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Causal inference and risk
prediction of gestational diabetes
mellitus based on case—control
study and Mendel randomization

Ruigi Li"", Yan Sun®, Qiulian Liang?’, Xinyu He?, Lijie Nie'*,
Jian Huang?* and Xiangyuan Yu®**

The School of Public Health, Guilin Medical University, Guilin, China, ?Institute of Biomedical
Research, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China,
3Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China

Aims: To evaluate the causal determinants and their risk predictive efficacy of
gestational diabetes mellitus (GDM) in Chinese population.

Methods: Genotyping data for candidate genetic variants were collected from
554 cases of GDM and 641 pregnant women with normal glucose tolerance.
The associations between these variants and GDM risk were evaluated with
the odds ratios (ORs) and their corresponding 95% confidence intervals (Cls).
Multivariate Mendelian randomization (MVMR) was employed to validate the
GDM causal factors. Subsequently, a GDM early risk prediction nomogram
model was developed based on the key clinical and genetic factors identified.
Results: After adjusting age and pre-pregnancy BMI (pre-BMI), the rs6127416
variant showed a significant association with susceptibility to GDM. Comparing
the AA genotype to the TT genotype, the adjusted odds ratio (OR) was 2.20
(95%Cl = 1.53-3.18, p < 0.001), and comparing AA to TT/TA genotypes, the
adjusted OR was 2.35 (95%Cl = 1.68-3.30, p < 0.001). MVMR analysis confirmed
the positive causal effects of pre-BMI and fasting plasma glucose (FPG) on GDM
(pre-BMI-ORuymr = 1.80, FPG-ORuywr = 12.37, p <0.001). A nomogram risk
predictive model incorporating pre-BMI, FPG, and rs6127416 demonstrated an
area under the ROC curve of 0.808.

Conclusion: Pre-BMI and FPG were determined to be causal factors linked to
GDM. The prediction model constructed using key clinical and genetic variables
(such as rs6127416-preBMI-FPG) holds promising utility for personalized risk
assessment of GDM in the initial trimester of pregnancy, with potential to
support early identification of high-risk women and facilitate timely lifestyle or
clinical interventions during antenatal care.

KEYWORDS

gestational diabetes mellitus, genetic variant, Mendelian randomization, causal
factors, nomogram model

Introduction

Gestational diabetes (GDM) is a pregnancy-related metabolic disorder characterized by
glucose intolerance leading to varying degrees of hyperglycemia first detected during
pregnancy (1). It affects an estimated 2-20% of pregnant women globally, with a prevalence
of 14.8% in China (2). GDM is associated with numerous adverse outcomes for both the
mother and the fetus, such as polyhydramnios, infection, ketoacidosis, gestational

01 frontiersin.org


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1665813&domain=pdf&date_stamp=2025-11-03
https://www.frontiersin.org/articles/10.3389/fnut.2025.1665813/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1665813/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1665813/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1665813/full
mailto:huangjian@glmc.edu.cn
mailto:Guilinxiangyuan123@163.com
mailto:875626703@qq.com
https://doi.org/10.3389/fnut.2025.1665813
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1665813

Lietal.

hypertension, spontaneous abortion, pre-eclampsia, preterm birth,
small or large for gestational age, fetal macrosomia, shoulder dystocia,
and even stillbirth (3, 4). Following delivery, most women with GDM
typically revert to normal glucose metabolism, yet they face an
increased risk of developing type 2 diabetes (T2DM) and
cardiovascular ailments later in life, as do their offspring (5).

Studies have indicated that the primary pathogenic mechanisms
observed in GDM may overlap with those present in T2DM, including
insulin resistance, impaired insulin secretion, and aberrant glucose
utilization (6, 7). Currently, the etiology of GDM is understood to
be multifactorial, involving factors such as advanced maternal age,
overweight, obesity, ethnicity, hypertension, and a family history of
GDM or T2DM (6, 8). Research indicates that a family history of
GDM or T2DM is associated with a higher incidence of GDM, with
approximately 32.9% of women with a diabetes family history
experiencing GDM, which is about three times higher than those
without such a history (9, 10). These findings underscore the
significant contribution of genetic factors to the pathogenesis of GDM.

