruits with higher sugar content
tend to have more free organic acids and lower hydrogen ion
concentrations. This suggests that fruits with higher sugar content
may have a more acidic pH. Furthermore, it has been observed
that titrable acidity content generally decreases during ripening
and storage (47). However, maintaining higher fruit acidity is
beneficial, as it can reduce the incidence of fungal infection (48).
Similar results were also reported by Tigist et al. (87), who observed
a general trend of increasing ascorbic acid content during the
early ripening stages, followed by a decline at full ripeness of
tomatoes. Likewise, Ali et al. (90) found that papaya fruits coated
with chitosan exhibited a slower initial increase in ascorbic acid
compared to uncoated fruits.

3.5 Effect of coating on color of tomatoes

The bioactive coating formed a thin, homogeneous,
semipermeable membrane on the surface of the tomato skin,
facilitating controlled gas exchange. Throughout the experimental

storage period, noticeable changes were observed in the L∗, a∗,
and b∗ values of all the tomato samples. The L∗ values remained
stable until the ripening stage, indicating that brightness remained
constant, while the tomatoes were green. The L∗ gradually
decreased progressively with increasing storage time of untreated
and treated tomato samples. However, this decrease was slower
for tomatoes treated with 1.0 g/mL phenolic extract of rice straw
and wheat straw as compared to untreated samples. After 15
days of storage, tomatoes treated with RS5 and WS5 maintained
significantly higher chroma values compared to other treated and
control tomatoes, indicating better color retention. However, the
color was significantly (p < 0.05) changed in uncoated samples
as compared to the treated samples of tomatoes. The values were
sharply decreased in the control after the 7th day of storage, as
compared to the treated samples of tomatoes. The hue angle
remained stable in RS2-, RS3-, RS4-, and RS5-treated samples up
to 15 days (Figure 9), followed by a slight decrease thereafter. A
similar pattern was observed in tomatoes treated with wheat straw
extract (Figure 10). This reduction was attributed to the formation
of a thick, continuous coating that covered the epidermal openings
and modified the internal atmosphere, leading to elevated carbon
dioxide and reduced oxygen levels (49).

According to Paul et al. (49), tomatoes coated with 2.15%
chitosan and 0.05% glycerol exhibited a reduced respiration rate
of 21.21 ± 0.06 mg CO2 kg−1 h−1 and a DE of 2.31 ± 0.01
during storage. This reduction was attributed to the formation of a
thick and continuous coating that covered the epidermal openings,
thereby modifying the internal atmosphere by increasing carbon
dioxide levels and reducing oxygen availability.

3.6 Effect of coating on lycopene content
of tomatoes during storage

The lycopene content of tomatoes varied with the ripening
stages, and similar variations were observed in the experimental
setup. Ripeness is characterized by a decline in chlorophyll
concentration and a rapid production of red pigment lycopene.
On day 30 of storage, the lycopene content of control tomato
samples during their ripening stage was 2 mg/100 g. In contrast, the
lycopene content of rice straw-coated samples (RS1, RS2, RS3, RS4,
and RS5) was 2.67, 2.87, 3.00, 3.01, and 2.81 mg/100 g, respectively.
For wheat straw extract-coated samples (WS1, WS2, WS3, WS4,
and WS5, the lycopene content was 2.50, 2.89, 2.80, 3.01, and 2.79
mg/100 g, respectively. Both treated and control tomatoes showed
a consistent rise in lycopene content until the 15 days of storage,
followed by a gradual decline. However, tomatoes treated with
wheat straw extract exhibited a steady increase in lycopene content
throughout the entire 30-day storage period. The earlier increase
in lycopene content in tomato fruits may be due to the faster
ripening, which facilitates the accumulation of lycopene. During
this process, lycopene integrates into the internal cell membranes,
and the conversion of chloroplasts into chromoplasts occurs (81).
Figures 11 and 12 illustrate the changes in lycopene content for
tomatoes treated with varying concentrations of rice straw and
wheat straw extracts over the 30-day storage period.

