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Background: The health burden of diabetes mellitus and osteoporosis (DM-
OP) comorbidity in the aging population is increasing, and dietary factors are 
modifiable risk determinants. This study developed and validated a machine 
learning model to predict DM-OP comorbidity using multidimensional dietary 
assessment.
Methods: This study utilized data from NHANES cycles 2005–2010, 2013–
2014, and 2017–2020, ultimately including 4,678 participants aged ≥65 years. 
Dietary data were collected through 24-h dietary recalls, encompassing 
macronutrients, micronutrients, food processing classification (NOVA), and five 
dietary quality scores. Missing data were handled using random forest algorithm, 
feature selection was performed using Boruta algorithm, and SMOTE technique 
addressed class imbalance. Eight machine learning algorithms (XGBoost, 
decision tree, logistic regression, multilayer perceptron, naive Bayes, k-nearest 
neighbors, random forest, and support vector machine) were implemented with 
10-fold cross-validation for performance evaluation.
Results: A total of 4,678 participants were included, with 347 (7.4%) having 
DM-OP comorbidity (concurrent prediabetes/diabetes and osteoporosis). 
After feature selection, 46 variables were retained for model construction. 
The random forest model demonstrated superior predictive performance with 
the lowest error rate (0.161), highest accuracy (0.839), ROC AUC of 0.965, 
sensitivity of 0.827, and specificity of 0.852. SHAP analysis revealed gender as 
the most important predictor, with females at higher risk; BMI showed positive 
correlation with comorbidity risk; while carotenoid, vitamin E, magnesium, and 
zinc intake were negatively correlated with disease risk, suggesting potential 
protective associations. An online risk prediction tool was developed based on 
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the optimized random forest model for real-time individual comorbidity risk 
calculation.
Conclusion: The random forest model demonstrated excellent performance in 
predicting diabetes-osteoporosis comorbidity in elderly adults, with gender, BMI, 
and specific nutrient intake as key predictors. This model provides an effective 
tool for clinical early identification of high-risk populations and implementation 
of preventive interventions.

KEYWORDS

machine learning, diabetes mellitus, osteoporosis, comorbidity, dietary nutrient 
intake, SHAP analysis, older adults

1 Introduction

The global burden of chronic diseases has significantly increased, 
with diabetes mellitus (DM) and osteoporosis (OP) becoming 
intertwined public health challenges, especially among older adults 
(1). DM, characterized by persistent high blood sugar levels, currently 
affects over 537 million adults worldwide, with projections estimating 
783 million by 2045 (2). Type 2 diabetes mellitus (T2DM) accounts 
for 90–95% of these cases and is often associated with obesity, physical 
inactivity, and aging (3, 4). Conversely, osteoporosis, defined by low 
bone mineral density and deteriorating bone structure, affects 
approximately 200 million people globally (5), with hip fractures 
resulting in a 20% mortality rate within one year (6). Individuals with 
DM face a 1.5- to 2-fold higher risk of developing osteoporosis and 
fractures (7), primarily due to oxidative stress from high blood sugar 
levels, insulin resistance, and disrupted bone remodeling (8, 9). 
Additionally, prediabetes, affecting 374 million adults worldwide, 
offers a critical window for intervention, with a 35–50% chance of 
progressing to T2DM within 5–10 years (3). Recent studies establish 

a connection between prediabetes and early bone loss (10, 11), though 
the underlying mechanisms remain poorly understood (12). This lack 
of clarity underscores the importance of exploring prediabetes as a 
potential precursor to osteoporosis, particularly in aging populations.

Dietary factors play a pivotal role in the pathogenesis of both 
diabetes and osteoporosis. Diets rich in pro-inflammatory components, 
such as trans fats and refined carbohydrates, exacerbate systemic 
inflammation, thereby promoting insulin resistance and accelerating 
bone loss (13). Conversely, foods high in antioxidants, such as fruits and 
vegetables, mitigate oxidative stress, potentially offering protective effects 
against both conditions (14). Ultra-processed foods (UPFs), 
characterized by high additive content and low nutritional value, are 
strongly associated with increased risks of both diseases due to their 
induction of inflammation and metabolic disturbances (15, 16). 
Understanding the roles of these dietary factors is critical for developing 
effective prevention strategies. Furthermore, the impact of overall dietary 
patterns on bone health is evident across diverse populations, as 
demonstrated by a study linking maternal diet to bone density in Chinese 
lactating women and their infants (17). However, most studies have 
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focused on the effects of individual nutrients, and there remains a lack of 
systematic exploration into how dietary patterns or composite dietary 
factors influence the combined pathogenesis of diabetes and osteoporosis.

In this context, machine learning algorithms have emerged as 
powerful tools for disease prediction, capable of analyzing complex, 
multidimensional data to create effective predictive models (18, 19). 
This study uses data from the National Health and Nutrition 
Examination Survey (NHANES) database, employing eight machine 
learning algorithms and SHAP analysis. The goal is to investigate the 
predictive role of dietary antioxidants for the comorbidity of 
prediabetes or diabetes with osteoporosis in older adults, identify key 
contributing factors, and develop an online prediction tool to provide 
a scientific basis and practical tool for early detection and intervention.

2 Methods

2.1 Data source and study population

Data were drawn from the 2005–2010, 2013–2014, and 2017–2020 
NHANES cycles, including 62,782 individuals. These particular cycles 
were chosen because they encompass all available recent NHANES 
data cycles that contain both dual-energy X-ray absorptiometry 
(DXA) measurements for bone mineral density assessment and the 
detailed dietary data from 24-h recalls required for our 

multidimensional dietary assessment. Those under 65 years were 
excluded (53,886 removed), leaving 8,896 participants aged ≥ 65. 
Next, 1,364 individuals with missing diabetes or osteoporosis data 
were excluded, resulting in 7,532 participants. Finally, 2,854 
individuals with missing baseline data were removed, yielding a final 
cohort of 4,678 participants with complete data on age, diabetes/
osteoporosis status, and baseline measurements. The screening 
process is shown in Figure 1.

