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Background: Studies using voxel-based morphometry (VBM) have shown
considerable variability in gray matter (GM) changes in anorexia nervosa (AN).
However, it remains unclear whether these changes converge on common
brain networks underlying the disorder.

Methods: A systematic review was conducted using the PubMed, Embase, and
Web of Science databases to identify studies on whole-brain GM alterations
in AN published up to October 10, 2024. The Human Connectome Project
(HCP) dataset (n = 1,093) and functional connectivity network mapping (FCNM)
approach to identify common brain networks associated with alterations in AN.
Results: A total of 26 studies involving 667 individuals with AN and 659 healthy
controls (HC) were included in this study. Combining the HCP dataset and the
FCNM technique, we demonstrated that the disrupted neural networks primarily
involved the auditory network, ventral default mode network (DMN), dorsal
DMN, and sensorimotor network (SMN). Subgroup analyses further revealed
differences in the affected neural networks across specific subgroups, including
females-only, adolescents, and adults.

Conclusion: The heterogeneous GM alterations in AN can be attributed to
common abnormalities within the auditory network, DMN, and SMN. These
disruptions are linked to distorted body image, impaired emotional regulation,
and disrupted sensory-motor integration in AN. The FCNM technique provides
a unified network-level understanding of the neurobiological mechanisms
underlying AN, offering insights for targeted therapeutic strategies.

KEYWORDS

anorexia nervosa, voxel-based morphometry, gray matter, network localization,
functional connectivity network mapping

Introduction

Anorexia nervosa (AN) is a severe mental illness characterized by aberrant feeding
behaviors, an intense desire for thinness, an inability to maintain a minimally normal weight,
and obsessive concern with body image (1, 2). Recent global epidemiological reviews indicate
that it primarily affects females, with a lifetime prevalence rate of up to 4% among women and
approximately 0.3% among men (3). Excessive weight loss in AN can lead to widespread
complications, including dysfunctions of the central nervous, cardiovascular, and
gastrointestinal systems (4). The etiology of AN is complex, involving a combination of
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genetic, neurobiological, social-environmental, and psychological
factors (1, 5). Clinically, the disorder entails severe medical
complications, such as cardiovascular and endocrine dysfunction, and
frequent psychiatric comorbidities including depression and anxiety,
all of which contribute to its high mortality risk (6-8). This substantial
public health burden highlights the need to clarify its underlying
neural mechanisms. In the last 20 years, progress in magnetic
resonance imaging (MRI) has opened up new opportunities for
conducting thorough research on eating disorders (9). An increasing
number of neuroimaging studies suggests that AN is associated with
significant brain morphological and functional abnormalities (10-13).
Despite these advancements, the pathophysiology of AN remains
incompletely understood (10, 14, 15).

Voxel-based morphometry, a widely utilized automated technique
for the analysis of gray and white matter alterations (16), is considered
a key method for investigating the pathophysiological mechanisms of
AN. Numerous neuroimaging studies using this technique have
identified significant associations between brain GM abnormalities
and AN (12, 13, 17, 18). The brain regions with reduced GM in
individuals with AN primarily involve the anterior cingulate cortex
(ACC), median cingulate cortex, posterior cingulate cortex, inferior
frontal gyrus, frontal operculum, superior temporal gyrus, middle
temporal gyrus, fusiform gyrus, inferior parietal cortex, occipital
cortex, precentral gyrus, precuneus, cerebellum, striatum, and
thalamus (11, 12, 18-24). While one recent study reported increased
GM in specific brain regions, including the left orbitofrontal gyrus
rectus, bilateral fusiform gyrus, bilateral hippocampus, right insula,
and bilateral parahippocampal gyrus (25). Conversely, another study
observed no significant reductions in GM (26). However, these
inconsistent findings limit their utility for elucidating the
neurobiological mechanisms of AN. Recent research has highlighted
a strong correlation between the onset of AN and disruptions in brain
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networks, including basal ganglia network, sensorimotor network
(SMN), Limbic network, visuospatial network, and default mode
network (DMN) (21, 27-30). While coordinate-based meta-analysis
(CBMA) has traditionally been used to consolidate diverse findings
into common regions (31), accumulating evidence indicates that
neuropsychiatric symptoms and diseases may be more precisely
mapped to distinct brain networks than to isolated regional
abnormalities (32-35). The significance of this network-based
approach lies in the fundamental principle that focal structural lesions,
such as GM alterations, are not functionally isolated; instead, they
compromise the integrity and function of the entire large-scale
network in which they are embedded (36, 37). Functional connectivity
network mapping (FCNM) is a validated approach that integrates
regions of interest with large-scale human connectome data to reveal
the intricate relationships between different brain areas, facilitating a
deeper understanding of how these connections influence cognitive
processes and behaviors (38, 39). This technique can map
heterogeneous neuroimaging findings to common neuroanatomical
networks and identify disease-specific and symptom-specific brain
networks (40). The FCNM method has effectively mapped various
neurological and psychiatric symptoms to distinct brain networks (39,
41-46). Despite significant advancements in its application to other
diseases, the FCNM approach has yet to be used to explore how focal
GM alterations in AN impact brain function from a unified network-
level perspective.

