& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Sudeep Tanwar,
Nirma University, India

REVIEWED BY
Zhongyuan Zhao,

Binghamton University, United States
Vladimir Kondratenko,

All-Russian Dairy Research Institute, Russia

*CORRESPONDENCE

Zhang Lei
zergzl@163.com

Qin Wang-jun
qwj2004wang@163.com

RECEIVED 18 July 2025

REVISED 11 October 2025

ACCEPTED 04 November 2025
PUBLISHED 17 November 2025

CITATION

Yong-guang S, Xue-lian W, Yong C, Wang-jun

Q, Peng-mei L and Lei Z (2025) Machine
learning predicts lipid emulsion stability in
parenteral nutrition using multi-laboratory
literature data.

Front. Nutr. 12:1668464.

doi: 10.3389/fnut.2025.1668464

COPYRIGHT

© 2025 Yong-guang, Xue-lian, Yong,
Wang-jun, Peng-mei and Lei. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Nutrition

Frontiers in Nutrition

TYPE Original Research
PUBLISHED 17 November 2025
pol 10.3389/fnut.2025.1668464

Machine learning predicts lipid
emulsion stability in parenteral
nutrition using multi-laboratory
literature data

Shang Yong-guang', Wang Xue-lian?, Cheng Yong?,
Qin Wang-jun'*, Li Peng-mei! and Zhang Lei'*

!Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China, 2School of Information,
Beijing University of Chemical Technology, Beijing, China

Objective: Physical instability of lipid in parenteral nutrition (PN) poses significant
clinical safety risks. As lipid stability is influenced by multiple complex factors and
remains incompletely characterized, this study aimed to quantify the relative
importance of stability determinants and to develop a machine learning (ML)
model for predicting stability in individualized PN prescriptions.

Methods: A retrospective meta-analysis integrated experimental data from
multi-laboratory studies. The ML framework employed transfer learning for
cross-laboratory data harmonization and Synthetic Minority Over-sampling
Technique (SMOTE) for class imbalance mitigation. Model performance was
evaluated using the area under the receiver operating characteristic curve (AUC-
ROC) and accuracy.

Results: The datasets comprised 17 stability-related features (electrolytes,
macronutrients, and storage conditions) extracted from 1,518 samples
representing 872 unique PN formulations across 19 studies (2000 and 2024).
The XGBoost model achieved exceptional predictive performance (accuracy:
98.2%, AUC 0.968). SHAP-based feature importance analysis identified the
concentrations of Amino and phosphate, storage time and lipid composition as
key stability determinants.

Conclusion: This study establishes the first interpretable ML framework
for predicting lipid emulsions stability in PN, resolving cross-laboratory
data heterogeneity. We have provided a high-accuracy prediction tool for
assessing lipid emulsion stability in PN, while the methodology demonstrates
generalizability for stability studies of complex drugs and nutrients formulations.

KEYWORDS

lipid emulsion stability, parenteral nutrition, XGBoost, SHAP interpretation, machine
learning

Introduction

Parenteral nutrition (PN) is liquid nutrition that is delivered directly to the bloodstream
of patients unable to absorb adequate nutrients through the digestive system. PN
simultaneously supplies macronutrients (amino acids, dextrose, and lipids), which constitute
the caloric and protein supply, and micronutrients (vitamins and trace elements), which
complement the diet. As one of the most complex preparations in hospital, PN carries inherent
risks of physicochemical interactions among its components. These interactions can
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compromise emulsion stability, potentially leading to patient
safety hazards.