2.2 Dietary assessment

Dietary data were collected via two 24-h dietary recall interviews. 
Macronutrient intake included total carbohydrates, protein, total fat, 
saturated fat, monounsaturated fatty acids (MUFA), polyunsaturated 
fatty acids (PUFA), omega-3 fatty acids, omega-6 fatty acids, and 
cholesterol. Micronutrient assessment included vitamins (A, C, D, E, 
B6, B12, riboflavin, niacin, thiamin, folate), minerals (calcium, 
magnesium, iron, zinc, copper, selenium), and phytochemicals 
(alpha-carotene, beta-carotene, carotene retinol equivalents). Dietary 
fiber and caffeine intake were quantified. The intake data for 
macronutrients, micronutrients, and other dietary components were 
sourced directly from the NHANES-provided Total Nutrient Intake 
files (e.g., DR1TOT_J and DR2TOT_J). The conversion of food items 
reported in the 24-h recalls to quantitative nutrient values was 

FIGURE 1

Flowchart of participant selection in the NHANES dataset.

https://doi.org/10.3389/fnut.2025.1666477
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


ShangGuan et al.� 10.3389/fnut.2025.1666477

Frontiers in Nutrition 04 frontiersin.org

performed by the National Center for Health Statistics (NCHS) using 
the USDA’s Food and Nutrient Database for Dietary Studies 
(FNDDS), which links each food to its detailed nutritional 
composition (20). All nutrient intakes were energy-adjusted using the 
residual method. The average intake from two non-consecutive 24-h 
recalls was used as a proxy for usual intake, as this method reduces 
within-person variability and provides a more stable estimate of 
habitual consumption, consistent with established dietary 
assessment methodology.

2.2.1 Food processing classification
Food items were categorized into NOVA groups based on 

established classification rules using USDA food codes. To ensure 
coding consistency, a random subset of food items underwent dual 
coding by independent researchers, with discrepancies resolved 
through adjudication. Food items were categorized using the NOVA 
classification system into unprocessed and minimally processed foods, 
processed culinary ingredients, processed foods, and ultra-processed 
foods, with daily consumption calculated in grams. For specific coding 
rules for classification and to access the classification consistency 
assessment, please refer to Supplementary Table S2.

2.2.2 Dietary quality indices
Five validated dietary quality scores were calculated: Composite 

Dietary Antioxidant Index (CDAI), Dietary Inflammatory Index (DII), 
Healthy Eating Index 2020 (HEI-2020), Dietary Approaches to Stop 
Hypertension (DASH) score, and Oxidative Balance Score (OBS). 
Detailed calculation methods are provided in Supplementary material S1. 
All dietary variables were energy-adjusted and averaged across the two 
24-h recalls to reflect usual intake. The use of two non-consecutive 24-h 
recalls, as implemented in NHANES, is a well-established method for 
estimating usual dietary intake at the population level. Averaging intake 
from 2 days helps to attenuate within-person day-to-day variation and 
provides a more stable estimate of habitual consumption than a single 
day’s recall. Furthermore, the dietary quality indices used (CDAI, DII, 
HEI-2020, DASH, OBS) are composite measures that are less sensitive to 
daily fluctuations and more representative of longer-term 
dietary patterns.

2.3 Diagnosis of diabetes and osteoporosis

Diabetes was diagnosed using multiple criteria: physician 
diagnosis, fasting blood glucose ≥7.0 mmol/L, or glycosylated 
hemoglobin (HbA1c) ≥ 6.5%. Prediabetes was defined as fasting 
blood glucose of 5.6–6.9 mmol/L or HbA1c of 5.7–6.4%. The use of 
HbA1c and FPG, consistent with contemporary ADA guidelines 
and the operational feasibility of the NHANES protocol, provides 
a standardized approach for identifying dysglycemia in this large 
cohort, though it may not capture individuals with isolated 
postprandial hyperglycemia. Osteoporosis was diagnosed using 
standard dual-energy X-ray absorptiometry (DXA). The DXA 
examinations were performed using Hologic QDR-4500A fan-beam 
densitometers (Hologic, Inc., Bedford, Massachusetts) following 
the standardized NHANES body composition procedures manual. 
The scans were analyzed using Hologic APEX 4.0 software. A 
T-score of ≤ − 2.5 at the femoral neck was used to define 
osteoporosis, For detailed diagnostic criteria, refer to 

Supplementary Table S3. Furthermore, it should be noted that the 
application of the uniform T-score threshold (≤ − 2.5) may have 
limitations across different sex and racial/ethnic groups, as 
population-specific bone mineral density reference data and 
fracture risk relationships can vary.

We define the “DM-OP” group as the “Diabetes Mellitus and 
Diabetes-Osteoporosis Comorbidity Group.” This group comprises 
participants who meet both of the following criteria: having 
osteoporosis and concurrently having diabetes mellitus or prediabetes. 
The non–DM-OP group included all participants without this 
comorbidity. Additionally, we  conducted a sensitivity analysis by 
training separate interpretable machine learning models using only 
DM and only OP outcomes to distinguish between disease-specific 
dietary and metabolic predictors.

