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Machine learning predicts lipid 
emulsion stability in parenteral 
nutrition using multi-laboratory 
literature data
Shang Yong-guang 1, Wang Xue-lian 1, Cheng Yong 2, 
Qin Wang-jun 1*, Li Peng-mei 1 and Zhang Lei 1*
1 Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China, 2 School of Information, 
Beijing University of Chemical Technology, Beijing, China

Objective: Physical instability of lipid in parenteral nutrition (PN) poses significant 
clinical safety risks. As lipid stability is influenced by multiple complex factors and 
remains incompletely characterized, this study aimed to quantify the relative 
importance of stability determinants and to develop a machine learning (ML) 
model for predicting stability in individualized PN prescriptions.
Methods: A retrospective meta-analysis integrated experimental data from 
multi-laboratory studies. The ML framework employed transfer learning for 
cross-laboratory data harmonization and Synthetic Minority Over-sampling 
Technique (SMOTE) for class imbalance mitigation. Model performance was 
evaluated using the area under the receiver operating characteristic curve (AUC-
ROC) and accuracy.
Results: The datasets comprised 17 stability-related features (electrolytes, 
macronutrients, and storage conditions) extracted from 1,518 samples 
representing 872 unique PN formulations across 19 studies (2000 and 2024). 
The XGBoost model achieved exceptional predictive performance (accuracy: 
98.2%, AUC 0.968). SHAP-based feature importance analysis identified the 
concentrations of Amino and phosphate, storage time and lipid composition as 
key stability determinants.
Conclusion: This study establishes the first interpretable ML framework 
for predicting lipid emulsions stability in PN, resolving cross-laboratory 
data heterogeneity. We  have provided a high-accuracy prediction tool for 
assessing lipid emulsion stability in PN, while the methodology demonstrates 
generalizability for stability studies of complex drugs and nutrients formulations.

KEYWORDS

lipid emulsion stability, parenteral nutrition, XGBoost, SHAP interpretation, machine 
learning

Introduction

Parenteral nutrition (PN) is liquid nutrition that is delivered directly to the bloodstream 
of patients unable to absorb adequate nutrients through the digestive system. PN 
simultaneously supplies macronutrients (amino acids, dextrose, and lipids), which constitute 
the caloric and protein supply, and micronutrients (vitamins and trace elements), which 
complement the diet. As one of the most complex preparations in hospital, PN carries inherent 
risks of physicochemical interactions among its components. These interactions can 
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compromise emulsion stability, potentially leading to patient 
safety hazards.

Commercially intravenous lipid emulsion is thermodynamically 
unstable heterogeneous dispersions two-phase system. Oil droplets, 
primarily composed of triglycerides, are stabilized by a surfactant layer 
of phospholipids derived from egg lecithin. The phosphatidic acid 
outside the lipid droplets is completely ionized to form as zeta potential 
between −40 and −50 mV, which realizes mutual electrostatic repulsion, 
thereby preventing aggregation and maintaining a uniform distribution 
of lipid droplets. The addition of cations (e.g., Na+, K+, Ca2+, Mg2+) can 
neutralize this negative surface charge, reducing the zeta potential, lead 
to droplet aggregation and subsequent phase separation within PN. The 
critical aggregation number (CAN) is a parameter that tries to predict 
the amount of cationic charge that would disturb lipid emulsion. pH 
significantly influences zeta potential and stability. A pH range of 6.0–9.0 
(1) is optimal for lipid emulsion stability. Consequently, low-pH 
additives like dextrose solutions can compromise stability (2), while 
amino acid solutions can exert a stabilizing effect by modulating the PN 
pH (2). Lipid emulsions become unstable at pH values below 5.0 (2). The 
American Society for Parenteral and Enteral Nutrition (ASPEN) stated 
in 2014 that PN containing >4% amino acids, >10% dextrose, and >2% 
lipid emulsion remained stable at room temperature for up to 30 h or 
refrigerated (5 °C) for up to 9 days followed by 24 h at room temperature 
(2), However, the 2024 ASPEN update provides only select concentration 
examples without comprehensive stability criteria (3). Similarly, other 
guidelines list validated PN formulations (4), but generally lack specific 
recommendations on macronutrient and electrolyte concentration 
limits essential for predicting physicochemical stability.