To address this question, we utilized the FCNM approach to
identify brain networks implicated in the structural abnormalities of
AN. A schematic representation of the study design and analysis
We hypothesized that the
heterogeneous alterations in GM across different brain regions in

pipeline is illustrated in Figure 1.

individuals with AN could be mapped onto common brain networks.
The results hold the potential to reconcile the heterogeneous
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FIGURE 1

Study design and analysis pipeline. Our primary method entailed integrating published literature to determine the brain regions demonstrating
alterations in GM between individuals with AN and HC. By integrating these impacted brain locations with large-scale human connectome data from
HCP, we subsequently employed the FCNM approach to identify abnormal brain networks associated with AN. Specifically, spheres centered at each
coordinate of a contrast were initially constructed and amalgamated to produce a contrast-specific integrated seed mask. Second, in accordance with
the HCP dataset, we calculated a contrast seed-to-whole brain resting-state FC map for each participant. Third, the subject-level resting-state FC
maps were subjected to a voxelwise one-sample t-test to determine brain regions functionally associated with each contrast seed. Fourth, the
resulting group-level t maps were thresholded and binarized at p < 0.05 corrected for multiple comparisons using a voxel-level false discovery rate
method. Finally, the binarized maps of GM contrasts were overlaid to produce a network probability map, which were thresholded at 50% to yield AN
GM dysfunctional network. AN, anorexia nervosa; HC, health controls; GM, gray matter; HCP, Human Connectome Project; FCNM, functional
connectivity network mapping; FC, functional connectivity; rs-fMRI, resting-state functional magnetic resonance imaging.
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whole-brain GM changes reported in previous VBM studies through
a network perspective.

Methods
Literature search and selection

Following the PRISMA guidelines (47), we conducted a
comprehensive and systematic search of the PubMed, Embase, and
Web of Science databases to identify studies on GM changes in AN,
published up to October 10, 2024. The search included keywords such
as “voxel-based morphometry” OR “VBM” OR “gray matter” OR
“gray matter” AND “anorexia nervosa® OR “eating disorders”
Additionally, a manual search of reference lists from relevant reviews
and meta-analyses was performed to identify any potentially
overlooked studies. The flow diagram in Supplementary Figure S1
details the study selection process.

All studies were included according to the following criteria: (1)
published as an original article in a peer-reviewed English-language
journal; (2) studies explored GM changes in individuals with AN
compared to healthy controls; (3) voxel-wise analyses were conducted
at the whole-brain level; (4) studies reported results in Talairach or
Montreal Neurological Institute (MNI) space. For longitudinal studies,
only baseline data were included in this study.

Exclusion criteria were as follows: (1) lacking a reported
coordinate system; (2) only use of region of interest analysis; (3) all
coordinates reported were located outside the gray matter mask; (4)
absence of relevant comparisons between patients with AN and
healthy controls; (5) studies involving animal experiments; (6) reviews
or meta-analyses. Only the study with the largest sample size and most
comprehensive information was included in the analysis to prevent
data duplication from overlapping patient samples in multiple
publications. The corresponding author of each study was contacted
via email for any necessary additional information. Two investigators,
Y. H. C. and W. S., conducted literature searches, selected relevant
articles, and independently extracted data. Any discrepancies were
discussed with another investigator (P. P. L) until they were resolved.
Furthermore, we systematically evaluated the methodological quality
of the neuroimaging protocols in all studies incorporated in the
current analysis based on a 10-point checklist (48, 49)
(Supplementary Table S1).

Functional MRI data acquisition and
preprocessing

Data utilized in this study were extracted from the Human
Connectome Project (HCP) 1,200 Subjects Release (S1200),
encompassing imaging data of healthy adults aged 22-37 years. A total
of 1,093 participants (594 female; mean age = 28.78 + 3.69 years, SD)
constituted the final study sample. Exclusion criteria utilized during
HCP data collection encompassed MRI contraindications, existing
psychiatric/neurological disorders, recent psychiatric medication
intake, pregnancy, and a prior history of head trauma. Demographics
of this cohort are detailed in Supplementary Table S2. All coordinates
extracted from the previous studies were uniformly converted to the
MNI standard space. If an original study reported coordinates in
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Talairach space, established conversion tools' were used to transform
them into MNI space.

