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Background: Metabolic-associated fatty liver disease (MAFLD) is a leading cause 
of chronic liver disease worldwide, which is closely linked to poor dietary habits, 
obesity, and metabolic dysfunction. The Global Diet Quality Score (GDQS) and 
Prime Diet Quality Score (PDQS) are newly developed tools for assessing diet 
quality across diverse populations. However, evidence on their relationship with 
MAFLD remains limited. This study aimed to investigate the association between 
GDQS and PDQS and the odds of MAFLD using a case–control design.
Methods: We conducted a case–control investigation at Prince Sattam bin 
Abdulaziz University Hospital, Al-Kharj, Saudi Arabia, with participant enrollment 
from February 2023 to January 2025. The study cohort consisted of 225 cases 
and 225 controls. Dietary intake was assessed using a semi-quantitative food 
frequency questionnaire to calculate GDQS and PDQS. Cases and controls were 
matched by age (±3 years). An unconditional logistic regression analysis was 
performed to estimate odds ratios (ORs) and 95% confidence intervals (CIs).
Results: Cases had lower GDQS and PDQS compared to controls (p < 0.001), 
with a higher consumption of refined grains and sugar-sweetened beverages 
and a lower intake of fruits, vegetables, and legumes. Each 1-SD increase in the 
GDQS and PDQS was associated with approximately 40% lower odds of MAFLD 
(OR = 0.61; 95% CI: 0.47, 0.79 and OR = 0.60; 95% CI: 0.46, 0.79, respectively).
Conclusion: Higher GDQS and PDQS scores are associated with reduced 
MAFLD risk, suggesting that improving diet quality could be a key strategy for 
MAFLD prevention in clinical and public health settings.
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Introduction

Metabolic-associated fatty liver disease (MAFLD) is a leading 
cause of chronic liver disease globally, driven by obesity, insulin 
resistance, and metabolic dysfunction (1, 2). Defined by hepatic 
steatosis with metabolic risk factors, the condition affects 
approximately 25% of adults worldwide, with higher prevalence in 
populations with obesity and type 2 diabetes (3, 4). MAFLD arises 
from complex interactions between genetic, environmental, and 
lifestyle factors, with diet playing a pivotal role in its onset and 
progression (5, 6).

Diet, as a modifiable risk factor, plays a critical role in MAFLD 
development and progression, yet the precise impact of diet quality, 
particularly in diverse populations, remains underexplored. Emerging 
evidence suggests that dietary patterns influence MAFLD through 
mechanisms such as inflammation, oxidative stress, and gut 
microbiota alterations (7, 8). For instance, a high intake of fructose 
and saturated fats has been linked to increased liver fat accumulation, 
while diets rich in fiber and antioxidants may mitigate MAFLD risk 
(9). However, studies exploring specific dietary components, such as 
antioxidants, have yielded mixed results (10).

The Global Diet Quality Score (GDQS) and Prime Diet Quality 
Score (PDQS) are novel tools designed to assess diet quality across 
diverse populations, capturing both nutrient adequacy and food group 
consumption (11). These scores have shown promise in predicting 
non-communicable disease risk, including type 2 diabetes and 
cardiovascular disease (12). Inconsistent findings highlight the need 
for further investigation into the nuanced relationship between diet 
quality and MAFLD, particularly using the standardized Global Diet 
Quality Score (GDQS) and Prime Diet Quality Score (PDQS). Despite 
their potential, the application of GDQS and PDQS in MAFLD 
research remains underexplored, with limited evaluation of their 
association with disease odds. This study aimed to investigate whether 
higher GDQS and PDQS are associated with lower odds of MAFLD 
in a case–control study conducted in Al-Kharj, Saudi Arabia.

