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Aims: To evaluate the causal determinants and their risk predictive efficacy of 
gestational diabetes mellitus (GDM) in Chinese population.
Methods: Genotyping data for candidate genetic variants were collected from 
554 cases of GDM and 641 pregnant women with normal glucose tolerance. 
The associations between these variants and GDM risk were evaluated with 
the odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). 
Multivariate Mendelian randomization (MVMR) was employed to validate the 
GDM causal factors. Subsequently, a GDM early risk prediction nomogram 
model was developed based on the key clinical and genetic factors identified.
Results: After adjusting age and pre-pregnancy BMI (pre-BMI), the rs6127416 
variant showed a significant association with susceptibility to GDM. Comparing 
the AA genotype to the TT genotype, the adjusted odds ratio (OR) was 2.20 
(95%CI = 1.53–3.18, p < 0.001), and comparing AA to TT/TA genotypes, the 
adjusted OR was 2.35 (95%CI = 1.68–3.30, p < 0.001). MVMR analysis confirmed 
the positive causal effects of pre-BMI and fasting plasma glucose (FPG) on GDM 
(pre-BMI-ORMVMR = 1.80, FPG-ORMVMR = 12.37, p < 0.001). A nomogram risk 
predictive model incorporating pre-BMI, FPG, and rs6127416 demonstrated an 
area under the ROC curve of 0.808.
Conclusion: Pre-BMI and FPG were determined to be causal factors linked to 
GDM. The prediction model constructed using key clinical and genetic variables 
(such as rs6127416-preBMI-FPG) holds promising utility for personalized risk 
assessment of GDM in the initial trimester of pregnancy, with potential to 
support early identification of high-risk women and facilitate timely lifestyle or 
clinical interventions during antenatal care.
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Introduction

Gestational diabetes (GDM) is a pregnancy-related metabolic disorder characterized by 
glucose intolerance leading to varying degrees of hyperglycemia first detected during 
pregnancy (1). It affects an estimated 2–20% of pregnant women globally, with a prevalence 
of 14.8% in China (2). GDM is associated with numerous adverse outcomes for both the 
mother and the fetus, such as polyhydramnios, infection, ketoacidosis, gestational 
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hypertension, spontaneous abortion, pre-eclampsia, preterm birth, 
small or large for gestational age, fetal macrosomia, shoulder dystocia, 
and even stillbirth (3, 4). Following delivery, most women with GDM 
typically revert to normal glucose metabolism, yet they face an 
increased risk of developing type 2 diabetes (T2DM) and 
cardiovascular ailments later in life, as do their offspring (5).

Studies have indicated that the primary pathogenic mechanisms 
observed in GDM may overlap with those present in T2DM, including 
insulin resistance, impaired insulin secretion, and aberrant glucose 
utilization (6, 7). Currently, the etiology of GDM is understood to 
be multifactorial, involving factors such as advanced maternal age, 
overweight, obesity, ethnicity, hypertension, and a family history of 
GDM or T2DM (6, 8). Research indicates that a family history of 
GDM or T2DM is associated with a higher incidence of GDM, with 
approximately 32.9% of women with a diabetes family history 
experiencing GDM, which is about three times higher than those 
without such a history (9, 10). These findings underscore the 
significant contribution of genetic factors to the pathogenesis of GDM.

Single nucleotide polymorphisms (SNPs) represent the most 
prevalent form of genetic variations in the human genome (11). These 
variations are distributed across various genomic regions, including 
exons, introns, promoters, enhancers, among others. Thus, an SNP in 
coding region may affect the amino acid sequence of the encoded 
protein, while an intronic SNP could affect splicing, and an SNP in 
promoters might alter gene expression (12, 13). Genome-wide 
association studies (GWAS), which assess allele frequency differences 
of genetic variants to uncover genotype–phenotype relationships, have 
yielded valuable genetic insights into the pathogenesis of human 
disease (14). To date, numerous SNPs with susceptibility to GDM have 
been identified. Our previous studies have substantiated a set of SNPs, 
including those in the ACE2 gene (rs6632677 and rs2074192), RXR-γ 
gene (rs2134095), XAB2 gene (rs3760675), ERBB4 gene (rs1595066), 
which exhibit significant interactions with pre pregnancy body mass 
index (pre-BMI), fasting blood glucose (FPG), and glycated 
hemoglobin (HbA1c), and impact gene expression levels. These SNPs 
have been notably linked to the risk of GDM (15–18). With the 
ongoing discovery and validation of associations between 
susceptibility genes and their SNPs in complex diseases, SNP- based 
genetic susceptibility research holds promise for elucidating the risk 
and etiological mechanisms of conditions like GDM.

