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Background: Chronic inflammation from obesogenic diets (OBD) disrupts lipid 
metabolism and contributes to non-communicable metabolic diseases. Exercise 
is a non-drug intervention that reduces inflammatory metabolic diseases by 
improving lipid metabolism. However, there are research gaps in understanding 
how the lipid metabolites are altered by exercise under an OBD.
Methods: Two-month-old male C57BL/6 J mice were fed a control (CON diet-
Standard Lab Chaw-3.4%w/w Teklad Global #2918) or OBD for 10 months, then 
assigned to sedentary (Sed) or exercise (Exe) groups for 2 weeks. This study 
aims to examine changes in lipid metabolites in plasma, tissues, and feces of 
mice using untargeted liquid chromatography/mass spectrometry (LC/MS). 
Echocardiography was used to assess the impact of OBD on heart function.
Results: A total of 363 lipid molecular species were identified and characterized 
in the murine samples by retention time behavior and MS/MS spectral 
annotation. Multivariate analysis showed a distinct group separation between 
CON and OBD groups in both Sed and Exe groups. Phospholipids acylated 
with docosahexaenoic acid (DHA) are the key metabolites responsible for 
group separation in tissues and plasma, whereas in feces, glycerolipids, mainly 
monoacylglycerols. Lysophosphatidylethanolamine (LPE 22:5) was significantly 
upregulated in the liver, plasma, and left ventricle of the OBD mice in both 
Sed and Exe groups, contradictorily DHA containing phosphatidylglycerol [PG 
(22:6/22:6)] was significantly downregulated. Exercise modestly modulated the 
lipid profile under OBD, lowering plasma ceramides and partially reversing lipid 
alterations in feces. Interestingly, exercise combined with a control diet led to 
an increase in gut-microbiota-derived short-chain fatty acid esters of hydroxy 
fatty acids.
Conclusion: Chronic OBD induces distinct lipid alterations across multiple 
biological compartments. Short-term exercise provides modest improvements, 
with stronger benefits when combined with a balanced diet.
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1 Introduction

Acute physiological Inflammation is the biological response to 
harmful stimuli, such as pathogens or tissue injury, serving as a 
defense mechanism to promote healing and restore homeostasis (1). 
However, if this response persists over time, it leads to a prolonged 
presence of immune system cells, leading to chronic or unresolved 
inflammation (2). Chronic inflammation is known to play a key role 
in non-communicable diseases (NCDs), such as obesity, type 2 
diabetes, cardiovascular disease, cancer, autoimmune, and 
neurodegenerative disorders (3). Evidence shows that lifestyle factors, 
such as inactivity, stress, lack of sleep (night shift), and diets rich in 
saturated fats, sugars, and ultra-processed foods, known as obesogenic 
diets (OBD), play a significant role in promoting inflammation (4). 
This inflammation contributes to increased fat accumulation, insulin 
resistance, and a chronic, low-grade inflammatory condition that 
raises the risk of metabolic disorders and organ damage over time (5). 
Physical exercise, recognized as a nonpharmacological therapy, is 
effective against the risk of chronic inflammatory diseases, including 
cardiometabolic disorders, cancer, and neurodegenerative diseases (6). 
Studies have shown that exercise can lower pro-inflammatory 
eicosanoids, cytokines such as TNF-α and IL-6, and activate anti-
inflammatory pathways, often regardless of weight loss (7).

Studies have explored the detrimental impact of obesogenic 
inflammatory diets on organ-specific inflammation and metabolic 
dysfunction. Intake of an obesogenic diet regularly disrupts gut 
microbial diversity by shifting communities toward Firmicutes, 
Proteobacteria, and Tenericutes, and increasing the Firmicutes/
Bacteroidetes ratio (8–10). This imbalance weakens epithelial tight 
junctions, leading to increased intestinal permeability. In obese and 
diabetic mouse models, such dietary patterns increase intestinal 
permeability, leading to metabolic endotoxemia and sustained 
low-grade inflammation (11). A murine study on an OBD 
demonstrated that it induced hepatic inflammation, as evidenced 
by elevated liver enzymes (ALT, AST) and proinflammatory 
markers (CCR2, TNF-α, and IL-1β), and disrupted the ω-6 and ω-3 
fatty acid balance (12). A study on the effect of diet on cardiac 
health used quantitative proteomics to demonstrate that prolonged 
high-fat feeding changes the protein networks in the mouse heart. 
These changes affect oxidative stress, apoptosis, and inflammatory 
pathways, suggesting that diet-induced lipotoxicity contributes to 
early cardiovascular damage (13). Feng et al. showed that high-fat 
diets increase splenic TNF-α levels and boost TLR4 and NF-κB 
transcripts, while moderate treadmill exercise restores these to 
normal responses (14). Recent studies on mouse models fed OBD 
reveal that voluntary exercise helps restore resolution mediators 
like Docosahexaenoic acid (DHA) and Eicosapentaenoic acid 
(EPA) in the heart and spleen, decreases pro-inflammatory lipid 
mediators, and enhances immune regulation (7). Research 
consistently shows that an obesogenic diet is a key factor in systemic 
inflammation, disrupting metabolic and immune balance across 
multiple organs and contributing to chronic disease development 
(15, 16).

