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Objective: To establish a secondary prevention screening model for predicting
metabolic syndrome (MetS) based on community obstructive sleep apnea
(OSA) screening, using simple and easily accessible indicators, to help
early identification of high-risk individuals and improve prognosis and
reduce mortality.
Methods: This study enrolled adults newly diagnosed with OSA from community
settings in China, collecting comprehensive demographic and lifestyle data.
To identify key predictive variables, least absolute shrinkage and selection
operator (LASSO) regression was employed for feature selection. Nine machine
learning algorithms, such as logistic regression, random forest, and support
vector machine (SVM), were then used to build predictive models, with each
undergoing rigorous training, hyperparameter tuning, and evaluation on stratified
training, validation, and test datasets. Model performance was evaluated using
multiple metrics, including the area under the receiver operating characteristic
curve (AUC-ROC), accuracy, sensitivity, specificity, F1 score, calibration curves,
and clinical decision curve analysis (DCA). To improve interpretability, Shapley
additive explanations (SHAP) analysis was applied to quantify each predictor’s
contribution to the model’s output.
Results: Among the nine machine learning algorithms evaluated, the logistic
regression model exhibited superior performance. The finalized model achieved
an AUC of 0.814 on the test dataset, demonstrating strong discriminative ability.
Key performance metrics included a sensitivity of 0.794, specificity of 0.647,
accuracy of 0.693, and an F1 score of 0.617. Feature importance analysis
highlighted body mass index (BMI), age, and gender as the most significant
predictors of MetS. Calibration curves and clinical DCA further confirmed the
model’s reliability, showing close alignment between predicted probabilities
and observed outcomes, thus affirming its clinical utility. External validation
reinforced the model’s robustness, yielding an AUC of 0.818, with consistent
discrimination and well-calibrated predictions.
Conclusion: This study successfully developed a MetS prediction model based
on community environment. The model relies solely on simple, easily obtainable
self-reported indicators and demonstrates good predictive performance. This
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model, as a primary screening tool, enables residents to assess their MetS
risk status independently, without relying on complex biochemical tests or the
assistance of specialized medical personnel.

KEYWORDS

obstructive sleep apnea, metabolic syndrome, predictive models, community
population, SHAP (SHapley Additive exPlanations)

GRAPHICAL ABSTRACT

1 Introduction

Obstructive sleep apnea (OSA) and metabolic syndrome
(MetS) pose significant global public health challenges. Recent
epidemiological data estimate that approximately 936 million
people worldwide are affected by OSA, establishing it as a
pressing healthcare concern. China bears the highest burden, with
around 176 million individuals diagnosed with the condition (1).

Meanwhile, the prevalence of MetS among adults exceeds 20%
globally (2), and this rate increases with age. These two conditions
can form a vicious cycle, each exacerbating the other, thereby
significantly elevating the risk of cardiovascular diseases, diabetes,
and other chronic illnesses, and severely compromising patients’
quality of life and health outcomes.
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Our previous research focused on predicting health risks
associated with OSA, through the development of a hypertension
prediction model targeting individuals with OSA in community
settings. This model was designed to identify cases of “masked
hypertension”—hypertension that is not easily detectable during
routine clinical visits but is closely linked to nocturnal hypoxic
events (3). Hypertension is not only a common comorbidity
of OSA but also a core diagnostic component of MetS. Early
identification and integrated management of MetS have been
shown to significantly reduce the incidence of cardiovascular
diseases and related complications.

However, existing models for predicting MetS have notable
limitations. These predictive models frequently integrate a diverse
array of biochemical indicators, including key liver enzymes such
as alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) (4, 5), alongside other indicators like blood glucose, blood
pressure, lipid profiles, and waist circumference. The reliance on
such complex combinations of parameters limits their practicality
in clinical settings, as they typically require specialized laboratory
testing, increasing both the financial and time burdens on patients.
This in turn restricts their scalability for large-scale population
screening. Therefore, there is an urgent need for simpler, more
accessible predictive indicators that can facilitate MetS screening
and early intervention in community settings.

Although some studies have investigated the long-term impact
of OSA on MetS outcomes, a key challenge remains in effectively
identifying high-risk individuals within communities to enable
timely intervention and reduce mortality (6). To address this,
the present study aims to develop a practical and effective MetS
prediction model based on simple and user-friendly screening
tools. To ensure feasibility, efficiency, and cost-effectiveness in real-
world community contexts, the model will exclude biochemical
markers and sleep stage data. Instead, it will utilize demographic
and lifestyle information to identify predictive factors for MetS
and construct a self-assessment model suitable for community use.
This model is intended to improve the early detection of MetS and
could be implemented via mobile applications or online surveys as
a screening tool for secondary prevention. It may assist individuals
in self-screening prior to consulting a community physician, or
be employed by primary care providers during community-based
OSA screening efforts.

2 Methods

2.1 Study population

The target population of this study was drawn from
the “Chinese Academy of Medical Sciences Lifelong Health
and Informatics Infrastructure Project (Guangdong Cohort),”
implemented in Guangdong Province. Participants were recruited
from the general community population between April 9 and May
18, 2021. The design and execution of baseline data collection
in this cohort followed the methodological framework outlined
in Data Resource Profile: The China National Health Survey
(CNHS) (7).