2.4 Covariates

Covariates included demographic, socioeconomic, 
anthropometric, clinical, and lifestyle factors. Demographic and 
socioeconomic variables comprised age (continuous), gender (male/
female), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, 
Mexican American, Other Hispanic, Other Race), marital status 
(married/living with partner, widowed/divorced/separated, never 
married), and educational attainment (below high school, high school, 
above high school). Socioeconomic status was assessed using the PIR, 
categorized as <1, 1–3, and >3. Anthropometric and clinical 
measurements included BMI, calculated from measured height and 
weight, and the presence of physician-diagnosed or laboratory-
confirmed conditions such as hypertension, hyperlipidemia, 
cardiovascular disease, and stroke. Glucose metabolism abnormalities 
were defined as impaired fasting glycemia (fasting glucose 
5.6–6.9 mmol/L) and impaired glucose tolerance (2-h glucose 
7.8–11.0 mmol/L based on oral glucose tolerance testing). Serum 
25-hydroxyvitamin D [25(OH)D] concentrations were determined 
using standardized laboratory assays. Lifestyle and behavioral factors 
encompassed smoking status (never, former, current), alcohol 
consumption (grams per day estimated from 24-h dietary recalls), and 
serum cotinine concentration, which served as an objective biomarker 
of tobacco exposure.

2.5 Preprocessing of machine learning 
features

The initial dataset included 56 variables: 13 categorical and 43 
continuous. Missing data were imputed using a random forest (RF) 
algorithm with 100 trees and up to 10 iterations. Imputation quality 
was evaluated using normalized root mean square error (NRMSE) for 
continuous variables and proportion of falsely classified (PFC) for 
categorical variables, both indicating reliable performance. Feature 
selection was performed using the Boruta algorithm to identify 
variables most relevant to the target outcome. To address class 
imbalance, we  applied the Synthetic Minority Oversampling 
Technique (SMOTE), which increased the number of comorbid cases 
from 347 to 3,817, resulting in a total dataset of 4,331 participants (see 
Supplementary Figure S1 for details). To prevent data leakage, all 
preprocessing steps—including data imputation, feature selection, and 
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SMOTE oversampling—were strictly conducted within the training 
folds during cross-validation.

2.6 Statistical analysis

Eight machine learning algorithms were implemented using the 
mlr3 framework: XGBoost, decision tree, logistic regression (LR), 
multilayer perceptron (MLP), naive Bayes, k-nearest neighbors 
(KNN), RF, and support vector machine with radial basis function 
(SVM-RBF). These algorithms were selected for their complementary 
strengths and proven effectiveness in medical prediction tasks (21–
23). Model performance was assessed using classification error rate, 
accuracy, F-beta score, area under the ROC curve (AUC), sensitivity, 
specificity, and area under the precision-recall curve (AUPRC). 
Ten-fold cross-validation ensured robust performance estimation. 
Statistical significance of performance differences between models was 
evaluated using analysis of variance (ANOVA) and the Kruskal-Wallis 
H test. Feature importance in the optimal model was quantified using 
SHAP (SHapley Additive exPlanations) values, which provide global 
feature rankings and local explanations for individual predictions 
based on game theory. All analyses were conducted in R (version 
4.4.3) using the packages survey, DMwR, ggcor, mlr3, mlr3benchmark, 
mlr3extralearner, kernelshap, and shapviz. Statistical significance was 
set at p < 0.05 for all tests.

3 Results

3.1 Baseline characteristics of the 
population

A total of 4,678 participants were included in the analysis: 4,331 
(92.6%) in the non-DM-OP (i.e., participants without the coexistence) 
group and 347 (7.4%) in the DM-OP comorbidity group. The DM-OP 
group was significantly older and predominantly female (p < 0.001). 
They exhibited lower socioeconomic status, with higher poverty rates 
and lower educational attainment (p < 0.001). Although the DM-OP 
group had a lower body mass index (BMI), they showed a higher 
prevalence of diabetes mellitus (p < 0.001) and impaired glucose 
metabolism. Their dietary intake included significantly less total fat, 
protein, and multiple micronutrients, with lower CDAI scores 
(p = 0.031) and higher DII scores (p = 0.007), as shown in Table 1.

3.2 Development and validation of 
comorbidity prediction models

Prior to model construction, visual features were generated with 
categorical feature distributions presented in Supplementary Figure S2 
and continuous feature distributions in Supplementary Figure S3. The 
Boruta algorithm was used to screen out collinearity based on 
correlation coefficients. As shown in Figure  2, nine variables 
(hyperlipidemia, hypertension, processed, stroke, ultra-processed, 
unprocessed, marital status, smoking status, and cardiovascular 
disease) were excluded, retaining 46 variables for model development.

Model performance evaluation results are presented in Table 2 
and Figure 3, encompassing key metrics including error rate, accuracy, 

F-beta score, ROC AUC, sensitivity, specificity, and PR AUC. The RF 
model demonstrated superior performance with the lowest error rate 
(0.161), highest accuracy (0.839), and excellent performance across 
F-beta score (0.845), ROC AUC (0.965), sensitivity (0.827), and 
specificity (0.852). For clinical application, the optimized Random 
Forest model demonstrated excellent calibration (Brier score = 0.094, 
calibration intercept = −0.01, slope = 0.99). For screening purposes, a 
probability threshold of 0.35 is recommended, providing a balanced 
performance with PPV = 0.65 and NPV = 0.93, making it suitable for 
identifying high-risk individuals while reliably ruling out the 
condition. These results indicate that the RF model effectively balances 
precision and recall while maintaining strong generalization capability, 
making it optimal for predicting diabetes or prediabetes combined 
with osteoporosis risk in adults aged 65 and above.

The XGBoost model also exhibited high performance, particularly 
in ROC AUC (0.924) and F-beta score (0.840), with accuracy of 0.824 
and sensitivity of 0.868, demonstrating robust classification capability. 
However, compared to the RF model, XGBoost showed slightly 
inferior specificity (0.774), indicating reduced performance in 
identifying negative samples.

In contrast, decision tree and logistic regression models showed 
suboptimal performance, particularly in sensitivity and specificity 
metrics. The decision tree achieved accuracy of 0.690, F-beta score of 
0.731, and ROC AUC of 0.732. Although it demonstrated high 
sensitivity (0.791), its specificity (0.576) was considerably lower than 
RF and XGBoost models, potentially leading to elevated false positive 
rates in clinical applications. The logistic regression model performed 
similarly poorly, with accuracy of 0.703, F-beta score of 0.732, ROC 
AUC of 0.787, and relatively low sensitivity (0.761) and specificity 
(0.638), limiting its effectiveness for accurate comorbidity 
risk prediction.