Lipids are biologically active molecules that function as energy 
sources, structural elements of membranes, and key players in 
signaling pathways related to inflammation and immune responses 
(17). Lipid-derived mediators from polyunsaturated fatty acids, such 
as prostaglandins, leukotrienes, and specialized resolving mediators 
(SPMs), are essential for initiating and resolving inflammation (18, 
19). Disruptions in lipid metabolism can interfere with these signaling 
pathways and promote the development of inflammatory diseases 
(20). Therefore, studying the lipid profile is essential, as it offers 
valuable insights into the disease mechanisms. Thus, lipidomic 
profiling has become a valuable method for studying how lipids 
regulate inflammation and for discovering potential biomarkers and 
targets for therapy (21). This study investigated the impact of a 
two-week voluntary wheel running exercise on lipid alterations after 
long-term exposure to an OBD, which reflects dietary patterns rich in 
ultra-processed foods and is commonly linked to chronic 
inflammation. Using an untargeted lipidomics approach, 
we comprehensively profiled lipid alterations across plasma, feces, and 
multiple organs. This study design allowed us to capture systemic and 
tissue-specific lipid remodeling in response to both prolonged OBD 
feeding and subsequent exercise intervention. The significance of this 
study is that while long-term OBD consumption induces lipid 
imbalance in a tissue-dependent manner, a short, two-week period of 
low-intensity voluntary wheel running induces only modest changes 
in lipid composition. These findings suggest that brief volunteer slow-
paced physical activity might be inadequate to reverse lipidomic and 
inflammatory changes caused by prolonged dietary stress.

2 Materials and methods

2.1 Animal care compliance

All animal experiments were conducted in strict accordance with 
the “Guide for the Care and Use of Laboratory Animals” (8th Edition, 
2011) and the AVMA Guidelines for the Euthanasia of Animals (2013 
Edition) The protocols were reviewed and approved (approval number 
7371R) by the Institutional Animal Care and Use Committees at the 
University of South Florida, Tampa, Florida (7).

2.2 Study design and diet intervention

Male C57BL/6 J mice (2 months old) were purchased from 
Jackson Laboratory and divided into two diet groups: control (CON-
3.4% fat (10% safflower oil), Teklad #2918) and obesogenic (OBD-10% 
safflower oil, Research Diets #D11102001), providing 18 and 22 kcal, 
respectively. Detailed composition of the diet is given in 
Supplementary Table S1. Each group was further split into sedentary 
(Sed) and exercise (Exe) subgroups. The exercise groups underwent 
2 weeks of voluntary wheel running. Mice were euthanized under 
anesthesia at ZT15 to minimize the biological variation linked to the 
circadian rhythm cycle (7). Then the liver, LV, spleen, feces, and 
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plasma samples were collected and subjected to untargeted lipidomics 
as shown in Figure 1A.

2.3 Transthoracic speckle tracking 
echocardiography and necropsy

Echocardiography and necropsy were performed similarly to our 
previous study (7). In brief, echocardiography was conducted in a 
blinded manner using a Vevo 3,100 system with an MX400 probe 
under 1.5% isoflurane anesthesia at 37 °C, maintaining heart rates of 
400–550 beats/min. Following echocardiography, mice were sacrificed 
at ZT = 15 under 3–5% isoflurane in oxygen following intraperitoneal 
heparin (4 IU/g) administration. Blood was collected from the carotid 
artery, and the LV (left ventricle), RV (right ventricle), lungs, and 
spleen were collected, weighed, and snap-frozen at −80 °C for 
biochemical and molecular analysis.

2.4 Chemicals and reagents

Mobile phase and extraction solvents of LC/MS grade, including 
methanol, chloroform, isopropanol, and ammonium acetate, were 
purchased from Wako Pure Chemical Industries, Ltd. in Osaka, Japan. 
Oleic acid-d9 and EquiSPLASH lipidomix were acquired from Avanti 
Polar Lipids located in Alabaster, AL, United States.

2.5 Lipid extraction

Total lipid extraction from samples, including the left ventricle, 
spleen, liver, feces, and plasma, was conducted using the Folch method 
with minor modifications as established earlier in our laboratory (22). 

Deep-frozen tissue samples were weighed, ice-cold methanol was added 
(100 μL /10 mg) and homogenized using a Bead Mill 4 (Fisherbrand) 
for two cycles of 30 s. Next, exactly 100 μL of the methanol homogenate 
was transferred into a 1.5 mL Eppendorf tube for further extractions. In 
the case of plasma samples, 50 μL of plasma was directly extracted by 
the addition of 100 μL of methanol. In both tissues and plasma,100 μL 
of the premixed EquiSPLASH lipidomix (1 μg/mL) and oleic acid-d9 
(10 μg/mL) of internal standard in methanol was added and vortexed 
for 30 s at 3500 rpm at room temperature. Following this, 400 μL of 
chloroform and 100 μL of milli-Q water were added, then vortexed for 
5 min at 3500 rpm. The mixture was centrifuged at 15,000 rpm for 
10 min at 4 °C, and the organic layer was transferred to a new 
Eppendorf tube. The residue was re-extracted with an additional 400 μL 
of chloroform. The combined organic extracts were dried under a 
vacuum at 4 °C, redissolved in 100 μL of methanol, and transferred to 
LC vials. 10 μL of each sample was injected into the LC/MS.