A total of 3,829 individuals completed valid sleep monitoring,
among whom 1,669 were identified with OSA. After excluding
individuals without diagnostic data for MetS, a final sample of 1,603

diagnosed OSA patients meeting the study criteria was included in
the analysis.

For predictive model development, it is generally
recommended that the sample size should be 10 to 20 times the
number of factors to be analyzed (8). In this study, approximately
21 variables are expected to be included in the model. Based on
the upper limit of this recommendation (20 times), the minimum
required number of outcome events is 21 × 20 = 420. Given that
the reported incidence of the outcome is approximately 49% (9),
the total sample size should be at least 420/49% = 857 participants.

2.2 Nocturnal sleep monitoring

In this study, we screened for OSA in a community-based
population using a Type IV sleep monitoring device from Chengdu
Yunweikang Health Technology Co., Ltd. (China). The device
utilizes photoplethysmography (PPG) technology to measure pulse
oxygen saturation (SpO2) by analyzing the differential absorption
of hemoglobin under specific wavelengths of infrared and red
light. To ensure data accuracy, the system incorporates advanced
motion artifact detection algorithms, which effectively minimize
signal interference caused by movement, thereby enhancing the
reliability of monitoring durations and the validity of the collected
physiological data (Supplementary Figure 1).

A comparative validation study was conducted to assess the
diagnostic accuracy of a Type IV portable sleep monitoring device
against the gold-standard polysomnography (PSG; Alice 6 model)
at the Sleep Center of Guangdong Provincial People’s Hospital
(10). The study involved 196 participants, with OSA defined by
an apnea-hypopnea index (AHI) of ≥5 events per hour. The Type
IV device demonstrated robust diagnostic performance, achieving
a sensitivity of 93%, specificity of 77%, and an area under the
receiver operating characteristic curve (AUC) of 0.95, reflecting
strong concordance with PSG results (Supplementary Figure 2).

A subgroup of 305 participants from Shantou City also
underwent type III home sleep apnea testing (HSAT, model: Alice
Night One) (11). The oxygen desaturation index (ODI) from
the Type IV monitoring device showed a statistically significant
correlation with the AHI measured by HSAT (R² = 0.504, P <

0.001). Bland-Altman analysis further demonstrated that 93.1%
(284/305) of paired measurements between the Type IV ODI
and HSAT-derived AHI fell within the 95% limits of agreement,
indicating strong clinical concordance between the two methods
(Supplementary Figure 3).

Due to its simplicity, accessibility, and affordability, the
reliability of type IV sleep monitoring in OSA screening has been
validated across various populations, including individuals with
obesity, surgical patients, people living with HIV, and patients with
atrial fibrillation (12–15). When used alone or in combination
with the STOP-Bang questionnaire, the type IV device significantly
outperforms the STOP-Bang questionnaire alone in screening
accuracy (16). While there may be some discrepancies in precise
AHI estimation, the U.S. Preventive Services Task Force has stated
that type IV sleep monitors generally offer high diagnostic accuracy
for OSA (17).

Among participants who completed valid sleep monitoring, the
prevalence of chronic obstructive pulmonary disease, asthma, and
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heart disease was below 5%. Moreover, all five study sites were
located at altitudes below 500 m, minimizing the potential influence
of altitude on oxygen saturation. The presence of OSA was defined
based on an ODI (≥4% desaturation) threshold of ≥5 events per
hour (13).

2.3 Definition of metabolic syndrome

According to the Guidelines for the Prevention and Treatment
of Diabetes in China (2024 Edition), MetS is defined by the presence
of at least three of the following components (18):

Hypertension: Systolic blood pressure ≥130 mmHg,
diastolic blood pressure ≥85 mmHg, or current use of
antihypertensive medications;

Elevated triglyceride levels (TG): ≥1.70 mmol/L;
Low high-density lipoprotein cholesterol (HDL-C):

<1.04 mmol/L;
Abdominal obesity: Waist circumference ≥85 cm in females or

≥90 cm in males;
Elevated fasting blood glucose: Fasting plasma glucose ≥6.1

mmol/L, or current use of antidiabetic medications.

2.4 Selection of candidate predictive
variables

Relevant variables for predicting MetS were extracted from
the survey questionnaire. These variables are all self-reported by
patients and do not require hospital visits to obtain. Specifically,
they include two main parts:

(1) General demographic information: including gender, age,
BMI, marital status (single, married, divorced, widowed), education
level (junior high school and below, high school, college, and
above), and insurance coverage status (with/without insurance).

(2) Lifestyle behaviors: smoking status was classified as non-
smoker, former smoker, or current smoker. Alcohol consumption
status was divided into non-drinker, former drinker, or current
drinker. Tea drinking status was similarly assessed as non-drinker,
former drinker, or current drinker. dietary quality was measured
based on the frequency of consuming midnight snacks, meat
and seafood, eggs, milk and dairy products, soy products, fresh
vegetables and fruits, and pickled foods. Physical activity and
exercise frequency was quantified by weekly engagement levels: 5–7
days, 3–4 days, 1–2 days, ≤3 days per month, or never. Sleep quality
was evaluated through indicators such as the presence of snoring
and occurrences of insomnia. The detailed definitions of the
predictive variables are provided in the Supplementary material.

2.5 Machine learning methods,
hyperparameter optimization, and model
training

In the variable selection phase, the Least Absolute Shrinkage
and Selection Operator (LASSO) regression method was employed
to identify the most relevant features.