Mendelian randomization (MR) has emerged as a prominent 
epidemiological approach for investigating potential causal 
relationships. This method utilizes SNPs as instrumental variables 
(IVs) to evaluate causal effects between modifiable non-genetic 
exposure factors and outcomes (19). The key strength of MR lies in its 
ability to minimize confounding effects and effectively address reverse 
causality due to the fixed nature of gene sequence (20). Consequently, 
the application of MR allows for the development of a nomogram for 
predicting GDM risk prediction based on robust causal inferences. 
The nomogram calculates a cumulative score based on the quantitative 
value of each influencing factor, determined by the magnitude of the 
regression coefficient, to assess the likelihood or risk of the event. By 
transforming the predicted probability of relevant outcome events into 
a visual representation, the nomogram facilitates easier interpretation 
and comprehension of the results (21, 22). This nomogram model has 
the potential to identify high-risk pregnant women with GDM at an 
early stage and facilitate the implementation of targeted prevention 
and management strategies accordingly (23).

In this study, we aim to undertake a comprehensive case–control 
study on a large scale to validate the relationship between genetic variants 
identified through GWAS and the occurrence of GDM in the southern 
Chinese population. We intend to develop an integrated personalized 
nomogram model by amalgamating significantly associated SNPs with 
clinically confirmed genetic causal factors through MR. This model will 
be utilized for early pregnancy risk prediction of GDM in women.

Materials and methods

Study population

In the initial discovery phase, a genome-wide association study 
(GWAS) was conducted to identify GDM-associated SNPs (GDM-
SNPs). The study included 96 GDM patients and 96 age- and pre-BMI-
matched healthy pregnant women, all recruited during the same 
period, using the Infinium Asian Screening Array (ASA, Illumina) 
BeadChip.

For the validation phase, a total of 1,195 singleton pregnant 
women (554 GDM patients and 641 healthy controls) with similar 
characteristics were enrolled at the Affiliated Hospital of Guilin 
Medical University between September 2014 and April 2016 for 
genotyping of candidate SNPs. GDM was based on the criteria of the 
75 g oral glucose tolerance test (OGTT) conducted at 24–28 weeks of 
gestation, with fasting plasma glucose (FPG) ≥ 5.1 mmol/L or 1-h 
plasma glucose (1hPG) ≥ 10.0 mmol/L, or 2hPG ≥ 8.5 mmol/L as per 
the guidelines established by the International Association of Diabetes 
and Pregnancy Study Group (IADPSG) (24).

Subjects meeting the following inclusion criteria were enrolled: 
residency in the Guilin area for over 2 years, singleton pregnancy, and 
absence of close familial ties. Exclusion criteria encompassed 
pregnancies with endocrine disorders, severe systemic illnesses, a 
history of pre-existing type 1 or type 2 diabetes mellitus, or prolonged 
use of medications affecting glucose metabolism prior to pregnancy. 
A flow diagram detailing the participant inclusion process has been 
provided as Supplementary Figure  1. Approval of this research 
protocol was obtained from the Ethics Committee of Guilin 
Medical University.

Clinical and biochemical characteristics

Clinical data of the subjects was collected using a standardized 
questionnaire and medical records, encompassing age, height, weight, 
systolic pressure (SBP), diastolic blood pressure (DBP), FPG, 1hPG, 
2hPG, glycosylated hemoglobin (HbA1c), triglyceride (TG), total 
cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and 
low-density lipoprotein cholesterol (LDL-c), etc. Besides, the 
pre-pregnancy body mass index (pre-BMI) was calculated as weight 
(kg)/height (m)2.

Genomic DNA extraction, variants 
selection, and genotyping

The genomic DNA was extracted from EDTA-treated peripheral 
whole blood using a DNA extraction kit (Aidlab Biotechnologies Co., 
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Ltd., China) and stored at −80 °C. Candidate functional SNPs were 
identified based on our prior analysis using the Infinium Asian 
Screening Array (ASA) BeadChip, with selection criteria set at a 
significance level of p ≤ 5*10−4. Subsequently, SNP Function 
Prediction (FuncPred) tool1 was employed to screen for potential 
functional variants in the Chinese Han population in Beijing (CHB) 
with minimum allele frequencies exceeding 0.5.