2.6 Lipidomic analysis by HPLC/
LTQ-Orbitrap MS

Untargeted lipidomics was conducted using high-performance 
liquid chromatography (HPLC) based on the LC-20 AD UFLC system 
(Shimadzu Corp., Kyoto, Japan) coupled with Orbitrap LTQ XL 
(Thermo-Fisher Scientific Inc., San Jose, CA) mass spectrometry. Lipid 
separation was achieved using an Atlantis T3 C18 column 
(2.1 mm × 150 mm, 3 μM, Waters, Milford, MA). The HPLC system 
consists of three mobile phase solvents: solvent A is 10 mM ammonium 
acetate, solvent B is isopropyl alcohol, and solvent C is methanol. The 
elution gradient follows the same protocol as our previous research for 
both negative and positive modes (22). Mass spectrometric analysis 
was conducted using an Orbitrap LTQ XL instrument (Thermo-Fisher 
Scientific Inc., San Jose) in both positive and negative ionization 

FIGURE 1

(A) Study design strategy for lipidomics analysis of diet and exercise relationship. (B) Representative left-ventricular (LV) short-axis B-mode and 
M-mode images with speckle tracking-based longitudinal three-dimensional (3D) myocardial strain and wall trace with segmental synchronicity 
images from control (CON) and obesogenic diet (OBD) mice groups in sedentary (Sed) and exercise (Exe) conditions. Box and Whisker plots depicting 
changes in (C) body weight (BW) in grams, (D) LV/BW ratio, and (E) Spleen/BW ratio in CON and OBD mice in Sed and Exe groups. Two-way ANOVA, 
Tukey’s multiple comparisons test was applied (*p < 0.05, ns, non-significant). Statistical comparisons were performed between Sed-CON vs. Exe CON, 
Sed OBD vs. Exe OBD, Sed CON vs. Sed OBD, and Exe CON vs. Exe OBD groups. Sed CON (n = 4), Sed OBD (n = 4), Exe CON (n = 7), and Exe OBD 
(n = 5) for LV and spleen.
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modes. The capillary temperature was set at 330 °C, employing 
nitrogen as the sheath and auxiliary gases at flow rates of 50 and 
20 units, respectively. For the negative ion mode, the source voltage was 
established at 3 kV and the capillary voltage at 10 V, spanning an m/z 
range of 160–1900. In positive ion mode, these voltages were modified 
to 4 kV and 25 V, with an m/z scan range from 150 to 1950. High-
resolution MS1 spectra were collected in Fourier transform mode at a 
resolution of 60,000. Additionally, low-resolution MS/MS spectra were 
recorded using ion trap mode with a collision energy of 40 V.

2.7 LC/MS data processing and lipid 
quantification

The raw data were processed using MS-DIAL software version 4.9 
for alignment, peak extraction, and peak identification. Peak area 
integration was conducted with Xcalibur software version 4.0. To 
confirm lipid molecular species identification, MS and MS/MS spectra 
were utilized. The peak area ratios of annotated lipids to the internal 
standard were adjusted by multiplying them by the concentration of 
the added internal standard for relative quantification of lipid 
molecular species. Additionally, concentrations were normalized 
based on the weight of the samples used for lipid extraction.

2.8 Statistical analysis

Data were analyzed using Microsoft Excel 2019 and GraphPad 
Prism 8 software (San Diego, CA, United States), presenting the mean 
and standard deviation for Sed CON (n = 4), Sed OBD (n = 4), Exe 
CON (n = 7), and Exe OBD (n = 5) for liver, plasma, LV, and spleen. 
For feces, Sed CON (n = 15), Sed OBD (n = 13), Exe CON (n = 7), and 
Exe OBD (n = 5). Two-way ANOVA, multiple comparisons test was 
applied (*p < 0.0001, **p < 0.001, ***p < 0.01, #p < 0.05, ns, 
non-significant). Statistical comparisons were performed between Sed 
CON vs. Exe CON, Sed OBD vs. Exe OBD, Sed CON vs. Sed OBD, 
and Exe CON vs. Exe OBD groups. Sparse Partial Least Squares 
Discriminant Analysis (sPLSDA), Volcano plot (p < 0.05) analysis, and 
cluster correlation analysis were performed using MetaboAnalyst 
version 6.0,1 with access on 9 July 2022.

3 Results

3.1 Impact of obesogenic diet and exercise 
on heart function and integrative 
multivariate lipid analysis

To evaluate the impact of OBD combined with the Exe on cardiac 
function, high-resolution echocardiography was performed. No 
significant difference was observed across experimental groups in 
cardiac strain, systolic function, as assessed by ejection fraction and 
ventricular synchrony (Figure 1B). Cardiac strain reflects myocardial 
deformation during systole and diastole, while ejection fraction 
quantifies the heart’s pumping efficiency. Synchrony refers to the 

1  https://www.metaboanalyst.ca/

coordinated contraction of different heart regions. The absence of 
significant changes in these parameters indicates that neither the OBD 
nor Exe adversely affected cardiac function. Necropsy analysis 
revealed a significant increase in body weight in Sed mice on the CON 
diet compared to those on the OBD, whereas no differences in body 
weight were observed under exercise conditions (Figure  1C). 
Additionally, the left ventricle-to-body weight ratio and spleen-to-
body weight ratio remained unchanged across all groups 
(Figures 1D,E), indicating that the diet in combination with voluntary 
exercise does not have adverse systemic changes.