Based on the selected features, nine machine learning models
were developed using the training dataset: Extreme Gradient
Boosting (XGBoost); Logistic Regression; Random Forest (RF);
Adaptive Boosting (AdaBoost); Gaussian Naive Bayes (GNB);
Complement Naive Bayes (CNB); Multilayer Perceptron (MLP);
Support Vector Machine (SVM); and K-Nearest Neighbor (KNN).

To optimize model performance, a systematic grid search
strategy combined with resampling techniques was applied for
hyperparameter tuning. The resampling process ensured that
model comparisons were made under consistent data conditions,
thereby improving the reliability and comparability of model
evaluations. Model performance was primarily assessed using
the average AUC and its variance. Once the optimal set of
hyperparameters was identified, each model was retrained on the
training set and subsequently evaluated on the test set to assess its
generalization capability (Figure 1).

2.6 Model validation and evaluation

Model performance was evaluated on both the validation
set and an independent test set using a comprehensive set of
classification metrics, including AUC, accuracy, Cohen’s Kappa
coefficient, sensitivity, specificity, and F1-score. Definitions of these
metrics are provided in Supplementary Table 1.

Additionally, to further assess the quality of predicted
probabilities and clinical applicability, calibration curves and
Decision Curve Analysis (DCA) were employed. Calibration curves
evaluate the consistency between predicted probabilities and actual
event rates, reflecting the model’s probability calibration ability.
DCA examines the net clinical benefit of a model under various
decision thresholds, helping to determine its utility in real-world
clinical decision-making scenarios.

2.7 Model interpretability analysis

To enhance interpretability, SHapley Additive exPlanations
(SHAP) were applied to explain the output of the predictive models.
SHAP is based on the Shapley value concept from cooperative
game theory and quantifies the marginal contribution of each input
variable to individual predictions. This method is model-agnostic
and supports both global feature importance assessment and local
interpretability for individual predictions.

3 Results

3.1 Baseline characteristics of the
population

A total of 1,603 participants were included in this study,
with 40% male and 60% female. The median age of the overall
population was 57 years (Table 1). After a single random sampling,
the participants were divided into training, validation, and test sets.
The gender distribution and median age were comparable across
the three subsets: the proportion of males was 41% in the training
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FIGURE 1

The process of machine learning models.

set, 37% in the validation set, and 39% in the test set; the median
age in all three subsets was consistently 57 years.

Regarding the prevalence of MetS, 31% of the total population
was diagnosed with MetS, with 30% in both the training and
validation sets, and 36% in the test set. There were no statistically
significant differences among the subsets in terms of sex, presence
of MetS, educational level, smoking status, alcohol consumption,
midnight snack consumption, seafood intake, vegetable intake, and
various aspects of sleep status (including non-restorative sleep,
breathing pauses, difficulty falling asleep, difficulty maintaining
sleep, and early morning awakening). The distribution of these
variables was generally consistent across the different datasets,
indicating a well-balanced partitioning.

3.2 Variable selection

Using LASSO regression analysis based on non-zero
coefficients, nine variables were selected from the collected
data, as shown in Figure 2. The selected variables included sex,
age, BMI, snoring, morning sleepiness during relaxation, tea
consumption, seafood intake, midnight snack consumption, and
physical labor.

3.3 Model development and evaluation

Nine variables identified via LASSO regression were
incorporated into nine distinct machine learning models. Optimal
hyperparameters for each model were tuned using the validation
set, as outlined in Supplementary Table 2. The performance metrics

of these models on the training set were subsequently evaluated
and summarized in Supplementary Table 3.

The predictive performance of all nine models was evaluated
using the validation set. The results showed that seven of the
models achieved an AUC greater than 0.7. Among them, the logistic
regression model demonstrated the highest AUC and the best
discriminative ability. The logistic model achieved a sensitivity
of 0.794, specificity of 0.647, accuracy of 0.693, F1-score of
0.617, and an AUC of 0.801, as shown in Supplementary Table 3
and Figure 3. The precision-recall (PR) curve is presented in
Supplementary Figure 4. In addition, a forest plot comparing AUC
scores across all nine models is shown in Figure 3C. The logistic
model also performed best in calibration and decision threshold
analysis, as illustrated in Supplementary Figures 5, 6. Therefore, the
logistic regression algorithm was selected for further analysis.

Given that the AUC on the training set did not exceed the AUC
on the validation set by more than 10%, there was no indication of
significant overfitting or underfitting. This suggests that the model
achieved balanced learning during training and was capable of
generalizing effectively to unseen data, indicating successful model
fitting (Supplementary Figure 7).

The best-performing logistic model on the validation set was
subsequently evaluated on the test set to assess its generalizability.
The model achieved an AUC of 0.814 on the test set, slightly higher
than its validation AUC of 0.801, and both values exceeded 0.7,
indicating strong external generalization performance (Figure 4A).

The calibration curve demonstrated strong agreement between
predicted probabilities and actual outcomes (Figure 4B). DCA
further showed that, within a threshold probability range of 5% to
58%, using this model to predict MetS provides significantly greater
net clinical benefit compared to default strategies of treating all
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TABLE 1 Basic characteristics of OSA population in Guangdong community.

