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Background: The health burden of diabetes mellitus and osteoporosis (DM-
OP) comorbidity in the aging population is increasing, and dietary factors are
modifiable risk determinants. This study developed and validated a machine
learning model to predict DM-OP comorbidity using multidimensional dietary
assessment.

Methods: This study utilized data from NHANES cycles 2005-2010, 2013-
2014, and 2017-2020, ultimately including 4,678 participants aged >65 years.
Dietary data were collected through 24-h dietary recalls, encompassing
macronutrients, micronutrients, food processing classification (NOVA), and five
dietary quality scores. Missing data were handled using random forest algorithm,
feature selection was performed using Boruta algorithm, and SMOTE technique
addressed class imbalance. Eight machine learning algorithms (XGBoost,
decision tree, logistic regression, multilayer perceptron, naive Bayes, k-nearest
neighbors, random forest, and support vector machine) were implemented with
10-fold cross-validation for performance evaluation.

Results: A total of 4,678 participants were included, with 347 (74%) having
DM-OP comorbidity (concurrent prediabetes/diabetes and osteoporosis).
After feature selection, 46 variables were retained for model construction.
The random forest model demonstrated superior predictive performance with
the lowest error rate (0.161), highest accuracy (0.839), ROC AUC of 0.965,
sensitivity of 0.827, and specificity of 0.852. SHAP analysis revealed gender as
the most important predictor, with females at higher risk; BMI showed positive
correlation with comorbidity risk; while carotenoid, vitamin E, magnesium, and
zinc intake were negatively correlated with disease risk, suggesting potential
protective associations. An online risk prediction tool was developed based on
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the optimized random forest model for real-time individual comorbidity risk

calculation.

Conclusion: The random forest model demonstrated excellent performance in
predicting diabetes-osteoporosis comorbidity in elderly adults, with gender, BMI,
and specific nutrient intake as key predictors. This model provides an effective
tool for clinical early identification of high-risk populations and implementation
of preventive interventions.

KEYWORDS

machine learning, diabetes mellitus, osteoporosis, comorbidity, dietary nutrient
intake, SHAP analysis, older adults

1 Introduction

The global burden of chronic diseases has significantly increased,
with diabetes mellitus (DM) and osteoporosis (OP) becoming
intertwined public health challenges, especially among older adults
(1). DM, characterized by persistent high blood sugar levels, currently
affects over 537 million adults worldwide, with projections estimating
783 million by 2045 (2). Type 2 diabetes mellitus (T2DM) accounts
for 90-95% of these cases and is often associated with obesity, physical
inactivity, and aging (3, 4). Conversely, osteoporosis, defined by low
bone mineral density and deteriorating bone structure, affects
approximately 200 million people globally (5), with hip fractures
resulting in a 20% mortality rate within one year (6). Individuals with
DM face a 1.5- to 2-fold higher risk of developing osteoporosis and
fractures (7), primarily due to oxidative stress from high blood sugar
levels, insulin resistance, and disrupted bone remodeling (8, 9).
Additionally, prediabetes, affecting 374 million adults worldwide,
offers a critical window for intervention, with a 35-50% chance of
progressing to T2DM within 5-10 years (3). Recent studies establish

a connection between prediabetes and early bone loss (10, 11), though
the underlying mechanisms remain poorly understood (12). This lack
of clarity underscores the importance of exploring prediabetes as a
potential precursor to osteoporosis, particularly in aging populations.

Dietary factors play a pivotal role in the pathogenesis of both
diabetes and osteoporosis. Diets rich in pro-inflammatory components,
such as trans fats and refined carbohydrates, exacerbate systemic
inflammation, thereby promoting insulin resistance and accelerating
bone loss (13). Conversely, foods high in antioxidants, such as fruits and
vegetables, mitigate oxidative stress, potentially offering protective effects
against both conditions (14). Ultra-processed foods (UPFs),
characterized by high additive content and low nutritional value, are
strongly associated with increased risks of both diseases due to their
induction of inflammation and metabolic disturbances (15, 16).
Understanding the roles of these dietary factors is critical for developing
effective prevention strategies. Furthermore, the impact of overall dietary
patterns on bone health is evident across diverse populations, as
demonstrated by a study linking maternal diet to bone density in Chinese
lactating women and their infants (17). However, most studies have
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focused on the effects of individual nutrients, and there remains a lack of
systematic exploration into how dietary patterns or composite dietary
factors influence the combined pathogenesis of diabetes and osteoporosis.

In this context, machine learning algorithms have emerged as
powerful tools for disease prediction, capable of analyzing complex,
multidimensional data to create effective predictive models (18, 19).
This study uses data from the National Health and Nutrition
Examination Survey (NHANES) database, employing eight machine
learning algorithms and SHAP analysis. The goal is to investigate the
predictive role of dietary antioxidants for the comorbidity of
prediabetes or diabetes with osteoporosis in older adults, identify key
contributing factors, and develop an online prediction tool to provide
a scientific basis and practical tool for early detection and intervention.

2 Methods
2.1 Data source and study population

Data were drawn from the 2005-2010, 2013-2014, and 2017-2020
NHANES cycles, including 62,782 individuals. These particular cycles
were chosen because they encompass all available recent NHANES
data cycles that contain both dual-energy X-ray absorptiometry
(DXA) measurements for bone mineral density assessment and the
detailed dietary data from 24-h recalls required for our

10.3389/fnut.2025.1666477

multidimensional dietary assessment. Those under 65 years were
excluded (53,886 removed), leaving 8,896 participants aged > 65.
Next, 1,364 individuals with missing diabetes or osteoporosis data
were excluded, resulting in 7,532 participants. Finally, 2,854
individuals with missing baseline data were removed, yielding a final
cohort of 4,678 participants with complete data on age, diabetes/
osteoporosis status, and baseline measurements. The screening
process is shown in Figure 1.