Commercially intravenous lipid emulsion is thermodynamically
unstable heterogeneous dispersions two-phase system. Oil droplets,
primarily composed of triglycerides, are stabilized by a surfactant layer
of phospholipids derived from egg lecithin. The phosphatidic acid
outside the lipid droplets is completely ionized to form as zeta potential
between —40 and —50 mV; which realizes mutual electrostatic repulsion,
thereby preventing aggregation and maintaining a uniform distribution
of lipid droplets. The addition of cations (e.g., Na*, K*, Ca’*, Mg*) can
neutralize this negative surface charge, reducing the zeta potential, lead
to droplet aggregation and subsequent phase separation within PN. The
critical aggregation number (CAN) is a parameter that tries to predict
the amount of cationic charge that would disturb lipid emulsion. pH
significantly influences zeta potential and stability. A pH range of 6.0-9.0
(1) is optimal for lipid emulsion stability. Consequently, low-pH
additives like dextrose solutions can compromise stability (2), while
amino acid solutions can exert a stabilizing effect by modulating the PN
pH (2). Lipid emulsions become unstable at pH values below 5.0 (2). The
American Society for Parenteral and Enteral Nutrition (ASPEN) stated
in 2014 that PN containing >4% amino acids, >10% dextrose, and >2%
lipid emulsion remained stable at room temperature for up to 30 h or
refrigerated (5 °C) for up to 9 days followed by 24 h at room temperature
(2), However, the 2024 ASPEN update provides only select concentration
examples without comprehensive stability criteria (3). Similarly, other
guidelines list validated PN formulations (4), but generally lack specific
recommendations on macronutrient and electrolyte concentration
limits essential for predicting physicochemical stability.

In summary, lipid emulsion stability in PN is influenced by a
multitude of interacting factors, including electrolyte concentrations,
macronutrient composition, pH, storage temperature, and duration.
Furthermore, the inherent variability of individualized PN
prescriptions means that existing stability studies are often limited to
specific formulations. Consequently, a generalizable method for
evaluating and predicting lipid emulsion stability across diverse
clinical PN remains lacking in practice. To address this gap, the
present study conducted a systematic overview of current research on
lipid emulsion stability in PN. We extracted key features from these
studies, detailing the analytical methodologies employed, the stability
variables measured, and the principal factors investigated. Ultimately,
this work aims to establish a clinically applicable prediction model for
lipid emulsion stability in PN utilizing Machine Learning (ML).

Materials and methods
Study design

An ML-powered meta-analysis framework incorporating transfer
learning techniques was developed to integrate cross-laboratory
evidence. Studies investigating lipid emulsion stability in PN were

Abbreviations: PN, Parenteral nutrition; MDD, Mean droplet diameter; PFAT5, The
percentage of weighted volume of fat residing in droplet of diameter >5 microns;
CAN, Critical aggregation number; ML, Machine learning; SHAP, Shapley additive
explanations; AUC-ROC, Area under the receiver operating characteristic curve;

SMOTE, Synthetic Minority Over-sampling Technique.
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systematically identified, screened, and subjected to original data. This
process established a multidimensional ML database. Domain
adaptation techniques were applied to address heterogeneous data
distributions across laboratories. Subsequently, ML algorithms were
employed to construct a lipid emulsion stability prediction model,
with performance validated through cross-validation.

Search strategy

A systematic literature search was conducted across PubMed,
Embase, and Web of Science to identify relevant studies on PN stability.
The search was restricted to English-language publications from 2000
to 2024. The following search syntax was employed: (“parenteral
nutrition” OR “total parenteral nutrition” OR “total nutrition admixture”
OR ‘all in one nutrition” OR “lipid emulsion”) AND (“stability/
instability” OR “compatibility/incompatibility” OR “safety/unsafety”).

Inclusion and exclusion criteria
Studies were included if they met the following criteria:

[1] Experimental investigations of PN stability relevant to
clinical practice.

[2] Lipid emulsion stability had been analyzed at least one of Lipid
droplet evaluation criteria following USP Chapter 729
<Globule Size Distribution in Lipid Injections>

o PFAT5 (The percentage of weighted volume of fat
residing in droplet of diameter >5 microns).
o MDD (Mean droplet diameter).
[3] Utilization of validated analytical methods.

o Dynamic Light Scattering (DLS)/Photon Correlation
Spectroscopy (PCS) or Laser Diffraction (LD) for MDD.

« Light Extinction/Single Particle Optical Sensing (LE/SPOS)
for PFATS.

Studies were excluded if they:

[1] Assessed only non-physical stability aspects (e.g., chemical
degradation, precipitation).

[2] Evaluated
compounding agents.

formulations  containing  non-standard

=

Analyzed lipid emulsion stability outside PN.
Focused solely on drug-PN compatibility.

—Er—

5] Were conference abstracts, reviews, book chapters, or lacked
accessible full text/raw data.