In summary, lipid emulsion stability in PN is influenced by a 
multitude of interacting factors, including electrolyte concentrations, 
macronutrient composition, pH, storage temperature, and duration. 
Furthermore, the inherent variability of individualized PN 
prescriptions means that existing stability studies are often limited to 
specific formulations. Consequently, a generalizable method for 
evaluating and predicting lipid emulsion stability across diverse 
clinical PN remains lacking in practice. To address this gap, the 
present study conducted a systematic overview of current research on 
lipid emulsion stability in PN. We extracted key features from these 
studies, detailing the analytical methodologies employed, the stability 
variables measured, and the principal factors investigated. Ultimately, 
this work aims to establish a clinically applicable prediction model for 
lipid emulsion stability in PN utilizing Machine Learning (ML).

Materials and methods

Study design

An ML-powered meta-analysis framework incorporating transfer 
learning techniques was developed to integrate cross-laboratory 
evidence. Studies investigating lipid emulsion stability in PN were 

systematically identified, screened, and subjected to original data. This 
process established a multidimensional ML database. Domain 
adaptation techniques were applied to address heterogeneous data 
distributions across laboratories. Subsequently, ML algorithms were 
employed to construct a lipid emulsion stability prediction model, 
with performance validated through cross-validation.

Search strategy

A systematic literature search was conducted across PubMed, 
Embase, and Web of Science to identify relevant studies on PN stability. 
The search was restricted to English-language publications from 2000 
to 2024. The following search syntax was employed: (“parenteral 
nutrition” OR “total parenteral nutrition” OR “total nutrition admixture” 
OR “all in one nutrition” OR “lipid emulsion”) AND (“stability/
instability” OR “compatibility/incompatibility” OR “safety/unsafety”).

Inclusion and exclusion criteria

Studies were included if they met the following criteria:

	[1]	 Experimental investigations of PN stability relevant to 
clinical practice.

	[2]	 Lipid emulsion stability had been analyzed at least one of Lipid 
droplet evaluation criteria following USP Chapter 729 
<Globule Size Distribution in Lipid Injections>
	 •	� PFAT5 (The percentage of weighted volume of fat 

residing in droplet of diameter >5 microns).
	 •	 MDD (Mean droplet diameter).

	[3]	 Utilization of validated analytical methods.

	•	 Dynamic Light Scattering (DLS)/Photon Correlation 
Spectroscopy (PCS) or Laser Diffraction (LD) for MDD.

	•	 Light Extinction/Single Particle Optical Sensing (LE/SPOS) 
for PFAT5.

Studies were excluded if they:

	[1]	 Assessed only non-physical stability aspects (e.g., chemical 
degradation, precipitation).

	[2]	 Evaluated formulations containing non-standard 
compounding agents.

	[3]	 Analyzed lipid emulsion stability outside PN.
	[4]	 Focused solely on drug-PN compatibility.
	[5]	 Were conference abstracts, reviews, book chapters, or lacked 

accessible full text/raw data.

Flow diagram shown in Figure 1, summarizes the search strategy 
following PRISMA (5).

Feature extraction

The features were extracted from the experimental studies 
reported in the literature including Environmental variables, PN 
composition characteristics and stability assessment results. Two 

Abbreviations: PN, Parenteral nutrition; MDD, Mean droplet diameter; PFAT5, The 

percentage of weighted volume of fat residing in droplet of diameter >5 microns; 

CAN, Critical aggregation number; ML, Machine learning; SHAP, Shapley additive 

explanations; AUC-ROC, Area under the receiver operating characteristic curve; 

SMOTE, Synthetic Minority Over-sampling Technique.
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researchers independently extracted the features data of experimental 
studies based on the following features definitions and formed the 
original dataset after cross-verification.

	[1]	 Environmental variables included:
	 •	 Study year: In which year the study was conducted.
	 •	 Temperature storage: Preparation and storage temperature.
	 •	 Temperature test: The temperature during the 

stability analysis.
	 •	 Times storage: The storage time of preparation.
	 •	 Times test: The time for conducting the stability analysis.

	[2]	 PN composition characteristics:
	 •	 Lipid composition: Long-Chain Triglycerides-LCTs, 

Medium Chain Triglycerides-MCTs or MCT/LCT blends 
in different proportions.

