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Dietary proteins, amino acids and
insulin resistance: a mini review
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United States

The influence of protein intake on insulin resistance, has garnered an increasing
amount of interest over the past few decades. Increased provisions of dietary
protein during weight loss helps preserve skeletal muscle, which as the largest
organ in the human body, is responsible for 80% of insulin-stimulated glucose
disposal. The postprandial influence of essential amino acids (EAAs) either
alone or as part of intact proteins are regulated through leucine-induced
activation of mammalian target of rapamycin (mTOR) that serves to promote
muscle protein synthesis and maintain skeletal muscle. High protein diets and/
or EAA supplementation have also been demonstrated to improve satiety and
augment mitochondrial function, which may have an indirect or direct influence
on insulin sensitivity. On the other hand, chronic elevations in postabsorptive
concentrations of branched chains amino acids (BCAAs) have been associated
with chronic activation of the mTOR pathway, impairing insulin action. It appears
that causal links between BCAAs and the pathogenesis of insulin resistance are
reliant on chronic hyperinsulinemia and nutrient overload that foster chronic
lipotoxicity. Conversely, postprandial elevations in EAAs leverage sensing as
an anabolic mediator to facilitate muscle remodeling, augment satiety and
improve metabolic regulation.
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Introduction

The influence of amino acids on insulin resistance is controversial. In this mini-review,
we describe the differences between acute postprandial and chronic postabsorptive elevations
in amino acids on metabolism. While environmental stress, physical stress and growth factors
(ie., hormones, nutrients, and energy) influence signaling networks responsible for growth
and proliferation, clinical outcomes also seem largely dependent on the energy status and
metabolic health of the individual.

Weight loss and improved insulin sensitivity: impact
of high protein diet

Hypocaloric dietary interventions promote favorable changes in metabolic risk factors
across a wide range of cohorts (1-5). Reducing energy intake promotes improvements in
glucose metabolism in individuals with type 2 diabetes (6). While the impact of hypocaloric
dietary interventions on the mitigation of insulin resistance is strong, dietary-induced weight
loss can lead to muscle loss (7, 8). Based on conclusions from systematic reviews and meta-
analyses, increased dietary protein during weight loss seems to preserve lean mass, accelerate
the loss of fat mass, and improve cardiometabolic outcomes (9-13).
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In a clinical trial that compared the influence of high-protein
(i.e., 800 kcal, 45% protein, 35% carbohydrate, 20% fat) and high
carbohydrate (i.e., 800 kcal, 20% protein, 60% carbohydrate, 20%
fat) diets, the high protein diet promoted greater retention of fat
free mass, improvements in insulin-stimulated glucose disposal
(derived from euglycemic, hyperinsulinemic clamp method) and
reduced 3-methylhistidine excretion (a marker of protein
breakdown) compared to the high carbohydrate diet (14). Obese,
insulin-resistant female participants who adhered to a hypocaloric
high protein diet compared to a Mediterranean diet for only
3 weeks (15) demonstrated reductions in insulin resistance and
fasting plasma insulin. Two-fold greater reductions in insulin
resistance were described in participants with early-onset type 2
diabetes who followed a hypocaloric high protein diet (35%
protein of caloric intake) compared to a hypocaloric standard
protein diet (i.e., 18% protein of caloric intake) (9). Greater
reductions in fat mass and insulin resistance have also been
reported in overweight and obese women following a similar
hypocaloric high protein (i.e., 35% protein of caloric intake) diet
compared to a hypocaloric standard protein diet (i.e., 20% protein
of caloric intake) (16).