Single nucleotide polymorphisms (SNPs) represent the most
prevalent form of genetic variations in the human genome (11). These
variations are distributed across various genomic regions, including
exons, introns, promoters, enhancers, among others. Thus, an SNP in
coding region may affect the amino acid sequence of the encoded
protein, while an intronic SNP could affect splicing, and an SNP in
promoters might alter gene expression (12, 13). Genome-wide
association studies (GWAS), which assess allele frequency differences
of genetic variants to uncover genotype—phenotype relationships, have
yielded valuable genetic insights into the pathogenesis of human
disease (14). To date, numerous SNPs with susceptibility to GDM have
been identified. Our previous studies have substantiated a set of SNPs,
including those in the ACE2 gene (16632677 and rs2074192), RXR-y
gene (rs2134095), XAB2 gene (rs3760675), ERBB4 gene (rs1595066),
which exhibit significant interactions with pre pregnancy body mass
index (pre-BMI), fasting blood glucose (FPG), and glycated
hemoglobin (HbA1c), and impact gene expression levels. These SNPs
have been notably linked to the risk of GDM (15-18). With the
ongoing discovery and validation of associations between
susceptibility genes and their SNPs in complex diseases, SNP- based
genetic susceptibility research holds promise for elucidating the risk
and etiological mechanisms of conditions like GDM.

Mendelian randomization (MR) has emerged as a prominent
epidemiological approach for investigating potential causal
relationships. This method utilizes SNPs as instrumental variables
(IVs) to evaluate causal effects between modifiable non-genetic
exposure factors and outcomes (19). The key strength of MR lies in its
ability to minimize confounding effects and effectively address reverse
causality due to the fixed nature of gene sequence (20). Consequently,
the application of MR allows for the development of a nomogram for
predicting GDM risk prediction based on robust causal inferences.
The nomogram calculates a cumulative score based on the quantitative
value of each influencing factor, determined by the magnitude of the
regression coeflicient, to assess the likelihood or risk of the event. By
transforming the predicted probability of relevant outcome events into
a visual representation, the nomogram facilitates easier interpretation
and comprehension of the results (21, 22). This nomogram model has
the potential to identify high-risk pregnant women with GDM at an
early stage and facilitate the implementation of targeted prevention
and management strategies accordingly (23).
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In this study, we aim to undertake a comprehensive case-control
study on a large scale to validate the relationship between genetic variants
identified through GWAS and the occurrence of GDM in the southern
Chinese population. We intend to develop an integrated personalized
nomogram model by amalgamating significantly associated SNPs with
clinically confirmed genetic causal factors through MR. This model will
be utilized for early pregnancy risk prediction of GDM in women.

Materials and methods
Study population

In the initial discovery phase, a genome-wide association study
(GWAS) was conducted to identify GDM-associated SNPs (GDM-
SNPs). The study included 96 GDM patients and 96 age- and pre-BMI-
matched healthy pregnant women, all recruited during the same
period, using the Infinium Asian Screening Array (ASA, Illumina)
BeadChip.

For the validation phase, a total of 1,195 singleton pregnant
women (554 GDM patients and 641 healthy controls) with similar
characteristics were enrolled at the Affiliated Hospital of Guilin
Medical University between September 2014 and April 2016 for
genotyping of candidate SNPs. GDM was based on the criteria of the
75 g oral glucose tolerance test (OGTT) conducted at 24-28 weeks of
gestation, with fasting plasma glucose (FPG) > 5.1 mmol/L or 1-h
plasma glucose (1hPG) > 10.0 mmol/L, or 2hPG > 8.5 mmol/L as per
the guidelines established by the International Association of Diabetes
and Pregnancy Study Group (IADPSG) (24).

Subjects meeting the following inclusion criteria were enrolled:
residency in the Guilin area for over 2 years, singleton pregnancy, and
absence of close familial ties. Exclusion criteria encompassed
pregnancies with endocrine disorders, severe systemic illnesses, a
history of pre-existing type 1 or type 2 diabetes mellitus, or prolonged
use of medications affecting glucose metabolism prior to pregnancy.
A flow diagram detailing the participant inclusion process has been
provided as Supplementary Figure 1. Approval of this research
protocol was obtained from the Ethics Committee of Guilin
Medical University.

Clinical and biochemical characteristics

Clinical data of the subjects was collected using a standardized
questionnaire and medical records, encompassing age, height, weight,
systolic pressure (SBP), diastolic blood pressure (DBP), FPG, 1hPG,
2hPG, glycosylated hemoglobin (HbA1lc), triglyceride (TG), total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and
low-density lipoprotein cholesterol (LDL-c), etc. Besides, the
pre-pregnancy body mass index (pre-BMI) was calculated as weight
(kg)/height (m)>.