Method

Study population

This case–control study was conducted at Prince Sattam bin 
Abdulaziz University Hospital (Al-Kharj, Saudi Arabia) and included 
adults aged 20–60 years who were referred to the Liver and 
Gastroenterology Clinic. A total of 450 participants were recruited 
between February 2023 and January 2025, comprising 225 patients 
newly diagnosed with metabolic dysfunction-associated fatty liver 
disease (MAFLD) and 225 age-matched healthy controls. The diagnosis 
of MAFLD was based on the presence of hepatic steatosis, confirmed by 
abdominal ultrasonography performed by experienced radiologists. 
Characteristic ultrasonographic features included hepatorenal echo 
contrast, vascular blurring, or posterior beam attenuation, together with 
evidence of metabolic dysfunction. Elevated liver enzymes (ALT > 
30 U/L in men, >19 U/L in women; AST > 30 U/L in men, >25 U/L in 
women) were collected and reported as supportive clinical data but were 
not used independently as the diagnostic criteria. Metabolic dysfunction 
was defined as meeting at least one of the following: (1) overweight or 
obesity (BMI ≥ 23 kg/m2, Asian-specific cut-off); (2) type 2 diabetes 

mellitus (fasting glucose ≥126 mg/dL, HbA1c ≥ 6.5%, or current use of 
antidiabetic medication); or (3) at least two of the following metabolic 
risk factors: increased waist circumference (≥90 cm in men, ≥80 cm in 
women), elevated blood pressure (≥130/85 mmHg), use of 
antihypertensive medication, high fasting triglycerides (≥150 mg/dL) or 
lipid-lowering therapy, low HDL cholesterol (<40 mg/dL in men or 
<50 mg/dL in women), or prediabetes (fasting glucose 100–125 mg/dL 
or HbA1c 5.7–6.4%). The control group was recruited from hospital 
visitors who underwent routine health check-ups and had no clinical or 
ultrasonographic evidence of fatty liver disease. To reduce confounding, 
controls were frequency-matched to cases by age within ±3 years. The 
general exclusion criteria for both groups included significant alcohol 
intake (≥30 g/day for men; ≥20 g/day for women), other chronic liver 
diseases (viral hepatitis with negative HBsAg and anti-HCV, autoimmune 
hepatitis, Wilson’s disease, and hemochromatosis), use of steatogenic or 
hepatotoxic medications, chronic kidney disease, malignancy, thyroid 
disorders, autoimmune disorders, pregnancy, and medically restricted 
diets (e.g., for weight loss). Participants completing fewer than 35 items 
on the food frequency questionnaire or reporting implausible daily 
energy intake (<800 kcal/day or >4,500 kcal/day) were excluded and 
replaced. All participants provided written informed consent.

Dietary intake

The dietary intake of participants was assessed using a validated 
semi-quantitative food frequency questionnaire (FFQ) that included 152 
distinct food items. This tool was designed to capture participants’ 
habitual dietary patterns over the previous year (13). In accordance with 
other case–control studies, only newly diagnosed MAFLD cases were 
enrolled. To minimize potential recall bias and reverse causation, 
individuals who reported following a specific diet (e.g., weight-loss or 
therapeutic regimens) or who had recently changed their dietary habits 
after diagnosis were excluded from the study. Participants were 
instructed to report their typical dietary habits during the year prior to 
diagnosis (for cases) or prior to study enrollment (for controls). The FFQ 
offered a structured set of response options for consumption frequency, 
ranging from “never or less than once per month” to “six or more times 
per day.” The reported responses were analyzed using Nutritionist IV 
software to convert food-frequency data into daily energy and nutrient 
intakes, including macronutrients, micronutrients, and other bioactive 
compounds. This approach enabled a robust and comprehensive 
assessment of usual dietary intake in relation to health outcomes.

Physical activity was assessed using the International Physical 
Activity Questionnaire (IPAQ). Trained interviewers administered the 
IPAQ in face-to-face sessions with participants. This validated 
questionnaire records the frequency and duration of walking, 
moderate-intensity, and vigorous-intensity activities during a typical 
day. Each activity was assigned a standard metabolic equivalent 
(MET) value, and the product of MET-hours/day was calculated. Total 
physical activity was then expressed as MET-hours/day, following 
established scoring protocols (14, 15).