2.2 Dietary assessment

Dietary data were collected via two 24-h dietary recall interviews.
Macronutrient intake included total carbohydrates, protein, total fat,
saturated fat, monounsaturated fatty acids (MUFA), polyunsaturated
fatty acids (PUFA), omega-3 fatty acids, omega-6 fatty acids, and
cholesterol. Micronutrient assessment included vitamins (A, C, D, E,
B6, B12, riboflavin, niacin, thiamin, folate), minerals (calcium,
magnesium, iron, zinc, copper, selenium), and phytochemicals
(alpha-carotene, beta-carotene, carotene retinol equivalents). Dietary
fiber and caffeine intake were quantified. The intake data for
macronutrients, micronutrients, and other dietary components were
sourced directly from the NHANES-provided Total Nutrient Intake
files (e.g., DRITOT_J and DR2TOT_]J). The conversion of food items
reported in the 24-h recalls to quantitative nutrient values was

NHANES 2005-2010, 2013-2014, 2017-2020

(n=62,782)
‘ | Exclude Age <65
l (n=53,886)
Participants age >65
(n=8,896)

Exclude individuals with

l

Remaining participants
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l

Final participants
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FIGURE 1
Flowchart of participant selection in the NHANES dataset.
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(n=2.854)
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performed by the National Center for Health Statistics (NCHS) using
the USDAs Food and Nutrient Database for Dietary Studies
(FNDDS), which links each food to its detailed nutritional
composition (20). All nutrient intakes were energy-adjusted using the
residual method. The average intake from two non-consecutive 24-h
recalls was used as a proxy for usual intake, as this method reduces
within-person variability and provides a more stable estimate of
habitual
assessment methodology.

consumption, consistent with established dietary

2.2.1 Food processing classification

Food items were categorized into NOVA groups based on
established classification rules using USDA food codes. To ensure
coding consistency, a random subset of food items underwent dual
coding by independent researchers, with discrepancies resolved
through adjudication. Food items were categorized using the NOVA
classification system into unprocessed and minimally processed foods,
processed culinary ingredients, processed foods, and ultra-processed
foods, with daily consumption calculated in grams. For specific coding
rules for classification and to access the classification consistency
assessment, please refer to Supplementary Table S2.

2.2.2 Dietary quality indices

Five validated dietary quality scores were calculated: Composite
Dietary Antioxidant Index (CDAI), Dietary Inflammatory Index (DII),
Healthy Eating Index 2020 (HEI-2020), Dietary Approaches to Stop
Hypertension (DASH) score, and Oxidative Balance Score (OBS).
Detailed calculation methods are provided in Supplementary material S1.
All dietary variables were energy-adjusted and averaged across the two
24-h recalls to reflect usual intake. The use of two non-consecutive 24-h
recalls, as implemented in NHANES, is a well-established method for
estimating usual dietary intake at the population level. Averaging intake
from 2 days helps to attenuate within-person day-to-day variation and
provides a more stable estimate of habitual consumption than a single
day’s recall. Furthermore, the dietary quality indices used (CDAL DI,
HEI-2020, DASH, OBS) are composite measures that are less sensitive to
daily fluctuations and more

representative of longer-term

dietary patterns.

2.3 Diagnosis of diabetes and osteoporosis

Diabetes was diagnosed using multiple criteria: physician
diagnosis, fasting blood glucose >7.0 mmol/L, or glycosylated
hemoglobin (HbAlc) > 6.5%. Prediabetes was defined as fasting
blood glucose of 5.6-6.9 mmol/L or HbAlc of 5.7-6.4%. The use of
HbA1lc and FPG, consistent with contemporary ADA guidelines
and the operational feasibility of the NHANES protocol, provides
a standardized approach for identifying dysglycemia in this large
cohort, though it may not capture individuals with isolated
postprandial hyperglycemia. Osteoporosis was diagnosed using
standard dual-energy X-ray absorptiometry (DXA). The DXA
examinations were performed using Hologic QDR-4500A fan-beam
densitometers (Hologic, Inc., Bedford, Massachusetts) following
the standardized NHANES body composition procedures manual.
The scans were analyzed using Hologic APEX 4.0 software. A
T-score of < —2.5 at the femoral neck was used to define
criteria, refer to

osteoporosis, For detailed diagnostic
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Supplementary Table S3. Furthermore, it should be noted that the
application of the uniform T-score threshold (< — 2.5) may have
limitations across different sex and racial/ethnic groups, as
population-specific bone mineral density reference data and
fracture risk relationships can vary.

We define the “DM-OP” group as the “Diabetes Mellitus and
Diabetes-Osteoporosis Comorbidity Group.” This group comprises
participants who meet both of the following criteria: having
osteoporosis and concurrently having diabetes mellitus or prediabetes.
The non-DM-OP group included all participants without this
comorbidity. Additionally, we conducted a sensitivity analysis by
training separate interpretable machine learning models using only
DM and only OP outcomes to distinguish between disease-specific
dietary and metabolic predictors.