Genomic DNA extraction, variants
selection, and genotyping

The genomic DNA was extracted from EDTA-treated peripheral
whole blood using a DNA extraction kit (Aidlab Biotechnologies Co.,
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Ltd., China) and stored at —80 °C. Candidate functional SNPs were
identified based on our prior analysis using the Infinijum Asian
Screening Array (ASA) BeadChip, with selection criteria set at a
significance level of p <5%107". Subsequently, SNP Function
Prediction (FuncPred) tool' was employed to screen for potential
functional variants in the Chinese Han population in Beijing (CHB)
with minimum allele frequencies exceeding 0.5.

The SNP was genotyped by the Sequenom MassARRAY platform.
The PCR mix consisted of 1.0 pL of template DNA (20 ~ 100 ng/pL),
1.850 pL of ddH,O, 0.625 pL of 1.25 x PCR buffer (15 mmol/L
MgCl,), 0.325 pL of 25 mmol/L MgCl,, 0.1 pL of 25 mmol/L dNTPs,
1 pL of 0.5 pmol/L primer mix, and 0.1 pL of 5 U/pL HotStar Taq
polymerase. The PCR cycling conditions included an initial
denaturation at 94 °C for 15 min, followed by 45 cycles of denaturation
at 94 °C for 20 s, annealing at 56 °C for 30 s, extension at 72 °C for
1 min, and a final extension at 72 °C for 3 min. Finally, the original
data and genotyping plots were generated using TYPER 4.0 software.

Statistical analysis

The data analysis was conducted using IBM SPSS Statistics 28 for
Windows (IBM Corp., Armonk, NY, United States) and R 4.3.1
software. Hardy-Weinberg equilibrium was detected by a x> goodness-
of-fit test. The independent samples -tests were employed to compare
the distribution differences of clinical and biochemical variables
between cases and controls, presented as the mean + sd. The odds
ratios (ORs) and their corresponding 95% confidence intervals (Cls)
were calculated to evaluate the association between variants and GDM
risk. Statistical significance was set at a two-sided p < 0.05. Stratified
analysis was conducted to evaluate the association between positive
SNP and GDM risk among different subgroups, categorized by the
mean value of variables. Additionally, false-positive reporting
probability (FPRP) analysis was utilized to address chance associations
that could potentially lead to false-positive association findings.

Given the observed interaction between clinical factors (pre-BMI,
DBP, FPG, and HbAlc) and genetic variants in the study,
we hypothesized that they potentially influence the risk of
GDM. Consequently, both univariate and multivariate MR analyses
were performed. Exposure data were extracted from the IEU Open
GWAS project® with the following GWAS IDs: BMI (ukb-b-19953),
DBP (ebi-a-GCST90018952), FPG (ebi-a-GCST90002232), and
HbAlc (ieu-b-4842), while outcome data were obtained from
FinnGen Consortium (GWAS ID: finngen_R10_GEST_DIABETES).
Detailed information regarding the data sources is provided in
Supplementary Table 1.

We identified independent single-nucleotide polymorphisms
with low linkage disequilibrium (1 < 0.001) that showed significant
associations with exposure factors (p < 5 x 107*) and calculated the
F-statistic using the equation F-statistic = beta’/se’ (19), where an
F-statistic>10 indicated adequate instrument strength. The primary
MR analysis was conducted using the inverse variance weighting
(IVW) method. Additional sensitivity analyses were performed using

1 http://manticore.niehs.nih.gov/snpinfo/snpfunc.html

2 https://gwas.mrcieu.ac.uk/
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the MR-Egger, weighted median, simple mode and weighted mode
(25). Heterogeneity and pleiotropy were assessed by Cochran’s Q
statisticc and MR Pleiotropy RESidual Sum and Outlier
(MR-PRESSO) methods. The directional validity of the causal
relationships between exposure and outcome was assessed using the
MR-Steiger test (26). Additionally, multivariate MR (MVMR) was
conducted to assess whether confounding factors influenced the
causal relationship between validaexposure and outcome. All
statistical analyses were carried out using R (v4.3.1) with the R

packages “TwoSampleMR;” “MR-PRESSOR; and
“MendelianRandomization” A detailed flowchart illustrating this
complete MR analysis pipeline has been provided as

Supplementary Figure 2.

A predictive nomogram integrating clinical risk factors and
positive SNPs was developed to assess the risk of GDM. Scores
corresponding to each risk factor were aggregated to derive a total
score, facilitating risk evaluation. The subjects were randomly divided
into training and validation sets at a ratio of 7:3. Receiver operating
characteristic (ROC) curves and calibration plots were generated, and
sensitivity and specificity were calculated to evaluate the predictive
ability of the nomogram. Meanwhile, decision curve analysis (DCA)
was performed to evaluate the clinical utility and benefit of the
nomogram. The analyses were conducted using R packages (v4.3.3).