While MLP and Naive Bayes models showed reasonable ROC 
AUC performance (0.916 and 0.802, respectively), their F-beta scores 
and specificity remained inferior to RF and XGBoost models. The 
MLP model exhibited a pronounced gap between sensitivity (0.775) 
and specificity (0.394), suggesting potential overfitting. The Naive 
Bayes model, despite reasonable specificity (0.559), demonstrated low 
sensitivity (0.770), limiting its practical clinical utility.

3.3 SHAP values interpretation

SHAP analysis (Figure 4) revealed the importance of the top 15 
features in predicting comorbid diseases. Gender emerged as a 
significant predictor of diabetes or prediabetes and osteoporosis 
comorbidity, with women demonstrating higher susceptibility than 
men, establishing gender as a crucial factor in disease risk assessment. 
Additionally, several key features substantially influenced model 
predictions: BMI, dietary antioxidant intake (particularly carotenoids), 
vitamin E, magnesium, and zinc. BMI showed positive correlation 
with DM-OP risk, indicating that higher BMI values correspond to 
increased comorbidity risk. Conversely, elevated carotenoid intake 
demonstrated negative correlation with disease risk, suggesting that 
dietary antioxidants may be associated with protective effects. Against 
disease development in older adults. High intake of vitamin E and 
magnesium exhibited suggesting potential protective associations, 
with magnesium showing particularly strong negative SHAP values, 
indicating that higher magnesium intake was associated with a lower 
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TABLE 1  Baseline characteristics of the study population according to DM-OP comorbidity status.

Variable Non-DM-OP (n=4331) DM-OP (n=347) p-value

Age (year), mean ± SD 73.02 ± 5.41 74.98 ± 5.36 <0.001***

Gender, n (%) <0.001***

 � Female 1959 (45.2) 267 (76.9)

 � Male 2372 (54.8) 80 (23.1)

Race, n (%) <0.001***

 � Non-Hispanic White 2530 (58.4) 190 (54.8)

 � Non-Hispanic Black 834 (19.3) 23 (6.6)

 � Mexican American 396 (9.1) 53 (15.3)

 � Other Hispanic 299 (6.9) 47 (13.5)

 � Other Race 272 (6.3) 34 (9.8)

Marital status, n (%) <0.001***

 � Married/Living with Partner 2574 (59.4) 146 (42.1)

 � Widowed/Divorced/Separated 1610 (37.2) 183 (52.7)

 � Never married 147 (3.4) 18 (5.2)

PIR, n (%) <0.001***

 � <1 1047 (24.2) 125 (36.0)

 � 1-3 1982 (45.8) 163 (47.0)

 � >3 1302 (30.1) 59 (17.0)

Education level, n (%) <0.001***

 � Below high school 577 (13.3) 90 (25.9)

 � High school 1663 (38.4) 149 (42.9)

 � Above high school 2091 (48.3) 108 (31.1)

Smoking status, n (%) <0.001***

 � Never 2033 (46.9) 207 (59.7)

 � Former 1890 (43.6) 108 (31.1)

 � Current 408 (9.4) 32 (9.2)

BMI (kg/m2), mean ± SD 29.01 ± 5.31 27.16 ± 5.21 <0.001***

Hypertension, yes, n (%) 3207 (74.0) 264 (76.1) 0.442

Hyperlipidemia, yes, n (%) 3639 (84.0) 298 (85.9) 0.404

Impaired fasting glycaemia, yes, n (%) 312 (7.2) 55 (15.9) <0.001***

Impaired glucose tolerance, yes, n (%) 213 (4.9) 62 (17.9) <0.001***

Diabetes mellitus, yes, n (%) 1575 (36.4) 230 (66.3) <0.001***

Osteoporosis, yes, n (%) 392 (9.1) 347 (100.0) <0.001***

Cardiovascular disease, yes, n (%) 1214 (28.0) 100 (28.8) 0.801

Stroke, yes, n (%) 410 (9.5) 44 (12.7) 0.064

25-OH-D (nmol/L), mean ± SD 74.82 ± 26.72 71.57 ± 27.58 0.030*

Dietary fiber (g/day), mean ± SD 16.77 ± 7.85 15.46 ± 5.85 0.002**

Total fat (g/day), mean ± SD 72.09 ± 31.08 61.56 ± 26.88 <0.001***

Alpha-carotene (μg/day), mean ± SD 462.94 ± 870.72 467.66 ± 613.18 0.921

Beta-carotene (μg/day), mean ± SD 2484.25 ± 2901.38 2406.55 ± 2619.22 0.629

Riboflavin (mg/day), mean ± SD 1.97 ± 0.81 1.79 ± 0.72 <0.001***

Niacin (mg/day), mean ± SD 22.03 ± 9.29 19.89 ± 8.24 <0.001***

Vitamin B6 (mg/day), mean ± SD 1.91 ± 0.94 1.78 ± 1.06 0.012*

Folate (μg/day), mean ± SD 367.55 ± 166.07 341.86 ± 131.75 0.005**

(Continued)
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disease risk. Scatter plots for the top 15 variables are provided in the 
Supplementary Figures S4, S5.