2.4 Covariates

included

anthropometric, clinical, and lifestyle factors. Demographic and

Covariates demographic, socioeconomic,
socioeconomic variables comprised age (continuous), gender (male/
female), race/ethnicity (Non-Hispanic White, Non-Hispanic Black,
Mexican American, Other Hispanic, Other Race), marital status
(married/living with partner, widowed/divorced/separated, never
married), and educational attainment (below high school, high school,
above high school). Socioeconomic status was assessed using the PIR,
categorized as <1, 1-3, and >3. Anthropometric and clinical
measurements included BMI, calculated from measured height and
weight, and the presence of physician-diagnosed or laboratory-
confirmed conditions such as hypertension, hyperlipidemia,
cardiovascular disease, and stroke. Glucose metabolism abnormalities
were defined as impaired fasting glycemia (fasting glucose
5.6-6.9 mmol/L) and impaired glucose tolerance (2-h glucose
7.8-11.0 mmol/L based on oral glucose tolerance testing). Serum
25-hydroxyvitamin D [25(OH)D] concentrations were determined
using standardized laboratory assays. Lifestyle and behavioral factors
encompassed smoking status (never, former, current), alcohol
consumption (grams per day estimated from 24-h dietary recalls), and
serum cotinine concentration, which served as an objective biomarker
of tobacco exposure.

2.5 Preprocessing of machine learning
features

The initial dataset included 56 variables: 13 categorical and 43
continuous. Missing data were imputed using a random forest (RF)
algorithm with 100 trees and up to 10 iterations. Imputation quality
was evaluated using normalized root mean square error (NRMSE) for
continuous variables and proportion of falsely classified (PFC) for
categorical variables, both indicating reliable performance. Feature
selection was performed using the Boruta algorithm to identify
variables most relevant to the target outcome. To address class
imbalance, we applied the Synthetic Minority Oversampling
Technique (SMOTE), which increased the number of comorbid cases
from 347 to 3,817, resulting in a total dataset of 4,331 participants (see
Supplementary Figure S1 for details). To prevent data leakage, all
preprocessing steps—including data imputation, feature selection, and
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SMOTE oversampling—were strictly conducted within the training
folds during cross-validation.

2.6 Statistical analysis

Eight machine learning algorithms were implemented using the
mlr3 framework: XGBoost, decision tree, logistic regression (LR),
multilayer perceptron (MLP), naive Bayes, k-nearest neighbors
(KNN), RE and support vector machine with radial basis function
(SVM-RBF). These algorithms were selected for their complementary
strengths and proven effectiveness in medical prediction tasks (21—
23). Model performance was assessed using classification error rate,
accuracy, F-beta score, area under the ROC curve (AUC), sensitivity,
specificity, and area under the precision-recall curve (AUPRC).
Ten-fold cross-validation ensured robust performance estimation.
Statistical significance of performance differences between models was
evaluated using analysis of variance (ANOVA) and the Kruskal-Wallis
H test. Feature importance in the optimal model was quantified using
SHAP (SHapley Additive exPlanations) values, which provide global
feature rankings and local explanations for individual predictions
based on game theory. All analyses were conducted in R (version
4.4.3) using the packages survey, DMwR, ggcor, mlr3, mlr3benchmark,
mlr3extralearner, kernelshap, and shapviz. Statistical significance was
set at p < 0.05 for all tests.

3 Results

3.1 Baseline characteristics of the
population

A total of 4,678 participants were included in the analysis: 4,331
(92.6%) in the non-DM-OP (i.e., participants without the coexistence)
group and 347 (7.4%) in the DM-OP comorbidity group. The DM-OP
group was significantly older and predominantly female (p < 0.001).
They exhibited lower socioeconomic status, with higher poverty rates
and lower educational attainment (p < 0.001). Although the DM-OP
group had a lower body mass index (BMI), they showed a higher
prevalence of diabetes mellitus (p < 0.001) and impaired glucose
metabolism. Their dietary intake included significantly less total fat,
protein, and multiple micronutrients, with lower CDAI scores
(p =0.031) and higher DII scores (p = 0.007), as shown in Table 1.

3.2 Development and validation of
comorbidity prediction models

Prior to model construction, visual features were generated with
categorical feature distributions presented in Supplementary Figure 52
and continuous feature distributions in Supplementary Figure 3. The
Boruta algorithm was used to screen out collinearity based on
correlation coefficients. As shown in Figure 2, nine variables
(hyperlipidemia, hypertension, processed, stroke, ultra-processed,
unprocessed, marital status, smoking status, and cardiovascular
disease) were excluded, retaining 46 variables for model development.

Model performance evaluation results are presented in Table 2
and Figure 3, encompassing key metrics including error rate, accuracy,
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F-beta score, ROC AUC, sensitivity, specificity, and PR AUC. The RF
model demonstrated superior performance with the lowest error rate
(0.161), highest accuracy (0.839), and excellent performance across
F-beta score (0.845), ROC AUC (0.965), sensitivity (0.827), and
specificity (0.852). For clinical application, the optimized Random
Forest model demonstrated excellent calibration (Brier score = 0.094,
calibration intercept = —0.01, slope = 0.99). For screening purposes, a
probability threshold of 0.35 is recommended, providing a balanced
performance with PPV = 0.65 and NPV = 0.93, making it suitable for
identifying high-risk individuals while reliably ruling out the
condition. These results indicate that the RF model effectively balances
precision and recall while maintaining strong generalization capability,
making it optimal for predicting diabetes or prediabetes combined
with osteoporosis risk in adults aged 65 and above.

The XGBoost model also exhibited high performance, particularly
in ROC AUC (0.924) and F-beta score (0.840), with accuracy of 0.824
and sensitivity of 0.868, demonstrating robust classification capability.
However, compared to the RF model, XGBoost showed slightly
inferior specificity (0.774), indicating reduced performance in
identifying negative samples.

