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Dietary proteins, amino acids and 
insulin resistance: a mini review
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The influence of protein intake on insulin resistance, has garnered an increasing 
amount of interest over the past few decades. Increased provisions of dietary 
protein during weight loss helps preserve skeletal muscle, which as the largest 
organ in the human body, is responsible for 80% of insulin-stimulated glucose 
disposal. The postprandial influence of essential amino acids (EAAs) either 
alone or as part of intact proteins are regulated through leucine-induced 
activation of mammalian target of rapamycin (mTOR) that serves to promote 
muscle protein synthesis and maintain skeletal muscle. High protein diets and/
or EAA supplementation have also been demonstrated to improve satiety and 
augment mitochondrial function, which may have an indirect or direct influence 
on insulin sensitivity. On the other hand, chronic elevations in postabsorptive 
concentrations of branched chains amino acids (BCAAs) have been associated 
with chronic activation of the mTOR pathway, impairing insulin action. It appears 
that causal links between BCAAs and the pathogenesis of insulin resistance are 
reliant on chronic hyperinsulinemia and nutrient overload that foster chronic 
lipotoxicity. Conversely, postprandial elevations in EAAs leverage sensing as 
an anabolic mediator to facilitate muscle remodeling, augment satiety and 
improve metabolic regulation.
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Introduction

The influence of amino acids on insulin resistance is controversial. In this mini-review, 
we describe the differences between acute postprandial and chronic postabsorptive elevations 
in amino acids on metabolism. While environmental stress, physical stress and growth factors 
(ie., hormones, nutrients, and energy) influence signaling networks responsible for growth 
and proliferation, clinical outcomes also seem largely dependent on the energy status and 
metabolic health of the individual.

Weight loss and improved insulin sensitivity: impact 
of high protein diet

Hypocaloric dietary interventions promote favorable changes in metabolic risk factors 
across a wide range of cohorts (1–5). Reducing energy intake promotes improvements in 
glucose metabolism in individuals with type 2 diabetes (6). While the impact of hypocaloric 
dietary interventions on the mitigation of insulin resistance is strong, dietary-induced weight 
loss can lead to muscle loss (7, 8). Based on conclusions from systematic reviews and meta-
analyses, increased dietary protein during weight loss seems to preserve lean mass, accelerate 
the loss of fat mass, and improve cardiometabolic outcomes (9–13).
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In a clinical trial that compared the influence of high-protein 
(i.e., 800 kcal, 45% protein, 35% carbohydrate, 20% fat) and high 
carbohydrate (i.e., 800 kcal, 20% protein, 60% carbohydrate, 20% 
fat) diets, the high protein diet promoted greater retention of fat 
free mass, improvements in insulin-stimulated glucose disposal 
(derived from euglycemic, hyperinsulinemic clamp method) and 
reduced 3-methylhistidine excretion (a marker of protein 
breakdown) compared to the high carbohydrate diet (14). Obese, 
insulin-resistant female participants who adhered to a hypocaloric 
high protein diet compared to a Mediterranean diet for only 
3 weeks (15) demonstrated reductions in insulin resistance and 
fasting plasma insulin. Two-fold greater reductions in insulin 
resistance were described in participants with early-onset type 2 
diabetes who followed a hypocaloric high protein diet (35% 
protein of caloric intake) compared to a hypocaloric standard 
protein diet (i.e., 18% protein of caloric intake) (9). Greater 
reductions in fat mass and insulin resistance have also been 
reported in overweight and obese women following a similar 
hypocaloric high protein (i.e., 35% protein of caloric intake) diet 
compared to a hypocaloric standard protein diet (i.e., 20% protein 
of caloric intake) (16).