The SNP was genotyped by the Sequenom MassARRAY platform. 
The PCR mix consisted of 1.0 μL of template DNA (20 ~ 100 ng/μL), 
1.850 μL of ddH2O, 0.625 μL of 1.25 × PCR buffer (15 mmol/L 
MgCl2), 0.325 μL of 25 mmol/L MgCl2, 0.1 μL of 25 mmol/L dNTPs, 
1 μL of 0.5 μmol/L primer mix, and 0.1 μL of 5 U/μL HotStar Taq 
polymerase. The PCR cycling conditions included an initial 
denaturation at 94 °C for 15 min, followed by 45 cycles of denaturation 
at 94 °C for 20 s, annealing at 56 °C for 30 s, extension at 72 °C for 
1 min, and a final extension at 72 °C for 3 min. Finally, the original 
data and genotyping plots were generated using TYPER 4.0 software.

Statistical analysis

The data analysis was conducted using IBM SPSS Statistics 28 for 
Windows (IBM Corp., Armonk, NY, United  States) and R 4.3.1 
software. Hardy–Weinberg equilibrium was detected by a χ2 goodness-
of-fit test. The independent samples t-tests were employed to compare 
the distribution differences of clinical and biochemical variables 
between cases and controls, presented as the mean ± sd. The odds 
ratios (ORs) and their corresponding 95% confidence intervals (CIs) 
were calculated to evaluate the association between variants and GDM 
risk. Statistical significance was set at a two-sided p < 0.05. Stratified 
analysis was conducted to evaluate the association between positive 
SNP and GDM risk among different subgroups, categorized by the 
mean value of variables. Additionally, false-positive reporting 
probability (FPRP) analysis was utilized to address chance associations 
that could potentially lead to false-positive association findings.

Given the observed interaction between clinical factors (pre-BMI, 
DBP, FPG, and HbA1c) and genetic variants in the study, 
we  hypothesized that they potentially influence the risk of 
GDM. Consequently, both univariate and multivariate MR analyses 
were performed. Exposure data were extracted from the IEU Open 
GWAS project2 with the following GWAS IDs: BMI (ukb-b-19953), 
DBP (ebi-a-GCST90018952), FPG (ebi-a-GCST90002232), and 
HbA1c (ieu-b-4842), while outcome data were obtained from 
FinnGen Consortium (GWAS ID: finngen_R10_GEST_DIABETES). 
Detailed information regarding the data sources is provided in 
Supplementary Table 1.

We identified independent single-nucleotide polymorphisms 
with low linkage disequilibrium (r2 < 0.001) that showed significant 
associations with exposure factors (p < 5 × 10−8) and calculated the 
F-statistic using the equation F-statistic = beta2/se2 (19), where an 
F-statistic>10 indicated adequate instrument strength. The primary 
MR analysis was conducted using the inverse variance weighting 
(IVW) method. Additional sensitivity analyses were performed using 

1  http://manticore.niehs.nih.gov/snpinfo/snpfunc.html

2  https://gwas.mrcieu.ac.uk/

the MR-Egger, weighted median, simple mode and weighted mode 
(25). Heterogeneity and pleiotropy were assessed by Cochran’s Q 
statistics and MR Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) methods. The directional validity of the causal 
relationships between exposure and outcome was assessed using the 
MR-Steiger test (26). Additionally, multivariate MR (MVMR) was 
conducted to assess whether confounding factors influenced the 
causal relationship between validaexposure and outcome. All 
statistical analyses were carried out using R (v4.3.1) with the R 
packages “TwoSampleMR,” “MR-PRESSOR,” and 
“MendelianRandomization.” A detailed flowchart illustrating this 
complete MR analysis pipeline has been provided as 
Supplementary Figure 2.

A predictive nomogram integrating clinical risk factors and 
positive SNPs was developed to assess the risk of GDM. Scores 
corresponding to each risk factor were aggregated to derive a total 
score, facilitating risk evaluation. The subjects were randomly divided 
into training and validation sets at a ratio of 7:3. Receiver operating 
characteristic (ROC) curves and calibration plots were generated, and 
sensitivity and specificity were calculated to evaluate the predictive 
ability of the nomogram. Meanwhile, decision curve analysis (DCA) 
was performed to evaluate the clinical utility and benefit of the 
nomogram. The analyses were conducted using R packages (v4.3.3).

Results

Patient characteristics

The characteristics of the subjects are presented in Table 1. In 
cases of GDM, the age, pre-BMI, SBP, DBP, FPG, 1hPG, 2hPG, HbAlc, 
TG were significantly higher compared to those in healthy pregnancies 
(p < 0.001).

Genotype distribution of the studied 
variants

The frequency distribution of rs6127416 followed the Hardy 
Weinberg equilibrium law (PHWE > 0.05). Significantly different 
genotype distributions of rs6127416 were observed between GDM 
patients and controls (p < 0.001). Following adjustment for age and 
pre-pregnancy BMI, rs6127416 exhibited a significant association with 
the risk of GDM. Compared to the TT genotype, rs6127416 AA 
showed a substantial increase in the risk of GDM (adjusted OR = 2.20, 
95%CI = 1.53–3.18, p < 0.001). In the recessive model, in comparison 
to TT/TA genotypes, the AA genotype also demonstrated a 
pronounced effect on the susceptibility to GDM (adjusted OR = 2.35, 
95%CI = 1.68–3.30, p < 0.001). These findings are summarized in 
Table 2.