Variable Total
(N = 1,603)

Training
(N = 1,025)

Validation
(N = 257)

Test (N = 321) P-value

Age (years) 57.00 (48.50– 66.00) 57.00 (48.00–66.00) 57.00 (50.00– 65.00) 57.00 (49.00–65.00) 0.622

BMI, kg/m2 24.40 (22.26–26.59) 24.39 (22.21–26.48) 23.95 (21.88–26.43) 24.72 (22.83–27.01) 0.008

Gender [Cases (%)] 0.495

Male 640 (40) 420 (41) 96 (37) 124 (39)

Female 963 (60) 605 (59) 161 (63) 197 (61)

MetS [Cases (%)] 0.114

No 1,101 (69) 716 (70) 180 (70) 205 (64)

Yes 502 (31) 309 (30) 77 (30) 116 (36)

Education level [Cases (%)] 0.892

Junior high school or below 763 (48) 496 (48) 121 (47) 146 (45)

High school 452 (28) 283 (28) 72 (28) 97 (30)

College or above 388 (24) 246 (24) 64 (25) 78 (24)

Health insurance coverage [Cases (%)]

None 9 (0.6) 5 (0.5) 3 (1.2) 1 (0.3)

Government-funded medical care 15 (0.9) 9 (0.9) 5 (1.9) 1 (0.3)

Urban employee medical insurance 690 (43) 434 (42) 114 (44) 142 (44)

Urban resident medical insurance 758 (47) 496 (48) 112 (44) 150 (47)

New rural cooperative medical scheme 131 (8.2) 81 (7.9) 23 (8.9) 27 (8.4)

Smoking [Cases (%)] 0.227

Non-smoker 1,377 (86) 892 (87) 216 (84) 269 (84)

Former or current smoker 226 (14) 133 (13) 41 (16) 52 (16)

Alcohol consumption [Cases (%)] 0.530

Non-drinker 1,337 (83) 848 (83) 220 (86) 269 (84)

Former or current drinker 266 (17) 177 (17) 37 (14) 52 (16)

Tea consumption [Cases (%)] 0.074

Non-drinker 549 (34) 368 (36) 88 (34) 93 (29)

Former or current drinker 1,054 (66) 657 (64) 169 (66) 228 (71)

Midnight snack consumption [Cases (%)]

5–7 days per week 38 (2.4) 21 (2.0) 4 (1.6) 13 (4.0)

3–4 days per week 25 (1.6) 15 (1.5) 6 (2.3) 4 (1.2)

1–2 days per week 59 (3.7) 33 (3.2) 11 (4.3) 15 (4.7)

≤3 days per month 123 (7.7) 82 (8.0) 16 (6.2) 25 (7.8)

Never 1,358 (85) 874 (85) 220 (86) 264 (82)

Meat consumption [Cases (%)] 0.428

5–7 days per week 1,478 (92) 940 (92) 236 (92) 302 (94)

3–4 days per week 90 (5.6) 63 (6.1) 14 (5.4) 13 (4.0)

1–2 days per week 22 (1.4) 12 (1.2) 7 (2.7) 3 (0.9)

≤3 days per month 8 (0.5) 6 (0.6) 0 (0) 2 (0.6)

Never 5 (0.3) 4 (0.4) 0 (0) 1 (0.3)

Seafood consumption [Cases (%)] 0.939

5–7 days per week 377 (24) 241 (24) 59 (23) 77 (24)

(Continued)
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TABLE 1 (Continued)

Variable Total
(N = 1,603)

Training
(N = 1,025)

Validation
(N = 257)

Test (N = 321) P-value

3–4 days per week 164 (10) 103 (10) 28 (11) 33 (10)

1–2 days per week 446 (28) 284 (28) 78 (30) 84 (26)

≤3 days per month 457 (29) 291 (28) 67 (26) 99 (31)

Never 159 (9.9) 106 (10) 25 (9.7) 28 (8.7)

Egg consumption [Cases (%)]

5–7 days per week 587 (37) 368 (36) 91 (35) 128 (40)

3–4 days per week 542 (34) 355 (35) 86 (33) 101 (31)

1–2 days per week 351 (22) 223 (22) 59 (23) 69 (21)

≤3 days per month 100 (6.2) 62 (6.0) 17 (6.6) 21 (6.5)

Never 23 (1.4) 17 (1.7) 4 (1.6) 2 (0.6)

Milk and dairy products consumption [Cases (%)] 0.793

5–7 days per week 210 (13) 136 (13) 34 (13) 40 (12)

3–4 days per week 211 (13) 138 (13) 28 (11) 45 (14)

1–2 days per week 361 (23) 217 (21) 63 (25) 81 (25)

≤3 days per month 473 (30) 311 (30) 75 (29) 87 (27)

Never 348 (22) 223 (22) 57 (22) 68 (21)

Soy products consumption [Cases (%)] 0.756

5–7 days per week 57 (3.6) 37 (3.6) 8 (3.1) 12 (3.7)

3–4 days per week 255 (16) 159 (16) 43 (17) 53 (17)

1–2 days per week 823 (51) 535 (52) 120 (47) 168 (52)

≤3 days per month 429 (27) 269 (26) 81 (32) 79 (25)

Never 39 (2.4) 25 (2.4) 5 (1.9) 9 (2.8)

Vegetable consumption [Cases (%)] 0.309

5–7 days per week 1,581 (99) 1,010 (99) 254 (99) 317 (99)