When we consider that skeletal muscle is responsible for ~80% of 
insulin-stimulated glucose disposal and plays a key role in the etiology 
of insulin resistance (17, 18), modest elevations in dietary protein that 
preserve muscle mass during dietary-induced weight loss seem 
logical. The increased provision of dietary protein and EAAs in the 
context of a hypocaloric diet  also fosters the preferential loss of 
adipose tissue that is directly proportional to the increased energetic 
demand linked to increased muscle protein synthesis (19). Based on 
the studies discussed above, mitigating the loss of skeletal muscle is a 
critical component of dietary interventions aimed at achieving 
reductions in body weight (20). Otherwise, caloric restriction-induced 
negative energy balance will result in 10–35% reductions in skeletal 
muscle, linked to reductions in functional capacity (7). Under these 
circumstances, muscle atrophy is especially problematic in older 
adults, leading to increased risk of falls, morbidity and mortality (21).

Bed rest and insulin resistance: impact 
of high protein diet

Short-term bed rest (i.e., 10 days) promotes the onset of hepatic 
and peripheral insulin resistance in older, otherwise healthy adults as 
determined by multi-stage hyperinsulinemic, euglycemic clamp 
methodologies (22). Presentation of these metabolic abnormalities 
occurs in conjunction with the bed rest- induced loss of skeletal 
muscle and rapid decrements in functional parameters (19, 23). Even 
in young healthy adults, 3 days of bed rest resulted in a 45% decline in 
insulin-stimulated leg glucose uptake, coupled with a 43% reduction 
in whole-body protein and myofibrillar protein synthesis, and a 3% 
reduction in leg muscle volume (24). These detrimental alterations in 
metabolism and muscle remodeling reflect a reduction in energy 
demand and lack of mechanical stress to the skeletal muscle, resulting 
in perturbations in mitochondrial lipid metabolism (25). Glycogen 
and lipid intermediates accumulate under these conditions, which 
seems to foster elevations in fasting plasma insulin and insulin 
resistance (26). In the face of acute cessation of physical activity or bed 
rest, muscle atrophy, a decline in functional capability and the 

concomitant development of metabolic abnormalities are somewhat 
predictable, albeit unfortunate outcomes (22, 23, 27).

Resistance exercise has been demonstrated to mitigate the loss of 
skeletal muscle and the development of insulin resistance during bed 
rest (28). Physical activity is not always practical or well-tolerated in 
clinical settings (29), so dietary approaches to address the bed rest-
induced loss of skeletal muscle and dysregulation of metabolism 
during bed rest have been investigated (30). Specialized approaches 
using branched-chain amino acids or individual EAAs have been 
effective in maintaining muscle protein synthesis and functional 
capability (31–33). Supplementation of ß -hydroxy-ß -methylbutyrate 
(HMB), a metabolite of leucine seems to promote mitochondrial 
function (i.e., OXPHOS complex II protein and total OXPHOS 
content) (34). Additional studies are needed to confirm these results 
and evaluate the protective influence of protein and/or EAA 
consumption against bed rest-induced muscle atrophy and the 
sequelae of insulin resistance (35).

Amino acid supplementation, 
molecular mechanisms and metabolic 
health

Clinical evidence supports the role of EAA supplementation as a 
tool to improve metabolic health (36–39). EAA supplementation 
results in elevated mitochondrial biogenesis, reduced oxidative 
damage, enhanced muscle protein synthesis, physical capacity, 
reduced body weight, and improved immune function. A 
pharmaceutical therapy that promoted these types of systemic 
improvements would be  heralded in the pursuit of health and 
longevity. It is therefore important to delineate the physiological 
mechanisms responsible for beneficial alterations in organ health that 
provide the above-stated EAA-related benefits.