High-resolution imaging data for the HCP dataset were acquired
on a 3 T Siemens Trio MRI scanner, enabling detailed analyses
(specific fMRI parameters are provided in Supplementary Table S3).
Participants were excluded on account of poor scan quality, such as
significant artifacts or incomplete brain coverage.

Subsequently, the resting-state fMRI data were preprocessed using
SPM12% and DPABP. Initial processing involved discarding the first 10
volumes from each participants scan to ensure signal stability and
participant adaptation to the scanner environment. Subsequently, the
remaining volumes underwent slice-timing correction to account for
acquisition time differences between slices. Then, realignment was
conducted to correct motion across time points, with head motion
parameters calculated to determine translation and angular rotation for
each volume. All participants met the predefined motion criteria
(maximum translation < 2 mm, maximum rotation < 2°). We also
computed framewise displacement to quantify inter-volume head
motion. Subsequently, to mitigate the effects of physiological noise and
motion artifacts, the following nuisance covariates were regressed from
each participant’s preprocessed blood oxygenation level dependent time
series: linear drift, the 24 motion parameters derived from the Friston
model, spike volumes (FD > 0.5 mm), and the mean signals from global
tissue, white matter, and cerebrospinal fluid. Global signal regression
was included in the resting-state fMRI preprocessing pipeline, as this
step has been shown to enhance system-specific correlations and
improve functional connectivity estimation. Subsequently, the
preprocessed functional data were bandpass filtered (0.01-0.1 Hz).
Normalization involved first co-registering individual structural images
to their corresponding mean functional image. These co-registered
structural images then underwent segmentation and normalization to
MNI space. Next, every filtered functional volume underwent spatial
normalization to MNI space. The volumes were then resampled to
3-mm isotropic voxels. A Gaussian kernel with a full width at half
maximum of 6 X 6 x 6 mm?® was applied for spatial smoothing of all data.

Functional connectivity network mapping
(FCNM)

By utilizing the FCNM technique, we aimed to determine whether
the diverse GM changes observed in AN are linked to a specific set of
large-scale functional brain networks (35, 37, 40, 50-52). To create a
contrast seed, 4-mm radius spheres were individually centered at each
coordinate of a contrast and then amalgamated. We then performed
seed-based functional connectivity (FC) analysis for each participant
using the preprocessed HCP resting-state data. The calculation of
Pearson correlation coeflicients involved comparing the time series of
the contrast seed with that of all other brain voxels, and subsequently
Fisher-Z transformed to approximate a normal distribution, yielding
individual FC maps. Third, the FC maps of 1,093 subjects were
examined through a voxel-wise one-sample t-test to identify brain
regions associated with each seed. Our analysis concentrated

1 https://www.sdmproject.com
2 https://www fil.ion.ucl.ac.uk/spm/
3 https://rfmri.org/DPABI
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exclusively on positive FC, given the ongoing debate surrounding the
interpretation of negative connectivity. Following thresholding, the
group-level t maps were binarized at p < 0.05, with correction for
multiple comparisons using a voxel-level false discovery rate method.
Finally, binarized connectivity maps derived from each GM contrast
were merged to form a network probability map, which was
subsequently thresholded at 50% based on previous well-validated
FCNM studies (38, 41) to outline the AN GM dysfunctional network.

Association with canonical brain networks

To enhance interpretability, we examined the spatial relationships
between the dysfunctional AN brain networks and 14 established
canonical brain networks. These networks include the auditory
network (including bilateral superior temporal gyrus and right
thalamus), basal ganglia network (including bilateral inferior frontal
gyrus, bilateral caudate nucleus and bilateral putamen), language
network (including left inferior frontal gyrus/Broca’s area, left middle
temporal gyrus, and left supramarginal gyrus), SMN (including
bilateral precentral gyrus, bilateral postcentral gyrus and bilateral
supplementary motor area), primary visual network (including bilateral
cuneus, bilateral lingual gyrus and pericalcarine cortex), dorsal DMN
(including bilateral inferior parietal lobule, dorsomedial prefrontal
cortex and bilateral posterior cingulate cortex), ventral DMN
(including medial temporal lobe, hippocampus/parahippocampal
gyrus and ventromedial prefrontal cortex), left executive control
network (LECN)[including left dorsolateral prefrontal cortex, left
superior parietal lobule and left supramarginal gyrus], right executive
control network (RECN) [including right dorsolateral prefrontal
cortex, right superior parietal lobule and right supramarginal gyrus],
high visual network (including lateral occipital cortex, tempo-occipital
junction and fusiform gyrus), visuospatial network (including superior
parietal lobule, inferior parietal lobule and superior frontal sulcus),
anterior salience network (including bilateral insula, bilateral ACC and
bilateral middle frontal gyrus), posterior salience network (including
bilateral posterior insula, bilateral posterior cingulate cortex and
bilateral supramarginal gyrus), and the precuneus network [including
precuneus, part of the parietal cortex and part of the posterior cingulate
cortex (53)]. We quantified the spatial relationships by calculating the
ratio of overlapping voxels between each dysfunctional AN network
and its corresponding canonical network, relative to the total number
of voxels within the canonical networks.