Stratified analysis was employed to investigate the association 
between rs6127416 and GDM risk using the recessive model. The AA 
genotype of rs6127416 was found to significantly elevate the risk of 
GDM in all subgroups, with the exception of individuals with FPG 
levels >4.79 mmol/L. Interestingly, notable interactive effects were 
observed between the genetic loci rs6127416 and pre-BMI 
(Pinteraction = 0.022), DBP (Pinteraction = 0.039), FPG (Pinteraction < 0.001), and 
HbA1c (Pinteraction < 0.001) (Table 3).
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FPRP analysis

The false-positive reporting probability (FPRP) analysis was 
employed to validate the robustness of the statistically significant 
associations between variants and GDM risk, employing a predefined 
FPRP cutoff value of 0.2 and a prior probability level of 0.1. 
Associations with FPRP values <0.2 were considered genuine. 
Subsequently analysis indicated that the association between 
rs6127416 and GDM risk in subjects with AA genotype compared to 
TT, AA compared to TT/TA, age ≤ 30.09 years, pre-BMI ≤ 22.23 Kg/
m2, SBP > 110.08 mmHg, DBP, FPG ≤ 4.79 mmol/L, 
2hPG ≤ 7.11 mmol/L, HbAlc ≤ 5.20%, and TG appeared to 
be genuine. Other positive associations observed should be interpreted 
with caution, as they may have been obtained by chance, as detailed 
in Table 4.

Causal effect of clinical indicators on GDM

Based on the established screening criteria, a total of 428 SNPs 
predicting BMI, 186 SNPs predicting DBP, 55 SNPs predicting FPG, 
and 30 SNPs predicting HbA1c were included for MR analysis in this 
study (Table  5). Each set of SNPs associated with the respective 
exposure variables exhibited adequate instrument strength, with 
F-statistics exceeding 10.

The IVW random effects model was employed as the primary 
method for MR analysis due to the detection of heterogeneity in the 
study through Cochran’s Q statistics (Pheterogeneity < 0.05). The results 
showed a significant causal association between BMI, FPG and HbA1c 
with GDM (ORBMI = 1.75, 95% CI: 1.60–1.92, p < 0.001; 
ORFPG = 4.92, 95% CI: 3.67–6.59, p < 0.001; ORHbA1c = 1.30, 95% 
CI: 1.11–1.52, p = 0.001) (Table 5 and Figures 1A–F). Reciprocal MR 
analyses, including MR-Egger, weighted median, simple mode and 
weighted mode, consistently supported the direction of effect in the 
causal estimation of BMI and FPG, and GDM. The MR-PRESSO 
global test indicated no evidence of horizontal pleiotropy in the 
identified associations (p > 0.05) (Table 5). Symmetrical funnel plots 
suggested the reliability of the MR analyses (Figures  2B,D,F). 

Leave-one-out analysis indicated that the observed causal findings 
were not influenced by any single SNP (Figures 2A,C,E). Results from 
the MR-Steiger directionality test demonstrated that the correctness 
of the directions of causal inference (Table 6). However, there was no 
evidence of causal associations between DBP and GDM (Table 5).

In multivariable MR analysis, IVW method indicated persistent 
positive causal associations of BMI (ORBMI = 1.80, 95%CI: 1.56–2.09, 
p < 0.001), and FPG (ORFPG = 12.37, 95% CI: 9.25–16.54, p < 0.001) 
with GDM risk. However, the causal association of HbA1c with GDM 
was no longer statistically significant after adjusting for BMI, FPG, and 
DBP (Figure 3).

Nomogram model construction

Finally, three risk factors were identified for nomogram 
construction, including pre-BMI, FPG, and the recessive model of 
rs6127416, as illustrated in Figure 4A. The area under the ROC curve 
(AUC) was 0.808  in the training set and 0.794  in the testing set, 
indicating a strong predictive and discriminatory performance 
(Figure 4B). Calibration curves displayed minimal deviation between 
nomogram predictions and actual observations in both the training 
and testing sets, confirming a good fit of the model (Figure 4C). DCA 
revealed that the model curves for various risk threshold probabilities 
surpassed the reference lines (“treat all” or “treat none”), indicating a 
favorable net clinical benefit of the nomogram model in both the 
training and testing sets (Figure 4D).