3–4 days per week 12 (0.7) 6 (0.6) 2 (0.8) 4 (1.2)

1–2 days per week 10 (0.6) 9 (0.9) 1 (0.4) 0 (0)

Fruit consumption [Cases (%)]

5–7 days per week 759 (47) 487 (48) 118 (46) 154 (48)

3–4 days per week 294 (18) 187 (18) 51 (20) 56 (17)

1–2 days per week 380 (24) 243 (24) 60 (23) 77 (24)

≤3 days per month 145 (9.0) 89 (8.7) 25 (9.7) 31 (9.7)

Never 25 (1.6) 19 (1.9) 3 (1.2) 3 (0.9)

Pickled products [Cases (%)] 0.204

5–7 days per week 61 (3.8) 40 (3.9) 7 (2.7) 14 (4.4)

3–4 days per week 102 (6.4) 69 (6.7) 11 (4.3) 22 (6.9)

1–2 days per week 290 (18) 169 (16) 53 (21) 68 (21)

≤3 days per month 890 (56) 589 (57) 141 (55) 160 (50)

Never 260 (16) 158 (15) 45 (18) 57 (18)

Physical activity [Cases (%)] 0.656

Light 1,383 (86) 892 (87) 219 (85) 272 (85)

Moderate 167 (10) 104 (10) 27 (11) 36 (11)

(Continued)
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TABLE 1 (Continued)

Variable Total
(N = 1,603)

Training
(N = 1,025)

Validation
(N = 257)

Test (N = 321) P-value

Heavy 53 (3.3) 29 (2.8) 11 (4.3) 13 (4.0)

Exercise [Cases (%)] 0.893

5–7 days per week 873 (54) 567 (55) 140 (54) 166 (52)

3–4 days per week 187 (12) 116 (11) 31 (12) 40 (12)

1–2 days per week 169 (11) 106 (10) 29 (11) 34 (11)

≤3 days per month 125 (7.8) 75 (7.3) 18 (7.0) 32 (10.0)

Never 249 (16) 161 (16) 39 (15) 49 (15)

Loud snoring [Cases (%)] 0.031

No 1,245 (78) 800 (78) 185 (72) 260 (81)

Yes 358 (22) 225 (22) 72 (28) 61 (19)

Non-restorative sleep [Cases (%)] 0.500

No 1,146 (71) 726 (71) 182 (71) 238 (74)

Yes 457 (29) 299 (29) 75 (29) 83 (26)

Breathing pauses during sleep [Cases (%)] 0.701

No 1,512 (94) 967 (94) 240 (93) 305 (95)

Yes 91 (5.7) 58 (5.7) 17 (6.6) 16 (5.0)

Morning drowsiness during relaxation [Cases (%)]

Not drowsy 1,170 (73) 737 (72) 193 (75) 240 (75)

Drowsy, did not fall asleep 287 (18) 193 (19) 40 (16) 54 (17)

Drowsy, occasionally fell asleep 118 (7.4) 78 (7.6) 20 (7.8) 20 (6.2)

Drowsy, frequently fell asleep 28 (1.7) 17 (1.7) 4 (1.6) 7 (2.2)

Drowsiness during inactivity [Cases (%)]

Not drowsy 1,319 (82) 842 (82) 208 (81) 269 (84)

Drowsy, did not fall asleep 228 (14) 149 (15) 38 (15) 41 (13)

Drowsy, occasionally fell asleep 43 (2.7) 27 (2.6) 10 (3.9) 6 (1.9)

Drowsy, frequently fell asleep 13 (0.8) 7 (0.7) 1 (0.4) 5 (1.6)

Napping habit [Cases (%)] 0.191

None 169 (11) 99 (9.7) 26 (10) 44 (14)

Occasionally 287 (18) 195 (19) 41 (16) 51 (16)

Frequently 1,147 (72) 731 (71) 190 (74) 226 (70)

Difficulty falling asleep [Cases (%)] 0.892

None 741 (46) 465 (45) 119 (46) 157 (49)

Mild 211 (13) 139 (14) 33 (13) 39 (12)

Moderate 151 (9.4) 102 (10.0) 23 (8.9) 26 (8.1)

Severe 106 (6.6) 67 (6.5) 21 (8.2) 18 (5.6)

Very severe 394 (25) 252 (25) 61 (24) 81 (25)

Difficulty maintaining sleep [Cases (%)] 0.752

None 847 (53) 532 (52) 141 (55) 174 (54)

Mild 195 (12) 131 (13) 29 (11) 35 (11)

Moderate 127 (7.9) 90 (8.8) 18 (7.0) 19 (5.9)

Severe 97 (6.1) 62 (6.0) 16 (6.2) 19 (5.9)

(Continued)
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TABLE 1 (Continued)

Variable Total
(N = 1,603)

Training
(N = 1,025)

Validation
(N = 257)

Test (N = 321) P-value

Very severe 337 (21) 210 (20) 53 (21) 74 (23)

Early awakening [Cases (%)] 0.885

None 767 (48) 492 (48) 120 (47) 155 (48)

Mild 324 (20) 200 (20) 59 (23) 65 (20)

Moderate 149 (9.3) 99 (9.7) 20 (7.8) 30 (9.3)

Severe 106 (6.6) 71 (6.9) 13 (5.1) 22 (6.9)

Very severe 257 (16) 163 (16) 45 (18) 49 (15)

Values are presented as median (interquartile range, IQR) for continuous variables and frequency (weighted percentage) for categorical variables. P-values were calculated using t-tests or
Wilcoxon rank-sum tests for continuous variables and chi-square tests for categorical variables. SA, Obstructive Sleep Apnea; BMI, Body Mass Index.