Subgroup analyses
We conducted subgroup analyses on the included samples, dividing

participants into female-only, adolescent, and adult subgroups to explore
potential differences in brain network abnormalities across these groups.

Results
Included studies and sample characteristics

A total of 842 candidate articles were initially identified and
subjected to a thorough screening process. Ultimately, 26 studies
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including data from 667 individuals with AN and 659 healthy controls
were included in the analysis (17, 24, 54-66). Subsequently, we conducted
a planned subgroup analysis (female-only group, adolescent group, adult
group). The female-only group comprised 598 women with AN and 593
healthy controls. The adolescent group included data from 215
individuals with AN and 189 healthy controls. The adult group consisted
of 452 individuals with AN and 470 healthy controls. The sample and
imaging characteristics of the studies included are outlined in Table 1.

Convergent aberrant FC associated with
GM alterations in AN

In this study, by combining the FCNM approach and large-scale
human brain connectome data obtained from the HCP, we identified
that the convergent aberrant FC associated with GM alterations in AN
involved widely distributed brain regions primarily including the
bilateral superior temporal gyrus, right Rolandic operculum, right
middle temporal gyrus, bilateral precuneus, bilateral ACC, and bilateral
precentral gyrus (Figure 2 and Table 2). FCNM calculations were
further conducted using spheres with 1-mm (Supplementary Figure 52)
and 7-mm radii (Supplementary Figure S3), respectively, revealed
similar brain regions to those obtained with a 4-mm radius sphere.
Regarding canonical brain networks, the AN-associated network
showed the highest overlap with the following networks: the auditory
network includes brain regions such as the bilateral superior temporal
gyrus and right Rolandic operculum, with an overlap proportion of
70.5%; the ventral DMN primarily includes the right middle temporal
gyrus and bilateral precuneus, showing an overlap proportion of 19.2%.
The dorsal DMN mainly involves the bilateral ACC, with an overlap
proportion of 13.1%; and the SMN being primarily associated with the
bilateral precentral gyrus, with an overlap proportion of 20.6%
(Figure 3). The overlap proportions with other canonical brain networks
were all below 10%. Then, replicating the FCNM procedure involved
spheres with radii of I-mm (Supplementary Figure S4) and 7-mm
(Supplementary Figure S5), the resulting patterns of network overlap
closely resembled those generated using the 4-mm radius sphere.

Subgroup analyses

In the female-only group, the primary abnormal networks
identified were the auditory network (22%), dorsal DMN (28%), and
ventral DMN (12%) (Supplementary Figure S6). The adolescent group
showed a broader distribution of abnormal networks, with
predominant involvement of the auditory network (77%), LECN
(79%), ventral DMN (92%), SMN (93%), precuneus network (90%),
primary visual network (75%), and visuospatial network (49%)
(Supplementary Figure S7). In the adult group, predominant
abnormalities were found in the auditory network (92%), posterior
salience network (60%), SMN (35%), and basal ganglia network (32%)
(Supplementary Figure S8).

Discussion

To the best of our knowledge, this study is the first to integrate the
FCNM approach with large-scale resting-state fMRI data from the HCP,
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TABLE 1 Sample and imaging characteristics of the studies included AN analysis.