Discussion

GDM represents one of the most prevalent complications during 
pregnancy, drawing substantial attention due to its detrimental impact 
on the health of both mothers and offspring in the short and long 
term. Despite significant advancements in understanding the 
susceptibility mechanisms of GDM, a comprehensive comprehension 
remains elusive. Recent investigations utilizing candidate gene studies 
and GWAS have identified numerous potential risk SNPs, highlighting 

TABLE 1  Demographic and clinical characteristics in cases and controls.

Variables GDM (n = 554) Controls (n = 640) t P

Age (years) 31.55 ± 4.76 28.83 ± 4.13 10.44 <0.001

Pre-pregnancy BMI (Kg/m2) 23.14 ± 3.61 21.44 ± 3.00 8.72 <0.001

SBP (mmHg) 111.61 ± 10.59 108.76 ± 9.38 4.89 <0.001

DBP (mmHg) 70.51 ± 8.74 68.68 ± 7.90 3.78 <0.001

FPG (mmol/L) 5.22 ± 1.33 4.41 ± 0.37 13.96 <0.001

1hPG (mmol/L) 9.76 ± 2.25 6.96 ± 1.43 25.3 <0.001

2hPG (mmol/L) 8.30 ± 2.17 6.08 ± 1.10 21.85 <0.001

HbA1c (%) 5.44 ± 0.68 5.00 ± 0.48 12.62 <0.001

TG (mmol/L) 2.67 ± 1.20 2.43 ± 1.01 3.82 <0.001

TC (mmol/L) 5.37 ± 1.15 5.29 ± 1.07 1.3 0.194

HDL-c (mmol/L) 1.66 ± 0.42 1.65 ± 0.40 0.31 0.756

LDL-c (mmol/L) 3.49 ± 1.02 3.45 ± 1.01 0.68 0.496

SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; 1hPG, 1-h plasma glucose; 2hPG, 2-h plasma glucose; HbA1c, Hemoglobin A1c; TG, Triglyceride; TC, 
Total cholesterol; HDL-c, High-Density Lipoprotein cholesterol; LDL-c, Low-Density Lipoprotein Cholesterol.
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the genetic predisposition associated with GDM (6, 27). The 
development of GDM is affected by a complex interplay of genetic 
variants, diverse environmental exposures, and their interactions. In 
this study, we explored the genetic and environmental causal factors 
related to GDM and successfully constructed an individualized GDM 

risk prediction model. This endeavor offers valuable insights for the 
identification and early intervention of high-risk populations 
susceptible to GDM (28).

This study provides evidence supporting the strong association 
between the genetic variant rs6127416 and the risk of GDM in a 

TABLE 2  Positive association analysis of genetic variants with GDM risk.

Genotype Case Control Pa Crude OR 
(95%CI)

Pb Adjusted OR
(95%CI)

Pc

rs6127416

TT 200 256

<0.001

1 1

TA 231 312 0.95 (0.74–1.22) 0.675 0.89 (0.68–1.16) 0.377

AA 123 73 2.16 (1.53–3.04) <0.001 2.20 (1.53–3.18) <0.001

TA/AA 354 385 1.18 (0.93–1.49) 0.174 1.13 (0.88–1.45) 0.343

TT/TA 431 568 1 1

AA 123 73 2.22 (1.62–3.04) <0.001 2.35 (1.68–3.30) <0.001

aGenotype distribution difference tested by c2. bUnconditional logistic regression analysis. cAdjusted for age, pre-BMI in logistic regression models. P < 0.05 was statistical significance.

TABLE 3  Stratification analysis for associations between rs6127416 and GDM risk.

Variables AA (case/
control)

TT/TA (case/
control)

Crude OR 
(95%CI)

Pa Adjusted OR 
(95%CI)