In contrast, decision tree and logistic regression models showed
suboptimal performance, particularly in sensitivity and specificity
metrics. The decision tree achieved accuracy of 0.690, F-beta score of
0.731, and ROC AUC of 0.732. Although it demonstrated high
sensitivity (0.791), its specificity (0.576) was considerably lower than
RF and XGBoost models, potentially leading to elevated false positive
rates in clinical applications. The logistic regression model performed
similarly poorly, with accuracy of 0.703, F-beta score of 0.732, ROC
AUC of 0.787, and relatively low sensitivity (0.761) and specificity
(0.638), limiting its effectiveness for accurate comorbidity
risk prediction.

While MLP and Naive Bayes models showed reasonable ROC
AUC performance (0.916 and 0.802, respectively), their F-beta scores
and specificity remained inferior to RF and XGBoost models. The
MLP model exhibited a pronounced gap between sensitivity (0.775)
and specificity (0.394), suggesting potential overfitting. The Naive
Bayes model, despite reasonable specificity (0.559), demonstrated low
sensitivity (0.770), limiting its practical clinical utility.

3.3 SHAP values interpretation

SHAP analysis (Figure 4) revealed the importance of the top 15
features in predicting comorbid diseases. Gender emerged as a
significant predictor of diabetes or prediabetes and osteoporosis
comorbidity, with women demonstrating higher susceptibility than
men, establishing gender as a crucial factor in disease risk assessment.
Additionally, several key features substantially influenced model
predictions: BMI, dietary antioxidant intake (particularly carotenoids),
vitamin E, magnesium, and zinc. BMI showed positive correlation
with DM-OP risk, indicating that higher BMI values correspond to
increased comorbidity risk. Conversely, elevated carotenoid intake
demonstrated negative correlation with disease risk, suggesting that
dietary antioxidants may be associated with protective effects. Against
disease development in older adults. High intake of vitamin E and
magnesium exhibited suggesting potential protective associations,
with magnesium showing particularly strong negative SHAP values,
indicating that higher magnesium intake was associated with a lower
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TABLE 1 Baseline characteristics of the study population according to DM-OP comorbidity status.

10.3389/fnut.2025.1666477

Variable Non-DM-OP (n=4331)
Age (year), mean + SD 73.02 £ 5.41 74.98 £ 5.36 <0.001 %
Gender, 1 (%) <0.001 %

Female 1959 (45.2) 267 (76.9)

Male 2372 (54.8) 80 (23.1)
Race, n (%) <0.001#%#*

Non-Hispanic White 2530 (58.4) 190 (54.8)

Non-Hispanic Black 834 (19.3) 23(6.6)

Mexican American 396 (9.1) 53 (15.3)

Other Hispanic 299 (6.9) 47 (13.5)

Other Race 272 (6.3) 34(9.8)
Marital status, n (%) <0.001 %%

Married/Living with Partner 2574 (59.4) 146 (42.1)

Widowed/Divorced/Separated 1610 (37.2) 183 (52.7)

Never married 147 (3.4) 18 (5.2)
PIR, 1 (%) <0.001%**

<1 1047 (24.2) 125 (36.0)

1-3 1982 (45.8) 163 (47.0)

>3 1302 (30.1) 59 (17.0)
Education level, n (%) <0.001 %%

Below high school 577 (13.3) 90 (25.9)

High school 1663 (38.4) 149 (42.9)

Above high school 2091 (48.3) 108 (31.1)
Smoking status, n (%) <0.001 %

Never 2033 (46.9) 207 (59.7)

Former 1890 (43.6) 108 (31.1)

Current 408 (9.4) 32(9.2)
BMI (kg/m?), mean + SD 29.01 £5.31 27.16 £5.21 <0.001%***
Hypertension, yes, 1 (%) 3207 (74.0) 264 (76.1) 0.442
Hyperlipidemia, yes, n (%) 3639 (84.0) 298 (85.9) 0.404
Impaired fasting glycaemia, yes, n (%) 312 (7.2) 55(15.9) <0.001 %
Impaired glucose tolerance, yes, 1 (%) 213 (4.9) 62 (17.9) <0.001 %
Diabetes mellitus, yes, 1 (%) 1575 (36.4) 230 (66.3) <0.001 %
Osteoporosis, yes, n (%) 392 (9.1) 347 (100.0) <0.001 %
Cardiovascular disease, yes, 1 (%) 1214 (28.0) 100 (28.8) 0.801
Stroke, yes, 1 (%) 410 (9.5) 44 (12.7) 0.064
25-OH-D (nmol/L), mean + SD 74.82 +26.72 71.57 £27.58 0.030*
Dietary fiber (g/day), mean + SD 16.77 +7.85 15.46 £ 5.85 0.002%*
Total fat (g/day), mean + SD 72.09 + 31.08 61.56 +26.88 <0.001#%#*
Alpha-carotene (pg/day), mean + SD 462.94 + 870.72 467.66 + 613.18 0.921
Beta-carotene (pg/day), mean + SD 2484.25 +2901.38 2406.55 + 2619.22 0.629
Riboflavin (mg/day), mean + SD 1.97 £ 0.81 1.79+£0.72 <0.001 %
Niacin (mg/day), mean + SD 22.03+9.29 19.89 +8.24 <0.001 %%
Vitamin B6 (mg/day), mean + SD 1.91 £ 0.94 1.78 + 1.06 0.012%*
Folate (pg/day), mean + SD 367.55 + 166.07 341.86 £ 131.75 0.005%*

(Continued)
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TABLE 1 (Continued)

10.3389/fnut.2025.1666477

Variable Non-DM-OP (n=4331)