Flow diagram shown in Figure 1, summarizes the search strategy
following PRISMA (5).
Feature extraction

The features were extracted from the experimental studies

reported in the literature including Environmental variables, PN
composition characteristics and stability assessment results. Two
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Studies identified through database
searching (n=774)

LDuplicates removed (n=269)

Studies screened (n=505)

e

y

.

Studies excluded (n=230)

.

Full-text articles assessed for eligibility
(n=275)

y

Studies included in Machine learning

(n=19)

FIGURE 1
Studies inclusions and exclusions flowchart

ﬁ{eview excluded (n=19)
Book chapters excluded (n=13)
Non-experimental raw data (n=16)
Chemical stability not of lipid (n=97)
Drugs compatibility (n=29)
The examination method was not
appropriate (n=57)

Q\Jon MDD or PFAT5 (n=25)

J

researchers independently extracted the features data of experimental
studies based on the following features definitions and formed the

original dataset after cross-verification.

[1] Environmental variables included:
o Study year: In which year the study was conducted.

o Temperature storage: Preparation and storage temperature.

test: The

stability analysis.

o Temperature temperature  during

o Times storage: The storage time of preparation.

o Times test: The time for conducting the stability analysis.

[2] PN composition characteristics:
o Lipid composition:

in different proportions.

« Addition of micronutrients (within or without) included:

Fat-soluble vitamins,
elements, Heparin.

« Concentration of electrolyte (mmol/L) included: Potassium;

Sodium; Calcium; Magnesium; Phosphate; Chloride.

o CAN: The critical aggregation number is a predictive
parameter for cationic charge induced destabilization
(CAN =a + 64b + 729c). a, b and c are the sum of the
concentrations (mmol/l) of mono-, di- and trivalent cations.

o Concentrations of Macronutrient (g/100 mL) included:

Amino, Dextrose, Lipid.

[3] Results of lipid emulsion stability assessment: The methods that
were used for determination the stability of lipid emulsion was
following the United States Pharmacopeia (USP), lipid globule

size distribution be controlled within specified limits:

o MDD: Instability threshold is MDD > 0.5 pm (analytical

methods: DLS/PCS or LD).

Frontiers in

Long-Chain Triglycerides-LCTs,
Medium Chain Triglycerides-MCTs or MCT/LCT blends

Water-soluble Vitamins, Trace

03

o PFAT5: Instability threshold is PFAT5 > 0.05%
PFAT5 < 0.05% (analytical methods: LE/SPOS).

Data preprocessing

(1]

Missing value handling: An automated protocol classified
missingness as: Low (<5%), Moderate (5%-15%), High (15%—
30%), and Extreme (>30%). Missing data mechanisms were
evaluated using Littles Missing Completely at Random
(MCAR) test (a=0.05). For variables with 5%-20%
missingness, Multiple Imputation by Chained Equations
(MICE) was implemented (10 iterations generating 5
imputed datasets).

Outlier detection & processing: A tripartite detection
framework was employed: Modified Z-score (threshold:
|Z| > 3.5);
estimators = 200, max_samples = 256, random_tate = 42);

Isolation Forest (contamination =0.05, n_
Local Outlier Factor (n_neighbors = 20, contamination = 0.05).
A specific constraints rule based on the formulation of PN
solution was established, and the violation of the rule was
considered as abnormal: CAN >150, Amino acids (>1%),
Glucose (>2%), Lipid emulsion (>1%), MDD > 50 nm,
PFAT5 < 0.001% or >4%.

Dataset partitioning and leakage prevention: A strict
random split was applied to partition the dataset: Training
set n=1,062 (70%), and Test set n =456 (30%). This
approach ensured clear separation, effectively preventing
leakage of information. Parameters for all preprocessing
steps (including SMOTE resampling, missing value
imputation and feature scaling) were all determined before
random split.
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[4] Multicollinearity handing: We calculated the Variance Inflation
Factor (VIF) for all variables. We employed a stepwise
approach: first removing variables with VIF > 10, for any
remaining variable pairs with a correlation coefficient >0.8,
retaining the variable deemed to have greater physical
significance based on domain knowledge.