When we consider that skeletal muscle is responsible for ~80% of
insulin-stimulated glucose disposal and plays a key role in the etiology
of insulin resistance (17, 18), modest elevations in dietary protein that
preserve muscle mass during dietary-induced weight loss seem
logical. The increased provision of dietary protein and EAAs in the
context of a hypocaloric diet also fosters the preferential loss of
adipose tissue that is directly proportional to the increased energetic
demand linked to increased muscle protein synthesis (19). Based on
the studies discussed above, mitigating the loss of skeletal muscle is a
critical component of dietary interventions aimed at achieving
reductions in body weight (20). Otherwise, caloric restriction-induced
negative energy balance will result in 10-35% reductions in skeletal
muscle, linked to reductions in functional capacity (7). Under these
circumstances, muscle atrophy is especially problematic in older
adults, leading to increased risk of falls, morbidity and mortality (21).

Bed rest and insulin resistance: impact
of high protein diet

Short-term bed rest (i.e., 10 days) promotes the onset of hepatic
and peripheral insulin resistance in older, otherwise healthy adults as
determined by multi-stage hyperinsulinemic, euglycemic clamp
methodologies (22). Presentation of these metabolic abnormalities
occurs in conjunction with the bed rest- induced loss of skeletal
muscle and rapid decrements in functional parameters (19, 23). Even
in young healthy adults, 3 days of bed rest resulted in a 45% decline in
insulin-stimulated leg glucose uptake, coupled with a 43% reduction
in whole-body protein and myofibrillar protein synthesis, and a 3%
reduction in leg muscle volume (24). These detrimental alterations in
metabolism and muscle remodeling reflect a reduction in energy
demand and lack of mechanical stress to the skeletal muscle, resulting
in perturbations in mitochondrial lipid metabolism (25). Glycogen
and lipid intermediates accumulate under these conditions, which
seems to foster elevations in fasting plasma insulin and insulin
resistance (26). In the face of acute cessation of physical activity or bed
rest, muscle atrophy, a decline in functional capability and the
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concomitant development of metabolic abnormalities are somewhat
predictable, albeit unfortunate outcomes (22, 23, 27).

Resistance exercise has been demonstrated to mitigate the loss of
skeletal muscle and the development of insulin resistance during bed
rest (28). Physical activity is not always practical or well-tolerated in
clinical settings (29), so dietary approaches to address the bed rest-
induced loss of skeletal muscle and dysregulation of metabolism
during bed rest have been investigated (30). Specialized approaches
using branched-chain amino acids or individual EAAs have been
effective in maintaining muscle protein synthesis and functional
capability (31-33). Supplementation of 8 -hydroxy-8 -methylbutyrate
(HMB), a metabolite of leucine seems to promote mitochondrial
function (i.e., OXPHOS complex II protein and total OXPHOS
content) (34). Additional studies are needed to confirm these results
and evaluate the protective influence of protein and/or EAA
consumption against bed rest-induced muscle atrophy and the
sequelae of insulin resistance (35).

Amino acid supplementation, _
molecular mechanisms and metabolic
health

Clinical evidence supports the role of EAA supplementation as a
tool to improve metabolic health (36-39). EAA supplementation
results in elevated mitochondrial biogenesis, reduced oxidative
damage, enhanced muscle protein synthesis, physical capacity,
reduced body weight, and improved immune function. A
pharmaceutical therapy that promoted these types of systemic
improvements would be heralded in the pursuit of health and
longevity. It is therefore important to delineate the physiological
mechanisms responsible for beneficial alterations in organ health that
provide the above-stated EAA-related benefits.

To gain a better understanding of how these molecular
mechanisms affect metabolic health, we should consider how the
dietary consumption of EAAs influences metabolism in the muscle,
liver, and adipose tissue. A sedentary lifestyle is commonly
characterized by muscle atrophy, excessive accumulation of adipose
tissue, and infiltration of fatty acids in the liver (40). The aging process
itself further contributes to these metabolic abnormalities, partly due
to the concomitant presentation of anabolic resistance, which makes
maintaining a metabolically healthy balance between muscle and fat
even more challenging. While increased physical activity is a powerful
tool in the struggle against these abnormalities (41), only 20% of the
adult population meets the guidelines recommended by the US
Centers for Disease Control (42). EAAs, branched chain amino acids
(BCAAs), or more specifically, leucine, have been consistently
demonstrated to improve mitochondrial biogenesis in clinical and
pre-clinical studies without any change in physical activity (36). The
mechanistic underpinnings by which dietary consumption of amino
acids mitigates pathogenic metabolic sequelae are then important.