	 •	 Addition of micronutrients (within or without) included: 
Fat-soluble vitamins, Water-soluble Vitamins, Trace 
elements, Heparin.

	 •	 Concentration of electrolyte (mmol/L) included: Potassium; 
Sodium; Calcium; Magnesium; Phosphate; Chloride.

	 •	 CAN: The critical aggregation number is a predictive 
parameter for cationic charge induced destabilization 
(CAN = a + 64b + 729c). a, b and c are the sum of the 
concentrations (mmol/l) of mono-, di- and trivalent cations.

	 •	 Concentrations of Macronutrient (g/100 mL) included: 
Amino, Dextrose, Lipid.

	[3]	 Results of lipid emulsion stability assessment: The methods that 
were used for determination the stability of lipid emulsion was 
following the United States Pharmacopeia (USP), lipid globule 
size distribution be controlled within specified limits:

	 •	 MDD: Instability threshold is MDD ≥ 0.5 μm (analytical 
methods: DLS/PCS or LD).

	 •	 PFAT5: Instability threshold is PFAT5 ≥ 0.05% 
PFAT5 < 0.05% (analytical methods: LE/SPOS).

Data preprocessing

	[1]	 Missing value handling: An automated protocol classified 
missingness as: Low (<5%), Moderate (5%–15%), High (15%–
30%), and Extreme (>30%). Missing data mechanisms were 
evaluated using Little’s Missing Completely at Random 
(MCAR) test (α = 0.05). For variables with 5%–20% 
missingness, Multiple Imputation by Chained Equations 
(MICE) was implemented (10 iterations generating 5 
imputed datasets).

	[2]	 Outlier detection & processing: A tripartite detection 
framework was employed: Modified Z-score (threshold: 
|Z| > 3.5); Isolation Forest (contamination = 0.05, n_
estimators = 200, max_samples = 256, random_tate = 42); 
Local Outlier Factor (n_neighbors = 20, contamination = 0.05). 
A specific constraints rule based on the formulation of PN 
solution was established, and the violation of the rule was 
considered as abnormal: CAN >150, Amino acids (>1%), 
Glucose (>2%), Lipid emulsion (>1%), MDD > 50 nm, 
PFAT5 < 0.001% or >4%.

	[3]	 Dataset partitioning and leakage prevention: A strict 
random split was applied to partition the dataset: Training 
set n = 1,062 (70%), and Test set n = 456 (30%). This 
approach ensured clear separation, effectively preventing 
leakage of information. Parameters for all preprocessing 
steps (including SMOTE resampling, missing value 
imputation and feature scaling) were all determined before 
random split.

FIGURE 1

Studies inclusions and exclusions flowchart.
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	[4]	 Multicollinearity handing: We calculated the Variance Inflation 
Factor (VIF) for all variables. We  employed a stepwise 
approach: first removing variables with VIF > 10, for any 
remaining variable pairs with a correlation coefficient >0.8, 
retaining the variable deemed to have greater physical 
significance based on domain knowledge.

Statistical analysis

Data were expressed as frequencies (percentages) for categorical 
variables and as Mean ± SD or median (IQR) based on the test of 
normality for continuous variables. The Kolmogorov–Smirnov test 
was applied to test normality. Differences between stability and 
instability groups were analyzed using Student’s t-test for continuous 
variables and Fisher’s exact test for categorical variables. A correlation 
heatmap was used to test potential multicollinearity between features. 
Statistical analyses and modeling were conducted using IBM SPSS 
Statistics (v25.0) and scikit-learn (v1.1) within Python 3.7 (Python 
Software Foundation; accessed January 1, 2025).

Model development

	[1]	 Algorithmic diversity: Tree-based models (random forest, 
decision tree, XGBoost, gradient boosting), Non-tree models 
(logistic regression, support vector machine, K-Nearest 
neighbors, Naïve Bayes) and Ensemble/Neural (Multilayer 
Perceptron and AdaBoost).

	[2]	 Class imbalance mitigation: To address significant class 
imbalance (13.1% unstable emulsions), systematic evaluation 
of hybrid resampling techniques was implemented including: 
SMOTE, ADASYN, random under-sampling. Domain-
informed optimization of sampling ratios enhanced minority-
class (unstable emulsions) recognition performance across 
validated configurations.