Statistical analysis

Data were expressed as frequencies (percentages) for categorical
variables and as Mean + SD or median (IQR) based on the test of
normality for continuous variables. The Kolmogorov-Smirnov test
was applied to test normality. Differences between stability and
instability groups were analyzed using Student’s ¢-test for continuous
variables and Fisher’s exact test for categorical variables. A correlation
heatmap was used to test potential multicollinearity between features.
Statistical analyses and modeling were conducted using IBM SPSS
Statistics (v25.0) and scikit-learn (v1.1) within Python 3.7 (Python
Software Foundation; accessed January 1, 2025).

Model development

[1] Algorithmic diversity: Tree-based models (random forest,
decision tree, XGBoost, gradient boosting), Non-tree models
(logistic regression, support vector machine, K-Nearest
neighbors, Naive Bayes) and Ensemble/Neural (Multilayer
Perceptron and AdaBoost).

[2] Class imbalance mitigation: To address significant class
imbalance (13.1% unstable emulsions), systematic evaluation
of hybrid resampling techniques was implemented including:
SMOTE, ADASYN, random under-sampling. Domain-
informed optimization of sampling ratios enhanced minority-
class (unstable emulsions) recognition performance across
validated configurations.

[3] Hyperparameter optimization: Model hyperparameters were
systematically optimized using Bayesian methods to ensure
robustness and stability.

[4] Evaluation protocol: Model performance was comprehensively
assessed using five core metrics: accuracy, precision, recall,
F1-score, AUC-ROC. To ensure clinical reliability and enable
transparent assessment of misclassification risks, particular
emphasis was placed on a detailed confusion matrix analysis
and class-specific performance metrics—including precision,
recall, and Fl-score—for both stable and unstable lipid
emulsion categories, thereby enabling multidimensional
validation of the model’s predictive capability.

[5] Ensemble strategy: Final model outputs were weighted soft-
voting aggregation of probabilistic predictions to enhance
cross-laboratory generalization capability.

Model interpretation
We employed SHAP values to quantify feature importance and

interpret model predictions. Grounded in cooperative game theory’s
Shapley values, SHAP provides consistent, theoretically-grounded
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attribution of feature contributions to individual predictions.
Predictions. Model-specific implementations were utilized: Trees
SHAP for tree models and Kernels HAP for non-tree models.
Additivity was verified (tolerance <0.01), with ensemble SHAP
values computed as weighted averages of base models. Global
importance was ranked by mean absolute SHAP values, identifying
top features.

Results
Data characteristics

The final analytical dataset comprised 1,518 PN samples
representing 872 unique clinical prescriptions, extracted from 19
studies published between 2000 and 2024. These studies involve six
different types of emulsions (three kinds of LCTs, two kinds of MCT
/LCTs and one kind of SMOF lipid), storage temperature from 4 to
37 °C and storage time from 0 h to 14 days, the concentration of
monovalent cation (Na*/K*) from 0 to 230 mmol/L, divalent cations
(Ca**/Mg**) from 0 to 92.5mmol/L. The concentration of
macronutrient (mean + SD): Amino (3.4 £ 2.0 g/100 mL), Dextrose
(11.2 + 6.2 g/100 mL), Lipid (2.8 + 1.0 g/100 mL), Complete study
characteristics are detailed in Table 1.

Correlation between features and lipid
emulsion stability in PN

Correlational analyses between extracted features and emulsion

stability ~—are presented in the correlation heatmap
(Supplementary Figure S1). MDD analysis performed on 1,058 bags
(69.7%), with instability (MDD > 0.5 pm) detected in 32 samples
(3.0% 32/1058). PFAT5 were determined 971 samples (64.0%),
instability (PFAT5 > 0.05%) observed in 173 samples (17.8%
173/971). Overall instability defined as violation of either USP
threshold (MDD > 0.5 pm or PFAT5 > 0.05%), occurring in 199
samples (13.1% 199/1518). Comparative analysis between stable
(n =1,319) and unstable (n = 199) groups demonstrated significant
differences (p < 0.05) in most variables except the concentration of
Calcium, Magnesium, Lipid, Lipid composition and Trace elements.

Complete statistical comparisons are detailed in Table 2.