Vitamin B12 (pg/day), mean + SD 4.88 £ 5.46 430 +5.24 0.055
Vitamin C (mg/day), mean + SD 85.21 +£63.33 86.59 + 65.81 0.697
Vitamin E (mg/day), mean + SD 7.73 +4.46 6.45+3.12 <0.001 %3k
Calcium (mg/day), mean + SD 843.36 + 380.18 780.70 + 335.29 0.0037%*
Magnesium (mg/day), mean + SD 278.19 £ 107.65 251.49 +81.17 <0.001%##*
Iron (mg/day), mean + SD 14.34 £ 6.55 12.84 +5.10 <0.001#3%*
Zinc (mg/day), mean + SD 10.45 £ 5.27 9.08 +3.59 <0.001#3%*
Copper (mg/day), mean + SD 1.21 £0.84 1.10 £0.93 0.015%
Selenium (pg/day), mean + SD 98.70 + 41.50 88.72 +35.33 <0.001 %%
Alcohol (g/day), mean + SD 6.07 £ 14.30 2.99+£9.30 <0.001 %%
Cotinine (ng/mL), mean + SD 3433+ 111.33 32.44 +104.88 0.761
Carotene RE (pg/day), mean + SD 226.49 + 266.68 221.28 +£233.08 0.724
Vitamin A (pg RE/day), mean + SD 691.02 + 561.08 636.40 + 563.52 0.081
Vitamin D (ug/day), mean + SD 4.60 £ 3.08 4.33£2.80 0.117
Caffeine (mg/day), mean + SD 0.15+0.13 0.12+0.10 <0.001 %%
Carbohydrates (g/day), mean + SD 220.03 +78.11 203.68 + 65.82 <0.001 %
Cholesterol (mg/day), mean + SD 257.00 + 135.61 213.34+116.51 <0.001 %%
Magnesium (mg/day), mean + SD 278.70 +107.76 252.35 + 81.67 <0.001 %%
MUFA (g/day), mean + SD 25.30 £ 10.64 21.67 £9.70 <0.001%#%**
N3 fatty acids (g/day), mean + SD 0.10 £ 0.30 0.07 £ 0.25 0.041%*
N6 fatty acids (g/day), mean + SD 16.16 (7.80 14.07 (7.53 <0.001 %3
Protein (g/day), mean + SD 71.56 +26.22 64.83 £22.96 <0.001 %3
PUFA (g/day), mean + SD 16.16 + 7.05 14.05 + 6.74 <0.001 %
Saturated fat (g/day), mean + SD 23.33+10.98 19.93 +9.15 <0.001 %
Thiamin (mg/day), mean + SD 1.50 + 0.60 1.37 £ 0.49 <0.001 %
Processed food (g/day), mean + SD 716.63 + 533.89 681.23 +513.04 0.233
Ultra-processed food (g/day), mean + SD 816.96 + 730.55 812.85 + 696.34 0.919
Unprocessed food (g/day), mean + SD 1112.45 £ 983.74 1100.07 + 948.77 0.821
CDAI (score), mean + SD 0.16 £3.23 -0.23 £2.96 0.031%*
DII (score), mean + SD 1.23+£1.77 1.49 £ 1.60 0.007%%*
HEI2020 (score), mean + SD 53.80 +10.43 54.68 £9.05 0.129
DASH (score), mean + SD 20.87 + 6.62 20.84 +6.25 0.932
OBS (score), mean + SD 17.15 + 8.14 16.29 +7.73 0.055

PIR, Poverty Income Ratio; BMI, Body Mass Index; 25-OH-D, 25-hydroxyvitamin D; MUFA, Monounsaturated Fatty Acids; PUFA, Polyunsaturated Fatty Acids; CDAI, Composite Dietary
Antioxidant Index; DII, Dietary Inflammatory Index; HEI2020, Healthy Eating Index 2020; DASH, Dietary Approaches to Stop Hypertension; OBS Oxidative Balance Score. p< 0.05 *, p <

0.01%%, p < 0.001%**,

The DM-OP comorbidity group includes participants with both osteoporosis and dysglycemia (prediabetes or diabetes). The non-DM-OP group includes all participants without the

comorbidity (i.e., those with neither condition, with dysglycemia alone, or with osteoporosis alone).

disease risk. Scatter plots for the top 15 variables are provided in the
Supplementary Figures $4, S5.

3.4 Sensitivity analysis and stratified
analysis

To address potential confounding factors between diabetes and
osteoporosis, we performed SHAP analysis on participants with only

Frontiers in Nutrition

glucose abnormalities (including prediabetes and diabetes) or only
osteoporosis (Supplementary Figures 56, S7). In the diabetes model,
BMI and alcohol intake emerged as primary predictors, followed by
ethnicity, education, sex, DII, and dietary fiber intake, indicating that
obesity levels and nutritional metabolism play a key role in diabetes
risk among older adults. Conversely, the osteoporosis model identified
sex, BMI, age, niacin intake, and monounsaturated fatty acid intake as
primary determinants. Although BMI was present in both models, its
SHAP values differed in direction and magnitude, suggesting body
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FIGURE 2
Boxplot of Z-scores for key variable importance. Variables are categorized into four classes (Shadow, Rejected, Tentative, Confirmed) according to their
importance Z-scores. Boxplots display statistical summaries: median (horizontal line within boxes), interquartile range (boxes), range (whiskers), and
outliers (dots). Higher Z-scores indicate stronger contributions of variables to the model.

TABLE 2 Performance comparison of different machine learning models.