FIGURE 2

Variable Selection Using LASSO Regression. (A) It shows the coefficient profiles of 26 variables from the LASSO analysis. (B) Illustrates the selection of
the optimal regularization parameter (λ) during the LASSO model fitting process, based on the minimum criteria from 10-fold cross-validation. The
plot displays the relationship between binomial deviance and log(λ), with vertical dashed lines indicating the λ value that minimizes the deviance
(minimum criteria) and the λ value corresponding to one standard error above the minimum (1-SE rule). LASSO, Least Absolute Shrinkage and
Selection Operator.

or no patients (Figure 4C). Thus, the model exhibits high clinical
utility in moderate-risk scenarios, supporting effective decision-
making and reducing unnecessary healthcare expenditures.

The confusion matrix for the test set (Figure 4D) shows that 206
instances were correctly predicted as class 0, 27 were incorrectly
predicted as class 1, 47 were incorrectly predicted as class 0, and
41 were correctly predicted as class 1. The overall accuracy was
calculated as (206 + 41)/(206 + 27 + 47 + 41) = 76.6%, indicating
good classification performance.

The Kolmogorov–Smirnov tatistic of the model exceeded 0.23,
further supporting its strong discriminative ability (Figure 4E).

3.4 Model interpretability using the SHAP
method

Figure 5A presents the SHAP summary plot of variable
importance, ranked by the mean absolute SHAP values in the

optimal model. The results indicate that BMI had the greatest
influence on the model output, followed by age and sex. Other
variables, such as seafood intake, tea consumption, morning
sleepiness, physical activity, intake of pickled foods, and snoring,
had relatively smaller impacts on the model’s predictions.

Figure 5B provides a visual interpretation of the optimal model
using SHAP bar plots to illustrate the contribution of individual
variables to the model’s predictions. For instance, part A of the
figure demonstrates the effects of a BMI of 21.7 and an age of
41 years on the model’s baseline output. A lower BMI value may
indicate a reduced risk, while being 41 years old contributes to a
lower estimated risk of developing MetS according to the model.

3.5 Web-based nomogram

A user-friendly web-based tool—an online nomogram
calculator—has been developed and is freely accessible online
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FIGURE 3

ROC curve of MetS Prediction model based on nine machine learning algorithms (A). Training set (B). Validation set (C). AUC forest plot of MetS
prediction model based on nine machine learning algorithms in validation set. ROC, Receiver Operating Characteristic; MetS, Metabolic Syndrome;
AUC, Area Under the Curve.

(Supplementary Figure 8). This web calculator is specifically
designed to assist community residents and healthcare
professionals in estimating the probability of MetS among
individuals with OSA.

3.6 External validation

In 2023, we collected data from 1,557 OSA patients in
Guangzhou, Foshan, Qingyuan, Shenzhen, and Huazhou to
perform external validation of the model. The AUC was
0.818, and model calibration also indicated acceptable fit
(Supplementary Figures 9, 10).

4 Discussion

Risk prediction models play a pivotal role in guiding clinical
and public health decision-making, with their integration
into official guidelines gaining increasing prominence. In
cardiovascular disease, predictive modeling has advanced

significantly, exemplified by widely adopted, validated tools such
as the ORISK score (19), the Framingham Risk Score (20), and
the ASSIGN score (21), which are routinely utilized in clinical
practice. The proliferation of large-scale datasets, combined with
advancements in statistical methodologies and computational
power, has further amplified the use of predictive modeling in
chronic disease research. These models are essential for designing
effective public health interventions to alleviate the escalating
burden of chronic diseases on healthcare systems.

MetS represents a significant risk factor for a wide range
of chronic conditions, including cardiovascular diseases,
diabetes, and stroke, and its global prevalence is alarmingly
high, with many individuals unaware of their condition.
Implementing robust secondary prevention measures is
critical to alleviating the substantial healthcare demands and
financial costs associated with MetS. The objective of this
study was to create an accessible, user-friendly self-assessment
tool designed to identify individuals at elevated risk of MetS
within the population diagnosed with OSA. This predictive
model is distinguished to rely solely on self-reported data and
straightforward, non-invasive measurements, eliminating the
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FIGURE 4

(A) ROC curve of the Logistic model on the test set (B). Calibration curve of the Logistic model on the test set (C). DCA curve of the Logistic model
on the test set (D). Confusion matrix of the Logistic model on the test set (E). Kolmogorov-Smirnov statistic of the Logistic model. ROC, Receiver
Operating Characteristic; DCA, Decision Curve Analysis; KS, Kolmogorov-Smirnov.

FIGURE 5

(A)Variable importance plot of the optimal model sorted by SHAP average values. (B) Visual explanation of the optimal model. SHAP, SHapley
Additive exPlanations.

need for complex laboratory tests. In contrast, earlier predictive
models typically relied on biomarkers such as uric acid levels,
fasting plasma glucose and blood pressure readings, which
necessitate specialized medical resources and professional
oversight (4, 5).