Machine learning prediction of PN lipid
stability

We compared the performance of ML models to predict PN lipid
stability using ROC analysis. The AUC-ROC of the XGBoost model
had the highest predictive value (AUC-ROC: 0.968, Accuracy: 0.980),
followed by a random forest model (AUC-ROC: 0.962) and Gradient
Boosting (AUC-ROC: 0.961). Detailed performance measures for all
models are provided in Supplementary Table S1. We demonstrated
the ROC curve comparison of 10 prediction models (Figure 2).
Imbalance treatment optimization (Supplementary Table S52)
confirmed SMOTE significantly enhanced XGBoost performance
versus alternative methods. Finally, the XGBoost model achieved a
recall of 0.98, a Precision of 0.98 and F1 score of 0.98.
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TABLE 1 Characteristics of studies included.
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Reference Year Type of emulsion Storage Analytical Droplet Monovalent  Divalent Dextrose Main results
temperature method size cations cations g/100 dL
and time measured mmol/L mmol/L
Driscoll et al. 2000 | 100% Soybean oil 4 °C/4 days DLS MDD 70-140 15-30 6 16 2.3 50% Soybean 0il/50% MCT
(14) 50% Soybean 0il/50% MCT RT/30h SPOS PFATS controlled within USP limits
Driscoll et al. 2001 | 50% Soybean 0il/50% Safflower oil RT/30 h LE PFAT5 44.7 3.01 2.3 2.3 5 50% Soybean 0il/50%
(15) 100% Soybean oil SPOS Safflower oil 24 h and 100%
50% Soybean 0il/50% MCT Soybean oil 30 h PFAT5 > 0.05
80% Olive 0il/20% Soybean oil
Driscoll et al. 2003 | 50% Soybean 0il/50% Safflower oil RT/48 h LE PFAT5 33-90 8.4-17.5 2.0-3.0 18.0-24.0 2.0-3.0 50% Soybean 0il/50%
(16) 50%Soybean 0il/50% MCT SPOS Safflower oil 6 h PFAT5 > 0.05,
50% MCT/ 40% Soybean 0il/10% 24 h exceeds 0.4%
Fish oil
Driscoll et al. 2006 | 50% Soybean 0il/50% MCT 6 °C/4 days LE PFAT5 90-230 10-20 3.5-7.0 5.0-15.0 2.0-4.0 50% Soybean 0il/50% MCT
9) 25°C/30h SPOS controlled within USP limits
Driscoll et al. 2006 50% Soybean 0il/50% MCT RT/30h DLS MDD 102.4-189.8 12.8-23.8 7.1-7.7 19.6-21.3 2.5-2.7 Controlled within USP limits
(10) SPOS PFAT5
Gonyon et al. 2008 80% Olive 0il/20% Soybean oil 5°C/7 days LD MDD 58 4.2 4.4 22.2 22 MDD < 0.5, PFATS5 < 0.01,
(17) RT/4 days SPOS PFATS and decreased with time
Skouroliakou 2008 | 100% Soybean oil 4-25 °C/7 days LD MDD 200 24.1 1.95 10.6 22 MDD controlled within USP
etal. (18) RT/48 h limits
Chaieb et al. 2008  80% Olive oil/ 20% Soybean oil 37°C/24h DLS MDD 27-45 17.6-33.6 0.5-3.1 4.3-12.6 2 MDD controlled within USP
(19) 100% Soybean oil limits
Driscoll et al. 2010 | 50% Soybean 0il/50% MCT 25°C/30 h LE MDD 29 16.5 1-4 5-10 2.0-4.0 Concentration of amino acid
(20) SPOS PFATS had a great influence on the
stability
Skouroliakou 2012 | 30% Soybean 0il/30% MCT/25% 4-25°C/24-48h DLS MDD 311 13.5 1.1 8.9 1.5 MDD controlled within USP
etal. (21) Olive 0il/15% Fish oil limits
Lobo et al. (6) 2012 50% Soybean 0il/50% MCT 4-37 °C/7 days DLS MDD 207 12.8 3 8 3 Trace elements have less effect
LO PFAT5 than vitamins, and less effect
than both add
Athanasiou 2013 | 30% Soybean 0il/30% MCT/25% 4-25°C/24h DLS MDD 26.5-30.5 2.4-14 2.3-4.0 10.6-12.6 1.6-2.0 MDD controlled within USP
etal. (22) Olive 0il/15% Fish oil limits
80% Olive oil/ 20% Soybean oil
Cloet et al. (23) 2017 30% Soybean oil/ 30% MCT/25% 2-8 °C/8 days DLS MDD 195 23 2.0 15.4 0.8 MDD controlled within USP
Olive 0il/15% Fish oil RT/24h limits