3.4 Sensitivity analysis and stratified 
analysis

To address potential confounding factors between diabetes and 
osteoporosis, we performed SHAP analysis on participants with only 

glucose abnormalities (including prediabetes and diabetes) or only 
osteoporosis (Supplementary Figures S6, S7). In the diabetes model, 
BMI and alcohol intake emerged as primary predictors, followed by 
ethnicity, education, sex, DII, and dietary fiber intake, indicating that 
obesity levels and nutritional metabolism play a key role in diabetes 
risk among older adults. Conversely, the osteoporosis model identified 
sex, BMI, age, niacin intake, and monounsaturated fatty acid intake as 
primary determinants. Although BMI was present in both models, its 
SHAP values differed in direction and magnitude, suggesting body 

TABLE 1  (Continued)

Variable Non-DM-OP (n=4331) DM-OP (n=347) p-value

Vitamin B12 (μg/day), mean ± SD 4.88 ± 5.46 4.30 ± 5.24 0.055

Vitamin C (mg/day), mean ± SD 85.21 ± 63.33 86.59 ± 65.81 0.697

Vitamin E (mg/day), mean ± SD 7.73 ± 4.46 6.45 ± 3.12 <0.001***

Calcium (mg/day), mean ± SD 843.36 ± 380.18 780.70 ± 335.29 0.003**

Magnesium (mg/day), mean ± SD 278.19 ± 107.65 251.49 ± 81.17 <0.001***

Iron (mg/day), mean ± SD 14.34 ± 6.55 12.84 ± 5.10 <0.001***

Zinc (mg/day), mean ± SD 10.45 ± 5.27 9.08 ± 3.59 <0.001***

Copper (mg/day), mean ± SD 1.21 ± 0.84 1.10 ± 0.93 0.015*

Selenium (μg/day), mean ± SD 98.70 ± 41.50 88.72 ± 35.33 <0.001***

Alcohol (g/day), mean ± SD 6.07 ± 14.30 2.99 ± 9.30 <0.001***

Cotinine (ng/mL), mean ± SD 34.33 ± 111.33 32.44 ± 104.88 0.761

Carotene RE (μg/day), mean ± SD 226.49 ± 266.68 221.28 ± 233.08 0.724

Vitamin A (μg RE/day), mean ± SD 691.02 ± 561.08 636.40 ± 563.52 0.081

Vitamin D (μg/day), mean ± SD 4.60 ± 3.08 4.33 ± 2.80 0.117

Caffeine (mg/day), mean ± SD 0.15 ± 0.13 0.12 ± 0.10 <0.001***

Carbohydrates (g/day), mean ± SD 220.03 ± 78.11 203.68 ± 65.82 <0.001***

Cholesterol (mg/day), mean ± SD 257.00 ± 135.61 213.34 ± 116.51 <0.001***

Magnesium (mg/day), mean ± SD 278.70 ± 107.76 252.35 ± 81.67 <0.001***

MUFA (g/day), mean ± SD 25.30 ± 10.64 21.67 ± 9.70 <0.001***

N3 fatty acids (g/day), mean ± SD 0.10 ± 0.30 0.07 ± 0.25 0.041*

N6 fatty acids (g/day), mean ± SD 16.16 (7.80 14.07 (7.53 <0.001***

Protein (g/day), mean ± SD 71.56 ± 26.22 64.83 ± 22.96 <0.001***

PUFA (g/day), mean ± SD 16.16 ± 7.05 14.05 ± 6.74 <0.001***

Saturated fat (g/day), mean ± SD 23.33 ± 10.98 19.93 ± 9.15 <0.001***

Thiamin (mg/day), mean ± SD 1.50 ± 0.60 1.37 ± 0.49 <0.001***

Processed food (g/day), mean ± SD 716.63 ± 533.89 681.23 ± 513.04 0.233

Ultra-processed food (g/day), mean ± SD 816.96 ± 730.55 812.85 ± 696.34 0.919

Unprocessed food (g/day), mean ± SD 1112.45 ± 983.74 1100.07 ± 948.77 0.821

CDAI (score), mean ± SD 0.16 ± 3.23 -0.23 ± 2.96 0.031*

DII (score), mean ± SD 1.23 ± 1.77 1.49 ± 1.60 0.007**

HEI2020 (score), mean ± SD 53.80 ± 10.43 54.68 ± 9.05 0.129

DASH (score), mean ± SD 20.87 ± 6.62 20.84 ± 6.25 0.932

OBS (score), mean ± SD 17.15 ± 8.14 16.29 ± 7.73 0.055

PIR, Poverty Income Ratio; BMI, Body Mass Index; 25-OH-D, 25-hydroxyvitamin D; MUFA, Monounsaturated Fatty Acids; PUFA, Polyunsaturated Fatty Acids; CDAI, Composite Dietary 
Antioxidant Index; DII, Dietary Inflammatory Index; HEI2020, Healthy Eating Index 2020; DASH, Dietary Approaches to Stop Hypertension; OBS Oxidative Balance Score. p< 0.05 *, p < 
0.01**, p < 0.001***.
The DM-OP comorbidity group includes participants with both osteoporosis and dysglycemia (prediabetes or diabetes). The non–DM-OP group includes all participants without the 
comorbidity (i.e., those with neither condition, with dysglycemia alone, or with osteoporosis alone).
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composition plays distinct roles in glucose and bone metabolism. 
These stratified analyses confirm that the risk of diabetes-osteoporosis 
comorbidity stems from shared metabolic pathways and disease-
specific nutritional factors, rather than diagnostic overlap.

Additionally, we  conducted an analysis of the “age × gender” 
interaction term. Figure 5 displays risk factors stratified by gender and 
age. Women exhibited consistent patterns: BMI was the primary risk 
factor across all age groups. Men, however, exhibit a differentiated 
pattern: BMI becomes more prominent among those aged 65–75, 
while alcohol intake and racial factors exert greater influence in the 
75–85 age group. Notably, n-6 fatty acids and educational attainment 

show greater significance among younger women. Magnesium and 
vitamin E consistently maintain significant protective effects across 
all subgroups.

3.5 Online prediction tool development 
and clinical application

Based on the optimized RF model, an online risk prediction tool 
has been developed, which can be  accessed at https://wdhddx.
shinyapps.io/osteoporosis-shap-model/. This tool incorporates ten 

FIGURE 2

Boxplot of Z-scores for key variable importance. Variables are categorized into four classes (Shadow, Rejected, Tentative, Confirmed) according to their 
importance Z-scores. Boxplots display statistical summaries: median (horizontal line within boxes), interquartile range (boxes), range (whiskers), and 
outliers (dots). Higher Z-scores indicate stronger contributions of variables to the model.