	[3]	 Hyperparameter optimization: Model hyperparameters were 
systematically optimized using Bayesian methods to ensure 
robustness and stability.

	[4]	 Evaluation protocol: Model performance was comprehensively 
assessed using five core metrics: accuracy, precision, recall, 
F1-score, AUC-ROC. To ensure clinical reliability and enable 
transparent assessment of misclassification risks, particular 
emphasis was placed on a detailed confusion matrix analysis 
and class-specific performance metrics—including precision, 
recall, and F1-score—for both stable and unstable lipid 
emulsion categories, thereby enabling multidimensional 
validation of the model’s predictive capability.

	[5]	 Ensemble strategy: Final model outputs were weighted soft-
voting aggregation of probabilistic predictions to enhance 
cross-laboratory generalization capability.

Model interpretation

We employed SHAP values to quantify feature importance and 
interpret model predictions. Grounded in cooperative game theory’s 
Shapley values, SHAP provides consistent, theoretically-grounded 

attribution of feature contributions to individual predictions. 
Predictions. Model-specific implementations were utilized: Trees 
SHAP for tree models and Kernels HAP for non-tree models. 
Additivity was verified (tolerance <0.01), with ensemble SHAP 
values computed as weighted averages of base models. Global 
importance was ranked by mean absolute SHAP values, identifying 
top features.

Results

Data characteristics

The final analytical dataset comprised 1,518 PN samples 
representing 872 unique clinical prescriptions, extracted from 19 
studies published between 2000 and 2024. These studies involve six 
different types of emulsions (three kinds of LCTs, two kinds of MCT 
/LCTs and one kind of SMOF lipid), storage temperature from 4 to 
37 °C and storage time from 0 h to 14 days, the concentration of 
monovalent cation (Na+/K+) from 0 to 230 mmol/L, divalent cations 
(Ca2+/Mg2+) from 0 to 92.5 mmol/L. The concentration of 
macronutrient (mean ± SD): Amino (3.4 ± 2.0 g/100 mL), Dextrose 
(11.2 ± 6.2 g/100 mL), Lipid (2.8 ± 1.0 g/100 mL), Complete study 
characteristics are detailed in Table 1.

Correlation between features and lipid 
emulsion stability in PN

Correlational analyses between extracted features and emulsion 
stability are presented in the correlation heatmap 
(Supplementary Figure S1). MDD analysis performed on 1,058 bags 
(69.7%), with instability (MDD ≥ 0.5 μm) detected in 32 samples 
(3.0% 32/1058). PFAT5 were determined 971 samples (64.0%), 
instability (PFAT5 ≥ 0.05%) observed in 173 samples (17.8% 
173/971). Overall instability defined as violation of either USP 
threshold (MDD ≥ 0.5 μm or PFAT5 ≥ 0.05%), occurring in 199 
samples (13.1% 199/1518). Comparative analysis between stable 
(n = 1,319) and unstable (n = 199) groups demonstrated significant 
differences (p < 0.05) in most variables except the concentration of 
Calcium, Magnesium, Lipid, Lipid composition and Trace elements. 
Complete statistical comparisons are detailed in Table 2.

Machine learning prediction of PN lipid 
stability

We compared the performance of ML models to predict PN lipid 
stability using ROC analysis. The AUC-ROC of the XGBoost model 
had the highest predictive value (AUC-ROC: 0.968, Accuracy: 0.980), 
followed by a random forest model (AUC-ROC: 0.962) and Gradient 
Boosting (AUC-ROC: 0.961). Detailed performance measures for all 
models are provided in Supplementary Table S1. We demonstrated 
the ROC curve comparison of 10 prediction models (Figure  2). 
Imbalance treatment optimization (Supplementary Table S2) 
confirmed SMOTE significantly enhanced XGBoost performance 
versus alternative methods. Finally, the XGBoost model achieved a 
recall of 0.98, a Precision of 0.98 and F1 score of 0.98.
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TABLE 1  Characteristics of studies included.

Reference Year Type of emulsion Storage 
temperature 
and time

Analytical 
method

Droplet 
size 
measured

Monovalent 
cations 
mmol/L

Divalent 
cations 
mmol/L

Amino
g/100 

dL

Dextrose 
g/100 dL

Lipid 
g/100 

dL

Main results

Driscoll et al. 