This study shares an overlapping animal cohort with previous 
research that focused on targeted lipidomics in the heart and spleen 
related to exercise and aging (7). However, it differs in scope and 
biological focus, using a multi-organ, untargeted lipidomics approach 
to map systemic lipid mediator networks across the LV, spleen, liver, 
and plasma. Lipid analysis was performed with HPLC/
LTQ-Orbitrap-MS in both negative and positive ionization modes. The 
list of all the identified lipid metabolites, along with the corresponding 
statistical significance values (p-values) for differences across groups 
in all the tissue samples (left ventricle, spleen, liver), plasma, and feces, 
was provided in the supporting information (Supplementary Table S2). 
A multivariate analysis was performed to assess the lipidomic changes 
by the obesogenic diet and exercise on multiple compartments, such 
as various organs (liver, spleen, LV), plasma, and feces. The results of 
the Sparse Partial Least Squares Discriminant Analysis (sPLSDA) score 
plot for all identified lipid species in the liver and plasma are shown in 
Figures  2A,B, respectively. The score plot demonstrates a clear 
separation among all groups, accounting for 45.2% of the total variance 
in the liver and 37.3% in plasma. The loading scores of the top 10 lipid 
species, such as sterols (SG) and glycerophospholipids (GPs), 
contributing to the group separation were shown in the loading plot. 
Among GPs, phosphatidylglycerol (PG) and phosphatidylserine (PS) 
contributed to group separation in the liver, whereas 
phosphatidylethanolamine (PE) and phosphatidylcholine (PC) 
contributed to group separation in plasma. Interestingly, fatty acid 
(FA) 22:5 acylated GPs were the largest contributors. The score plot 
analysis for the LV and spleen showed distinct group separation 
between the control and OBD, accounting for 41.3 and 35% of the total 
variance, respectively. However, no significant lipidomic changes were 
observed between the CON groups of Exe and Sed in the LV and 
spleen, which were similar in the OBD groups as well. The loading plot 
for the LV and spleen also revealed that GPs, such as PE, PC, PG, and 
PS, acylated with FA 22:6 primarily contributed to group separation 
(Figures 2C,D). Additionally, Cardiolipin (CL) 78:11 and CL 78:12 
were the largest contributors in the LV. The sPLSDA score plot of feces 
revealed marked lipid alterations between the Sed and Exe groups, as 
illustrated in Figure 2E, accounting for 38.7% of the total variance. The 
loading plot revealed that monoacylglycerol (MG 18:1, 18:2, 18:3), 
stigmasterol hexoside (SG), and long-chain monounsaturated fatty 
acids are responsible for the separation of the groups.

3.2 Diet and exercise induced lipid variation 
in the liver and plasma

Volcanic plots and the correlation analysis of Sed and Exe groups 
of mice between CON and OBD, showing lipid changes in the liver 
and plasma, are depicted in Figure 3. A volcanic plot illustrates the 
graph of -log 10(p-value) vs. log 2 (fold change), representing the 
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FIGURE 2 (Continued)
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significantly altered lipid molecular species. The volcano plot results 
indicates that in the liver most of the phospholipids such as PC, PS, 
containing DHA(FA 22:6), triacylglycerol (TGs) and SG lipids, 
including SG 28:1; O; Hex, SG 29:1; O; Hex, and SG 29:2; O; Hex are 
significantly downregulated (represented in blue) in the Sed OBD as 
shown in Figure 3A. These lipid changes remained largely unchanged 
in the Exe OBD group (Figure 3B), suggesting that exercise did not 
fully restore the lipid profile to that of the control. The heat map 
(Figure 3C) represents the top 50 altered lipids of the Sed and Exe 
groups. It was observed that TG lipid species are decreased in the Exe 
OBD groups compared to the Sed OBD group, indicating a possible 
exercise-mediated reduction in hepatic triglyceride accumulation. 
Although TG levels were higher in the Sed CON group, they were 
significantly lower in the Exe CON group, demonstrating that 
combining a control diet with exercise offers an even greater protective 

effect against liver triglyceride accumulation. Additionally, in the Sed 
OBD groups, there was a significant decrease in DHA acylated PE and 
PS lipids, while arachidonic acid (AA) acylated PC, PE, PG, and PS 
lipids increased compared to Exe OBD. These findings indicate a shift 
toward a pro-inflammatory lipid profile under the obesogenic diet, 
with voluntary slow-paced exercise showing no substantial effect in 
reversing these lipid alterations.