Mean Age Gender Age group AN state Illness duration = Scanner Software = Threshold Quality
SD female months score*
Mubhlau et al. (2007) (63) 22/37 27.2 100% Adult Recovered 116 1.5 T MRI SPM2 p <0.1 uncorrected 9.5
Castro Fornieles et al. (2009) (60) 12/9 145+ 15 91.6% Adolescent NA NA 1.5 T MRI SPM5 p<0.5FWE 10
FSL
Suchan et al. (2010) (23) 13/14 26.8 +8.4 100% Adult Chronic 66.0 = 60.0 1.5 T MRI SPM5 P<0.5FWE 9.5
Boghi et al. (2011) (129) 21/27 29.0 £10.0 100% Adult Recovered/ 135.6 £ 145.2 1.0 T MRI SPM2 P<0.5FDR 9
10/13 214+£25 100% Adult Acute 228 £15.6 NA NA
11/14 359+9.25 100% Adult Acute 237.6 +133.2 1.0 T MRI p <0.01 uncorrected
Chronic
Brooks et al. (2011) (66) 14/21 260£1.9 100% Adult NA 110.4 £22.8 1.5 T MRI SPM5 NA 10
Gaudio et al. (2011) (62) 16/16 152+ 1.7 100% Adolescent Acute 53+32 1.5 T MRI SPM2 P <0.01 uncorrected 9.5
Joos et al. (2011) (65) 5/18 29.6 £5.1 100% Adult Recovered 86.4+72 3.0 T MRI SPM8 P <0.01 uncorrected 9
12 25.0+4.8 100% NA
Friederich et al. (2012) (64) 12/14 243+6.2 100% Adult Acute 75.6 +52.8 3.0 T MRI SPM5 P <0.5 corrected 9.5
13 25.0 4.8 100% Adult Recovered 68.4 +43.2 P < 0.5 uncorrected
Mainz et al. (2012) (130) 19/19 157+ 1.5 100% Adolescent Recovered NA 3.0 T MRI SPM5 FWE corrected 9
Amianto et al. (2013) (59) 17/14 20.0 £4.0 100% Adolescent Acute 13.0 £ 8.0 1.5 T MRI FSL P <0.05 TFCE 9.5
Frank et al. (2013) (55 19/24 23.1+5.8 100% Adult Acute NA 3.0 T MRI SPM8 P<0.5FWE 9
Fonville et al. (2014) (54) 31/31 23.0 NA Adult NA 84.0 £120.0 1.5 T MRI FSL P<0.5FWE 9.5
Bir et al. (2015) (131) 26/26 23.0+£5.0 88.4% Adult Acute 224 +14.8 1.5 T MRI SPM8 P <0.01 uncorrected 10
Bomba et al. (2015) (61) 11/8 13.6 +2.8 100% Adolescent NA 14.5+10.9 1.5 T MRI SPM5 P<0.5FWE 9.5
D’Agata et al. (2015) (58) 21/17 21.0+£5.0 100% Adolescent Acute NA 1.5 T MRI FSL P < 0.05 uncorrected 9
Fujisawa et al. (2015) (56) 20/14 142+1.8 100% Adolescent NA 23.6+17.0 3.0 T MRI SPM8 L_IFG: 9.5
P<0.05FWE
R_IFG:
P <0.05 uncorrected
Van Opstal et al. (2015) (20) 10/11 221+33 100% Adult NA 425+27.6 3.0 T MRI FSL NA 9
Bjornsdotter et al. (2018) (17) 25/25 20.3+2.2 100% Adolescent NA 49.7 +42.5 3.0 T MRI SPM8 P <0.5 corrected 10
Kohmura et al. (2017) (19) 23/29 285+6.7 100% Adult NA 126 + 74.4 3.0 T MRI SPM8 P<0.5FWE 9.5
23 NA Adult NA
Martin Monzon et al. (2017) (18) 26/20 16.5+0.3 100% Adolescent NA NA 3.0 T MRI SPM12 P<0.5FDR 9
Nickel et al. (2017) (132) 34/41 23.8+43 100% Adult Acute 792 +44.4 3.0 T MRI SPM12 P<0.5FWE 9.5
Phillipou et al. (2018) (24) 26/27 22.8+6.7 100% Adolescent Acute 6.4+74 3.0 T MRI SPM12 P<0.5FWE 10
(Continued)
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é ultimately mapping GM changes in AN onto specific brain functional
P é networks. Using the FCNM approach, we analyzed data from 26 VBM
< R A studies examining whole-brain GM alterations including a total of 667
3 individuals with AN and 659 healthy controls. The FCNM approach
% identified specific brain functional networks associated with GM
é alterations in AN, including the auditory network (e.g., bilateral superior
; temporal gyrus and right Rolandic operculum), the ventral and dorsal
§ DMN (e.g., bilateral precuneus, bilateral ACC, and right middle temporal
% § m ‘§ ;; gyrus), and the sensorimotor network (SMN) (e.g., bilateral precentral
é 2 é E £ gyrus). Network overlap was calculated using a 4-mm radius sphere,
= < $ S < 3 with validations using 1-mm and 7-mm sphere radii yielding robust and
= Bl Bt B % replicable results. Subgroup analyses showed that gender appeared to
o é modulate the involvement of the SMN. Significant differences were also
g o wl o E observed in the ECN, visual network, and salience network between
5 % o % % E adolescents and adults with AN. Notably, our findings offer a compelling
a w Eje e 2 bridge between neurobiology and the broader biopsychosocial
g framework of AN, suggesting the structural network vulnerabilities
5 ool é we identified serve as a crucial neural substrate upon which psychological
= £ £ € £ g traits and sociocultural pressures act to entrench the disorder.
© e B B g
& |EEEEEAE
S ;,E Auditory network alterations in AN
é f 2 E < % Our study found that GM alterations associated with AN spatially
9 ; 5 3 ~ é map onto the auditory network. The auditory network, as defined by
2 5 the 14 canonical brain networks, encompasses the primary and
= z secondary auditory cortices, superior temporal gyri, Rolandic
E:" operculum, and prefrontal cortex, is vital for processing environmental
9 - £ stimuli (53, 67). Auditory cortex dysfunction, characterized by altered
-g § . _§ FC, is implicated in body image distortion and interoceptive deficits
<ZE 2 < g = § in AN (68, 69). This dysfunction may reflect impaired integration of
E visual, auditory, and tactile stimuli, crucial for accurate body
= E perception (70, 71). Reduced activity in the primary auditory cortex
g 'g % and insula is linked to abnormal bodily state perception (68).
o =z £ 53 Furthermore, reduced left superior temporal gyrus volume in
2 T 22 Z 5 adolescents with AN correlates with weight and shape concerns (72,
§ 73). Experiments manipulating footstep frequencies (high and low)
5 : further indicate that auditory signals, processed by the auditory
2 § § § § § cortex, may influence perceptions of body weight (69). Overall, the
& T T é auditory cortex is crucial for multimodal sensory integration, and its
g functional abnormalities may distort the processing of auditory
o signals in AN patients, further exacerbating distortions in body image
= wl ol a E % and weight perception (74, 75).
<c( S W w3 E The superior temporal gyrus, including Heschl's gyrus (the core
S E § 4 = ":; of the primary auditory cortex), plays a key role in spectro-temporal
= Tz analysis, phonological processing, and integrating cues for speech
- %: comprehension (76). It also contributes to processing social and
E 5:) § § § § g emotional cues, which are often impaired in AN (77, 78). Studies show
= -t Y =2 E altered superior temporal gyrus activation in AN during exposure to
% food and body-image stimuli, with both hyper-activation and hypo-
é activation reported (79, 80). Decreased superior temporal gyrus
T~ 2 activation when viewing food images may reflect diminished
g - g ‘é B % emotional engagement or reward processing (81, 82). The Rolandic
.% g SIS g ¢ 3 operculum plays a key role in motor control related to oral and
S S § Tl’ g E = pharyngeal functions, taste perception, somatosensory processing,
= < g % g g? £ and multimodal integration (83). Given its involvement in taste
g £ g = g = §* perception and oral motor functions, the Rolandic operculum likely
= °l=[2[Fz¢ influences eating habits through its interactions with neural networks
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FIGURE 2