Pb Pc

Age (year) 0.395

 � ≤30.09 55/52 194/397 2.16 (1.43–3.28) 0.000 2.36 (1.52–3.65) 0.000

 � >30.09 68/21 237/170 2.32 (1.37–3.94) 0.002 2.36 (1.38–4.05) 0.002

Pre-BMI (Kg/m2) 0.022

 � ≤22.23 62/56 181/377 2.31 (1.54–3.45) 0.000 2.22 (1.46–3.39) 0.000

 � >22.23 61/17 249/189 2.72 (1.54–4.82) 0.001 2.74 (1.53–4.92) 0.001

SBP (mmHg) 0.490

 � ≤110.08 56/44 210/328 1.99 (1.29–3.06) 0.002 1.94 (1.23–3.07) 0.005

 � >110.08 67/29 221/239 2.50 (1.56–4.01) 0.000 2.92 (1.76–4.85) 0.000

DBP (mmHg) 0.039

 � ≤69.53 57/36 214/306 2.26 (1.44–3.56) 0.000 2.26 (1.41–3.64) 0.001

 � >69.53 66/37 217/261 2.15 (1.38–3.33) 0.001 2.51 (1.55–4.05) 0.000

FPG (mmol/L) <0.001

 � ≤4.79 55/62 161/503 2.77 (1.85–4.15) 0.000 2.99 (1.94–4.59) 0.000

 � >4.79 68/11 270/64 1.47 (0.73–2.93) 0.280 1.48 (0.72–3.03) 0.289

1h-PG (mmol/L) 0.099

 � ≤8.26 26/58 102/449 1.97 (1.19–3.29) 0.009 1.84 (1.08–3.13) 0.026

 � >8.26 97/15 329/118 2.32 (1.30–4.16) 0.005 2.74 (1.50–5.00) 0.001

2h-PG (mmol/L) 0.497

 � ≤7.11 36/61 120/469 2.31 (1.46–3.65) 0.000 2.18 (1.34–3.54) 0.002

 � >7.11 87/12 311/98 2.29 (1.20–4.35) 0.012 2.73 (1.41–5.31) 0.003

HbA1c (%) <0.001

 � ≤5.20 52/59 148/416 2.48 (1.63–3.76) 0.000 2.42 (1.57–3.72) 0.000

 � >5.20 71/14 283/151 2.71 (1.48–4.96) 0.001 3.05 (1.62–5.75) 0.001

TG (mmol/L) 0.159

 � ≤2.54 68/47 221/354 2.32 (1.54–3.49) 0.000 2.21 (1.43–3.43) 0.000

 � >2.54 55/26 210/213 2.15 (1.30–3.55) 0.003 2.60 (1.52–4.44) 0.000

aUnconditional logistic regression analysis, badjusted for age, pre-BMI in logistic regression models, cTest for multiplicative interaction obtained from logistic regression models.
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southern Chinese population, emphasizing the role of SNPs in the 
genetic predisposition to GDM. Furthermore, stratified analysis 
revealed varying effects of the SNP rs6127416 on clinical parameters 
across different subgroups. Significant interactions were also observed 
between SNPs and multiple clinical variables, such as pre-BMI, DBP 
and HbA1c. Additionally, Huang X et al’s study also suggested that 
genetic variants (LINGO2 rs10968576, rs1412239, GLIS3 rs10814916) 
could potentially diminish the protective properties of O3 against anti-
inflammatory responses, which may confer some level of protection 
against GDM (29). These results collectively highlight the combined 
impact of genetic variants, environmental factors, and clinical 
indicators on individual susceptibility to GDM, indicating potential 
modifying or interactive effects.

FPRP analysis suggested that the association detected between 
rs6127416 in recessive genetic model and GDM risk within certain 
subgroups is robust and reliable. However, FPRP values in other 
subgroups exceeded 0.2, suggesting that these associations may have 
been obtained by chance and should be interpreted cautiously.

The MR methods confirmed the causal relationship between 
clinical indicators (pre-BMI, FPG) and GDM. Due to the unknown 
biological function of genetic variant, we cannot entirely eliminate 
the potential influence of horizontal pleiotropy. To ensure the 
accuracy of this causal inference, we evaluated potential pleiotropy 
using MR-PRESSO, which revealed no evidence of horizontal 
pleiotropy (p  > 0.05). Results underscore the role of lipid 
metabolism disturbances in glucose homeostasis. Obesity 

TABLE 4  FPRP analysis of the significant associations and GDM risk.

Comparisons Adjusted OR 
(95%CI)

Adjusted 
p-value

Prior probability

0.25 0.1 0.01 0.001 0.0001 0.00001

rs6127416

AA vs. TT 2.20 (1.53–3.18) 0.000024 0.004 0.011 0.109 0.553 0.925 0.992

AA vs. TT/TA 2.35 (1.68–3.30) 0.000001 0.001 0.004 0.040 0.294 0.806 0.977

Subgroup

Age (years)

 � ≤30.09 2.36 (1.52–3.65) 0.000117 0.016 0.047 0.353 0.847 0.982 0.998

 � >30.09 2.36 (1.38–4.05) 0.002000 0.102 0.254 0.790 0.974 0.997 1.000

pre-BMI (Kg/m2)

 � ≤22.23 2.22 (1.46–3.39) 0.000209 0.018 0.053 0.381 0.861 0.984 0.998

 � >22.23 2.74 (1.53–4.92) 0.001000 0.101 0.253 0.788 0.974 0.997 1.000

SBP (mmHg)