We know that amino acids, particularly leucine, transiently
activate the mammalian target of rapamycin complex 1 (mTORCI),
Yin-Yang 1 (YY1), and peroxisome proliferator-activated receptor-
gamma coactivator-1-a (PGC-1a) (36) (Figure 1). Working cohesively
with nuclear respiratory factors (NRF-1,2), mitochondrial
transcription factor A (TFAM), and sirtuins (SIRT1/3), these signaling
intermediates are responsible for the promotion of mitochondrial

frontiersin.org


https://doi.org/10.3389/fnut.2025.1671286
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Coker and Coker

10.3389/fnut.2025.1671286

Vs Evidence derived from —~\
Clinical Trials ‘ Epidemiological Research
Healthy )ﬁN)K S Unhealthy
Physiological i \/v\‘)\ l Physiological
Response Postprandial EAAs Postabsorptive BCAAs Response
Reduced < Hyperactive Increased
. Improved EEENERER =0 WS 0900 .. BB TORCT 000 e >
Dietary s Sgﬁety Afferent Efferent mTORC1 Appetite
Intake Signal Signal S6K1
; Chronic mTORC1
Muscle Transient acltivation Peripheral
Maintenance & ®-=== mgg}zc" IRS-1 e » Insulin
i i Resistance
Remodeling activation Phophorylation
Normal Desreased Increased Hepatic
........ ; Intrahepatic e nsulin
Glucose < Intrahepatic ¢ Libld Bosistance
Production Lipid ik
[ ] ]
Increased Bt ke & Im;;:aai{ed
o yperinsulinemia ~ =x=x=*
Anorexigenic PYY // Oxidation
Hormone e 5
Release o) @D
FIGURE 1
Dichotomous role of amino acids on insulin resistance. Impact of acute alterations in postprandial plasma EAA concentrations compared to chronic
elevations in plasma BCAA concentrations on central and peripheral organ metabolism. Created with BioRender.com.

biogenesis (43, 44). On the other hand, reduced hepatic expression of
PGC-1a has been closely linked to increased intrahepatic lipid in
humans (Figure 1), whereas hepatic PGC-1a ablation in mice leads to
compromised mitochondrial metabolism, which ultimately serves to
rapidly induce hepatic steatosis (45). Perturbations in PGC-1a also
contributes to the accumulation of ceramide in skeletal muscle, which
has been implicated in the pathogenesis of peripheral insulin
resistance (46). On the other hand, elevations in the expression of
PGC-1a alleviate insulin resistance in skeletal muscle (47, 48).

The perturbed regulation of PGC-1la activation has been directly
linked to several clinical problems. For example, disruptions in the
PGC-1a/TFAM signaling pathway during pregnancy increase the risk
of metabolic diseases in offspring (49). In patients suffering from
diabetic kidney disease, mitochondrial dysfunction represents a
hallmark of the clinical condition whereby PGC-1la activation is
suppressed, potentially leading to the worsening of insulin resistance
(50). Evidence from pre-clinical studies supports the role of PGC-1a
and/or SIRT1 activation on the amelioration of lipotoxicity implicated
in the pathogenesis of insulin resistance (51). PGC-1a also plays an
important role in mitigating the detrimental impact of oxidative stress
(52), which is directly connected to lipid abnormalities, atherosclerosis,
hypertension, and increased risk of type 2 diabetes (53).

Physical activity, cold exposure, and/or caloric restriction are
known to positively influence the regulatory influence of PGC-1a on
mitochondrial biogenesis (54). Dietary-induced alterations in EAA
availability, more specifically leucine, may also activate signaling
pathways that augment mitochondrial biogenesis, potentially
suppressing the development of insulin resistance even during periods
of inactivity (55). Dietary leucine promotes browning of white adipose
tissue and fatty acid oxidation in adipose tissue through the adenosine
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somewhat similar fashion, dietary leucine activates PGC-1a through
SIRT1-AMPK signals in skeletal muscle, increasing mitochondrial
biogenesis, enhancing fatty acid and improving insulin sensitivity (55).