FC overlap maps based on 4-mm radius sphere in AN. Dysfunctional brain networks are shown as FC probability maps thresholded at 50%, showing
brain regions functionally connected to more than 50% of the contrast seeds. AN, anorexia nervosa; FC, functional connectivity; L, left; R, right

TABLE 2 Brain FC with altered gray matter in AN.

L 100 BA7 -11 —56 25

Precuneus

Precuneus R 43 BA7
Precentral gyrus L 37 BA6
Precentral gyrus R 115 BA6
Superior temporal gyrus L 261 BA22
Superior temporal gyrus R 148 BA22
Middle temporal gyrus R 42 BA21
Rolandic operculum R 187 BA43
Anterior cingulate cortex (ACC) L 122 BA24
Anterior cingulate cortex (ACC) R 65 BA24

14 =56 24
-32 —12 61
40 -12 42
—46 -8 -15
44 —4 15
61 -7 =15
39 -3 15
—6 35 1

7 37 1

AN, anorexia nervosa; BA, Brodmann area; FC, functional connectivity; ACC, anterior cingulate cortex; L, left; R, right.

). In individuals with AN, reduced
GMV in the left Rolandic operculum has been linked to distortions in

regulated by the hypothalamus (

self-perception and social cognition (24).

DMN alterations in AN

The DMN is traditionally categorized into the ventral DMN and
the dorsal DMN, distinguished by anatomical and functional
characteristics (53, 85). Key DMN regions include the precuneus,
medial prefrontal cortex, posterior cingulate cortex, angular gyrus,

hippocampus, and temporal and parietal areas (86). Our study found

Frontiers in 07

that the dysfunctional ventral DMN (middle temporal gyrus and
precuneus) and dorsal DMN (ACC) were linked to GMV alterations
in AN. The dorsal DMN plays a crucial role in assessing the emotional
significance of envisioned scenarios, thereby impacting emotional
processing and the development of prospective strategies (87), while
the ventral DMN is mainly involved in the constructive process of
imagination, assisting in combining memory fragments to create vivid
and detailed mental images (85). DMN aberrations in AN, particularly
affecting the precuneus, posterior cingulate cortex, and medial
prefrontal cortex, are associated with distorted self-perception and
intensified body image concerns (29, 88, 89). Additionally, increased

DMN connectivity has been associated with heightened rumination
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on weight and body shape, suggesting that AN patients may
experience intensified self-focused thoughts that perpetuate body
image distortions (90, 91). Importantly, nutritional and psychological
treatments have been shown to modulate abnormal DMN connectivity
(30, 92), potentially restoring network function to support positive
self-perception and body image, and reducing weight and body
preoccupation in AN.