Plasma lipidomic analysis revealed a clear dietary influence, shown 
in volcanic plots in Figures 3D,E. Omega-3-derived free fatty acids, 
including FA 20:5 and FA 22:6, along with DHA-acylated glycerolipids, 
were significantly downregulated in both Sed and Exe OBD groups 
compared to controls. Conversely, glycerophospholipids containing AA 
(FA 20:4), such as PC (18:1/20:4), PE (18:1/20:4), and lyso-
phosphatidylglycerol (LPG) 20:4, were significantly upregulated in Sed 
and Exe OBD groups, suggesting a shift toward a pro-inflammatory lipid 

FIGURE 2

Multivariate analysis of lipid metabolites across five tissue types. Sparse partial least squares discriminant analysis (sPLSDA) score plot and variable 
importance in projection (VIP) loading plot illustrating the separation of groups and key contributing lipid species in (A) Liver, (B) Plasma, (C) Left 
Ventricle (LV), (D) Spleen, and (E) Feces. Sed CON (n = 4), Sed OBD (n = 4), Exe CON (n = 7), and Exe OBD (n = 5) for liver, plasma, LV, and spleen. For 
feces, Sed CON (n = 15), Sed OBD (n = 13), Exe CON (n = 7), and Exe OBD (n = 5).
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profile under obesogenic diet stress. The heatmap (Figure 3F) further 
revealed that AA-containing phospholipids, such as PC, PE, and lyso-
phosphatidylethanolamine (LPE), remained relatively unchanged in the 
Exe OBD group. Ceramide levels were increased in the plasma of Sed 
OBD mice but decreased with exercise, leading to lower ceramide levels 
in the Exe OBD group. This suggests that exercise alone can prevent 
OBD-induced ceramide buildup. Likewise, ceramide levels, which were 
higher in the Sed CON group, were reduced in the Exe CON group, 
highlighting the protective role of exercise across different dietary 
conditions. A key observation in the liver and plasma was the strong 
downregulation of PG (22.6/22:6) in Sed and Exe OBD groups, regardless 
of exercise, indicating the disruption of phospholipid metabolism. The 
volcano plots comparing Exe OBD and Sed OBD groups for liver and 
plasma are shown in Supplementary Figures S1A,B, respectively.

3.3 Lipid variation in the left ventricle and 
spleen

Lipidomic profiling of the left ventricle (LV) and spleen showed 
significant changes in response to a chronic OBD, regardless of 
voluntary exercise, as illustrated in Figure 4. The volcano plot analysis 
(Figures  4A,B) revealed that several polyunsaturated fatty acids 
(PUFAs), especially EPA (FA 20:5) and DHA (FA 22:6), were 
significantly downregulated in the LV tissues of both Sed and Exe 
groups fed with OBD. Additionally, GPs containing DHA chains, such 

as PG (22:6/22:6), lyso-phosphatidylcholine (LPC) 22:6, and lyso-
phosphatidylserine (LPS) 22:6, also showed significant reductions. 
These lipids are recognized for their anti-inflammatory and 
cardioprotective effects, implying a shift toward a more 
pro-inflammatory lipid profile in the OBD groups. Conversely, PS 
(18:0/22:5), LPC 22:5, and LPE 22:5 were significantly higher in the 
Sed and Exe OBD groups. This elevation may indicate membrane 
phospholipid remodeling in response to inflammation. The heatmap 
analysis (Figure 4C) showed that the 50 most affected lipids in the LV 
mainly belonged to the GP class. These findings support the volcano 
plot results, which also display reduced levels of GP lipids in the OBD 
group, suggesting that OBD leads to a depletion of anti-inflammatory 
phospholipids regardless of exercise.

Similar trends were observed in the spleen, where GP lipids 
acylated with DHA are decreased in the Sed and Exe mice of the OBD 
groups, as shown in Figures 3D,E. These changes indicate impaired 
inflammation resolution, considering the spleen’s role as a secondary 
lymphoid organ and immune cell reservoir (23). The volcano plots 
comparing the Exe OBD and Sed OBD groups for LV and spleen are 
shown in Supplementary Figure S1C,D, respectively. However, the 
overall alterations in spleen lipid levels were minor, evidenced by the 
slight variation visible in the heatmap (Figure  4F). This could 
be  attributable to tissue-specific lipid metabolic processes. 
Additionally, there were no notable differences in lipid levels in the left 
ventricle and spleen between the Sed-CON and Exe-CON groups. 
This indicates that, under a control diet, dietary influences mainly 

FIGURE 3 (Continued)
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determine tissue lipid composition, while short-term exercise exerts 
comparatively minimal impact on these tissues.