 � ≤110.08 1.94 (1.23–3.07) 0.005000 0.096 0.242 0.778 0.973 0.997 1.000

 � >110.08 2.92 (1.76–4.85) 0.000034 0.020 0.058 0.404 0.873 0.986 0.999

DBP (mmHg)

 � ≤69.53 2.26 (1.41–3.64) 0.001000 0.054 0.147 0.654 0.950 0.995 0.999

>69.53 2.51 (1.55–4.05) 0.000181 0.028 0.080 0.490 0.907 0.990 0.999

FPG (mmol/L)

 � ≤4.79 2.99 (1.94–4.59) 0.000001 0.002 0.006 0.065 0.413 0.875 0.986

1hPG (mmol/L)

 � ≤8.26 1.84 (1.08–3.13) 0.026000 0.251 0.502 0.917 0.991 0.999 1.000

 � >8.26 2.74 (1.50–5.00) 0.001000 0.109 0.269 0.802 0.976 0.998 1.000

2hPG (mmol/L)

 � ≤7.11 2.18 (1.34–3.54) 0.002000 0.076 0.197 0.730 0.965 0.996 1.000

 � >7.11 2.73 (1.41–5.31) 0.003000 0.191 0.415 0.886 0.987 0.999 1.000

HbA1c (%)

 � ≤5.20 2.42 (1.57–3.72) 0.000062 0.012 0.035 0.283 0.800 0.976 0.998

 � >5.20 3.05 (1.62–5.75) 0.001000 0.126 0.302 0.826 0.980 0.998 1.000

TG (mmol/L)

 � ≤2.54 2.21 (1.43–3.43) 0.000383 0.028 0.078 0.483 0.904 0.990 0.999

 � >2.54 2.60 (1.52–4.44) 0.000457 0.059 0.159 0.676 0.955 0.995 1.000
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TABLE 5  The significant causal associations of clinical indicators with GDM.

Outcome Exposure Method Number of 
SNPs

β SE OR 
(95%CI)

P-value Heterogeneity test Pleiotropy 
test

MR egger IVW MR-
PRESSO

Q P value Q P value P Global Test

GDM

BMI

IVW 428 0.561 0.047 1.75 (1.60–1.92) <0.001

636.70 <0.001 638.68 <0.001 0.250

MR egger 428 0.701 0.131 2.02 (1.56–2.61) <0.001

Weighted 

median
428 0.672 0.071 1.96 (1.70–2.25) <0.001

Simple mode 428 0.622 0.246 1.86 (1.15–3.02) 0.012

Weighted mode 428 0.728 0.132 2.07 (1.60–2.68) <0.001

FPG

IVW 55 1.593 0.149 4.92 (3.67–6.59) <0.001

124.31 <0.001 126.55 <0.001 0.332

MR egger 55 1.347 0.293 3.85 (2.17–6.82) <0.001

Weighted 

median
55 1.355 0.204 3.88 (2.60–5.79) <0.001

Simple mode 55 2.339 0.520
10.37 (3.75–

28.71)
<0.001

Weighted mode 55 1.117 0.193 3.05 (2.09–4.46) <0.001

HbA1c

IVW 30 0.261 0.081 1.30 (1.11–1.52) 0.001

121.62 <0.001 124.66 <0.001 0.410

MR egger 30 0.132 0.174 1.14 (0.81–1.61) 0.457

Weighted 

median
30 0.029 0.069 1.03 (0.90–1.18) 0.670

Simple mode 30 −0.022 0.100 0.98 (0.80–1.19) 0.827

Weighted mode 30 −0.022 0.072 0.98 (0.85–1.13) 0.762

DBP

IVW 186 0.024 0.070 1.02 (0.89–1.18) 0.730

259.62 <0.001 264.47 <0.001 0.065

MR egger 186 −0.362 0.220 0.70 (0.45–1.07) 0.101

Weighted 

median
186 0.029 0.096 1.03 (0.85–1.24) 0.763

Simple mode 186 0.118 0.296 1.13 (0.63–2.01) 0.690

Weighted mode 186 0.044 0.274 1.04 (0.61–1.79) 0.873

IVW, inverse variance weighting; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier.
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FIGURE 1

Forest plots of univariate mendelian randomization (UVMR) results and scatter plots estimating the causal effect of clinical indicators on GDM. (A,B) 
Forest plot and scatter plot for the causal effect of BMI. (C,D) Forest plot and scatter plot for the causal effect of FPG. (E,F) Forest plot and scatter plot 
for the causal effect of HbA1c.
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FIGURE 2