Global diet quality score

To compute the global diet quality score (GDQS), the participants’ 
daily intake (in grams) of various foods was grouped into 25 distinct 
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food categories. These comprised 16 health-promoting groups—
namely, fish and shellfish, poultry and game meats, eggs, low-fat dairy 
products, whole grains, cruciferous vegetables, dark green leafy 
vegetables, deep orange vegetables, other vegetables, citrus fruits, deep 
orange fruits, other fruits, deep orange tubers, legumes, nuts and 
seeds, and liquid oils; two moderately beneficial food groups—red 
meats and high-fat dairy; and seven food groups considered 
detrimental to health—including refined grains and baked goods, 
white roots and tubers, fruit juices, sugar-sweetened beverages, sweets 
and ice creams, fried foods, and processed meats. Each group was 
classified into three or four consumption levels.

Scoring for the health-promoting food groups was as follows:

	•	 A score of 0 was assigned for low intake across all 16 
healthy groups.

	•	 Moderate and high consumption of cruciferous vegetables, deep 
orange vegetables, other vegetables, and deep orange tubers 
received 0.25 and 0.5 points, respectively.

	•	 The intake of citrus fruits, deep orange fruits, other fruits, whole 
grains, liquid oils, fish and shellfish, poultry and game meats, and 
low-fat dairy was scored 1 point for moderate intake and 2 points 
for high intake.

	•	 For eggs, dark green leafy vegetables, deep orange vegetables, 
legumes, and nuts and seeds, moderate and high intakes were 
scored 2 and 4 points, respectively.

For the moderately beneficial (optimal) groups,

	•	 both low and very high consumption levels were scored 0,
	•	 moderate intake was awarded 1 point, and
	•	 high consumption was given 2 points for red meat and 

high-fat dairy.

Regarding the unhealthy food groups,

	•	 low consumption was awarded 2 points,
	•	 moderate intake received 1 point, and
	•	 high intake was scored 0 for refined grains, white roots and 

tubers, fruit juices, sugar-sweetened drinks, sweets and ice 
creams, fried foods, and processed meats.

The final GDQS was derived by summing the points from all 25 
food groups, resulting in a total score ranging from 0 to 49 (16).

Prime diet quality score

The Prime Diet Quality Score (PDQS) is based on the intake of 21 
distinct food groups, which are classified into two categories: beneficial 
(healthy) and detrimental (unhealthy) dietary components. Each of 
these food groups was initially categorized into tertiles based on 
consumption levels. For the healthy components—such as low-fat dairy 
products, poultry, whole grains, fish and shellfish, legumes and soy 
products, nuts and seeds, vegetable oils, citrus fruits, other fruits, deep 
orange fruits, cruciferous vegetables, dark leafy greens, deep orange 
vegetables, and other vegetables—participants were awarded scores as 
follows: 0 points for the lowest tertile, 1 point for the middle tertile, and 
2 points for the highest tertile of intake. In contrast, for unhealthy dietary 

components—such as processed meats, red meats, sugar-sweetened 
beverages, refined grains, fried foods, and sweets—the scoring system 
was reversed: participants received 2 points for the lowest tertile, 1 point 
for the middle tertile, and 0 points for the highest tertile. The overall 
PDQS score, derived by summing the scores of all food groups, ranges 
from 0 to 42, with higher scores reflecting better diet quality (17).