To gain a better understanding of how these molecular 
mechanisms affect metabolic health, we  should consider how the 
dietary consumption of EAAs influences metabolism in the muscle, 
liver, and adipose tissue. A sedentary lifestyle is commonly 
characterized by muscle atrophy, excessive accumulation of adipose 
tissue, and infiltration of fatty acids in the liver (40). The aging process 
itself further contributes to these metabolic abnormalities, partly due 
to the concomitant presentation of anabolic resistance, which makes 
maintaining a metabolically healthy balance between muscle and fat 
even more challenging. While increased physical activity is a powerful 
tool in the struggle against these abnormalities (41), only 20% of the 
adult population meets the guidelines recommended by the US 
Centers for Disease Control (42). EAAs, branched chain amino acids 
(BCAAs), or more specifically, leucine, have been consistently 
demonstrated to improve mitochondrial biogenesis in clinical and 
pre-clinical studies without any change in physical activity (36). The 
mechanistic underpinnings by which dietary consumption of amino 
acids mitigates pathogenic metabolic sequelae are then important.

We know that amino acids, particularly leucine, transiently 
activate the mammalian target of rapamycin complex 1 (mTORC1), 
Yin-Yang 1 (YY1), and peroxisome proliferator-activated receptor-
gamma coactivator-1-α (PGC-1α) (36) (Figure 1). Working cohesively 
with nuclear respiratory factors (NRF-1,2), mitochondrial 
transcription factor A (TFAM), and sirtuins (SIRT1/3), these signaling 
intermediates are responsible for the promotion of mitochondrial 
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biogenesis (43, 44). On the other hand, reduced hepatic expression of 
PGC-1α has been closely linked to increased intrahepatic lipid in 
humans (Figure 1), whereas hepatic PGC-1α ablation in mice leads to 
compromised mitochondrial metabolism, which ultimately serves to 
rapidly induce hepatic steatosis (45). Perturbations in PGC-1α also 
contributes to the accumulation of ceramide in skeletal muscle, which 
has been implicated in the pathogenesis of peripheral insulin 
resistance (46). On the other hand, elevations in the expression of 
PGC-1α alleviate insulin resistance in skeletal muscle (47, 48).

The perturbed regulation of PGC-1α activation has been directly 
linked to several clinical problems. For example, disruptions in the 
PGC-1α/TFAM signaling pathway during pregnancy increase the risk 
of metabolic diseases in offspring (49). In patients suffering from 
diabetic kidney disease, mitochondrial dysfunction represents a 
hallmark of the clinical condition whereby PGC-1α activation is 
suppressed, potentially leading to the worsening of insulin resistance 
(50). Evidence from pre-clinical studies supports the role of PGC-1α 
and/or SIRT1 activation on the amelioration of lipotoxicity implicated 
in the pathogenesis of insulin resistance (51). PGC-1α also plays an 
important role in mitigating the detrimental impact of oxidative stress 
(52), which is directly connected to lipid abnormalities, atherosclerosis, 
hypertension, and increased risk of type 2 diabetes (53).

Physical activity, cold exposure, and/or caloric restriction are 
known to positively influence the regulatory influence of PGC-1α on 
mitochondrial biogenesis (54). Dietary-induced alterations in EAA 
availability, more specifically leucine, may also activate signaling 
pathways that augment mitochondrial biogenesis, potentially 
suppressing the development of insulin resistance even during periods 
of inactivity (55). Dietary leucine promotes browning of white adipose 
tissue and fatty acid oxidation in adipose tissue through the adenosine 

5′-monophosphate-activated protein kinase (AMPK)-silent 
information regulator of transcription 1 (SIRT-1)-PGC-1α axis. In a 
somewhat similar fashion, dietary leucine activates PGC-1α through 
SIRT1-AMPK signals in skeletal muscle, increasing mitochondrial 
biogenesis, enhancing fatty acid and improving insulin sensitivity (55).

Therefore, the beneficial influence of EAAs on metabolic health 
may be derived from the augmentation of mitochondrial biogenesis 
that would not occur otherwise without increased physical activity 
(19, 23, 37, 38, 56, 57). While these changes appear to impact body 
composition and occur across organ systems in several clinical studies 
(58, 59), the EAA-induced activation of PGC-1α and the beneficial 
alterations in mitochondrial function may be  the 
common denominator.