TABLE 2  Performance comparison of different machine learning models.

Model Error Rate Accuracy F-beta ROC AUC Sensitivity Specificity PR AUC

XGBoost 0.176 0.824 0.840 0.924 0.868 0.774 0.887

DT 0.310 0.690 0.731 0.732 0.791 0.576 0.697

LR 0.297 0.703 0.732 0.787 0.761 0.638 0.737

MLP 0.403 0.597 0.672 0.916 0.775 0.394 0.603

NB 0.329 0.671 0.714 0.802 0.770 0.559 0.682

KNN 0.241 0.759 0.792 0.951 0.864 0.640 0.812

RF 0.161 0.839 0.845 0.965 0.827 0.852 0.907

SVM 0.205 0.795 0.813 0.905 0.840 0.744 0.839

p-value <0.001a <0.001a <0.001a <0.001b <0.001a <0.001a <0.001a

XGBoost, extreme gradient boosting tree; DT, Decision Tree; LR, Logistic Regression; MLP, Multilayer Perceptron; NB, Naive Bayes; KNN, k-Nearest Neighbors; RF, Random Forest; SVM-
RBF, Support Vector Machine with RBF kernel; ROC AUC, Receiver Operating Characteristic Area Under Curve; PR AUC, Precision-Recall Area Under Curve.
aStatistical tests: ANOVA test.
bKruskal-Wallis test.
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FIGURE 3

Performance assessment of multiple classifiers. (A) Comparison of accuracy, Brier score, and ROC-AUC among models. (B) ROC curves showing 
models’ discrimination performance. (C) Calibration curves illustrating agreement between predicted and observed outcomes. (D) Decision Curve 
Analysis (DCA) showing the net clinical benefit across probability thresholds.

FIGURE 4

Feature importance and SHAP value interpretation. (A) SHAP beeswarm plot visualizing the distribution of SHapley Additive exPlanations (SHAP) values 
for each feature, colored by feature values (high = orange; low = purple). SHAP values reflect the direction (positive/negative) and magnitude of feature 
impact on model predictions. (B) Bar chart ranking features by their contribution to model performance; taller bars indicate greater influence on 
predictions. (C) SHAP waterfall plot decomposing the cumulative effect of features for a single prediction, where each bar represents the positive 
(yellow) or negative (purple) contribution of a feature to the final model output.
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essential indicators, including gender, BMI, and dietary intakes of 
carotenoids, vitamin E, magnesium, and zinc. It allows for real-time 
calculations of comorbidity risk probabilities based on individual 
characteristics entered by the user. The tool is designed with an 
intuitive interface that seamlessly integrates into clinical workflows, 
enabling healthcare providers to quickly identify high-risk populations 
and implement timely interventions aimed at reducing comorbidity 
risk. This ease of access promotes early detection and supports 
preventive care strategies within clinical practice.

4 Discussion

We utilized interpretable machine learning methods to investigate 
the relationship between dietary nutrient intake and DM-OP 
comorbidity in older adults using the U.S. NHANES dataset from 
2005 to 2020. Among the 8 machine learning models we evaluated, 
the RF model stood out with an impressive AUC of 0.965, indicating 
its excellent predictive capability and stability for classification tasks. 
Through SHAP game-theoretic analysis, we were able to pinpoint the 
significance of each selected feature, revealing that gender, BMI, 
carotenoids, vitamin E, magnesium, and zinc were major contributors 
to predicting the risk of comorbidity.

To our knowledge, this study is the first to comprehensively 
develop and validate a prediction model for DM-OP comorbidity that 
incorporates dietary nutritional factors along with demographic, 
anthropometric, and clinical characteristics in older adults. While our 
main focus was on analyzing the role of dietary nutrition, the model 
also includes easily accessible demographic features, lifestyle factors, 
and health conditions, which enhances its generalizability. 
Furthermore, we conducted extensive benchmarking to compare the 
performance of various machine learning algorithms and created an 
online prediction tool for clinical use.

Machine learning models are increasingly being used to 
investigate the dietary and metabolic factors linked to chronic 

diseases in aging populations. For instance, a recent study 
comparing five models for predicting all-cause mortality in 
non-alcoholic fatty liver disease (NAFLD) patients found that 
Gradient Boosting Machine (GBM) and Random Survival Forest 
(RSF) achieved strong predictive performance (AUC = 0.8), 
identifying higher dietary fiber intake as a significant protective 
factor for improved survival (24). In another study using a Korean 
cohort, a RF model incorporating genetic polygenic risk scores 
(gPRS) and metabolite data predicted T2DM occurrence with high 
accuracy (AUC = 0.883), improving classification by 11.7% over 
clinical-factor-only models (25). Further demonstrating utility, a 
CatBoost model integrating dietary antioxidants and metabolic 
factors effectively predicted chronic kidney disease (CKD) 
occurrence in individuals with abdominal obesity (AUC = 0.938), 
identifying age, diabetes history, and dietary antioxidant intake as 
key predictors (26).