The middle temporal gyrus is essential for semantic cognition as
it integrates information from the anterior temporal lobe and links it
to goal-directed cognitive processes (93, 94). Studies have revealed
structural and functional modifications in the middle temporal gyrus
in patients with AN, which are closely related to symptoms including
emotional dysregulation and body weight control (95-97). For
instance, AN patients often experience a decrease in GMV in the
middle temporal gyrus, which is associated with symptoms of body
dissatisfaction and distorted self-image (19, 98). Functional MRI
studies indicate modified activation in the middle temporal gyrus
during tasks related to body, food, and cognitive processing, which

Frontiers in Nutrition

could potentially worsen symptoms of AN (98, 99). Furthermore,
reduced activation in the middle temporal gyrus is linked to impaired
emotional recognition and theory of mind, impacting social
interactions and self-perception in those with AN (100, 101).

The precuneus, part of the posterior DMN, is associated with self-
referential processes and body awareness, functions that are often
disrupted in AN (98). Structural changes like cortical thinning and
GMV have been observed, sometimes reversing with weight
restoration (102
with the ACC, correlates with body image concerns, emotional

, 103). Altered precuneus resting-state FC, particularly

regulation difficulties, and distorted body perception (104-106). The
ACC is essential for integrating emotion, motivation, and cognitive
control to support goal-directed behavior, decision-making, and
adaptive responses to rewards and punishments (107). The ACC plays
a significant role in the pathophysiology of AN, with studies
demonstrating both structural and functional alterations that relate to
core symptoms of the disorder (10, 77). For instance, research has
shown consistent gray matter reduction in the ACC of AN patients,
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even after weight recovery, suggesting long-lasting structural deficits
associated with the severity of the disorder (63, 108). Resting-state
studies further reveal disrupted synchrony between the ACC and
regions like the precuneus, which correlates with concerns about body
shape, highlighting a network-level dysfunction underlying the
obsessive focus on body image (106).

SMN alterations in AN

The SMN, as defined by the 14 canonical brain networks,
encompasses the precentral gyrus, postcentral gyrus, and
supplementary motor area, plays a crucial role in integrating and
processing sensory and motor information within the brain (109-
111). We determined that the altered SMN associated with GMV
changes in AN involved the precentral gyrus. Research indicates that
AN patients exhibit abnormal connectivity within the SMN, especially
in areas related to the integration of somatosensory and visuospatial
information (29, 102). The dysfunction of the SMN in AN is linked to
impaired body image perception and sensory processing, which are
central to the disorder’s pathology (68, 112). The biological
underpinnings of body image distortions in AN patients involve
impaired sensorimotor integration and disrupted FC (21, 113).

The precentral gyrus is essential for voluntary body movement
control, motor planning, and coordination (114, 115). Neuroimaging
has shown altered FC involving the precentral gyrus in AN patients,
often associated with behaviors regarding food intake and body image
(21, 116). Moreover, studies have found decreased GMV in the
precentral gyrus of AN patients, a structural alteration that might
underpin difficulties in flexible motor responses and contribute to the
disorder persistent behavioral patterns (11, 117). These findings
highlight the precentral gyrus role in the neurobiological mechanisms
underlying AN and suggest that both functional and structural
disruptions in this area may reinforce the motor control and body
perception challenges characteristic of the disorder (88, 118).

Subgroup analyses in AN

When considering the female-only subgroups (24 studies),
patients with AN primarily exhibited significant alterations in the
auditory network, dorsal DMN, and ventral DMN, with comparatively
lesser involvement observed for the SMN. Research has demonstrated
anatomical and functional differences in the sensorimotor cortex
between males and females, especially in the precentral and
postcentral gyri (110). In females, these regions are generally more
involved in emotional processing and bodily self-awareness, whereas
males show a stronger association with motor control functions (119).
A typical symptom of AN is an intense preoccupation with weight and
body image (120). Women are typically more vulnerable than men to
the sociocultural pressures that promote the thin ideal, which leads to
a more pronounced body image distortion (121). Given the close
connection between the SMN and bodily self-awareness, female
patients may experience more significant impairments in network
functionality because of enhanced body image distortion (122).
Additionally, among AN patients, emotional disturbances such as
anxiety and depression are more prevalent in females and are closely
linked to dysfunctions in the sensorimotor network (123).
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Our study reveals that the ECN, visual network, and salience
network are influenced by age in patients with AN. Research indicates
that the development of the prefrontal cortex, essential for executive
functions, continues during adolescence, possibly resulting in weaker
executive control, emotional regulation, and social skills in adolescents
compared to adults (27, 124). In adolescents, the still-developing
prefrontal cortex may relate to increased impulsivity and emotional
instability when faced with emotional and social challenges that
require self-regulation (125). Furthermore, the salience network and
visual network exhibit different patterns of activity in adolescent and
adult AN patient. The salience network in adolescents shows greater
plasticity and heightened responsiveness to environmental stimuli
(126). In contrast, the functioning of these networks in adult AN
patients may be more stable (127).