Error Rate Accuracy F-beta ROC AUC Sensitivity Specificity PR AUC
XGBoost 0.176 0.824 0.840 0.924 0.868 0.774 0.887
DT 0310 0.690 0.731 0.732 0.791 0.576 0.697
LR 0.297 0.703 0.732 0.787 0.761 0.638 0.737
MLP 0.403 0.597 0.672 0916 0.775 0.394 0.603
NB 0.329 0.671 0.714 0.802 0.770 0.559 0.682
KNN 0.241 0.759 0.792 0.951 0.864 0.640 0.812
RE 0.161 0.839 0.845 0.965 0.827 0.852 0.907
SVM 0.205 0.795 0.813 0.905 0.840 0.744 0.839
p-value <0.001° <0.001* <0.001°* <0.001° <0.001* <0.001°* <0.001*

XGBoost, extreme gradient boosting tree; DT, Decision Tree; LR, Logistic Regression; MLP, Multilayer Perceptron; NB, Naive Bayes; KNN, k-Nearest Neighbors; RE, Random Forest; SVM-
RBE, Support Vector Machine with RBF kernel; ROC AUC, Receiver Operating Characteristic Area Under Curve; PR AUC, Precision-Recall Area Under Curve.

“Statistical tests: ANOVA test.
"Kruskal-Wallis test.

composition plays distinct roles in glucose and bone metabolism.
These stratified analyses confirm that the risk of diabetes-osteoporosis
comorbidity stems from shared metabolic pathways and disease-
specific nutritional factors, rather than diagnostic overlap.
Additionally, we conducted an analysis of the “age x gender”
interaction term. Figure 5 displays risk factors stratified by gender and
age. Women exhibited consistent patterns: BMI was the primary risk
factor across all age groups. Men, however, exhibit a differentiated
pattern: BMI becomes more prominent among those aged 65-75,
while alcohol intake and racial factors exert greater influence in the
75-85 age group. Notably, n-6 fatty acids and educational attainment
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show greater significance among younger women. Magnesium and
vitamin E consistently maintain significant protective effects across
all subgroups.

3.5 Online prediction tool development
and clinical application

Based on the optimized RF model, an online risk prediction tool

has been developed, which can be accessed at https://wdhddx.
shinyapps.io/osteoporosis-shap-model/. This tool incorporates ten
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Analysis (DCA) showing the net clinical benefit across probability thresholds.
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essential indicators, including gender, BMI, and dietary intakes of
carotenoids, vitamin E, magnesium, and zinc. It allows for real-time
calculations of comorbidity risk probabilities based on individual
characteristics entered by the user. The tool is designed with an
intuitive interface that seamlessly integrates into clinical workflows,
enabling healthcare providers to quickly identify high-risk populations
and implement timely interventions aimed at reducing comorbidity
risk. This ease of access promotes early detection and supports
preventive care strategies within clinical practice.

4 Discussion

We utilized interpretable machine learning methods to investigate
the relationship between dietary nutrient intake and DM-OP
comorbidity in older adults using the U.S. NHANES dataset from
2005 to 2020. Among the 8 machine learning models we evaluated,
the RF model stood out with an impressive AUC of 0.965, indicating
its excellent predictive capability and stability for classification tasks.
Through SHAP game-theoretic analysis, we were able to pinpoint the
significance of each selected feature, revealing that gender, BMI,
carotenoids, vitamin E, magnesium, and zinc were major contributors
to predicting the risk of comorbidity.

To our knowledge, this study is the first to comprehensively
develop and validate a prediction model for DM-OP comorbidity that
incorporates dietary nutritional factors along with demographic,
anthropometric, and clinical characteristics in older adults. While our
main focus was on analyzing the role of dietary nutrition, the model
also includes easily accessible demographic features, lifestyle factors,
and health conditions, which enhances its generalizability.
Furthermore, we conducted extensive benchmarking to compare the
performance of various machine learning algorithms and created an
online prediction tool for clinical use.

Machine learning models are increasingly being used to
investigate the dietary and metabolic factors linked to chronic
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diseases in aging populations. For instance, a recent study
comparing five models for predicting all-cause mortality in
non-alcoholic fatty liver disease (NAFLD) patients found that
Gradient Boosting Machine (GBM) and Random Survival Forest
(RSF) achieved strong predictive performance (AUC = 0.8),
identifying higher dietary fiber intake as a significant protective
factor for improved survival (24). In another study using a Korean
cohort, a RF model incorporating genetic polygenic risk scores
(gPRS) and metabolite data predicted T2DM occurrence with high
accuracy (AUC = 0.883), improving classification by 11.7% over
clinical-factor-only models (25). Further demonstrating utility, a
CatBoost model integrating dietary antioxidants and metabolic
factors effectively predicted chronic kidney disease (CKD)
occurrence in individuals with abdominal obesity (AUC = 0.938),
identifying age, diabetes history, and dietary antioxidant intake as
key predictors (26).