In the realm of DM-OP comorbidity prediction, Wang et al. (27) 
applied a support vector machine to data from 289 subjects with 
DM-OP, incorporating five variables: gender, age, BMI, total 
procollagen I  N-terminal propeptide (TP1NP), and osteocalcin, 
achieving a diagnostic accuracy of 88%. Wu et al. (28) evaluated nine 
ML algorithms on 303 postmenopausal women with T2DM, with 
XGBoost showing superior performance (training AUROC: 0.993, 
testing AUROC: 0.786) using 10 key features, resulting in a clinically 
applicable risk calculator. Zhao et  al. (29) employed RF model to 
genetically identify hub genes (ACAA2, GATAD2A, VPS35) 
associated with DM-OP comorbidity. In a separate study of 433 
T2DM patients, Wu et al. (30) found XGBoost again performed best 
(training AUROC: 0.94, testing AUROC: 0.87) among nine ML 
algorithms for osteoporosis risk prediction, subsequently stratifying 
patients into high, medium, and low-risk groups using SHAP analysis 
and Latent Class Analysis (LCA). Yu et al. (31) developed a GBM 
model using five routine indicators—gender, age, BMI, heart rate, and 
alkaline phosphatase—in 2,029 individuals with T2DM (457 with 
osteoporosis), achieving an external validation AUC of 0.89. These 

FIGURE 5

SHAP feature importance under age × gender stratification. (A) men; (B) women.
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studies illustrate the growing application of ML in exploring DM-OP 
comorbidity prediction, though most focus on clinical indicators such 
as demographic, anthropometric, and biochemical markers rather 
than dietary factors.

In this study, we selected 8 diverse ML algorithms (XGBoost, 
decision tree, logistic regression, MLP, naive Bayes, KNN, RF, and 
SVM-RBF) to construct prediction models and employed 
comprehensive benchmarking to determine the optimal approach for 
diabetes-osteoporosis comorbidity prediction. Compared to 
traditional statistical methods such as logistic regression, machine 
learning approaches offer several advantages: they can automatically 
capture complex non-linear interactions between dietary factors and 
disease risk without requiring predetermined variable transformations; 
algorithms like RF and XGBoost can identify the most predictive 
features through built-in feature importance measures, reducing 
selection bias; and they demonstrate superior performance in 
handling high-dimensional healthcare datasets with mixed data 
types (32).

Our findings suggest that the RF model is the most effective 
choice for this prediction task. RF is an ensemble method that 
combines several decision trees, which enhances prediction accuracy 
through techniques like bootstrap aggregating and random feature 
selection (33). This model is particularly advantageous in healthcare 
settings due to its capability to manage various data types, its resistance 
to overfitting, and its inherent feature importance measures. 
Additionally, the model’s leaf-wise growth strategy and ensemble 
characteristics allow it to identify intricate relationships between 
dietary nutrient intake and comorbidity risk, all while remaining 
interpretable through SHAP analysis (34). The SHAP analysis 
indicated that gender, BMI, and certain dietary nutrition (carotenoids, 
vitamin E, magnesium, and zinc) were the most significant predictors. 
These results are consistent with the current literature regarding the 
pathophysiology linking DM and OP, as well as the protective effects 
of dietary nutrient intake.

Gender emerged as the most significant predictor of DM-OP 
comorbidity, with women exhibiting a higher susceptibility. This 
observation aligns with epidemiological evidence indicating that 
postmenopausal women are at an increased risk for both conditions, 
primarily due to estrogen deficiency that impact glucose 
metabolism and bone turnover (35). Research indicates that 
estrogen deficiency can exacerbate insulin resistance, impairing 
glucose utilization and storage, which further aggravates bone loss 
(36). In the SWAN cohort of women, insulin resistance exhibited a 
biphasic relationship with bone mineral density: declining 
HOMA-IR slowed bone loss, whereas rising HOMA-IR accelerated 
it (37). Research has found that estrogen regulates vascular 
calcification and osteoporosis through receptor signaling, matrix 
proteins, and environmental-physical factors (38). BMI 
demonstrated a positive correlation with the risk of DM-OP 
comorbidity. A cohort study focusing on elderly patients with 
T2DM found that the prevalence of sarcopenic obesity (SO) was 
notably high, with significant implications for negative health 
outcomes, including increased risks of cardiovascular diseases and 
fractures (39). SHAP analysis initially identified female gender as 
the strongest predictor of diabetes-osteoporosis comorbidity. 
Subsequent stratification by both sex and age revealed nuanced risk 
patterns: BMI remained a dominant risk factor for women in both 

the 65–74 and 75–85 age groups, underscoring the persistent link 
between body composition and metabolic-bone health in 
postmenopausal women. In the oldest female subgroup 
(75–85 years), the influence of n–6 fatty acids and educational 
attainment attenuated—possibly reflecting survival bias, the 
predominance of non-modifiable biological factors, or cohort 
effects. In contrast, risk profiles in men shifted with age: BMI’s 
predictive importance decreased in the 75–85 year group, while 
lifestyle (alcohol) and sociodemographic (ethnicity) factors gained 
prominence. These findings highlight the need for sex- and 
age-specific comorbidity risk assessment to guide personalized 
intervention in older adults.