Therefore, the beneficial influence of EAAs on metabolic health
may be derived from the augmentation of mitochondrial biogenesis
that would not occur otherwise without increased physical activity
(19, 23, 37, 38, 56, 57). While these changes appear to impact body
composition and occur across organ systems in several clinical studies
(58, 59), the EAA-induced activation of PGC-1a and the beneficial
alterations  in function

mitochondrial may be the

common denominator.

Amino acids, satiety and metabolic
health

The satiety cascade is regulated by a complex interplay between
sensory factors, gastrointestinal influences via gastric distension and
alterations in gut-derived peptides, and alterations in nutrient status/
energy balance (60). The impact of these regulatory factors on food
intake is consistent with the aminostatic theory whereby amino acids
promote satiety (61) (Figure 1). In the context of dietary-induced
elevations in amino acid concentrations, the regulation of nutrient
intake may be directly influenced by the intrinsic need to maintain the
effective remodeling of skeletal muscle. Dietary intervention studies
linking amino acid concentrations to satiety support the theory (62,
63). On the other hand, pre-clinical studies suggest more
comprehensive regulation, including the roles of glucoreceptors in the
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intestine and liver, playing a significant role (64). The influence of
amino acids on satiety involves a complex network of central and
peripheral nutrient sensing systems (65). While leucine-induced
alterations in forebrain-hindbrain circuitry represent a central
regulatory element that reduces nutrient consumption via negative
feedback loops (66), divergent alterations in circulating anorexigenic
hormones/orexigenic hormones elicited by dietary leucine highlight
the importance of peripheral factors (67) (Figure 1).

Demonstrating the importance of peripheral regulation, high-
protein diets have been demonstrated to elicit elevations in
anorexigenic hormones while at the same time suppressing orexigenic
hormones. Where dietary protein suppresses orexigenic hormones
like ghrelin, anorexigenic hormones like GLP-1, cholecystokinin
(CCK), and peptide YY are increased (Figure 1). For example, protein
intake promotes GLP-1, which not only promotes satiety but has also
been tied to enhancements in {3-cell function and glycemic status,
which is logically consistent with the efficacy of GLP-1 as a therapeutic
tool in the fight against metabolic disease (68). The amino acids
phenylalanine and I-tryptophan are influential in promoting CCK
secretion (69), which in turn serves to delay gastric emptying, promote
satiety, and reduce dietary intake (70). In fact, the intravenous delivery
of CCK reduces food intake, potentially influenced by the activation
of CCK, receptors that enhance satiety (71). While the specific amino
acids responsible for the peptide YY response to protein have not been
identified (72), acute dietary feeding of protein promotes the release
of peptide YY that has a direct impact on improved satiation (73).
Pre-clinical data also suggest that chronic elevations in dietary protein
also increase plasma peptide YY and peptide YY expression (73).

Consistent with the importance of central regulation, leucine-
induced activation of mTORCI in the hypothalamus represents a
crucial step in the central signaling cascade that influences satiety.
Intracerebroventricular leucine administration reduces dietary intake,
whereas administration of rapamycin ameliorates leucine-induced
satiety (74). Downstream from mTOR, S6K1 activation has been
demonstrated to reduce energy intake and mitigate metabolic
perturbations, such as increased fat deposition and the presentation
of insulin resistance, even during high-fat feeding in mice (75). High
protein diets may also activate the noradrenergic-adrenergic neuronal
pathway in the brainstem nucleus of the solitary tract and the
meloanocortin neurons of the hypothalamic arcuate nucleus (75).