Sensitivity analysis for UVMR through leave-one-out analysis and funnel plot. (A,B) The leave-one-out plot and funnel plot of MR estimates for BMI 
associated with GDM. (C,D) The leave-one-out plot and funnel plot of MR estimates for FPG associated with GDM. (E,F) The leave-one-out plot and 
funnel plot of MR estimates for HbA1c associated with GDM.
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contributes to heightened plasma free fatty acid (FFA) and elevated 
triglycerides, leading to intracellular lipid accumulation in 
non-adipose cells (30). Ectopic lipid accumulation in these cells can 
induce insulin resistance through inflammatory mediators and 
oxidative stress pathways (31, 32). Ultimately, this cascade can lead 
to disruptions in glucose metabolism. Therefore, preventive 
measures targeting pre-pregnancy obesity are crucial in mitigating 
the incidence of GDM.

Taken together, our case–control and MR analyses collectively 
demonstrate that pre-pregnancy adiposity and elevated FPG are causal 
risk factors for GDM. Results also suggest causal factors of GDM are 
modified through lifestyle interventions. Additionally, Our MR 
analyses revealed that the significant association between HbA1c and 
GDM observed in univariate analysis did not persist in multivariable 
models. This suggests that HbA1c is likely to serve as a biomarker of 
underlying dysglycemia rather than an independent causal factor in 
GDM development.

A nomogram represents a mathematical model that visually 
and comprehensively assesses the risk of a disease, offering a 
practical approach to estimating the likelihood of clinical events. 
Essentially, the construction of a predictive model acts as a crucial 
link between clinical epidemiology or molecular epidemiology 
and clinical practice (33, 34). In this study, validated SNPs 
significantly associated with GDM and clinical indicators (pre-
BMI, FPG) were integrated to construct a nomogram model for 
predicting GDM risk. The calibration curve demonstrated a close 
fit to the ideal curve, indicating good model accuracy. The ROC 
curve illustrated the strong predictive capability of this model, 
while DCA highlighted its promising clinical utility. The 

developed nomogram offers a practical tool for early-risk 
stratification, potentially integrated into first-trimester care via 
digital calculators or clinical sheets. Focusing on women at highest 
predicted risk (top  20%) may facilitate early intervention and 
preventive efforts.

However, this study still has certain limitations that warrant 
consideration. Firstly, while certain potential confounding factors 
were accounted for, the absence of data regarding diet, physical 
activity, smoking status, parity, poor obstetrics, malnutrition, and 
socioeconomic factors, and other relevant variables may introduce 
bias and affect the accuracy of the associations between genetic 
variants and GDM risk. Secondly, being a hospital-based case–
control study, inherent selection bias in subject recruitment and 
data collection processes cannot be overlooked. Thirdly, despite the 
relatively large sample size, the limited frequency of genotypes 
assessed in the studied variants may restrict the statistical 
robustness of the analysis. Finally, the validation cohort was 
obtained from a random split of the original cohort, which may 
potentially affect the independence and reliability of the validation 
results. Independent external validation should be incorporated in 
future studies to better confirm the model and improve its 
practical value.

In conclusion, this study confirms the substantial impact of 
genetic and environmental factors on the development of GDM. The 
clinical indicators, particularly pre-BMI and FPG, exhibit significant 
positive causal effects on GDM. The integration of key genetic SNPs 
and clinical indicators, such as rs6127416, pre-BMI, FPG, in a 
predictive model enables the effective differentiation of individual 
GDM risk during early pregnancy.

TABLE 6  MR Steiger directionality test for causal direction.

Exposure Outcome snp_r2.exposure snp_r2.outcome Causal direction P value

BMI GDM 0.058 2.8 × 10–3 TRUE <0.001

FPG GDM 0.026 1.30 × 10–3 TRUE <0.001

HbA1c GDM 0.069 5.58 × 10–4 TRUE <0.001

FPG GDM 0.030 8.73 × 10–4 TRUE <0.001

The variance in the outcome (snp_r2.outcome) was less than each exposure (snp_r2.exposure), indicating the causal directions that exposures cause outcome were correct.

FIGURE 3

The forest plot performs the findings of the multivariate mendelian randomization (MVMR) analyses on the causal effects of clinical indicators (BMI, 
FPG, HbA1c, and DBP) on GDM using IVW method. Steiger test confirms the correctness of the causal directions indicating that exposure leads to the 
outcome.
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FIGURE 4

The establishment and validation of a nomogram model in predicting GDM risk. (A) A nomogram model for predicting the risk of GDM, constructed by 
pre-BMI, FPG, rs6127416. (B) The area under the receiver operating characteristic curve (ROC) in the training group and validation group. 
(C) Calibration plot of nomogram in the training group and validation group. (D) The decision curve analysis (DCA) in the training group and validation 
group.
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