3.4 Impact of obesogenic diet and exercise 
on fecal lipids

The comparative fecal lipidomic profiles of the Sed group and the 
Exe group are illustrated in Figure  5. In the Sed OBD group 
(Figure 5A), the volcano plot revealed a significant downregulation of 
TGs compared to the Exe OBD group, indicating reduced levels of 
fecal glycerolipids. In contrast, there was a notable upregulation of 
long-chain saturated and monounsaturated fatty acids in Sed OBD, 
particularly lipid species with carbon chain lengths > C20. In the 
exercise group, volcano plots (Figure 5B) demonstrated a consistent 
downregulation of glycerolipids (GLs), including TGs, MGs such as 
MG 18:1, 18:2, and 18:3, and SGs. These findings suggest that exercise 
under an obesogenic diet does not fully restore glycerolipid levels. The 
consistent decrease of GLs across Sed and Exe groups implies that the 
obesogenic diet could be the dominant factor driving lipid depletion, 
with exercise exerting some favorable influence. Supplementary  
Figure S1E displays the volcano plots comparing the Exe OBD and Sed 
OBD feces groups. Further insights were obtained from the heatmap-
based correlation analysis of the top 50 altered fecal lipids (Figure 5C). 
This analysis revealed that GPs and ceramides were higher in the Sed 
and Exe CON group, indicating a more balanced and diverse fecal 
lipid profile under normal dietary conditions. In contrast, both Sed 

and Exe OBD groups showed elevated levels of long-chain saturated 
and monounsaturated fatty acids. These results suggest that although 
exercise slightly modulates the fecal lipid profile, its impact remains 
minimal under OBD conditions.

4 Discussion

The epidemic rise in obesity has led to multiple health issues, 
including cardiovascular diseases, diabetes, certain forms of cancer, 
and others (24). However, physical activity and exercise have been 
shown to have a positive impact on obesity and inflammation, leading 
to disease in both human and murine models (25). Exercise has been 
shown to trigger dynamic changes in lipids, affecting energy 
metabolism and inflammatory responses (26). Given this, our study 
assessed comprehensive lipid analysis in multiple compartments, such 
as various cardiometabolic organs (liver, heart, and spleen), plasma, 
and feces, to study the effect of exercise after chronic supplementation 
of OBD. Figure  6A and Supplementary Figure S1A illustrates a 
summarized view of this study through lipid biosynthesis pathway 
analysis based on KEGG pathways.2 The biosynthetic origins of the 
identified lipid classes have been reported in our previous study (27). 
An untargeted lipidomic study of tissues, plasma, and feces revealed 

2  https://www.genome.jp/kegg/pathway.html

FIGURE 3

Volcanic plot representing significantly altered lipids (t-test, p < 0.05) in the liver (A) Exe OBD vs. CON, (B) Sed OBD vs. CON, and plasma (D) Exe OBD 
vs. CON, (E) Sed OBD vs. CON. Hierarchical correlation analysis of exercise and sedentary in (C) Liver and (F) plasma (clustering method: Ward, 
distance measure: Euclidean). Sed CON (n = 4), Sed OBD (n = 4), Exe CON (n = 7), and Exe OBD (n = 5) for liver and plasma.
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the major lipidomic changes in the free fatty acids (FFA), fatty acyls 
(FA), glycerophospholipids (GPs), ceramides (Cer), and glycolipids 
(GLs) categories of lipids.

Polyunsaturated fatty acids (PUFAs), particularly omega (ω)-3 
fatty acids, serve as precursors for various bioactive lipid mediators 
that influence inflammatory responses (26, 27). Typically, ω-3 PUFAs 
promote anti-inflammatory and resolving effects via specialized 
pro-resolving mediators (SPMs), whereas high consumption of ω-6 
can result in pro-inflammatory conditions. Obesogenic diets are rich 
in ω-6 fatty acids, due to the wide use of seed-based vegetable oils and 
the consumption of processed foods (28). A recent study showed that 
long-term exposure to an OBD increases pro-inflammatory lipid 
mediators (DHA and EPA) in the heart and spleen. However, exercise 
reversed these effects by reducing macrophage-specific inflammatory 
genes, lipids, and affecting lipid metabolism genes in both organs (7). 
Our study also found a similar effect, although the results were not 
statistically significant, as shown in Supplementary Figure S1B. In 
contrast, we  consistently observed the strong downregulation of 
phospholipids, such as PG and PE, containing 22:6 (DHA) fatty acids 
across all tissues and plasma, as depicted in Figure 6B. Phospholipids 
are a major class of lipids that serve as fundamental structural 
components of all biological membranes (29). Phospholipids 
containing PUFAs are crucial for maintaining membrane fluidity and 
regulating inflammatory responses. They are known to have anti-
inflammatory and pro-resolving effects by producing specialized lipid 
mediators, such as lipoxins, resolvins, protectins, and maresins (30, 
31). The significant decrease in PE and PG species with 22:6 fatty acids 

observed in our study suggests a possible disruption in the anti-
inflammatory lipid reservoir during prolonged exposure to an 
obesogenic diet. Therefore, this suggests that short-term voluntary 
slow-paced exercise may have no significant effect on restoring 
phospholipid biosynthesis in OBD-fed mice.