In addition to the impact of protein or amino acid intake on gut
derived hormones that influence satiety, Skov et al., suggested that the
inclusion of additional dietary protein also contributes to improved
compliance to dietary interventions (76), ensuring negative energy
balance required for weight loss that promotes improvements in
insulin sensitivity (77). Given the multifaceted benefits of dietary
protein on gut-derived hormones, it is not altogether surprising that
evidence from dietary interventions support the role of high-protein
diets in successful weight management, glucose homeostasis, and lipid
metabolism (Figure 1).

Controversial aspects of dietary
protein and amino acids on the
development of insulin resistance

A wide EAA
supplementation studies suggest definitive metabolic benefits (2, 9,

range of dietary interventions and/or
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11-13, 15, 16, 19). On the other hand, elevations in fasting levels of
BCAAs, sulfur amino acids, tyrosine, and phenylalanine have been
closely linked to insulin resistance (78-80). These associations
between fasting BCAAs and insulin resistance appear to strengthen
over time (81), and BCAAs have even been suggested as potential
biomarkers for predicting the risk of developing type 2 diabetes (82,
83) or for additional evidence of type 2 diabetes (84). Based on the
results of a randomized controlled crossover trial, reductions in
dietary consumption of BCAAs lowered meal-induced insulin
secretion and postprandial insulin sensitivity as derived from the
mixed meal tolerance test (85). However, direct measurements of
hepatic and/or peripheral insulin sensitivity in these same studies
were not affected by the reduction in dietary intake of BCAAs,
suggesting the variations in splanchnic compared to peripheral
glucoregulatory hormone concentrations between the mixed meal
tolerance test and the clamp, respectively.

Insulin-mediated clearance of BCAA is impaired in obese
individuals and seems to worsen in individuals with type 2 diabetes
(86). Lower mitochondrial oxidation of BCAAs and reduced whole-
body leucine oxidation rates were implicated in the chronic elevation
of BCAAs (86). Hyperinsulinemia and nutrient overload may
represent a physically inactive—hyperphagic phenotype. For example,
chronic post-absorptive elevations in BCAAs have been linked to
“hyperactive” mTOR and S6K1 signaling, impairing insulin action due
to IRS-1 serine phosphorylation (80). 3-Hydroxyisobutyric acid, a
catabolic intermediate of valine directly promotes fatty acid transport
in skeleltal muscle, contributing to insulin resistance (87). Isoleucine
also leads to increased muscle lipid deposition that has been linked to
insulin resistance (88). Nevertheless, the causal link between BCAAs
and the pathogenesis of insulin resistance is not clear. Inconclusive
results from studies utilizing dietary supplementation of BCAAs,
EAAs, and/or protein suggest the presence of multiple factors (i.e.,
source of intact protein, baseline physical activity, status of energy
balance, etc) that play important roles, either negating the influence
of fasting BCAAs or reducing their relevance to disease (89, 90)
(Figure 1). Longitudinal clinical studies are needed to elucidate the
reasons behind inconclusive results.

Conclusion

The dichotomous role of protein, EAAs, and BCAAs in insulin
resistance and metabolic health can be perplexing. A growing body of
evidence supports the idea that high-protein diets and EAA
supplementation support muscle retention, mitochondrial function,
and insulin sensitivity, especially during periods of caloric restriction
and/or physical inactivity. However, chronically elevated fasting
plasma concentrations of BCAAs, under conditions of nutrient excess
and hyperinsuliunemia, have been linked to overactivation of mTOR
and S6K1 pathways, which may lead to systemic insulin resistance
(Figure 1). These seemingly contradictory findings suggest that the
relationships between dietary protein and a particular phenotype (ie.,
timing, context, culture, and metabolic status) may be responsible for
the controversy surrounding dietary protein and metabolic health.
This nuanced conundrum underscores the need for further
investigation and discovery in amino acid metabolism. As we develop
deeper insights into the timing of nutrient delivery, the state of energy
balance, and cellular signaling, we should utilize amino acid-based
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strategies to offer targeted therapeutic potential in the prevention and
management of insulin resistance and metabolic disease.
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