Statistical analysis

All statistical procedures were carried out using SPSS software 
(version 23.0; IBM Corp., Chicago, IL, United States). To compare 
categorical variables between the groups, the chi-squared test was 
used. For continuous variables, either the independent t-test or the 
Mann–Whitney U test was applied, depending on the distribution of 
the data. Continuous data are reported as either the median with 
interquartile range (25th–75th percentile) or mean ± standard 
deviation (SD), while categorical data are expressed as percentages. To 
assess the association between GDQS and PDQS and the likelihood 
of MAFLD, the unconditional logistic regression analysis was 
conducted. Both unadjusted (crude) and adjusted models were 
developed, and odds ratios (ORs) along with 95% confidence intervals 
(CIs) were reported. Food-group comparisons were considered 
exploratory; therefore, emphasis was placed on reporting effect sizes 
with 95% confidence intervals rather than relying on statistical 
significance testing. No adjustment for multiplicity was performed.

Results

Baseline characteristics of participants differed between the 
MAFLD and healthy control groups. Statistically significant 
differences were observed in BMI (p = 0.023), family history of 
MAFLD (p < 0.001), and physical activity (p = 0.043). Additionally, 
the case group showed a significantly higher median intake of total fat 
(p = 0.025), whereas dietary fiber intake was notably higher in the 
control group (p = 0.037). These findings are summarized in Table 1.

Dietary intake from different food groups also varied between the 
MAFLD and healthy participants. Overall, the mean scores for both 
the GDQS and PDQS, including their respective components, were 
significantly higher in the control group compared to those with 
MAFLD (p < 0.05). A closer look at food group consumption revealed 
that individuals in the control group had significantly higher median 
intakes of other fruits (p  = 0.037), dark green leafy vegetables 
(p < 0.001), other vegetables (p = 0.002), deep orange tubers 
(p = 0.026), legumes (p < 0.001), and poultry/game meats (p = 0.041). 
In contrast, the case group reported greater consumption of refined 
grains and baked goods (p = 0.002), processed meats (p = 0.006), 
sugar-sweetened beverages (p < 0.001), and fried foods (p = 0.002). 
These results are presented in Table 2.

The findings from the logistic regression models examining the 
association between diet quality scores and the odds of MAFLD are 
presented in Table 3. A strong, graded, inverse association was observed 
between higher diet quality scores and the odds of MAFLD. In the core 
confounder-adjusted model (Model B), each 1-standard deviation (SD) 
increase in the GDQS (OR = 0.61; 95% CI: 0.47, 0.79) and PDQS 
(OR = 0.60; 95% CI: 0.46, 0.79) was associated with a significantly 
reduced odds of MAFLD. This protective association was consistently 
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observed across tertiles of consumption. Compared to the lowest tertile 
(T1), participants in the highest tertile (T3) of GDQS (OR = 0.32; 95% 
CI: 0.19, 0.55) and PDQS (OR = 0.29; 95% CI: 0.17, 0.51) had 
approximately 70% lower odds of MAFLD (P-trend <0.001 for both). 
The association was primarily driven by the intake of healthy food 
components. A 1-SD increase in the Positive GDQS score (reflecting 
healthier foods) was associated with a 43% reduction in MAFLD odds 
(OR = 0.57; 95% CI: 0.44, 0.74). Similarly, the Healthy PDQS component 
showed a significant inverse association with MAFLD risk in the fully 
adjusted model (OR per 1-SD = 0.74; 95% CI: 0.59, 0.93). In contrast, 
the Negative GDQS score, representing less healthy food items, was not 
significantly associated with MAFLD odds in any model (e.g., Model B 
OR per 1-SD = 0.89; 95% CI: 0.69, 1.14; P-trend = 0.355). The association 
for the Unhealthy PDQS component was attenuated and lost statistical 
significance after adjusting for core confounders, especially after further 
adjusting for BMI and macronutrients in Model C (P-trend = 0.097).