(14)

2000 100% Soybean oil

50% Soybean oil/50% MCT

4 °C/4 days

RT/30 h

DLS

SPOS

MDD

PFAT5

70–140 15–30 6 16 2.3 50% Soybean oil/50% MCT 

controlled within USP limits

Driscoll et al. 

(15)

2001 50% Soybean oil/50% Safflower oil

100% Soybean oil

50% Soybean oil/50% MCT

80% Olive oil/20% Soybean oil

RT/30 h LE

SPOS

PFAT5 44.7 3.01 2.3 2.3 5 50% Soybean oil/50% 

Safflower oil 24 h and 100% 

Soybean oil 30 h PFAT5 > 0.05

Driscoll et al. 

(16)

2003 50% Soybean oil/50% Safflower oil

50%Soybean oil/50% MCT

50% MCT/ 40% Soybean oil/10% 

Fish oil

RT/48 h LE

SPOS

PFAT5 33–90 8.4–17.5 2.0–3.0 18.0–24.0 2.0–3.0 50% Soybean oil/50% 

Safflower oil 6 h PFAT5 > 0.05, 

24 h exceeds 0.4%

Driscoll et al. 

(9)

2006 50% Soybean oil/50% MCT 6 °C/4 days

25 °C/30 h

LE

SPOS

PFAT5 90–230 10–20 3.5–7.0 5.0–15.0 2.0–4.0 50% Soybean oil/50% MCT 

controlled within USP limits

Driscoll et al. 

(10)

2006 50% Soybean oil/50% MCT RT/30 h DLS

SPOS

MDD

PFAT5

102.4–189.8 12.8–23.8 7.1–7.7 19.6–21.3 2.5–2.7 Controlled within USP limits

Gonyon et al. 

(17)

2008 80% Olive oil/20% Soybean oil 5 °C/7 days

RT/4 days

LD

SPOS

MDD

PFAT5

58 4.2 4.4 22.2 2.2 MDD < 0.5, PFAT5 < 0.01, 

and decreased with time

Skouroliakou 

et al. (18)

2008 100% Soybean oil 4–25 °C/7 days

RT/48 h

LD MDD 200 24.1 1.95 10.6 2.2 MDD controlled within USP 

limits

Chaieb et al. 

(19)

2008 80% Olive oil/ 20% Soybean oil

100% Soybean oil

37 °C/24 h DLS MDD 27–45 17.6–33.6 0.5–3.1 4.3–12.6 2 MDD controlled within USP 

limits

Driscoll et al. 

(20)

2010 50% Soybean oil/50% MCT 25 °C/30 h LE

SPOS

MDD

PFAT5

29 16.5 1–4 5–10 2.0–4.0 Concentration of amino acid 

had a great influence on the 

stability

Skouroliakou 

et al. (21)

2012 30% Soybean oil/30% MCT/25% 

Olive oil/15% Fish oil

4–25 °C/24–48 h DLS MDD 31.1 13.5 1.1 8.9 1.5 MDD controlled within USP 

limits

Lobo et al. (6) 2012 50% Soybean oil/50% MCT 4–37 °C/7 days DLS

LO

MDD

PFAT5

207 12.8 3 8 3 Trace elements have less effect 

than vitamins, and less effect 

than both add

Athanasiou 

et al. (22)

2013 30% Soybean oil/30% MCT/25% 

Olive oil/15% Fish oil

80% Olive oil/ 20% Soybean oil

4–25 °C/24 h DLS MDD 26.5–30.5 2.4–14 2.3–4.0 10.6–12.6 1.6–2.0 MDD controlled within USP 

limits

Cloet et al. (23) 2017 30% Soybean oil/ 30% MCT/25% 

Olive oil/15% Fish oil

2–8 °C/8 days

RT/24 h

DLS MDD 195 23 2.0 15.4 0.8 MDD controlled within USP 

limits

(Continued)
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TABLE 1  (Continued)

Reference Year Type of emulsion Storage 
temperature 
and time

Analytical 
method

Droplet 
size 
measured

Monovalent 
cations 
mmol/L

Divalent 
cations 
mmol/L

Amino
g/100 

dL

Dextrose 
g/100 dL

Lipid 
g/100 

dL

Main results

Sayed et al. 