Limitations

There are several limitations to this study. First, the analysis relies
on coordinate-based data extracted from published studies, which
offers a summary statistic (peak location) and inherently lacks spatial
information in comparison to analyses using full statistical maps or
individual participant data (40, 42, 128). This coordinate-based
approach is correlational and does not have the capacity to determine
causality between the identified network and AN-related GM
alterations. Second, although the FCNM approach has effectively
mapped neuropsychiatric symptoms and diseases onto common brain
networks, we utilized resting-state fMRI data from a large cohort of
healthy adults provided by the HCP. It may be more suitable to employ
data that aligns more closely with the demographic and clinical
profiles of the patients included in the analyzed studies. Third, due to
the limited number of previous studies, network localization analyses
were not conducted separately for different stages of AN (acute,
chronic, and recovered). Future studies should address this by
performing stage-specific network localization analyses to enhance
result precision. Fourth, since many individuals with AN are also
treated with antidepressants, it creates a challenge in distinguishing
whether the brain network abnormalities observed are a result of AN
itself or are influenced by the medications. This is a common issue in
clinical research, as medications may alter brain function, potentially
confounding the results. It highlights the need for more controlled
studies that separate the effects of AN from those of psychotropic
treatments. Fourth, while the FCNM approach is effective for mapping
GM abnormalities to specific brain networks, it is constrained by the
spatial resolution and methodological limitations of neuroimaging
techniques. This limitation may lead to an underestimation of
network-level abnormalities as subtle changes in smaller or
overlapping network regions may not be fully captured. Additionally,
the current study combined coordinates representing both increases
and decreases in GM, which might obscure network specificities
related to the direction of change. Future research should focus on
validating these findings in clinical cohorts, exploring the longitudinal
trajectories of brain network alterations, and assessing their potential
as biomarkers for treatment response and prognosis. By combining
advanced imaging techniques with network analysis methods, a more
comprehensive understanding of the complex neurobiological
mechanisms underlying AN can be achieved, providing new scientific
evidence for targeted therapeutic interventions.
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Conclusion

In conclusion, this study integrated the FCNM approach and large-
scale human brain connectome data obtained from the HCP, revealing
that the heterogeneous GM abnormalities in AN converge onto specific
brain networks. Our findings indicated that the aberrant brain
networks linked to AN predominantly implicate the auditory network
(bilateral superior temporal gyrus and right Rolandic operculum), the
ventral DMN (right middle temporal gyrus and bilateral precuneus),
the dorsal DMN (bilateral ACC), and the SMN (bilateral precentral
gyrus). Furthermore, network abnormalities in AN are influenced to
some extent by both gender and age. These disruptions in brain
networks are associated with distorted body image perception,
impaired emotional regulation, and disrupted sensory and motor
integration in individuals with AN. Network localization offers a
comprehensive and unified framework that may help address concerns
regarding the reproducibility of GM findings across VBM studies in
AN. These findings could enhance our comprehension of the
pathological mechanisms that underlie AN from a network perspective.
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Glossary

ACC - anterior cingulate cortex

AN - anorexia nervosa

CBMA - coordinate-based meta-analysis
DBM - deformation-based morphometry
DMN - default mode network

FA - flip angle

FC - functional connectivity

FCNM - functional connectivity network mapping
FDR - false discovery rate

fMRI - functional magnetic resonance imaging
FOV - field of view

FWE - family-wise error

FSL - FMRIB Software Library

FWHM - Full Width at Half Maximum

GRE-EPI - gradient-recalled echo-Planar Imaging
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GM - gray matter

GMYV - gray matter volume

HC - healthy controls

HCP - Human Connectome Project
LECN - left executive control network
MRI - magnetic resonance imaging
MNI - Montreal Neurological Institute
NA - not applicable

ROI - region of interest

RECN - right executive control network
SMN - sensorimotor network

SPM - Statistical Parametric Mapping
TE - echo time

TFCE - Threshold-Free Cluster Enhancement
TR - repetition time

VBM - Voxel-based morphometry.
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