Javanmardi and Kubota (50) reported that temperature range
and respiration rate are the major factors influencing lycopene
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FIGURE 7

Change in titrable acidity of tomatoes as a function of storage time for coated tomatoes with rice straw (RS) extract in different concentrations (RS1:
0.2, RS2: 0.4, RS3: 0.6, RS4: 0.8, and RS5-1%) and uncoated tomatoes (control) [values are mean ± standard deviation (n = 3)].

FIGURE 8

Change in titrable acidity of tomatoes as a function of storage time for coated tomatoes with wheat straw (WS) extract in different concentrations
(WS1: 0.2, WS2: 0.4, WS3: 0.6, WS4: 0.8, and WS5: 1%) and uncoated tomatoes (control) [values are mean ± standard deviation (n = 3)].

FIGURE 9

Effect of coating of rice straw (RS) extract on the hue angle of tomatoes during storage.

Frontiers in Nutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2025.1673029
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yadav et al. 10.3389/fnut.2025.1673029

FIGURE 10

Effect of coating of wheat straw (WS) extract on the hue angle of tomato fruit during storage.

FIGURE 11

Effect of coating of rice straw extract on lycopene content of tomatoes during storage (RS1: 0.2, RS2: 0.4, RS3: 0.6, RS4: 0.8, and RS5: 1%) [values are
mean ± standard deviation (n = 3)].

FIGURE 12

Effect of coating of wheat straw extract on lycopene content of tomatoes during storage (WS1: 0.2, WS2: 0.4, WS3: 0.6, WS4: 0.8, and WS5-1%)
[values are mean ± standard deviation (n = 3)].

synthesis in tomatoes during storage. Ali et al. (51) reported that
lycopene content generally increased with the storage time in both
treated and control fruits. However, tomatoes treated with high
concentrations of gum arabic (15% and 20 %) exhibited the lowest
lycopene levels, even after 20 days of storage. Furthermore, it has
been noted that the rate of transpiration during storage significantly

influences lycopene synthesis (50). Coatings reduce respiration
by limiting oxygen exposure. After 15 days, lycopene content in
red-ripe fruits was 0.95, 0.59, and 0.62 mg/100 g, for control,
chitosan, and pectin-coated samples, respectively (52). Ripening-
related pigment changes are characterized by the conversion of
chloroplasts into chromoplasts, leading to a rapid accumulation
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of carotenoids, particularly lycopene, and a concurrent decline
in chlorophyll content (53). These transformations underline
the dynamic changes in tomato pigmentation during ripening
and storage.

3.7 Effect of coating on β-carotene content
of tomatoes during storage

The production of β-carotene was significantly (p ≤ 0.05)
higher in the untreated or control sample of tomatoes as compared
to the treated tomato samples stored for 30 days. Control, RS1-
, RS2-, RS3-, RS4-, and RS5-treated samples showed 0.33, 0.34,
0.32, 0.31, 0.36, and 0.31 mg/100 g beta-carotene content on day
0 after coating. For untreated samples of tomatoes, the content
was increased to 1.36 mg/100g after 30 days of storage, whereas
in treated samples, it consistently was increased to 1.32, 1.03,
0.81, 0.73, and 0.63 for RS1, RS2, RS3, RS4, and RS5, respectively
(Figure 13). Similarly, in the WS5-treated tomatoes, minimum
beta-carotene content (0.62 mg/100 g) was observed at 30 days of
storage, followed by WS4- and WS3-treated tomatoes (Figure 14).

The ripening process in tomatoes is primarily characterized
by the production and accumulation of pigments, particularly
carotenoids such as lycopene (54, 55). This study proposed that a
higher concentration of bioactive compounds in the coating can act
as a barrier to ethylene gas and slow down the ripening process. As a
result, the control samples might exhibit higher beta-carotene levels
than the treated tomato samples.