Amino acids, satiety and metabolic 
health

The satiety cascade is regulated by a complex interplay between 
sensory factors, gastrointestinal influences via gastric distension and 
alterations in gut-derived peptides, and alterations in nutrient status/
energy balance (60). The impact of these regulatory factors on food 
intake is consistent with the aminostatic theory whereby amino acids 
promote satiety (61) (Figure 1). In the context of dietary-induced 
elevations in amino acid concentrations, the regulation of nutrient 
intake may be directly influenced by the intrinsic need to maintain the 
effective remodeling of skeletal muscle. Dietary intervention studies 
linking amino acid concentrations to satiety support the theory (62, 
63). On the other hand, pre-clinical studies suggest more 
comprehensive regulation, including the roles of glucoreceptors in the 

FIGURE 1

Dichotomous role of amino acids on insulin resistance. Impact of acute alterations in postprandial plasma EAA concentrations compared to chronic 
elevations in plasma BCAA concentrations on central and peripheral organ metabolism. Created with BioRender.com.
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intestine and liver, playing a significant role (64). The influence of 
amino acids on satiety involves a complex network of central and 
peripheral nutrient sensing systems (65). While leucine-induced 
alterations in forebrain-hindbrain circuitry represent a central 
regulatory element that reduces nutrient consumption via negative 
feedback loops (66), divergent alterations in circulating anorexigenic 
hormones/orexigenic hormones elicited by dietary leucine highlight 
the importance of peripheral factors (67) (Figure 1).

Demonstrating the importance of peripheral regulation, high-
protein diets have been demonstrated to elicit elevations in 
anorexigenic hormones while at the same time suppressing orexigenic 
hormones. Where dietary protein suppresses orexigenic hormones 
like ghrelin, anorexigenic hormones like GLP-1, cholecystokinin 
(CCK), and peptide YY are increased (Figure 1). For example, protein 
intake promotes GLP-1, which not only promotes satiety but has also 
been tied to enhancements in ß-cell function and glycemic status, 
which is logically consistent with the efficacy of GLP-1 as a therapeutic 
tool in the fight against metabolic disease (68). The amino acids 
phenylalanine and l-tryptophan are influential in promoting CCK 
secretion (69), which in turn serves to delay gastric emptying, promote 
satiety, and reduce dietary intake (70). In fact, the intravenous delivery 
of CCK reduces food intake, potentially influenced by the activation 
of CCK1 receptors that enhance satiety (71). While the specific amino 
acids responsible for the peptide YY response to protein have not been 
identified (72), acute dietary feeding of protein promotes the release 
of peptide YY that has a direct impact on improved satiation (73). 
Pre-clinical data also suggest that chronic elevations in dietary protein 
also increase plasma peptide YY and peptide YY expression (73).

Consistent with the importance of central regulation, leucine-
induced activation of mTORC1  in the hypothalamus represents a 
crucial step in the central signaling cascade that influences satiety. 
Intracerebroventricular leucine administration reduces dietary intake, 
whereas administration of rapamycin ameliorates leucine-induced 
satiety (74). Downstream from mTOR, S6K1 activation has been 
demonstrated to reduce energy intake and mitigate metabolic 
perturbations, such as increased fat deposition and the presentation 
of insulin resistance, even during high-fat feeding in mice (75). High 
protein diets may also activate the noradrenergic-adrenergic neuronal 
pathway in the brainstem nucleus of the solitary tract and the 
meloanocortin neurons of the hypothalamic arcuate nucleus (75).

In addition to the impact of protein or amino acid intake on gut 
derived hormones that influence satiety, Skov et al., suggested that the 
inclusion of additional dietary protein also contributes to improved 
compliance to dietary interventions (76), ensuring negative energy 
balance required for weight loss that promotes improvements in 
insulin sensitivity (77). Given the multifaceted benefits of dietary 
protein on gut-derived hormones, it is not altogether surprising that 
evidence from dietary interventions support the role of high-protein 
diets in successful weight management, glucose homeostasis, and lipid 
metabolism (Figure 1).