Results
Patient characteristics

The characteristics of the subjects are presented in Table 1. In
cases of GDM, the age, pre-BMI, SBP, DBP, FPG, 1hPG, 2hPG, HbAlc,
TG were significantly higher compared to those in healthy pregnancies
(p < 0.001).

Genotype distribution of the studied
variants

The frequency distribution of rs6127416 followed the Hardy
Weinberg equilibrium law (Puwg > 0.05). Significantly different
genotype distributions of rs6127416 were observed between GDM
patients and controls (p < 0.001). Following adjustment for age and
pre-pregnancy BMI, rs6127416 exhibited a significant association with
the risk of GDM. Compared to the TT genotype, rs6127416 AA
showed a substantial increase in the risk of GDM (adjusted OR = 2.20,
95%CI = 1.53-3.18, p < 0.001). In the recessive model, in comparison
to TT/TA genotypes, the AA genotype also demonstrated a
pronounced effect on the susceptibility to GDM (adjusted OR = 2.35,
95%CI = 1.68-3.30, p < 0.001). These findings are summarized in
Table 2.

Stratified analysis was employed to investigate the association
between rs6127416 and GDM risk using the recessive model. The AA
genotype of rs6127416 was found to significantly elevate the risk of
GDM in all subgroups, with the exception of individuals with FPG
levels >4.79 mmol/L. Interestingly, notable interactive effects were
observed between the genetic loci rs6127416 and pre-BMI
(Poersction = 0.022), DBP (P yeraction = 0.039), FPG (Pyeracion < 0.001), and
HbAIC¢ (Piyeraction < 0.001) (Table 3).
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TABLE 1 Demographic and clinical characteristics in cases and controls.

10.3389/fnut.2025.1665813

Variables GDM (n = 554) Controls (n = 640) t P

Age (years) 31.55+4.76 28.83 +£4.13 10.44 <0.001
Pre-pregnancy BMI (Kg/m?) 23.14 £ 3.61 21.44 +3.00 8.72 <0.001
SBP (mmHg) 111.61 = 10.59 108.76 £ 9.38 4.89 <0.001
DBP (mmHg) 70.51 £ 8.74 68.68 +7.90 3.78 <0.001
FPG (mmol/L) 522+1.33 4.41+0.37 13.96 <0.001
1hPG (mmol/L) 9.76 £2.25 6.96 + 1.43 25.3 <0.001
2hPG (mmol/L) 8.30 £2.17 6.08 £ 1.10 21.85 <0.001
HbAlc (%) 5.44 +0.68 5.00+£0.48 12.62 <0.001
TG (mmol/L) 2.67 £ 1.20 243 +1.01 3.82 <0.001
TC (mmol/L) 537+ 1.15 529 +1.07 13 0.194
HDL-c (mmol/L) 1.66 £ 0.42 1.65 £ 0.40 0.31 0.756
LDL-c (mmol/L) 3.49 £1.02 3.45+1.01 0.68 0.496

SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; 1hPG, 1-h plasma glucose; 2hPG, 2-h plasma glucose; HbAlc, Hemoglobin Alc; TG, Triglyceride; TC,
Total cholesterol; HDL-c, High-Density Lipoprotein cholesterol; LDL-c, Low-Density Lipoprotein Cholesterol.

FPRP analysis

The false-positive reporting probability (FPRP) analysis was
employed to validate the robustness of the statistically significant
associations between variants and GDM risk, employing a predefined
FPRP cutoff value of 0.2 and a prior probability level of 0.1.
Associations with FPRP values <0.2 were considered genuine.
Subsequently analysis indicated that the association between
rs6127416 and GDM risk in subjects with AA genotype compared to
TT, AA compared to TT/TA, age < 30.09 years, pre-BMI < 22.23 Kg/
m?, SBP > 110.08 mmHg, DBP, FPG < 4.79 mmol/L,
2hPG < 7.11 mmol/L, HbAlc < 5.20%, and TG appeared to
be genuine. Other positive associations observed should be interpreted
with caution, as they may have been obtained by chance, as detailed
in Table 4.

Causal effect of clinical indicators on GDM

Based on the established screening criteria, a total of 428 SNPs
predicting BMI, 186 SNPs predicting DBP, 55 SNPs predicting FPG,
and 30 SNPs predicting HbA 1¢ were included for MR analysis in this
study (Table 5). Each set of SNPs associated with the respective
exposure variables exhibited adequate instrument strength, with
F-statistics exceeding 10.