3.8 Effect of coating on ascorbic acid
content of tomatoes during storage

At the start of the experiment, the ascorbic acid content in
the control tomato samples was 29.14 mg/100 g, which rapidly
decreased to 16.11 mg/100 g after 30 days of storage. In contrast,
tomatoes treated with varying concentrations of rice straw and
wheat straw extracts exhibited a more gradual reduction in ascorbic
acid content over the same period. Figures 15 and 16 illustrate
the effect of these bioactive coatings on the ascorbic acid levels of
tomatoes during storage. Among the treated samples, the minimum
reduction in ascorbic acid content was observed in RS4- and
RS5-treated tomatoes, followed by RS3 and RS2. A similar trend
was noted in tomatoes treated with wheat straw extract, with
higher concentration treatments (WS4 and WS5) showing the most
significant retention of ascorbic acid content.

This demonstrates that the bioactive coatings from rice and
wheat straw extracts effectively slow the degradation of ascorbic
acid, preserving the nutritional quality of the tomatoes during
storage. Bioactive coatings from rice and wheat straw extracts
help preserve ascorbic acid in tomatoes by forming semipermeable
barriers that reduce oxygen diffusion and respiration, thereby
slowing oxidative degradation (52). The phenolic compounds
present in these extracts further scavenge reactive oxygen species
and inhibit oxidative enzymes, stabilizing the ascorbate pool
(33, 71). In addition, reduced transpiration maintains tissue
integrity, which contributes to slower vitamin C loss during

storage (56, 57). The observed pattern aligns with general
trends, where fruits and vegetables experience ascorbic acid
depletion with prolonged storage and higher temperatures
(58, 59). Similar reductions in ascorbic acid content during
storage have been reported in bananas (60), tomatoes (61), and
kiwifruit (62).

3.9 Diseases incidence in tomatoes during
the storage period

A significant difference was observed in the frequency of
disease occurrence in tomato fruits throughout the storage period.
The coating application postponed the rate of firmness loss by
preserving the integrity of the cell wall. Moreover, the coating could
lower the rate of ethylene synthesis and the metabolic pathway
of respiration (63). When these circumstances come together,
cell walls may be better able to withstand fungal invasion (64).
Figures 17A, B illustrate that disease incidence in tomato fruits
was significantly influenced by the different coating treatments of
rice and wheat straw extract. Coated tomatoes exhibited a marked
reduction in disease occurrence compared to untreated control
fruits. The control sample of tomatoes showed a 90% incidence of
disease after 30 days of storage, while the RS5- and WS5-treated
samples showed lowest disease incidence. This demonstrates the
effectiveness of the coatings in mitigating disease progression
during storage.

3.10 Disease severity in tomatoes during
storage

The impact of different coatings on the disease severity of
tomatoes during storage of 15 and 30 days is shown in Figure 18.
No diseases were observed in the treated tomato sample on the 7th
day of storage, whereas the untreated or control samples exhibited
rot on the 7th day. On 15 days of storage, control samples showed a
disease severity of 2, while tomatoes treated with rice straw extract
coatings—RS1, RS2, RS3, RS4, and RS5—exhibited disease severity
levels of 2, 1, 1, 1, and 0, respectively. On day 30, tomatoes treated
with RS4 and RS3 had disease severity levels of 1 and 0, respectively.
Similarly, tomatoes treated with wheat straw extract (WS)—WS1,
WS2, WS3, WS4, and WS5—displayed disease severity levels of 3,
3, 3, 2, and 0, respectively.

The bioactive coatings significantly enhanced the cellular and
tissue integrity of fresh tomatoes, reducing their susceptibility to
pathogenic infections (64). This protective effect was particularly
evident as the tomatoes approached senescence, a process that the
coatings helped to delay.

3.11 Shelf life of tomatoes

After harvesting, the time taken by fruits to begin deteriorating
is considered their shelf life (65). The lowest shelf life of 10
days recorded for uncoated fruits was likely due to accelerated
physiological changes and metabolic activities, including increased
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FIGURE 13

Effect of coating of rice straw extract on β-carotene content of tomatoes during storage (RS1: 0.2, RS2: 0.4, RS3: 0.6, RS4: 0.8, and RS5: 1%) [values
are mean ± standard deviation (n = 3)].