(Continued)
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TABLE 1 (Continued)

Reference Year

Type of emulsion

Storage
temperature
and time

Analytical
method

Droplet
size
measured

Monovalent
cations
mmol/L

Divalent
cations
mmol/L

Dextrose
g/100 dL

Main results

etal. (29)

Fish oil

Sayed et al. 2020 | 30% Soybean 0il/30% MCT/25% 25°C/24h DLS MDD 23-50 5.9-12.5 1-5.8 4.3-9.1 0.5-2.0 MDD controlled within USP
(24) Olive 0il/15% Fish oil limits
Zhao et al. (25) 2021 50% Soybean 0il/50% MCT RT/72h SPOS MDD 300.0 10.0 3.0 7.0 2.0 PFATS5 < 0.05, 24 h One of the
PFAT5 manufacturers MDD > 0.5um
Gostynska 2021 | 50% MCT/40% Soybean 0il/10% 2-8 °C/7 days DLS MDD 7.7-213.1 3.0-29.1 1.7-2.1 12.3-15 3.4-4.2 PN admixtures to remain
etal. (26) Fish oil stable for seven days within
80% Olive oil/ 20% Soybean oil the specified limits
100% Soybean oil
30% Soybean oil/ 30% MCT/ 25%
Olive oil/ 15% Fish oil
Gaoetal. (27) 2021 | 50% Soybean 0il/50% MCT 25°C/24h SPOS PFAT5 0-139 0-3.4 3.35-4.5 5-10 2.4 The addition of divalent ions
upper 2.7 mmoL/L was
unstable
Otero-Millan 2024 | 50% Soybean 0il/50% MCT 4 °C-RT/14 days DLS MDD 100-180 30-92.5 2.5 7.5 0.12-2 Lipid emulsion concentration
etal. (28) less than 0.25%, or amino acid
concentration less than 2.5%
RT 1-3 days MDD greater
than 0.5
Otero-Milldn 2024 50% MCT/40% Soybean 0il/10% 4 °C-RT/7 days DLS MDD 30-130 11.2-35 2.0-3.3 7.1-13.5 0.7-4.0 MDD controlled within USP

limits

LD, laser diffraction; PCS, photon correlation spectroscopy; DLS, dynamic light scattering; LO, light obscuration; LE/SPOS, light extinction single-particle optical size; MCT, medium-chain triglyceride; RT, room temperature.
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TABLE 2 The characteristics of variables in stability and instability group.

Continuous variables

Stability (n = 1,319)

10.3389/fnut.2025.1668464

Instability (n = 199)

Mean + SD

Temperature (°C) 159+11.8 19.0+11.9 0.002
Times (h) 82.1 £ 80.0 62.3+76.3 0.002
Potassium (mmol/L) 37.2+334 21.1+£24.0 0.000
Sodium (mmol/L) 68.5+61.2 102.7 £ 82.4 0.000
Calcium (mmol/L) 123 +12.0 129+11.0 0.848
Magnesium (mmol/L) 54+54 49+3.6 0.242
Phosphate (mmol/L) 13.8 +12.3 8.8+8.6 0.000
Chloride (mmol/L) 50.6 + 74.7 101.1 £91.5 0.000
Amino (g/dl) 3.6+21 27+1.2 0.000
Dextrose (g/dl) 115+6.2 8.8+4.9 0.000
Lipid (g/dl) 28+1.0 27+1.0 0.245
CAN 1237.8 £ 895.6 1261.1 £ 704.5 0.018
Categorical variables n (%) n (%) p-value
Lipid composition LCT 20% 269 (20.4) 35(17.6) 0.117
MCT/LCT 20% 923 (70.0) 164 (82.4)
SMOFlipid 20% 127 (9.6) 0(0.0)
Fat-soluble vitamin Without 724 (54.9) 81 (40.7) 0.000
Within 595 (45.1) 118 (59.3)
Water-soluble vitamins Without 676 (51.3) 81 (40.7) 0.007
Within 643 (48.7) 118 (59.3)
Trace elements Without 719 (54.5) 99 (49.7) 0.238
Within 600 (45.5) 100 (50.3)
Heparin Without 1,144 (86.7) 153 (76.9) 0.000
Within 175 (13.3) 46 (23.1)