The IVW random effects model was employed as the primary
method for MR analysis due to the detection of heterogeneity in the
study through Cochran’s Q statistics (Pheerogeneity < 0.05). The results
showed a significant causal association between BMI, FPG and HbAlc
with  GDM (ORBMI=1.75, 95% CL 1.60-1.92, p<0.001;
ORFPG =4.92, 95% CI: 3.67-6.59, p < 0.001; ORHbA1lc = 1.30, 95%
CL: 1.11-1.52, p = 0.001) (Table 5 and Figures 1 A-F). Reciprocal MR
analyses, including MR-Egger, weighted median, simple mode and
weighted mode, consistently supported the direction of effect in the
causal estimation of BMI and FPG, and GDM. The MR-PRESSO
global test indicated no evidence of horizontal pleiotropy in the
identified associations (p > 0.05) (Table 5). Symmetrical funnel plots
suggested the reliability of the MR analyses (Figures 2B,D,F).
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Leave-one-out analysis indicated that the observed causal findings
were not influenced by any single SNP (Figures 2A,C,E). Results from
the MR-Steiger directionality test demonstrated that the correctness
of the directions of causal inference (Table 6). However, there was no
evidence of causal associations between DBP and GDM (Table 5).

In multivariable MR analysis, IVW method indicated persistent
positive causal associations of BMI (ORgy; = 1.80, 95%CI: 1.56-2.09,
£ <0.001), and FPG (ORyp = 12.37, 95% CI: 9.25-16.54, p < 0.001)
with GDM risk. However, the causal association of HbA1c with GDM
was no longer statistically significant after adjusting for BMI, FPG, and
DBP (Figure 3).

Nomogram model construction

Finally, three risk factors were identified for nomogram
construction, including pre-BMI, FPG, and the recessive model of
rs6127416, as illustrated in Figure 4A. The area under the ROC curve
(AUC) was 0.808 in the training set and 0.794 in the testing set,
indicating a strong predictive and discriminatory performance
(Figure 4B). Calibration curves displayed minimal deviation between
nomogram predictions and actual observations in both the training
and testing sets, confirming a good fit of the model (Figure 4C). DCA
revealed that the model curves for various risk threshold probabilities
surpassed the reference lines (“treat all” or “treat none”), indicating a
favorable net clinical benefit of the nomogram model in both the
training and testing sets (Figure 4D).

Discussion

GDM represents one of the most prevalent complications during
pregnancy, drawing substantial attention due to its detrimental impact
on the health of both mothers and offspring in the short and long
term. Despite significant advancements in understanding the
susceptibility mechanisms of GDM, a comprehensive comprehension
remains elusive. Recent investigations utilizing candidate gene studies
and GWAS have identified numerous potential risk SNPs, highlighting
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TABLE 2 Positive association analysis of genetic variants with GDM risk.

Genotype Control Crude OR Adjusted OR

(95%Cl) (95%Cl)
rs6127416
TT 200 256 1 1
TA 231 312 <0.001 0.95 (0.74-1.22) 0.675 0.89 (0.68-1.16) 0377
AA 123 73 2.16 (1.53-3.04) <0.001 220 (1.53-3.18) <0.001
TA/AA 354 385 1.18 (0.93-1.49) 0.174 1.13 (0.88-1.45) 0.343
TT/TA 431 568 1 1
AA 123 73 222 (1.62-3.04) <0.001 2.35 (1.68-3.30) <0.001

*Genotype distribution difference tested by c?. "Unconditional logistic regression analysis. “Adjusted for age, pre-BMI in logistic regression models. P < 0.05 was statistical significance.

TABLE 3 Stratification analysis for associations between rs6127416 and GDM risk.

Variables AA (case/ TT/TA (case/ Crude OR Adjusted OR
control) control) (95%Cl) (95%Cl)

Age (year) 0.395
<30.09 55/52 194/397 2.16 (1.43-3.28) 0.000 2.36 (1.52-3.65) 0.000
>30.09 68/21 237/170 2.32(1.37-3.94) 0.002 2.36 (1.38-4.05) 0.002

Pre-BMI (Kg/m?) 0.022
<2223 62/56 181/377 231 (1.54-3.45) 0.000 2.22 (1.46-3.39) 0.000
>22.23 61/17 249/189 2.72 (1.54-4.82) 0.001 2.74 (1.53-4.92) 0.001

SBP (mmHg) 0.490
<110.08 56/44 210/328 1.99 (1.29-3.06) 0.002 1.94 (1.23-3.07) 0.005
>110.08 67/29 221/239 2.50 (1.56-4.01) 0.000 2.92 (1.76-4.85) 0.000