Discussion

This study demonstrates that higher diet quality, as measured by 
the Global Diet Quality Score (GDQS) and Prime Diet Quality Score 
(PDQS), is associated with a reduced likelihood of MAFLD, 
highlighting the protective role of balanced dietary patterns (6). 
Previous research has established that dietary patterns, such as the 
Mediterranean diet, are linked to lower MAFLD risk by modulating 
the metabolic and inflammatory pathways (2). The observed 
association may be  attributed to the anti-inflammatory and 
antioxidant properties of nutrient-dense diets, which reduce hepatic 
fat accumulation and oxidative stress. Our findings contribute to the 
growing evidence that standardized diet quality scores can serve as 
reliable tools for assessing MAFLD risk across populations (18).

Building on these findings, specific dietary components, such as 
increased consumption of fruits, vegetables, and legumes, likely drive 

the protective effects of higher GDQS and PDQS. While GDQS and 
PDQS have been validated for assessing diet quality in relation to 
non-communicable diseases, such as type 2 diabetes and 
cardiovascular disease, their application to MAFLD remains limited, 
making our findings a novel contribution (18–20). These food groups 
are rich in fiber, antioxidants, and polyphenols, which may modulate 
the gut–liver axis, reducing inflammation and improving lipid 
metabolism (21). This finding suggests that dietary interventions 
emphasizing these foods could be effective in MAFLD prevention, 
particularly in regions with high processed food consumption.

The lower consumption of refined grains and sugar-sweetened 
beverages in controls compared to cases suggests that reducing 
processed food intake could be  a practical strategy for MAFLD 
prevention. Studies have shown that high intake of refined 
carbohydrates and added sugars exacerbates insulin resistance and 
hepatic steatosis, key drivers of MAFLD (22). The differences observed 
in our study may reflect dietary habits that promote metabolic 
dysfunction in cases, which may be potentially exacerbated by low 
physical activity or genetic predispositions. These findings underscore 
the need for public health campaigns to reduce processed food 
consumption as part of MAFLD prevention strategies.

In the context of Al-Kharj, Saudi Arabia, our findings highlight the 
relevance of dietary interventions tailored to local dietary patterns. The 
high consumption of refined grains in cases may reflect cultural 
preferences for processed foods, which are increasingly prevalent in the 
region. This regional dietary pattern likely contributes to the elevated 
MAFLD prevalence observed, suggesting that culturally sensitive 
interventions could enhance dietary adherence. Future studies should 
explore the scalability of GDQS and PDQS in diverse populations to 
confirm their utility in global MAFLD prevention efforts.

The notably higher legume consumption among controls 
compared to cases suggests that legumes may play a protective role 
against MAFLD (23). Research indicates that legumes, rich in dietary 
fiber and plant-based proteins, contribute to improved metabolic 

TABLE 1  Comparison of baseline characteristics and nutrient intake between the control and MAFLD groups in the study population.