(24)

2020 30% Soybean oil/30% MCT/25% 

Olive oil/15% Fish oil

25 °C/24 h DLS MDD 23–50 5.9–12.5 1–5.8 4.3–9.1 0.5–2.0 MDD controlled within USP 

limits

Zhao et al. (25) 2021 50% Soybean oil/50% MCT RT/72 h SPOS MDD

PFAT5

300.0 10.0 3.0 7.0 2.0 PFAT5 < 0.05, 24 h One of the 

manufacturers MDD > 0.5um

Gostynska 

et al. (26)

2021 50% MCT/40% Soybean oil/10% 

Fish oil

80% Olive oil/ 20% Soybean oil

100% Soybean oil

30% Soybean oil/ 30% MCT/ 25% 

Olive oil/ 15% Fish oil

2–8 °C/7 days DLS MDD 7.7–213.1 3.0–29.1 1.7–2.1 12.3–15 3.4–4.2 PN admixtures to remain 

stable for seven days within 

the specified limits

Gao et al. (27) 2021 50% Soybean oil/50% MCT 25 °C/24 h SPOS PFAT5 0–139 0–3.4 3.35–4.5 5–10 2.4 The addition of divalent ions 

upper 2.7 mmoL/L was 

unstable

Otero-Millán 

et al. (28)

2024 50% Soybean oil/50% MCT 4 °C-RT/14 days DLS MDD 100–180 30–92.5 2.5 7.5 0.12–2 Lipid emulsion concentration 

less than 0.25%, or amino acid 

concentration less than 2.5% 

RT 1–3 days MDD greater 

than 0.5

Otero-Millán 

et al. (29)

2024 50% MCT/40% Soybean oil/10% 

Fish oil

4 °C-RT/7 days DLS MDD 30–130 11.2–35 2.0–3.3 7.1–13.5 0.7–4.0 MDD controlled within USP 

limits

LD, laser diffraction; PCS, photon correlation spectroscopy; DLS, dynamic light scattering; LO, light obscuration; LE/SPOS, light extinction single-particle optical size; MCT, medium-chain triglyceride; RT, room temperature.
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Detailed mechanism of XGBoost: Algorithm Principle, An 
ensemble learning method based on gradient-boosted decision trees, 
which builds a strong classifier by sequentially training multiple weak 
learners; Key Parameters, max_depth = 6 (controls tree depth to balance 
bias and variance), learning_rate = 0.1, n_estimators = 100 (number of 
trees); Objective Function, Obj = Σ l (yᵢ, ŷᵢ) + Σ Ω(ƒₖ), where “l” is the 
loss function and “Ω” is the regularization term; Feature Interaction, 
Capable of automatically learning non-linear interaction relationships 
between features without manual feature engineering.

The test set confusion matrix shows: True Positives (correctly 
identified unstable cases) = 55, False Negatives (unstable cases 
misclassified as stable) = 4. True Negatives (correctly identified stable 
cases) = 392, False Positives (stable cases misclassified as unstable) = 5. 
This results in a Sensitivity/Recall of 93.2% (55/59) and a Specificity of 
98.7% (392/397). We  demonstrated the confusion matrix of 
SMOTE+XGBoost model (Supplementary Figure S2).

Feature importance analysis

To provide recommendations for practice with a straightforward 
understanding of key features related to predicting lipid stability, 

SHAP analysis of the optimal XGBoost model identified key 
determinants of lipid emulsion stability with or without 
Multicollinearity handing (Figure 3). Amino, Phosphate, Dextrose, 
Time storage and Lipid composition demonstrated predominant 
predictive influence.

Discussion

Core findings and model innovation

This study established an XGBoost-driven multimodal data 
fusion framework to achieve high-accuracy prediction of lipid 
emulsion physical stability in PN. The model demonstrated 
exceptional performance on the test set, significantly 
outperforming conventional logistic regression and random forest. 
Key innovations include intelligent multisource data integration 
through transfer learning and domain adaptation, resolving 
heterogeneity from environmental conditions and prescription 
differences by enabling equivalent data transformation across 19 
studies. Optimized Feature Engineering, 17 stability relevant 
features were extracted.

TABLE 2  The characteristics of variables in stability and instability group.