DBP (mmHg) 0.039
<69.53 57/36 214/306 2.26 (1.44-3.56) 0.000 2.26 (1.41-3.64) 0.001
>69.53 66/37 217/261 2.15(1.38-3.33) 0.001 2.51 (1.55-4.05) 0.000

FPG (mmol/L) <0.001
<4.79 55/62 161/503 2.77 (1.85-4.15) 0.000 2.99 (1.94-4.59) 0.000
>4.79 68/11 270/64 1.47 (0.73-2.93) 0.280 1.48 (0.72-3.03) 0.289

1h-PG (mmol/L) 0.099
<8.26 26/58 102/449 1.97 (1.19-3.29) 0.009 1.84 (1.08-3.13) 0.026
>8.26 97/15 329/118 2.32 (1.30-4.16) 0.005 2.74 (1.50-5.00) 0.001

2h-PG (mmol/L) 0.497
<7.11 36/61 120/469 231 (1.46-3.65) 0.000 2.18 (1.34-3.54) 0.002
>7.11 87/12 311/98 2.29 (1.20-4.35) 0.012 2.73 (1.41-5.31) 0.003

HbAlc (%) <0.001
<5.20 52/59 148/416 2.48 (1.63-3.76) 0.000 2.42 (1.57-3.72) 0.000
>5.20 71/14 283/151 2.71 (1.48-4.96) 0.001 3.05 (1.62-5.75) 0.001

TG (mmol/L) 0.159
<2.54 68/47 221/354 2.32 (1.54-3.49) 0.000 2.21 (1.43-3.43) 0.000
>2.54 55/26 210/213 2.15 (1.30-3.55) 0.003 2.60 (1.52-4.44) 0.000

“Unconditional logistic regression analysis, "adjusted for age, pre-BMI in logistic regression models, “Test for multiplicative interaction obtained from logistic regression models.

the genetic predisposition associated with GDM (6, 27). The  risk prediction model. This endeavor offers valuable insights for the
development of GDM is affected by a complex interplay of genetic ~ identification and early intervention of high-risk populations
variants, diverse environmental exposures, and their interactions. In  susceptible to GDM (28).

this study, we explored the genetic and environmental causal factors This study provides evidence supporting the strong association
related to GDM and successfully constructed an individualized GDM  between the genetic variant rs6127416 and the risk of GDM in a
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TABLE 4 FPRP analysis of the significant associations and GDM risk.

10.3389/fnut.2025.1665813

Comparisons Adjusted OR Adjusted Prior probability
°
fdcl p-value 001 0001 00001  0.00001

156127416

AAvs. TT 2.20 (1.53-3.18) 0.000024 0.004 0.011 0.109 0.553 0.925 0.992

AA vs. TT/TA 2.35 (1.68-3.30) 0.000001 0.001 0.004 0.040 0.294 0.806 0.977
Subgroup
Age (years)

<30.09 2.36 (1.52-3.65) 0.000117 0.016 0.047 0.353 0.847 0.982 0.998

>30.09 2.36 (1.38-4.05) 0.002000 0.102 0.254 0.790 0.974 0.997 1.000
pre-BMI (Kg/m?)

<2223 2.22 (1.46-3.39) 0.000209 0.018 0.053 0.381 0.861 0.984 0.998

>22.23 2.74 (1.53-4.92) 0.001000 0.101 0.253 0.788 0.974 0.997 1.000
SBP (mmHg)

<110.08 1.94 (1.23-3.07) 0.005000 0.096 0.242 0.778 0.973 0.997 1.000

>110.08 2.92 (1.76-4.85) 0.000034 0.020 0.058 0.404 0.873 0.986 0.999
DBP (mmHg)

<69.53 2.26 (1.41-3.64) 0.001000 0.054 0.147 0.654 0.950 0.995 0.999

>69.53 2.51 (1.55-4.05) 0.000181 0.028 0.080 0.490 0.907 0.990 0.999
FPG (mmol/L)

<4.79 2.99 (1.94-4.59) 0.000001 0.002 0.006 ‘ 0.065 0.413 0.875 0.986
1hPG (mmol/L)

<8.26 1.84 (1.08-3.13) 0.026000 0.251 0.502 0.917 0.991 0.999 1.000

>8.26 2.74 (1.50-5.00) 0.001000 0.109 0.269 0.802 0.976 0.998 1.000
2hPG (mmol/L)

<7.11 2.18 (1.34-3.54) 0.002000 0.076 0.197 0.730 0.965 0.996 1.000

>7.11 2.73 (1.41-5.31) 0.003000 0.191 0.415 0.886 0.987 0.999 1.000
HbAlc (%)