Variable MAFLD (n = 225) Control (n = 225) p-value

Baseline characteristics

Age (year)a 32.49 (27.49–35.99) 34.49 (26.49–39.49) 0.341

BMI (kg/m2)a 29.59 (26.79–32.19) 26.09 (23.69–29.39) 0.023

Physical activity (MET/h/day)a 26.32 (16.49–46.49) 29.49 (17.49–52.49) 0.043

Sex (female) n (%)b 118 (52.4) 114 (50.7) 0.158

Familial history of MAFLD, yes, %b 113 (50.2%) 55 (24.4%) <0.001

Marital status (married) n (%)b 193 (85.8) 199 (88.4) 0.374

Smoking history, yes, %b 22 (9.7%) 14 (6.2%) 0.134

Dietary intakes

Energy (kcal/day)a 2483.61 (1721.33–3277.30) 2225.82 (1763.75–3045.04) 0.295

Protein (g/day)a 78.65 (61.35–101.61) 84.24 (62.26–113.35) 0.083

Total fat (g/day)a 102.40 (70.53–127.35) 85.95 (64.63–110.44) 0.025

Carbohydrate (g/day)a 328.22 (219.22–451.72) 309.96 (220.26–414.69) 0.146

Fiber (g/day)a 20.58 (14.99–29.54) 27.24 (19.32–39.76) 0.037

BMI, body mass index; kg, kilogram; m, meter; MET, metabolic equivalent of task; kcal, kilocalorie; g, gram; MAFLD, metabolic-associated fatty liver disease.
aUsing the Mann–Whitney U-test, values are presented as median (25th–75th).
bUsing the chi-squared tests for categorical variables, values are presented as percentages. 
Significant values are presented in bold.
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health and reduced liver fat accumulation (24). This difference may 
be explained by the role of legume-derived fiber in promoting satiety, 
stabilizing blood glucose levels, and fostering a healthy gut 
microbiota, which mitigates inflammation via the gut–liver axis. 
Incorporating legumes into dietary guidelines could enhance MAFLD 
prevention strategies, particularly in populations with low 
legume intake.

Furthermore, the higher intake of fish and shellfish among 
controls compared to cases points to the potential benefits of omega-3 
fatty acids in reducing the MAFLD risk (25). Studies suggest that 
omega-3 fatty acids, which are abundant in fish, have 

anti-inflammatory properties and improve lipid profiles, which may 
counteract hepatic steatosis (26). The observed difference likely stems 
from the ability of omega-3 s to modulate lipid metabolism and reduce 
pro-inflammatory cytokines, key factors in MAFLD progression. 
These findings advocate for increased fish consumption as part of a 
balanced diet to lower MAFLD prevalence, especially in regions with 
limited seafood intake.

The elevated consumption of processed meats in cases compared 
to controls highlights the detrimental impact of these foods on 
MAFLD risk (27). Processed meats, high in saturated fats and 
additives, have been linked to increased insulin resistance and hepatic 

TABLE 2  Comparison of food group consumption between healthy individuals and those with MAFLD.

Variable MAFLD (n = 225) Control (n = 225) Effect size (95% CI) P-value

Positive GDQS scorea 18.20 ± 4.51 20.55 ± 5.41 d = −0.47 (−0.67 to −0.27) 0.004

Negative GDQS scorea 13.47 ± 1.82 14.30 ± 1.86 d = −0.45 (−0.65 to −0.25) <0.001

Total GDQS scorea 27.83 ± 5.08 31.02 ± 5.37 d = −0.61 (−0.81 to −0.41) 0.004

Healthy PDQS scorea 16.75 ± 4.63 18.69 ± 5.94 d = −0.37 (−0.57 to −0.17) <0.001

Unhealthy PDQS scorea 12.42 ± 3.14 16.75 ± 4.63 d = −1.09 (−1.30 to −0.88) 0.003

Total PDQS scorea 27.28 ± 6.04 33.88 ± 5.11 d = −1.18 (−1.39 to −0.97) <0.001

Citrus fruits (g/day)b 63.83 (24.91–78.61) 57.16 (30.91–120.58) r = 0.03 0.624

Deep orange fruits (g/day)b 76.12 (39.83–114.73) 78.08 (48.23–162.38) r = −0.06 0.196

Other fruits (g/day)b 59.93 (33.62–103.31) 87.19 (44.93–162.7) r = −0.14 0.037

Dark green leafy vegetables (g/day)b 29.18 (15.58–49.29) 49.35 (25.03–86.06) r = −0.27 <0.001

Cruciferous vegetables (g/day)b 4.58 (3.10–9.43) 7.75 (4.49–16.44) r = −0.07 0.247

Deep orange vegetables (g/day)b 7.52 (4.18–13.83) 6.50 (4.73–13.87) r = 0.07 0.201

Other vegetables (g/day)b 160.09 (113.75–240.45) 207.71 (122.43–312.53) r = −0.20 0.002