FIGURE 14

Effect of coating of wheat straw extract on β-carotene content of tomatoes during storage (WS1: 0.2, WS2: 0.4, WS3: 0.6, WS4: 0.8, and WS5: 1%)
[values are mean ± standard deviation (n = 3)].

FIGURE 15

Effect of coating of rice straw extract on ascorbic acid content of tomatoes during storage (RS1: 0.2, RS2: 0.4, RS3: 0.6, RS4: 0.8, and RS5-1%) [values
are mean ± standard deviation (n = 3)].

respiration and ethylene biosynthesis during storage, which led to
fruit senescence (66, 67). At the senescence stage, fruits become
more susceptible to microbial infections because of the loss of

cellular and tissue integrity, resulting in rapid deterioration (68).
In contrast, fruits coated with formulations of 1.0% extracts of rice
and wheat straw exhibited a marked extension of shelf life by 17 and
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FIGURE 16

Effect of coating of wheat straw extract on ascorbic acid content of tomatoes during storage (WS1: 0.2, WS2: 0.4, WS3: 0.6, WS4: 0.8, and WS5-1%)
[values are mean ± standard deviation (n = 3)].

17FIGURE

Effect of coating of rice straw (A) and wheat straw (B) extract on disease incidence of tomatoes during storage of 15 and 30 days (RS, rice straw; WS,
wheat straw).

15 days, respectively, at 25 ± 2 ◦C and 75 ± 5% RH. This extension
can be attributed to the coatings’ ability to reduce respiration rate,
ethylene production, physiological changes, microbial decay, and
senescence. Extending the shelf life of tomatoes offers significant

economic benefits by reducing postharvest losses, enabling wider
market access, improving retail efficiency, increasing revenue,
enhancing consumer satisfaction, and promoting sustainability.
Collectively, these advantages contribute to a stronger and
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FIGURE 18

Effect of coating on disease severity of tomatoes during storage of 15 and 30 days (RS, rice straw; WS, wheat straw).

more efficient supply chain, benefiting all stakeholders involved
(52, 69, 70).

4 Conclusion

This study demonstrated that bioactive coatings enriched
with rice and wheat straw extracts significantly influenced the
postharvest quality and shelf life of tomatoes. The coatings
formed a thin, semipermeable membrane on the tomato
surface, effectively reducing weight loss, preserving firmness,
and delaying color changes during storage. Tomatoes treated
with higher concentrations of RS and WS extracts, particularly
RS4, RS5, WS4, and WS5, exhibited improved preservation
of physicochemical properties, including ascorbic acid and
lycopene content. These bioactive compounds contributed to
the antioxidant and antimicrobial properties of the coatings,
which enhanced the cellular and tissue integrity of the fruits
and reduced disease incidence and severity during storage.
The results also indicated that while the coatings slowed down
ripening processes, overconcentration of bioactive compounds
could decrease film flexibility, potentially reducing coating
efficacy. Despite this, RS5- and WS5-treated tomatoes maintained
superior quality compared to control samples, exhibiting
reduced disease severity and better retention of chroma and
firmness over 30 days of storage. These findings suggest that the
application of bioactive coatings derived from agricultural waste
extracts (rice straw and wheat straw) offers a sustainable and
effective solution for extending the shelf life and maintaining
the postharvest quality of fresh tomatoes. This approach not
only adds value to agricultural byproducts but also provides
an eco-friendly alternative for reducing postharvest losses in
fruits. Transforming waste from straw into food packaging can
offer two significant advantages: (i) decreased environmental
impact and lower disposal costs associated with both plastic
packaging and agricultural waste and (ii) extended shelf life for

food and reduced food waste. Additional research is needed to
evaluate the effectiveness of bioactive packaging in preserving
the quality of various food product categories under different
storage conditions.
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