Continuous variables Stability (n = 1,319) Instability (n = 199) p-value

Mean ± SD

Temperature (°C) 15.9 ± 11.8 19.0 ± 11.9 0.002

Times (h) 82.1 ± 80.0 62.3 ± 76.3 0.002

Potassium (mmol/L) 37.2 ± 33.4 21.1 ± 24.0 0.000

Sodium (mmol/L) 68.5 ± 61.2 102.7 ± 82.4 0.000

Calcium (mmol/L) 12.3 ± 12.0 12.9 ± 11.0 0.848

Magnesium (mmol/L) 5.4 ± 5.4 4.9 ± 3.6 0.242

Phosphate (mmol/L) 13.8 ± 12.3 8.8 ± 8.6 0.000

Chloride (mmol/L) 50.6 ± 74.7 101.1 ± 91.5 0.000

Amino (g/dl) 3.6 ± 2.1 2.7 ± 1.2 0.000

Dextrose (g/dl) 11.5 ± 6.2 8.8 ± 4.9 0.000

Lipid (g/dl) 2.8 ± 1.0 2.7 ± 1.0 0.245

CAN 1237.8 ± 895.6 1261.1 ± 704.5 0.018

Categorical variables n (%) n (%) p-value

Lipid composition LCT 20% 269 (20.4) 35 (17.6) 0.117

MCT/LCT 20% 923 (70.0) 164 (82.4)

SMOFlipid 20% 127 (9.6) 0 (0.0)

Fat-soluble vitamin Without 724 (54.9) 81 (40.7) 0.000

Within 595 (45.1) 118 (59.3)

Water-soluble vitamins Without 676 (51.3) 81 (40.7) 0.007

Within 643 (48.7) 118 (59.3)

Trace elements Without 719 (54.5) 99 (49.7) 0.238

Within 600 (45.5) 100 (50.3)

Heparin Without 1,144 (86.7) 153 (76.9) 0.000

Within 175 (13.3) 46 (23.1)
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To address the potential impact of multicollinearity among input 
variables (as shown in Supplementary Figure S1), we systematically 
evaluated and managed feature correlations during data preprocessing. 
Variables were carefully reviewed, and those with lower 
physicochemical relevance (e.g., CAN) were excluded. A comparative 
sensitivity analysis of SHAP values was conducted before and after this 
multicollinearity handling. Although the ranking of specific features 
saw minor shifts, the overall importance trend remained largely 
consistent. This process refined the contribution weight of individual 
variables to the model, thereby enhancing the robustness and 
interpretability of our final model.

Although multiple continuous variables showed statistically 
significant differences between the stable and unstable PN groups 
(Table  2), their inherent variability and intercorrelations make it 
difficult to determine the stability of lipid in individualized TNA. This 
further highlights the advantage of using a ML approach, which can 
integrate multidimensional interactions among features—such as 
amino acids, dextrose, and electrolytes—to produce a robust 
predictive model. Importantly, the SHAP analysis reaffirmed the 
model’s ability to synthesize these interrelated influences, with key 
factors (e.g., amino acids, dextrose, and storage time) consistently 
emerging as major contributors, thereby validating the model’s 
interpretability and clinical relevance.

The performance gain achieved through the SMOTE-based 
resampling strategy can be attributed to the intrinsic characteristics of 
our dataset. SMOTE-generated synthetic samples effectively populate 
sparse regions within the feature space. Consequently, SMOTE’s 
interpolation mechanism effectively populated these sparse regions 
with plausible synthetic samples, which significantly enhanced the 

model’s ability to identify the minority class. This approach elevated 
the AUC from 0.95 to 0.97 and elevated the Accuracy from 0.97 to 
0.98, thereby ensuring the predictive safety of the model. We add a 
sensitivity analysis regarding key SMOTE parameters in 
Supplementary Table S3.