Deep orange tubers (g/day)b 8.69 (3.96–15.35) 11.13 (7.06–17.90) r = −0.13 0.026

Legumes (g/day)b 22.47 (11.24–28.42) 33.62 (15.92–74.47) r = −0.24 <0.001

Nuts and seeds (g/day)b 9.80 (5.84–18.38) 9.57 (5.34–18.11) r = 0.04 0.471

Whole grains (g/day)b 5.97 (4.55–7.83) 4.89 (3.99–9.04) r = 0.02 0.751

Refined grains and baked goods (g/day)b 425.83 (292.93–609.77) 340.87 (243.83–478.13) r = 0.20 0.002

White roots and tubers (g/day)b 18.08 (9.53–40.47) 28.25 (9.53–40.47) r = −0.05 0.403

Liquid oils (g/day)b 15.33 (8.11–22.63) 15.83 (8.83–21.83) r = −0.04 0.482

Red meats (g/day)b 48.41 (24.98–58.14) 50.49 (27.14–88.08) r = −0.08 0.173

Processed meats (g/day)b 5.84 (3.83–7.83) 4.54 (3.83–8.17) r = 0.17 0.006

Fish and shellfish (g/day)b 6.78 (4.83–12.49) 9.34 (5.35–18.21) r = −0.20 0.002

Poultry and game meats (g/day)b 16.68 (12.40–21.33) 21.97 (12.40–33.83) r = −0.13 0.041

Eggs (g/day)b 26.25 (12.83–33.14) 26.75 (13.83–42.04) r = −0.08 0.202

Low-fat dairy products (g/day)b 228.08 (90.72–292.13) 250.50 (81.17–450.25) r = −0.04 0.466

High-fat dairy products (g/day)b 62.16 (25.92–148.35) 52.43 (23.16–138.78) r = 0.09 0.137

Sweets and ice creams (g/day)b 53.14 (27.32–92.18) 42.25 (25.13–73.83) r = 0.11 0.078

Sugar-sweetened beverages (g/day)b 28.32 (8.54–51.83) 12.99 (8.66–38.83) r = 0.28 <0.001

Juices (g/day)b 6.54 (3.83–21.66) 7.22 (3.83–20.33) r = −0.05 0.397

Fried foods (g/day)b 17.83 (3.83–21.83) 12.73 (3.83–15.33) r = 0.20 0.002

GDQS, global diet quality score; PDQS, prime diet quality score; g, gram; MAFLD, metabolic-associated fatty liver disease.
Comparisons are exploratory; effect sizes are shown with 95% CIs. p-values are descriptive and not used for formal inference.
aUsing an independent sample t-test, values are presented as mean ± SD.
bUsing the Mann-Whitney U-test, values are presented as median (25th-75th). 
Significant values are presented in bold.
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inflammation (28). This dietary pattern may exacerbate MAFLD by 
promoting oxidative stress and dyslipidemia, which are central to 
disease pathogenesis. Reducing processed meat intake should 
be  prioritized in dietary interventions to mitigate MAFLD risk, 
particularly in populations with high consumption of processed foods.

This study has several strengths, including a clear focus on the 
association between diet quality and MAFLD, the use of validated 
dietary indices (Global and Prime Diet Quality Scores), and a case–
control design that allows for direct comparison between affected and 
unaffected individuals. Additionally, focusing on MAFLD—a 

prevalent metabolic disorder—enhances the clinical relevance of the 
findings. However, there are some limitations to consider. The case–
control design prevents causal inference, and dietary data based on 
self-reported questionnaires may be  subject to recall bias. The 
generalizability of the results may be  limited to the studied 
population, and residual confounding from factors such as genetics, 
physical activity, or comorbidities cannot be  entirely ruled out. 
Finally, more detailed reporting on the calculation and interpretation 
of the dietary scores would strengthen the clarity and reproducibility 
of the findings.

TABLE 3  Association between tertiles of global and prime diet quality scores and the odds of MAFLD.