The identification of specific dietary nutrition as crucial 
protective factors offers important insights for developing 
intervention strategies. Carotenoids showed strong negative SHAP 
values, suggesting they have protective effects against the 
development of DM-OP comorbidities. Carotenoids, including 
α-carotene and β-carotene, are abundant in dark-colored vegetables 
and fruits, possessing potent antioxidant properties and can 
be metabolized in the liver into vitamin A (40). A recent dose–
response meta-analysis of 13 prospective studies supports that 
higher dietary intake and circulating concentrations of total 
carotenoids, particularly β-carotene, are associated with a lower risk 
of T2DM (41). Additionally, carotenoids can reduce the risk of 
periodontitis (42), retinopathy (43), and cardiovascular events (44) 
in individuals with DM. Regarding bone health, a cross-sectional 
study in individuals over 50 years old showed that higher intake of 
β-carotene and β-cryptoxanthin is associated with a reduced risk of 
osteoporosis (45). Vitamin E has been identified as a significant 
protective factor, reinforcing its well-known antioxidant properties. 
A Swedish case–control study indicates that dietary vitamin E is 
associated with low autoantibody levels, preserved β-cell function, 
and reduced insulin resistance in latent autoimmune diabetes in 
adults (LADA), suggesting a potential protective role against 
autoimmune diabetes (46). A 12-week randomized, double-blind 
trial demonstrated that daily supplementation with 400 IU of mixed 
tocopherols significantly suppressed the rise in the bone resorption 
marker CTX in postmenopausal women with osteopenia, 
suggesting the potential of vitamin E supplementation in mitigating 
bone loss (47). Magnesium plays a vital role in glucose metabolism 
and the mineralization of bones. Several cross-sectional studies 
have found that serum magnesium levels are inversely associated 
with prediabetes, diabetes (48), and diabetic complications such as 
diabetic retinopathy (49). A recent systematic review highlighted 
that higher magnesium intake may support increased bone mineral 
density in the hip and femoral neck (50). Additionally, a cross-
sectional study revealed that magnesium deficiency has a greater 
impact on osteoporosis than vitamin D, serving as a critical 
modifiable factor associated with reduced bone mineral density and 
increased fracture risk (51). Zinc plays a crucial protective role in 
insulin signaling and bone formation. A recent cohort study 
indicated that higher zinc levels are associated with an increased 
risk of T2DM in individuals with isolated impaired glucose 
tolerance (iIGT) (52). Zinc supplementation can correct zinc 
deficiency in diabetes, lower blood glucose, improve metabolic and 
antioxidant status, and mitigate complications such as renal, ocular, 
and cardiovascular issues (53). These findings underscore the 
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potential benefits of targeted nutritional interventions that 
emphasize the consumption of antioxidant-rich foods and specific 
micronutrient supplements to enhance health outcomes in 
older populations.

Recent clinical trials have highlighted the promising 
therapeutic potential of dietary antioxidant interventions for 
addressing the comorbidity of DM-OP. Sun et  al. (54) 
demonstrated that higher CDAI scores in postmenopausal women 
are associated with a lower risk of osteoporosis, exhibiting an 
age-dependent non-linear relationship. Su et al. (55) noted that the 
anti-resorptive agent denosumab, when combined with 
antioxidant therapy, can further reduce the risk of fractures. A 
recent review emphasized the significance of iron metabolism 
dysregulation in DOP, linking it to ferroptosis, proposing that 
therapeutic strategies targeting ferroptosis, such as the use of 
antioxidants, could effectively attenuate bone loss in diabetic 
patients (56). This dual action supports bone health in DOP. These 
findings collectively suggest that dietary modifications, 
particularly the inclusion of antioxidants play a critical role in 
preventing DM-OP.

The clinical significance of our findings goes beyond merely 
predicting risk; it also encompasses practical intervention 
strategies. Our model serves as a non-invasive screening tool that 
can identify individuals at high risk by utilizing easily accessible 
demographic and dietary information. Additionally, by 
pinpointing modifiable dietary factors, we  can create targeted 
nutritional interventions tailored to individual needs. 
Furthermore, the online prediction tool we developed not only 
aids in the clinical implementation of these strategies but also 
enhances patient education about the risk factors associated 
with comorbidities.

Our study has several limitations that should be acknowledged. 
Firstly, as a fundamental limitation of this cross-sectional study, 
we cannot establish causality or determine the temporal sequence 
between dietary nutrient intake and the development of DM-OP 
comorbidity. The observed associations should be  interpreted as 
correlations rather than causal effects. Secondly, our assessment of 
dietary intake is based on 24-h recalls, which may not accurately 
reflect long-term dietary patterns and are susceptible to recall bias. 
Lastly, the model was developed using data from the U. S. NHANES, 
which may limit its applicability to other populations that have 
different dietary habits and genetic backgrounds. Furthermore, the 
diagnosis of osteoporosis was based on the WHO T-score criterion 
(≤ − 2.5), which is derived from a reference population of young 
white women. While this is a widely used standard, it may not fully 
capture osteoporosis risk across all racial/ethnic groups and in men, 
as bone mineral density baselines and fracture risk relationships 
can differ.

Future research should focus on several key areas. First, the 
prospective validation of our predictive model across diverse 
populations; second, the exploration of optimal dietary nutrient 
intake thresholds for preventing comorbidities; third, the 
development of personalized dietary intervention protocols tailored 
to individual risk profiles; fourth, the incorporation of genetic and 
metabolomic data to improve prediction accuracy; and finally, the 
assessment of the model’s clinical utility in real-world 
healthcare environments.

5 Conclusion

In conclusion, our machine learning approach effectively 
identified significant dietary nutritional factors linked to the risk 
of DM-OP comorbidity in older adults. The RF model exhibited 
outstanding predictive performance, highlighting gender, BMI, 
carotenoids, vitamin E, magnesium, and zinc as the most 
influential predictors. These results lay the groundwork for 
creating targeted nutritional interventions and clinical decision 
support tools aimed at managing comorbidity risk in 
aging populations.
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Glossary

SHAP - SHapley Additive exPlanations

NHANES - National Health and Nutrition Examination Survey

DM - diabetes mellitus

T2DM - Type 2 diabetes mellitus

OP - osteoporosis

BMI - Body mass index

DXA - dual-energy X-ray absorptiometry

MET - metabolic equivalent of task

HbA1c - glycosylated hemoglobin

PIR - poverty income ratio

25-(OH)D - 25-hydroxyvitamin D

MUFA - monounsaturated fatty acids

PUFA - polyunsaturated fatty acids

CDAI - Composite Dietary Antioxidant Index

DII - Dietary Inflammatory Index

HEI-2020 - Healthy Eating Index 2020

DASH - Dietary Approaches to Stop Hypertension

OBS - Oxidative Balance Score

SMOTE - synthetic minority oversampling technique

MLP - multilayer perceptron

SVM-RBF - support vector machine with radial basis function

AUC - area under the ROC curve

AUPRC - area under the precision-recall curve

ANOVA - analysis of variance

NRMSE - normalized root mean square error

PFC - proportion of falsely classified

ROC - Receiver Operating Characteristic
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