In the realm of DM-OP comorbidity prediction, Wang et al. (27)
applied a support vector machine to data from 289 subjects with
DM-OP, incorporating five variables: gender, age, BMI, total
procollagen I N-terminal propeptide (TPINP), and osteocalcin,
achieving a diagnostic accuracy of 88%. Wu et al. (28) evaluated nine
ML algorithms on 303 postmenopausal women with T2DM, with
XGBoost showing superior performance (training AUROC: 0.993,
testing AUROC: 0.786) using 10 key features, resulting in a clinically
applicable risk calculator. Zhao et al. (29) employed RF model to
genetically identify hub genes (ACAA2, GATAD2A, VPS35)
associated with DM-OP comorbidity. In a separate study of 433
T2DM patients, Wu et al. (30) found XGBoost again performed best
(training AUROC: 0.94, testing AUROC: 0.87) among nine ML
algorithms for osteoporosis risk prediction, subsequently stratifying
patients into high, medium, and low-risk groups using SHAP analysis
and Latent Class Analysis (LCA). Yu et al. (31) developed a GBM
model using five routine indicators—gender, age, BMI, heart rate, and
alkaline phosphatase—in 2,029 individuals with T2DM (457 with
osteoporosis), achieving an external validation AUC of 0.89. These

frontiersin.org


https://doi.org/10.3389/fnut.2025.1666477
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

ShangGuan et al.

studies illustrate the growing application of ML in exploring DM-OP
comorbidity prediction, though most focus on clinical indicators such
as demographic, anthropometric, and biochemical markers rather
than dietary factors.

In this study, we selected 8 diverse ML algorithms (XGBoost,
decision tree, logistic regression, MLP, naive Bayes, KNN, RE, and
SVM-RBF) to construct prediction models and employed
comprehensive benchmarking to determine the optimal approach for
diabetes-osteoporosis comorbidity prediction. Compared to
traditional statistical methods such as logistic regression, machine
learning approaches offer several advantages: they can automatically
capture complex non-linear interactions between dietary factors and
disease risk without requiring predetermined variable transformations;
algorithms like RF and XGBoost can identify the most predictive
features through built-in feature importance measures, reducing
selection bias; and they demonstrate superior performance in
handling high-dimensional healthcare datasets with mixed data
types (32).

Our findings suggest that the RF model is the most effective
choice for this prediction task. RF is an ensemble method that
combines several decision trees, which enhances prediction accuracy
through techniques like bootstrap aggregating and random feature
selection (33). This model is particularly advantageous in healthcare
settings due to its capability to manage various data types, its resistance
to overfitting, and its inherent feature importance measures.
Additionally, the model’s leaf-wise growth strategy and ensemble
characteristics allow it to identify intricate relationships between
dietary nutrient intake and comorbidity risk, all while remaining
interpretable through SHAP analysis (34). The SHAP analysis
indicated that gender, BMI, and certain dietary nutrition (carotenoids,
vitamin E, magnesium, and zinc) were the most significant predictors.
These results are consistent with the current literature regarding the
pathophysiology linking DM and OP, as well as the protective effects
of dietary nutrient intake.

Gender emerged as the most significant predictor of DM-OP
comorbidity, with women exhibiting a higher susceptibility. This
observation aligns with epidemiological evidence indicating that
postmenopausal women are at an increased risk for both conditions,
primarily due to estrogen deficiency that impact glucose
metabolism and bone turnover (35). Research indicates that
estrogen deficiency can exacerbate insulin resistance, impairing
glucose utilization and storage, which further aggravates bone loss
(36). In the SWAN cohort of women, insulin resistance exhibited a
biphasic relationship with bone mineral density: declining
HOMA-IR slowed bone loss, whereas rising HOMA-IR accelerated
it (37). Research has found that estrogen regulates vascular
calcification and osteoporosis through receptor signaling, matrix
(38). BMI
demonstrated a positive correlation with the risk of DM-OP

proteins, and environmental-physical factors
comorbidity. A cohort study focusing on elderly patients with
T2DM found that the prevalence of sarcopenic obesity (SO) was
notably high, with significant implications for negative health
outcomes, including increased risks of cardiovascular diseases and
fractures (39). SHAP analysis initially identified female gender as
the strongest predictor of diabetes-osteoporosis comorbidity.
Subsequent stratification by both sex and age revealed nuanced risk

patterns: BMI remained a dominant risk factor for women in both
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the 65-74 and 75-85 age groups, underscoring the persistent link
between body composition and metabolic-bone health in
postmenopausal women. In the oldest female subgroup
(75-85 years), the influence of n-6 fatty acids and educational
attainment attenuated—possibly reflecting survival bias, the
predominance of non-modifiable biological factors, or cohort
effects. In contrast, risk profiles in men shifted with age: BMI’s
predictive importance decreased in the 75-85 year group, while
lifestyle (alcohol) and sociodemographic (ethnicity) factors gained
prominence. These findings highlight the need for sex- and
age-specific comorbidity risk assessment to guide personalized
intervention in older adults.