Detailed mechanism of XGBoost: Algorithm Principle, An
ensemble learning method based on gradient-boosted decision trees,
which builds a strong classifier by sequentially training multiple weak
learners; Key Parameters, max_depth = 6 (controls tree depth to balance
bias and variance), learning_rate = 0.1, n_estimators = 100 (number of
trees); Objective Function, Obj = Z 1 (y;, §i) + = Q(f.), where “T” is the
loss function and “Q” is the regularization term; Feature Interaction,
Capable of automatically learning non-linear interaction relationships
between features without manual feature engineering.

The test set confusion matrix shows: True Positives (correctly
identified unstable cases) =55, False Negatives (unstable cases
misclassified as stable) = 4. True Negatives (correctly identified stable
cases) = 392, False Positives (stable cases misclassified as unstable) = 5.
This results in a Sensitivity/Recall of 93.2% (55/59) and a Specificity of
98.7% (392/397). We demonstrated the confusion matrix of
SMOTE+XGBoost model (Supplementary Figure 52).

Feature importance analysis

To provide recommendations for practice with a straightforward
understanding of key features related to predicting lipid stability,

Frontiers in Nutrition

SHAP analysis of the optimal XGBoost model identified key
determinants of lipid emulsion stability with or without
Multicollinearity handing (Figure 3). Amino, Phosphate, Dextrose,
Time storage and Lipid composition demonstrated predominant
predictive influence.

Discussion
Core findings and model innovation

This study established an XGBoost-driven multimodal data
fusion framework to achieve high-accuracy prediction of lipid
emulsion physical stability in PN. The model demonstrated
exceptional performance on the test set, significantly
outperforming conventional logistic regression and random forest.
Key innovations include intelligent multisource data integration
through transfer learning and domain adaptation, resolving
heterogeneity from environmental conditions and prescription
differences by enabling equivalent data transformation across 19
studies. Optimized Feature Engineering, 17 stability relevant

features were extracted.
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FIGURE 2
The ROC curve comparison of ten prediction models.

To address the potential impact of multicollinearity among input
variables (as shown in Supplementary Figure S1), we systematically
evaluated and managed feature correlations during data preprocessing.
Variables were carefully reviewed, and those with lower
physicochemical relevance (e.g., CAN) were excluded. A comparative
sensitivity analysis of SHAP values was conducted before and after this
multicollinearity handling. Although the ranking of specific features
saw minor shifts, the overall importance trend remained largely
consistent. This process refined the contribution weight of individual
variables to the model, thereby enhancing the robustness and
interpretability of our final model.

Although multiple continuous variables showed statistically
significant differences between the stable and unstable PN groups
(Table 2), their inherent variability and intercorrelations make it
difficult to determine the stability of lipid in individualized TNA. This
further highlights the advantage of using a ML approach, which can
integrate multidimensional interactions among features—such as
amino acids, dextrose, and electrolytes—to produce a robust
predictive model. Importantly, the SHAP analysis reaffirmed the
model’s ability to synthesize these interrelated influences, with key
factors (e.g., amino acids, dextrose, and storage time) consistently
emerging as major contributors, thereby validating the models
interpretability and clinical relevance.

The performance gain achieved through the SMOTE-based
resampling strategy can be attributed to the intrinsic characteristics of
our dataset. SMOTE-generated synthetic samples effectively populate
sparse regions within the feature space. Consequently, SMOTE’s
interpolation mechanism effectively populated these sparse regions
with plausible synthetic samples, which significantly enhanced the
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model’s ability to identify the minority class. This approach elevated
the AUC from 0.95 to 0.97 and elevated the Accuracy from 0.97 to
0.98, thereby ensuring the predictive safety of the model. We add a
sensitivity analysis regarding key SMOTE parameters in
Supplementary Table S3.