<5.20 2.42 (1.57-3.72) 0.000062 0.012 0.035 0.283 0.800 0.976 0.998

>5.20 3.05 (1.62-5.75) 0.001000 0.126 0.302 0.826 0.980 0.998 1.000
TG (mmol/L)

<254 2.21 (1.43-3.43) 0.000383 0.028 0.078 0.483 0.904 0.990 0.999

>2.54 2.60 (1.52-4.44) 0.000457 0.059 0.159 0.676 0.955 0.995 1.000

southern Chinese population, emphasizing the role of SNPs in the
genetic predisposition to GDM. Furthermore, stratified analysis
revealed varying effects of the SNP rs6127416 on clinical parameters
across different subgroups. Significant interactions were also observed
between SNPs and multiple clinical variables, such as pre-BMI, DBP
and HbAlc. Additionally, Huang X et al’s study also suggested that
genetic variants (LINGO2 rs10968576, rs1412239, GLIS3 rs10814916)
could potentially diminish the protective properties of O; against anti-
inflammatory responses, which may confer some level of protection
against GDM (29). These results collectively highlight the combined
impact of genetic variants, environmental factors, and clinical
indicators on individual susceptibility to GDM, indicating potential
modifying or interactive effects.
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FPRP analysis suggested that the association detected between
rs6127416 in recessive genetic model and GDM risk within certain
subgroups is robust and reliable. However, FPRP values in other
subgroups exceeded 0.2, suggesting that these associations may have
been obtained by chance and should be interpreted cautiously.

The MR methods confirmed the causal relationship between
clinical indicators (pre-BMI, FPG) and GDM. Due to the unknown
biological function of genetic variant, we cannot entirely eliminate
the potential influence of horizontal pleiotropy. To ensure the
accuracy of this causal inference, we evaluated potential pleiotropy
using MR-PRESSO, which revealed no evidence of horizontal
pleiotropy (p > 0.05). Results underscore the role of lipid
metabolism disturbances in glucose homeostasis. Obesity
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TABLE 5 The significant causal associations of clinical indicators with GDM.

Outcome

GDM

Exposure Method Number of (@] Heterogeneity test Pleiotropy
SNPs (95%Cl) test
MR egger MR-
PRESSO
P Value P value P Global Test
VW 428 0.561 0.047 1.75 (1.60-1.92) <0.001
MR egger 428 0.701 0.131 2.02 (1.56-2.61) <0.001
Weighted
BMI 428 0.672 0.071 1.96 (1.70-2.25) <0.001 636.70 <0.001 638.68 <0.001 0.250
median
Simple mode 428 0.622 0.246 1.86 (1.15-3.02) 0.012
Weighted mode 428 0.728 0.132 2.07 (1.60-2.68) <0.001
VW 55 1.593 0.149 4.92 (3.67-6.59) <0.001
MR egger 55 1.347 0.293 3.85(2.17-6.82) <0.001
Weighted
55 1.355 0.204 3.88 (2.60-5.79) <0.001
FPG median 124.31 <0.001 126.55 <0.001 0.332
10.37 (3.75-
Simple mode 55 2.339 0.520 <0.001
28.71)
Weighted mode 55 1.117 0.193 3.05 (2.09-4.46) <0.001
vw 30 0.261 0.081 1.30 (1.11-1.52) 0.001
MR egger 30 0.132 0.174 1.14 (0.81-1.61) 0.457
Weighted
HbAlc 30 0.029 0.069 1.03 (0.90-1.18) 0.670 121.62 <0.001 124.66 <0.001 0.410
median
Simple mode 30 —0.022 0.100 0.98 (0.80-1.19) 0.827
Weighted mode 30 —0.022 0.072 0.98 (0.85-1.13) 0.762
vw 186 0.024 0.070 1.02 (0.89-1.18) 0.730
MR egger 186 —0.362 0.220 0.70 (0.45-1.07) 0.101
Weighted
DBP 186 0.029 0.096 1.03 (0.85-1.24) 0.763 259.62 <0.001 264.47 <0.001 0.065
median
Simple mode 186 0.118 0.296 1.13 (0.63-2.01) 0.690
Weighted mode 186 0.044 0.274 1.04 (0.61-1.79) 0.873

IVW, inverse variance weighting; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier.
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TABLE 6 MR Steiger directionality test for causal direction.