Variable Tertile Model A 
OR (95% 

CI)

Model B 
OR (95% 

CI)

Model C 
OR (95% 

CI)

P-trend A P-trend B P-trend C

GDQS score

T1 (Ref.) 1.00 1.00 1.00

T2 0.60 (0.35–1.02) 0.62 (0.36–1.07) 0.68 (0.39–1.18) <0.001 <0.001 0.002

T3 0.30 (0.18–0.52) 0.32 (0.19–0.55) 0.39 (0.23–0.68)

*Per 1-SD* 0.59 (0.46–0.76) 0.61 (0.47–0.79) 0.65 (0.50–0.85)

Positive GDQS

T1 (Ref.) 1.00 1.00 1.00

T2 0.58 (0.34–1.00) 0.59 (0.34–1.02) 0.61 (0.35–1.07) <0.001 <0.001 <0.001

T3 0.26 (0.15–0.45) 0.27 (0.16–0.47) 0.32 (0.18–0.56)

*Per 1-SD* 0.55 (0.43–0.71) 0.57 (0.44–0.74) 0.60 (0.45–0.80)

Negative GDQS

T1 (Ref.) 1.00 1.00 1.00

T2 1.05 (0.61–1.82) 1.10 (0.63–1.92) 1.22 (0.69–2.16) 0.256 0.355 0.632

T3 0.62 (0.38–1.02) 0.65 (0.39–1.07) 0.73 (0.43–1.23)

*Per 1-SD* 0.87 (0.68–1.11) 0.89 (0.69–1.14) 0.94 (0.72–1.22)

PDQS score

T1 (Ref.) 1.00 1.00 1.00

T2 0.61 (0.36–1.05) 0.64 (0.37–1.11) 0.67 (0.38–1.18) <0.001 <0.001 0.001

T3 0.27 (0.16–0.47) 0.29 (0.17–0.51) 0.32 (0.18–0.57)

*Per 1-SD* 0.58 (0.44–0.76) 0.60 (0.46–0.79) 0.62 (0.47–0.82)

Healthy PDQS

T1 (Ref.) 1.00 1.00 1.00

T2 1.25 (0.72–2.16) 1.28 (0.74–2.22) 1.31 (0.75–2.30) 0.007 0.010 0.021

T3 0.46 (0.28–0.75) 0.48 (0.29–0.78) 0.52 (0.32–0.86)

*Per 1-SD* 0.70 (0.56–0.87) 0.71 (0.57–0.89) 0.74 (0.59–0.93)

Unhealthy PDQS

T1 (Ref.) 1.00 1.00 1.00

T2 0.72 (0.43–1.21) 0.75 (0.45–1.26) 0.80 (0.47–1.36) 0.020 0.035 0.097

T3 0.58 (0.35–0.96) 0.61 (0.37–1.01) 0.67 (0.40–1.12)

*Per 1-SD* 0.82 (0.67–1.01) 0.84 (0.68–1.03) 0.87 (0.71–1.08)

OR, odds ratio; CI, confidence interval; T, tertile; MAFLD, metabolic-associated fatty liver disease; GDQS, global diet quality score; PDQS, prime diet quality score; SD, standard deviation.
Model A (Minimally Adjusted): Adjusted for age (years), sex, and total energy intake (kcal/day).
Model B (Core Confounder Adjusted): Model A + physical activity (MET/h/day), familial history of MAFLD (yes/no), and smoking history (yes/no).
Model C (Sensitivity Analysis): Model B + BMI (kg/m2), fat intake (g/day), and fiber intake (g/day). Significant values (P < 0.05) are presented in bold.
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Conclusion

Our findings underscore the potential of high-quality diets, as 
assessed by GDQS and PDQS, to mitigate the global burden of 
MAFLD. By promoting diets rich in nutrient-dense foods and low in 
processed items, clinicians and policymakers can develop targeted 
interventions to prevent MAFLD, particularly in high-risk populations 
such as those in Al-Kharj, Saudi Arabia. These results pave the way for 
integrating standardized diet quality scores into routine clinical 
practice and public health strategies, offering a practical approach to 
reducing liver disease prevalence.
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