Lysophospholipids originate from the phospholipids found in 
lipoproteins and cell membranes, modified by phospholipase 
enzymes (32). Research by Eisinger et al. found that PC, PI, and LPC 
are elevated in the serum of mice fed a high-fat diet (HFD), 
correlating strongly with glucose and cholesterol levels (33). The 
lipidomic study revealed a consistent reduction in circulating LPC 
species in liver and plasma associated with obesity and type 2 
diabetes (34). LPC is produced when LDL undergoes oxidative 
modification through various mechanisms, and it has been proposed 
to possess both pro- and anti-atherogenic properties (32). However, 
a recent study by Martin et  al., which investigated the effect of 
exercise on obesity by comparing it with sedentary and exercise 
groups of obese women, found a decrease in PC 40:4 levels and an 
increase in LPC 20:2 after the exercise intervention (35). Our study 
also found that PC and ether PE are downregulated in the Exe OBD 
compared to the Sed OBD in both plasma and liver. In contrast, they 
are downregulated in both the LV and spleen in both OBD groups. 
LPC 22:5 and LPE 22:5 (docosapentaenoic acid) species, which are 
also known to exhibit anti-inflammatory effects, significantly 
increase in the Exe OBD compared to the Sed OBD groups in liver, 
plasma, and LV. These results emphasize the role of 
glycerophospholipid remodeling in diet-related inflammatory 

FIGURE 4 (Continued)
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conditions and reveal a reduction of protective lipid species across 
the tissues affected by metabolic stress. Our study found higher 
levels of long-chain saturated and monounsaturated fatty acids in 
the feces of the Sed OBD group. Research on morbidly obese people 
observed the accumulation of long-chain SFA, MUFAs, and PUFAs 
in their stool (36). This indicates a conserved disruption of gut lipid 
metabolism across different species, possibly related to impaired 
absorption or microbial-driven elongation, which may contribute to 
diet-induced effects on inflammation. Furthermore, we  have 
identified a novel class of lipid SFHAFA (Short chain Fatty acid 
esters of hydroxy fatty acids) specific to the gut. A previous study 
showed a significant decrease in the colon content of mice fed a 
high-fat diet (37). Our study also showed a similar trend with 
SFAHFA, which significantly decreased in both Sed and Exe OBD 
groups of feces. However, SFHAFAs are significantly increased in the 
CON Exe compared to CON Sed (Figure 6B). This observation may 
suggest the effect of exercise on increasing SFHAFAs under 
controlled diet conditions.

Ceramides act as fundamental building blocks for more complex 
sphingolipids. Ceramide accumulation contributes to metabolic and 
cellular dysfunction, with recent studies highlighting its lipotoxic role 
in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular 
conditions (38, 39). Another study reported that SM lipids with 

saturated acyl chains (C18:0, 20:0, 22:0, and 24:0) were increased in 
the serum of obese adults compared to the control group (40). On the 
other hand, studies have shown a decrease in ceramide and SM lipids 
in human plasma and serum following physical exercise intervention 
(35, 41). Boini et al. observed a significant decrease in the ceramides 
in the plasma of HFD (high-fat diet) mice compared to the control 
(42). In line with this, our study finds elevated plasma ceramide levels 
in the Sed OBD groups, but a significant decrease occurred after the 
exercise intervention. This suggests a visible effect of exercise on 
ceramide lipid metabolism and inflammatory improvements in 
obesogenic conditions. Glycerolipids play a vital role in energy storage 
(43). Dysregulation of glycerolipid metabolism can lead to lipid 
accumulation in non-adipose tissues, impair β-oxidation, promote 
lipotoxicity, and contribute to the development of metabolic diseases 
(44). The studies have demonstrated that Glycerolipids (TG, 
Diacylglycerol (DG), Cholesteryl Ester (CE)) are significantly 
increased in the liver, plasma, and heart of mice fed an HFD (45–47). 
A study by Jordy et  al. comparing the obesogenic sedentary and 
exercise groups of mice found a decrease in TG, DG, and CE lipids in 
obese mice following exercise (48). Another study demonstrated that 
TG lipids were decreased in the plasma and liver of HFD-induced 
metabolic dysfunction-associated steatotic liver disease (MASLD) 
mice following exercise, indicating that exercise enhances lipid 

FIGURE 4

Volcanic plot representing significantly altered lipids (t-test, p < 0.05) in the left ventricle (A) Exe OBD vs. CON, (B) Sed OBD vs. CON, and spleen 
(D) Exe OBD vs. CON, (E) Sed OBD vs. CON. Hierarchical correlation analysis of exercise and sedentary in (C) Left ventricle (LV) and (F) Spleen 
(clustering method: Ward, distance measure: Euclidean). Sed CON (n = 4), Sed OBD (n = 4), Exe CON (n = 7), and Exe OBD (n = 5) for LV, and spleen.
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metabolism and slows the progression of MASLD (49). In line with 
these studies, our research also finds similar results, showing that TGs 
are decreased in the plasma of the Exe OBD group compared to the 
Sed OBD group. Earlier research indicates that obesity and an HFD 
lead to TG accumulation within the intestinal mucosa due to a 
reduced rate of intestinal lipid metabolism (50). In the present study, 
we observed a marked decrease in TG, MG, and DG levels in the feces 
of both Sed and Exe groups of OBD compared to the CON group. This 
suggests that altered intestinal lipid metabolism reduces the excretion 
of TG into the feces, consistent with the above study. In contrast, CON 
Exe mice exhibited increased feces TG levels, indicating enhanced 
lipid metabolism under standard diet and exercise intervention  
conditions.