10.3389/fnut.2025.1665813

Exposure Outcome snp_r2.exposure snp_r2.outcome  Causal direction P ae
BMI GDM 0.058 2.8 % 10-3 TRUE <0.001
FPG GDM 0.026 1.30 x 10-3 TRUE <0.001
HbAlc GDM 0.069 5.58 x 10-4 TRUE <0.001
FPG GDM 0.030 8.73 x 10-4 TRUE <0.001

The variance in the outcome (snp_r*.outcome) was less than each exposure (snp_r’.exposure), indicating the causal directions that exposures cause outcome were correct.

T T T 1
05 1 2 4 8 16 32

FIGURE 3

outcome.

vw Steiger test
Exposure SNPs(n) OR (95%Cl) Pue  Correct causal direction
BMI 288 1" 1.80(1.56-2.09) <0.001 TRUE
FPG 37 1 — 12.37(9.25-16.54) <0.001 TRUE
HbAlc 23 4 1.03(0.90-1.18) 0.654 TRUE
DBP 89 A 0.91(0.72-1.15) 0.410 TRUE

The forest plot performs the findings of the multivariate mendelian randomization (MVMR) analyses on the causal effects of clinical indicators (BMI,
FPG, HbAlc, and DBP) on GDM using IVW method. Steiger test confirms the correctness of the causal directions indicating that exposure leads to the

contributes to heightened plasma free fatty acid (FFA) and elevated
triglycerides, leading to intracellular lipid accumulation in
non-adipose cells (30). Ectopic lipid accumulation in these cells can
induce insulin resistance through inflammatory mediators and
oxidative stress pathways (31, 32). Ultimately, this cascade can lead
to disruptions in glucose metabolism. Therefore, preventive
measures targeting pre-pregnancy obesity are crucial in mitigating
the incidence of GDM.

Taken together, our case-control and MR analyses collectively
demonstrate that pre-pregnancy adiposity and elevated FPG are causal
risk factors for GDM. Results also suggest causal factors of GDM are
modified through lifestyle interventions. Additionally, Our MR
analyses revealed that the significant association between HbAlc and
GDM observed in univariate analysis did not persist in multivariable
models. This suggests that HbA1c is likely to serve as a biomarker of
underlying dysglycemia rather than an independent causal factor in
GDM development.

A nomogram represents a mathematical model that visually
and comprehensively assesses the risk of a disease, offering a
practical approach to estimating the likelihood of clinical events.
Essentially, the construction of a predictive model acts as a crucial
link between clinical epidemiology or molecular epidemiology
and clinical practice (33, 34). In this study, validated SNPs
significantly associated with GDM and clinical indicators (pre-
BMI, FPG) were integrated to construct a nomogram model for
predicting GDM risk. The calibration curve demonstrated a close
fit to the ideal curve, indicating good model accuracy. The ROC
curve illustrated the strong predictive capability of this model,
while DCA highlighted its promising clinical utility. The

Frontiers in Nutrition

developed nomogram offers a practical tool for early-risk
stratification, potentially integrated into first-trimester care via
digital calculators or clinical sheets. Focusing on women at highest
predicted risk (top 20%) may facilitate early intervention and
preventive efforts.

However, this study still has certain limitations that warrant
consideration. Firstly, while certain potential confounding factors
were accounted for, the absence of data regarding diet, physical
activity, smoking status, parity, poor obstetrics, malnutrition, and
socioeconomic factors, and other relevant variables may introduce
bias and affect the accuracy of the associations between genetic
variants and GDM risk. Secondly, being a hospital-based case-
control study, inherent selection bias in subject recruitment and
data collection processes cannot be overlooked. Thirdly, despite the
relatively large sample size, the limited frequency of genotypes
assessed in the studied variants may restrict the statistical
robustness of the analysis. Finally, the validation cohort was
obtained from a random split of the original cohort, which may
potentially affect the independence and reliability of the validation
results. Independent external validation should be incorporated in
future studies to better confirm the model and improve its
practical value.

In conclusion, this study confirms the substantial impact of
genetic and environmental factors on the development of GDM. The
clinical indicators, particularly pre-BMI and FPG, exhibit significant
positive causal effects on GDM. The integration of key genetic SNPs
and clinical indicators, such as rs6127416, pre-BMI, FPG, in a
predictive model enables the effective differentiation of individual
GDM risk during early pregnancy.
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The establishment and validation of a nomogram model in predicting GDM risk. (A) A nomogram model for predicting the risk of GDM, constructed by
pre-BMI, FPG, rs6127416. (B) The area under the receiver operating characteristic curve (ROC) in the training group and validation group.
(C) Calibration plot of nomogram in the training group and validation group. (D) The decision curve analysis (DCA) in the training group and validation

group.
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