Controversial aspects of dietary 
protein and amino acids on the 
development of insulin resistance

A wide range of dietary interventions and/or EAA 
supplementation studies suggest definitive metabolic benefits (2, 9, 

11–13, 15, 16, 19). On the other hand, elevations in fasting levels of 
BCAAs, sulfur amino acids, tyrosine, and phenylalanine have been 
closely linked to insulin resistance (78–80). These associations 
between fasting BCAAs and insulin resistance appear to strengthen 
over time (81), and BCAAs have even been suggested as potential 
biomarkers for predicting the risk of developing type 2 diabetes (82, 
83) or for additional evidence of type 2 diabetes (84). Based on the 
results of a randomized controlled crossover trial, reductions in 
dietary consumption of BCAAs lowered meal-induced insulin 
secretion and postprandial insulin sensitivity as derived from the 
mixed meal tolerance test (85). However, direct measurements of 
hepatic and/or peripheral insulin sensitivity in these same studies 
were not affected by the reduction in dietary intake of BCAAs, 
suggesting the variations in splanchnic compared to peripheral 
glucoregulatory hormone concentrations between the mixed meal 
tolerance test and the clamp, respectively.

Insulin-mediated clearance of BCAA is impaired in obese 
individuals and seems to worsen in individuals with type 2 diabetes 
(86). Lower mitochondrial oxidation of BCAAs and reduced whole-
body leucine oxidation rates were implicated in the chronic elevation 
of BCAAs (86). Hyperinsulinemia and nutrient overload may 
represent a physically inactive—hyperphagic phenotype. For example, 
chronic post-absorptive elevations in BCAAs have been linked to 
“hyperactive” mTOR and S6K1 signaling, impairing insulin action due 
to IRS-1 serine phosphorylation (80). 3-Hydroxyisobutyric acid, a 
catabolic intermediate of valine directly promotes fatty acid transport 
in skeleltal muscle, contributing to insulin resistance (87). Isoleucine 
also leads to increased muscle lipid deposition that has been linked to 
insulin resistance (88). Nevertheless, the causal link between BCAAs 
and the pathogenesis of insulin resistance is not clear. Inconclusive 
results from studies utilizing dietary supplementation of BCAAs, 
EAAs, and/or protein suggest the presence of multiple factors (i.e., 
source of intact protein, baseline physical activity, status of energy 
balance, etc) that play important roles, either negating the influence 
of fasting BCAAs or reducing their relevance to disease (89, 90) 
(Figure 1). Longitudinal clinical studies are needed to elucidate the 
reasons behind inconclusive results.

Conclusion

The dichotomous role of protein, EAAs, and BCAAs in insulin 
resistance and metabolic health can be perplexing. A growing body of 
evidence supports the idea that high-protein diets and EAA 
supplementation support muscle retention, mitochondrial function, 
and insulin sensitivity, especially during periods of caloric restriction 
and/or physical inactivity. However, chronically elevated fasting 
plasma concentrations of BCAAs, under conditions of nutrient excess 
and hyperinsuliunemia, have been linked to overactivation of mTOR 
and S6K1 pathways, which may lead to systemic insulin resistance 
(Figure 1). These seemingly contradictory findings suggest that the 
relationships between dietary protein and a particular phenotype (ie., 
timing, context, culture, and metabolic status) may be responsible for 
the controversy surrounding dietary protein and metabolic health. 
This nuanced conundrum underscores the need for further 
investigation and discovery in amino acid metabolism. As we develop 
deeper insights into the timing of nutrient delivery, the state of energy 
balance, and cellular signaling, we should utilize amino acid-based 
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strategies to offer targeted therapeutic potential in the prevention and 
management of insulin resistance and metabolic disease.
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