The study reveals diverse lipid responses in mice under OBD 
across organs like the liver, plasma, LV, spleen, and feces. Lipidomic 
responses showed organ-specific and systemic patterns. 
DHA-containing phospholipids decreased in the liver, plasma, and LV, 
indicating reduced anti-inflammatory and cardioprotective lipids. 
AA–containing phospholipids increased in liver and plasma, 
suggesting a shift to a pro-inflammatory state. The spleen had minor 
changes, implying tissue-specific lipid regulation. Fecal lipids showed 
systemic effects, with glycerolipids decreasing and long-chain fatty 
acids increasing under OBD, with or without exercise. Overall, diet 
impacts lipid metabolism variably across organs, reflecting their 

functions. However, it also addresses several limitations: only one type 
of exercise (wheel running) was examined for a short duration 
(2 weeks). Whether different exercises, such as aerobic and high 
intensity with and without resistance, will exert a similar effect is 
unknown. The study included only male mice, excluding potential 
sex-based differences. The lipid concentrations reported in this study 
are semi-quantitative analyses, lack transcriptome data, and further 
targeted studies are required to determine their absolute levels and 
mechanistic role. Additionally, the relatively small number of samples 
in certain groups may limit the statistical power of our analysis. 
We  focused on lipidomic changes; integrating transcriptomic, 
proteomic, or metabolomic data could improve understanding of the 
underlying biological processes. Additionally, our study used 10% w/w 
safflower oil; however, varying the percentage of saturated or 
polyunsaturated fats could lead to different results and direct 
measurements of inflammatory markers were not conducted in 
this study.

5 Conclusion

Our research investigated the effects of an obesogenic diet and 
exercise on tissue-specific lipid alterations and inflammation in the liver, 
left ventricle, spleen, feces, and plasma, utilizing HPLC/

FIGURE 5

Volcanic plot representing significantly altered lipids (t-test, p < 0.05) in the Sed and Exe feces (A) Sed OBD vs. CON, (B) Exe OBD vs. CON. Hierarchical 
correlation analysis of (C) Exe and Sed groups (clustering method: Ward, distance measure: Euclidean). Sed CON (n = 15), Sed OBD (n = 13), Exe CON 
(n = 7), and Exe OBD (n = 5) for feces.
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LTQ-Orbitrap-MS as the analytical method. The analysis showed that 
OBD disrupted lipid metabolism, marked by increased ceramides, 
decreased phospholipids containing DHA, and changes in glycerolipid 
and fatty acid compositions. Exercise intervention partially reversed 
these pro-inflammatory lipid signatures, primarily by reducing plasma 
ceramides and increasing anti-inflammatory LPC and LPE with FA 22:5 
species. Feces lipidomics revealed the accumulation of very long-chain 
fatty acids, suggesting impaired absorption or microbial processing 
under OBD. These findings highlight the role of diet and exercise in 
regulating lipid-driven inflammation and modulating lipid balance. Our 

study suggests that combining exercise with a controlled diet is crucial 
for maintaining healthy metabolism and preventing cardiometabolic 
and non-communicable, chronic inflammation-driven disorders.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

FIGURE 6

(A) Analysis of lipid biosynthesis pathways for the Sed CON, Sed OBD, Exe CON, and Exe OBD groups of liver, plasma, LV (left ventricle), spleen, and 
feces samples. The data are represented as mean ± SEM. The Y-axis represents the concentration of the lipid subclass in ng/mg. The X-axis represents 
the CON and OBD groups. (B) Concentrations of GPs containing AA and DHA. Two-way ANOVA, Sidak’s multiple comparisons test was applied 
(*p < 0.0332, **p < 0.0021, ***p < 0.0002, #p < 0.0001, ns, non-significant). Statistical comparisons were performed between Sed CON vs. Exe CON, 
Sed OBD vs. Exe OBD, Sed CON vs. Sed OBD, and Exe CON vs. Exe OBD groups. Sed CON (n = 4), Sed OBD (n = 4), Exe CON (n = 7), and Exe OBD 
(n = 5) for liver, plasma, LV, and spleen. For feces, Sed CON (n = 15), Sed OBD (n = 13), Exe CON (n = 7), and Exe OBD (n = 5). The abbreviations are as 
follows: Glycerophospholipids (GPs), Arachidonic acid (AA), Decosahexanoic acid (DHA), Acetyl Coenzyme A (Acetyl CoA), Dihydroxyacetone 
Phosphate (DHAP), Glycerol-3-Phosphate (G3P). Lysophosphatidic Acid (LPA), Phosphatidic Acid (PA). Cytidine Diphosphate Diacylglycerol (CDP-DAG), 
Serine (Ser), Fatty acids (FAs), short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs). Phosphatidylinositol (PI), Lyso-phosphatidylinositol (LPI), 
Phosphatidylethanolamine (PE), Lyso-phosphatidylethanolamine (LPE), Phosphatidylcholine (PC), Lyso-Phosphatidylcholine (LPC), Phosphatidylserine 
(PS), Lyso-Phosphatidylserine (LPS), Phosphatidylglycerol (PG), Lyso-Phosphatidylglycerol (LPG), Diacylglycerol (DAG), Triacylglycerol (TG), Cholesteryl 
Ester (CE), Ceramide (Cer), Hexosylceramide(HexCer), Sphingomyelin (SM), and Cardiolipin (CL).
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