The logistic regression model’s superior performance in this
study, despite its simplicity compared to more complex algorithms
like RF, XGBoost, and SVM, warrants further discussion. Logistic
regression achieved the highest AUC (0.801 in the validation set
and 0.814 in the test set), indicating strong discriminative ability,
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and performed well in calibration and decision curve analysis.
Its effectiveness can be attributed to the dataset’s characteristics,
where key predictors such as BMI, age, and sex exhibited strong,
relatively linear associations with MetS, aligning well with logistic
regression’s assumption of linear relationships between predictors
and the log-odds of the outcome. In contrast, complex models like
RF and XGBoost, which excel at capturing non-linear relationships
and higher-order interactions, may not have provided additional
predictive power if such complexities were not prominent in
the data. Additionally, with a moderate sample size (n =1,603)
and a limited set of nine predictors, more complex models may
have been prone to overfitting or required larger datasets to
fully leverage their capabilities. Logistic regression’s simplicity
also enhances its interpretability, allowing clear insights into the
contribution of each predictor through coefficients or SHAP values,
which is critical for clinical applications where transparency is
valued. For instance, the model’s reliance on easily obtainable
variables like BMI and age makes it practical for community-based
screening. Conversely, RF and XGBoost, while potentially more
accurate in datasets with complex patterns, are less interpretable
due to their black-box nature, which could limit their utility in
settings requiring clear decision-making rationales. SVM, effective
in high-dimensional spaces, may have been less optimal due
to the small number of selected features and the absence of
highly non-linear boundaries in the data. Thus, logistic regression’s
balance of robust performance, computational efficiency, and
high interpretability made it the optimal choice for this study,
particularly for deployment in user-friendly tools like the web-
based nomogram calculator.

4.1 Relationship between predictive
variables and metabolic syndrome

The SHAP summary plot ranked by mean SHAP values
indicated that BMI had the greatest impact on the model’s output,
followed by age and sex. Obesity, particularly abdominal or
central obesity, is widely acknowledged as a critical risk factor
for MetS. The excessive accumulation of visceral fat significantly
contributes to MetS pathogenesis by stimulating the release of
pro-inflammatory cytokines, notably tumor necrosis factor-alpha
(TNF-α) and interleukin-6 (IL-6). These inflammatory mediators
can induce insulin resistance, thereby exacerbating glucose
metabolism disorders (22, 23). Additionally, obesity is closely
associated with dyslipidemia which further contributes to the
development of MetS (24, 25). BMI, a widely used anthropometric
measure, is straightforward to calculate in everyday settings
and has emerged as the most significant predictor in the MetS
predictive model. Its simplicity, requiring only height and weight
measurements, makes it an accessible tool for assessing MetS
risk. This finding aligns with previous studies, such as Pazarl,
which demonstrated that anthropometric measurements, including
BMI, are strongly associated with cardiometabolic diseases in OSA
patients, emphasizing their role in predicting conditions like MetS
(26). Similarly, Balat et al. (27) highlighted the importance of
anthropometric parameters in identifying cardiometabolic risk in
OSA populations, noting their ease of measurement and clinical

relevance. In a MetS prediction study based on 2,107 participants
from the Isfahan cohort, support vector machine and decision tree–
based models were constructed using various health characteristics,
achieving sensitivities of 0.774 and 0.758, respectively (28). This
study identified BMI as a key predictive variable for MetS. A
supplementary analysis of 468 female participants from the same
cohort further confirmed these findings, highlighting BMI as a
pivotal determinant of MetS in women (29).

Age is another critical factor in the development of MetS. As
individuals age, their basal metabolic rate gradually declines,
leading to reduced energy expenditure and increased fat
accumulation. Moreover, aging is associated with decreased
insulin sensitivity, which promotes insulin resistance (30, 31).
Insulin resistance interferes with normal glucose metabolism,
elevating blood glucose levels and facilitating the progression of
MetS. Hormonal changes related to aging, such as fluctuations
in growth hormone and sex hormones, may also affect lipid
and glucose metabolism (32). A comprehensive epidemiological
study, drawing on data from the China Nutrition and Health
Surveillance (CNHS) (2015–2017), investigated the prevalence
and risk factors of Metabolic Syndrome (MetS) among Chinese
adults aged 20 years and older (18). Analyzing a cohort of 130,018
participants, the study identified a significant positive correlation
between advancing age and the likelihood of developing MetS.
Individuals aged 45 years and above showed a markedly increased
susceptibility to the condition. Statistical analysis further revealed
that for each additional year of age, the risk of MetS increased
by 3.7%, highlighting the progressive metabolic deterioration
associated with aging.

Furthermore, the prevalence of MetS is generally higher in
men than in women, which may be attributed to differences in
sex hormones. Higher testosterone levels in men are associated
with greater visceral fat accumulation, whereas estrogen in women
promotes subcutaneous fat storage, thereby reducing visceral fat
deposition (33). Increased visceral fat is closely linked to insulin
resistance, hypertension, and lipid metabolism abnormalities—
all core features of MetS. In addition, men are more likely to
engage in unhealthy dietary and lifestyle habits, such as consuming
high-calorie and high-fat foods, which further elevate the risk of
MetS. A cross-sectional study conducted in the Balearic Islands
among 42,146 adult workers found that the prevalence of MetS was
significantly higher in men than in women. According to the ATP-
III criteria, the prevalence in men was 9.4%, compared to 3.8% in
women; based on the IDF criteria, the rates were 12.3% and 5.7%,
respectively (34).