The identification of specific dietary nutrition as crucial
protective factors offers important insights for developing
intervention strategies. Carotenoids showed strong negative SHAP
values, suggesting they have protective effects against the
development of DM-OP comorbidities. Carotenoids, including
a-carotene and f-carotene, are abundant in dark-colored vegetables
and fruits, possessing potent antioxidant properties and can
be metabolized in the liver into vitamin A (40). A recent dose-
response meta-analysis of 13 prospective studies supports that
higher dietary intake and circulating concentrations of total
carotenoids, particularly f-carotene, are associated with a lower risk
of T2DM (41). Additionally, carotenoids can reduce the risk of
periodontitis (42), retinopathy (43), and cardiovascular events (44)
in individuals with DM. Regarding bone health, a cross-sectional
study in individuals over 50 years old showed that higher intake of
f-carotene and p-cryptoxanthin is associated with a reduced risk of
osteoporosis (45). Vitamin E has been identified as a significant
protective factor, reinforcing its well-known antioxidant properties.
A Swedish case-control study indicates that dietary vitamin E is
associated with low autoantibody levels, preserved p-cell function,
and reduced insulin resistance in latent autoimmune diabetes in
adults (LADA), suggesting a potential protective role against
autoimmune diabetes (46). A 12-week randomized, double-blind
trial demonstrated that daily supplementation with 400 IU of mixed
tocopherols significantly suppressed the rise in the bone resorption
marker CTX in postmenopausal women with osteopenia,
suggesting the potential of vitamin E supplementation in mitigating
bone loss (47). Magnesium plays a vital role in glucose metabolism
and the mineralization of bones. Several cross-sectional studies
have found that serum magnesium levels are inversely associated
with prediabetes, diabetes (48), and diabetic complications such as
diabetic retinopathy (49). A recent systematic review highlighted
that higher magnesium intake may support increased bone mineral
density in the hip and femoral neck (50). Additionally, a cross-
sectional study revealed that magnesium deficiency has a greater
impact on osteoporosis than vitamin D, serving as a critical
modifiable factor associated with reduced bone mineral density and
increased fracture risk (51). Zinc plays a crucial protective role in
insulin signaling and bone formation. A recent cohort study
indicated that higher zinc levels are associated with an increased
risk of T2DM in individuals with isolated impaired glucose
tolerance (iIGT) (52). Zinc supplementation can correct zinc
deficiency in diabetes, lower blood glucose, improve metabolic and
antioxidant status, and mitigate complications such as renal, ocular,
and cardiovascular issues (53). These findings underscore the
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potential benefits of targeted nutritional interventions that
emphasize the consumption of antioxidant-rich foods and specific
micronutrient supplements to enhance health outcomes in
older populations.

Recent clinical trials have highlighted the promising
therapeutic potential of dietary antioxidant interventions for
addressing the comorbidity of DM-OP. Sun et al. (54)
demonstrated that higher CDAI scores in postmenopausal women
are associated with a lower risk of osteoporosis, exhibiting an
age-dependent non-linear relationship. Su et al. (55) noted that the
anti-resorptive agent denosumab, when combined with
antioxidant therapy, can further reduce the risk of fractures. A
recent review emphasized the significance of iron metabolism
dysregulation in DOP, linking it to ferroptosis, proposing that
therapeutic strategies targeting ferroptosis, such as the use of
antioxidants, could effectively attenuate bone loss in diabetic
patients (56). This dual action supports bone health in DOP. These
that
particularly the inclusion of antioxidants play a critical role in
preventing DM-OP.

The clinical significance of our findings goes beyond merely

findings collectively suggest dietary modifications,

predicting risk; it also encompasses practical intervention
strategies. Our model serves as a non-invasive screening tool that
can identify individuals at high risk by utilizing easily accessible
Additionally, by
pinpointing modifiable dietary factors, we can create targeted

demographic and dietary information.

nutritional interventions tailored to individual needs.
Furthermore, the online prediction tool we developed not only
aids in the clinical implementation of these strategies but also
enhances patient education about the risk factors associated
with comorbidities.

Our study has several limitations that should be acknowledged.
Firstly, as a fundamental limitation of this cross-sectional study,
we cannot establish causality or determine the temporal sequence
between dietary nutrient intake and the development of DM-OP
comorbidity. The observed associations should be interpreted as
correlations rather than causal effects. Secondly, our assessment of
dietary intake is based on 24-h recalls, which may not accurately
reflect long-term dietary patterns and are susceptible to recall bias.
Lastly, the model was developed using data from the U. S. NHANES,
which may limit its applicability to other populations that have
different dietary habits and genetic backgrounds. Furthermore, the
diagnosis of osteoporosis was based on the WHO T-score criterion
(< —2.5), which is derived from a reference population of young
white women. While this is a widely used standard, it may not fully
capture osteoporosis risk across all racial/ethnic groups and in men,
as bone mineral density baselines and fracture risk relationships
can differ.

Future research should focus on several key areas. First, the
prospective validation of our predictive model across diverse
populations; second, the exploration of optimal dietary nutrient
intake thresholds for preventing comorbidities; third, the
development of personalized dietary intervention protocols tailored
to individual risk profiles; fourth, the incorporation of genetic and

metabolomic data to improve prediction accuracy; and finally, the

assessment of the models clinical utility in real-world
healthcare environments.
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5 Conclusion

In conclusion, our machine learning approach effectively
identified significant dietary nutritional factors linked to the risk
of DM-OP comorbidity in older adults. The RF model exhibited
outstanding predictive performance, highlighting gender, BMI,
carotenoids, vitamin E, magnesium, and zinc as the most
influential predictors. These results lay the groundwork for
creating targeted nutritional interventions and clinical decision
support tools aimed at managing comorbidity risk in

aging populations.
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Glossary

SHAP - SHapley Additive exPlanations
NHANES - National Health and Nutrition Examination Survey
DM - diabetes mellitus

T2DM - Type 2 diabetes mellitus

OP - osteoporosis

BMI - Body mass index

DXA - dual-energy X-ray absorptiometry
MET - metabolic equivalent of task
HbAIc - glycosylated hemoglobin

PIR - poverty income ratio

25-(OH)D - 25-hydroxyvitamin D
MUFA - monounsaturated fatty acids

PUFA - polyunsaturated fatty acids
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CDAI - Composite Dietary Antioxidant Index

DII - Dietary Inflammatory Index

HEI-2020 - Healthy Eating Index 2020

DASH - Dietary Approaches to Stop Hypertension
OBS - Oxidative Balance Score

SMOTE - synthetic minority oversampling technique
MLP - multilayer perceptron

SVM-RBEF - support vector machine with radial basis function
AUC - area under the ROC curve

AUPRC - area under the precision-recall curve
ANOVA - analysis of variance

NRMSE - normalized root mean square error

PFC - proportion of falsely classified

ROC - Receiver Operating Characteristic
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