Analysis of key features and mechanisms

The stability of lipid in TNA is most significantly influenced
by the concentration of amino acids, which play a crucial role in
regulating the pH of TNA. This study first identifies phosphate
concentration as a novel predictor of PN lipid stability through
ML modeling—a previously unreported association whose
mechanism warrants further investigation, though we hypothesize
involvement of phosphate groups in the emulsion’s hydrophilic
layer. Following features such as concentration of others electrolyte
and dextrose, type of lipid, CAN, or storage time that have been
largely evaluated and confirmed as relevant predictors of lipid
stability in PN. CAN was excluded due to multicollinearity
handling. This was also discovered in all models SHAP analysis
(Supplementary Figure S3). Cations can disrupt the electrostatic
repulsion between lipid droplets, thereby compromising the
stability of lipid emulsions, though modulated by compositional
factors (6). The 100-fold higher aqueous solubility of medium-
chain caprylic acid (C;) versus palmitic acid (Cy) (7), reduces
oil-water interfacial tension, explaining the low stability of LCT
emulsions (8, 9) observed in our model. While temperature and
storage duration influence stability, their limited predictive role
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may relate to anomalous PFAT5 reduction over time—potentially
attributable to compounding-induced air bubbles (10). Our
stability assessment aligned with USP and Chinese Pharmacopoeia
standards using MDD/PFATS5, as enlarged droplets (>5 pm) pose
embolism risks: murine studies demonstrate PFAT5 > 0.05%
causes microvascular damage and reticuloendothelial injury (11),
consistent with clinical reports of pulmonary fat deposition in
neonates (12); critically, PFAT5 > 0.4% induces phase separation
visible as surface oil droplets (1), representing immediate life-
threatening risks.

Value in clinical practice

As shown above, there has a critical impact of PN stability on
patient safety, particularly the complex physicochemical behavior
of lipid emulsions influenced by multifactorial interactions. In
clinical practice, there are complex decisions in medical order,
prescription review, PN preparation and PN safety monitoring. This
ML-driven solution empowers pharmacists and physicians to
rapidly evaluate PN compatibility by analyzing the influencing
factors of specific prescriptions. ML has been increasingly used in
the field of nutrition science, considering the diversity and
complexity of individuals, ML can be used to predict precision
nutrition support through multivariate and high-dimensional data
analysis. In 2022-2027, the National Institutes of Health of the
United States will provide $170 million to fund the development of
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algorithms for precision nutrition support (13). Our work provides
a distinct contribution. Rather than merely applying XGBoost
model, this study establishes a comprehensive, ML-enabled meta-
analysis framework tailored specifically to PN stability. Our
approach integrates a uniquely standardized clinical dataset,
domain-specific feature engineering that combines environmental,
electrolyte, and macronutrient variables, and an interpretable
predictive tool with direct clinical utility. By adapting ML techniques
to this specific challenge, we offer not only a practical system for
stability prediction but also a reusable methodological framework
for studying complex systems stability in pharmaceutical and
nutrition sciences.

Limitations and strengths

As a retrospective investigation, this study necessitates further
validation through prospective multi-laboratory trials, particularly to
verify phosphate’s mechanistic role in emulsion destabilization. In
addition, lipid emulsion stability parameters were insufficient: pH,
Zeta potential, peroxide parameter, and free fatty acid were lacking,
but we followed scientific physical stability verification criteria.
Subsequently, extended multi-task learning was used to predict
calcium and phosphorus precipitation, vitamin degradation and other
stability risks.

ML approach overcomes the clinical impracticality of
experimental verification for individualized PN formulations by
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modeling multifactorial interactions across heterogeneous datasets.
Future research will expand training data to enhance generalizability
and integrate physical-chemical stability predictions, ultimately
constructing a comprehensive risk assessment paradigm for PN
quality assurance.

Conclusion

This study establishes an XGBoost-driven multimodal fusion
framework that transforms opaque model predictions into clinically
actionable insights via SHAP interpretability. By resolving cross-
laboratory data integration barriers in predicting lipid emulsion
stability, we deliver a high-accuracy, explainable decision tool for
clinical practice. The synergistic effect of key role of Phosphate,
Dextrose, Sodium and Lipid composition (MCT/LCT) provide
evidence-based reference for individualized PN formulation review.
This study delivers both a high-accuracy predictive model for lipid
emulsion stability in PN and a pioneering research strategy for
assessing stability in complex pharmaceutical formulations.
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