Analysis of key features and mechanisms

The stability of lipid in TNA is most significantly influenced 
by the concentration of amino acids, which play a crucial role in 
regulating the pH of TNA. This study first identifies phosphate 
concentration as a novel predictor of PN lipid stability through 
ML modeling—a previously unreported association whose 
mechanism warrants further investigation, though we hypothesize 
involvement of phosphate groups in the emulsion’s hydrophilic 
layer. Following features such as concentration of others electrolyte 
and dextrose, type of lipid, CAN, or storage time that have been 
largely evaluated and confirmed as relevant predictors of lipid 
stability in PN. CAN was excluded due to multicollinearity 
handling. This was also discovered in all models SHAP analysis 
(Supplementary Figure S3). Cations can disrupt the electrostatic 
repulsion between lipid droplets, thereby compromising the 
stability of lipid emulsions, though modulated by compositional 
factors (6). The 100-fold higher aqueous solubility of medium-
chain caprylic acid (C8) versus palmitic acid (C16) (7), reduces 
oil-water interfacial tension, explaining the low stability of LCT 
emulsions (8, 9) observed in our model. While temperature and 
storage duration influence stability, their limited predictive role 

FIGURE 2

The ROC curve comparison of ten prediction models.
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may relate to anomalous PFAT5 reduction over time—potentially 
attributable to compounding-induced air bubbles (10). Our 
stability assessment aligned with USP and Chinese Pharmacopoeia 
standards using MDD/PFAT5, as enlarged droplets (>5 μm) pose 
embolism risks: murine studies demonstrate PFAT5 > 0.05% 
causes microvascular damage and reticuloendothelial injury (11), 
consistent with clinical reports of pulmonary fat deposition in 
neonates (12); critically, PFAT5 > 0.4% induces phase separation 
visible as surface oil droplets (1), representing immediate life-
threatening risks.

Value in clinical practice

As shown above, there has a critical impact of PN stability on 
patient safety, particularly the complex physicochemical behavior 
of lipid emulsions influenced by multifactorial interactions. In 
clinical practice, there are complex decisions in medical order, 
prescription review, PN preparation and PN safety monitoring. This 
ML-driven solution empowers pharmacists and physicians to 
rapidly evaluate PN compatibility by analyzing the influencing 
factors of specific prescriptions. ML has been increasingly used in 
the field of nutrition science, considering the diversity and 
complexity of individuals, ML can be  used to predict precision 
nutrition support through multivariate and high-dimensional data 
analysis. In 2022–2027, the National Institutes of Health of the 
United States will provide $170 million to fund the development of 

algorithms for precision nutrition support (13). Our work provides 
a distinct contribution. Rather than merely applying XGBoost 
model, this study establishes a comprehensive, ML-enabled meta-
analysis framework tailored specifically to PN stability. Our 
approach integrates a uniquely standardized clinical dataset, 
domain-specific feature engineering that combines environmental, 
electrolyte, and macronutrient variables, and an interpretable 
predictive tool with direct clinical utility. By adapting ML techniques 
to this specific challenge, we offer not only a practical system for 
stability prediction but also a reusable methodological framework 
for studying complex systems stability in pharmaceutical and 
nutrition sciences.

Limitations and strengths

As a retrospective investigation, this study necessitates further 
validation through prospective multi-laboratory trials, particularly to 
verify phosphate’s mechanistic role in emulsion destabilization. In 
addition, lipid emulsion stability parameters were insufficient: pH, 
Zeta potential, peroxide parameter, and free fatty acid were lacking, 
but we  followed scientific physical stability verification criteria. 
Subsequently, extended multi-task learning was used to predict 
calcium and phosphorus precipitation, vitamin degradation and other 
stability risks.

ML approach overcomes the clinical impracticality of 
experimental verification for individualized PN formulations by 

FIGURE 3

Features SHAP analysis in the XGBoost model. (A) No handling of multicollinearity; (B) Deal with multicollinearity.
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modeling multifactorial interactions across heterogeneous datasets. 
Future research will expand training data to enhance generalizability 
and integrate physical–chemical stability predictions, ultimately 
constructing a comprehensive risk assessment paradigm for PN 
quality assurance.

Conclusion

This study establishes an XGBoost-driven multimodal fusion 
framework that transforms opaque model predictions into clinically 
actionable insights via SHAP interpretability. By resolving cross-
laboratory data integration barriers in predicting lipid emulsion 
stability, we deliver a high-accuracy, explainable decision tool for 
clinical practice. The synergistic effect of key role of Phosphate, 
Dextrose, Sodium and Lipid composition (MCT/LCT) provide 
evidence-based reference for individualized PN formulation review. 
This study delivers both a high-accuracy predictive model for lipid 
emulsion stability in PN and a pioneering research strategy for 
assessing stability in complex pharmaceutical formulations.
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