4.2 Advantages and clinical application
value of the model

This study presents a predictive model comprising nine
variables: BMI, sex, age, snoring, morning drowsiness, tea
consumption, seafood intake, midnight snack habits, and physical
labor. The model demonstrated strong discriminative ability, with
an AUC of 0.793 in the training set and 0.814 in the test
set. Its sensitivity, specificity, accuracy, F1 score, and AUC in
the validation set were 0.794, 0.647, 0.693, 0.617, and 0.801,
respectively. These results indicate that the model has good
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performance in identifying individuals with MetS, making it a
promising tool for self-screening in community populations.

This study offers several notable advantages. First, the variables
used in the model are simple, easy to obtain, and highly
accessible, making it well-suited for large-scale implementation as
a preliminary screening tool. By using fewer and easily collectible
variables, we successfully developed an effective MetS prediction
model that maintains high predictive accuracy while significantly
simplifying the screening process. The model integrates multiple
self-assessable indicators and eliminates the need for conventional
biochemical tests or professional medical involvement, thus
offering a convenient and practical tool for early detection and
prevention of MetS.

From a clinical perspective, the model demonstrates strong
adaptability and platform compatibility across multiple settings.
For instance, hospital physical examination centers can incorporate
the model into routine check-up procedures, thereby improving the
accuracy and efficiency of early detection. In practice, healthcare
providers can use the model’s risk output to engage in in-depth
discussions with patients, helping them understand individual
risk factors. Particularly for individuals with OSA, the model’s
assessment results can support the development of personalized
health management plans, enabling targeted interventions.

Moreover, the model shows distinct advantages in personalized
health management. For high-risk individuals, the model can
accurately identify risk factors through multidimensional profile
analysis and offer tailored behavioral recommendations, such
as dietary adjustments and increased physical activity. These
interventions can help delay disease progression and improve
individual health outcomes.

On the digital application front, the model can be fully
integrated with web platforms and mobile services such as WeChat
public accounts. Users can easily perform self-assessments via
mobile apps or online portals. This digital approach greatly
expands the model’s usability and enhances public engagement,
enabling OSA patients and other high-risk groups to monitor
their health in real time, perform early disease risk assessments,
and adopt proactive lifestyle interventions. More importantly, this
self-management approach contributes to reducing the burden on
healthcare systems. By encouraging individuals to take initiative in
managing their health, the model helps curb the overuse of medical
resources and promotes improved public health outcomes.

Finally, the model’s simplicity and accessibility lend it
broad social influence. Through deployment in key industries,
enterprises, and at the individual level, the model facilitates early
MetS risk identification across diverse populations, providing a
scientific foundation for timely preventive measures. This has far-
reaching strategic significance for reducing the overall prevalence
of MetS and improving public health on a larger scale.

4.3 Limitations of this study

Despite its strengths, this study has several limitations. First,
some of the variables used in the model were self-reported,
which may introduce reporting bias and affect both data accuracy
and model reliability. Although the study was conducted within

the framework of a large-scale cohort project, with well-trained
investigators and strict data quality control measures, self-
reported data remain susceptible to the influence of respondents’
memory, comprehension, and subjective willingness. For instance,
participants may underreport or overreport their dietary intake
or physical activity levels, which could impact the predictive
performance of the model.

Second, the model was developed primarily based on data from
a Chinese population, which may limit its external validity. Cultural
background, dietary habits, and socioeconomic conditions vary
significantly across countries and regions, potentially influencing
the prevalence of MetS and its associated risk factors. For example,
dietary patterns in China, which often include high carbohydrate
intake and frequent consumption of tea or seafood, may differ
from those in Western populations, where higher fat and processed
food consumption is more common. Similarly, socioeconomic
factors, such as access to healthcare and health literacy, can
affect the prevalence of obesity and MetS risk factors, potentially
reducing the model’s performance in regions with different
healthcare systems or economic constraints. These differences
may alter the relative importance of predictive variables like
BMI, tea consumption, or physical activity in other populations.
To address this, future research should focus on validating the
model in diverse populations, including those from Western,
South Asian, and African regions, to assess its generalizability.
Potential adjustments could involve recalibrating the model by
incorporating region-specific variables, such as local dietary habits
or socioeconomic indicators, and retraining it on datasets from
diverse populations. International validation studies are planned
to test the model’s performance across different ethnic groups and
healthcare settings, with an emphasis on adapting the model to
account for cultural and environmental variations. These efforts
will help ensure the model’s robustness and applicability in
global community settings, enhancing its utility for widespread
MetS screening.

5 Conclusion

This study proposes a predictive model for MetS ailored
to individuals with OSA in community settings. The model
is based on easily accessible and straightforward variables,
making it highly suitable for widespread application. As a
preliminary screening tool, it requires neither biochemical
tests nor professional assistance, yet can efficiently identify
individuals at risk for MetS. The model has multiple potential
applications in clinical practice. It can be integrated into
mobile applications or online platforms, allowing individuals to
conduct self-assessments and manage their health proactively. By
encouraging positive lifestyle changes, the model holds promise
for reducing the incidence of cardiovascular diseases and lowering
healthcare expenditures.
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