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Background: The platelet to high-density lipoprotein cholesterol ratio (PHR) is 
an emerging marker of inflammation and metabolic health, combining platelet 
counts and HDL cholesterol (HDL-C) levels. Vitamin D is essential for various 
physiologic processes, including immune modulation and lipid metabolism. Our 
study investigates the association between serum 25-hydroxyvitamin D [25(OH)
D] concentrations and PHR.
Methods: We conducted cross-sectional analyses of two population-based 
datasets: NHANES (n = 36,238) from the U.S. and the baseline survey of a Chinese 
cohort study (n = 1,122). Serum 25(OH)D and blood PHR were assessed, with 
PHR defined as the ratio of platelet count to HDL-C (mmol/L). To examine the 
associations of 25(OH)D with PHR, we used weighted linear regression models 
and weighted restricted cubic splines (RCS), adjusting for potential confounders. 
Additionally, stratified analyses were performed based on potential influencing 
factors.
Results: After stepwise adjusting for cycles, demographic characteristics, 
lifestyle factors, and health conditions (including medication use), survey-
weighted linear regression analysis of the NHANES database identified a 
significant negative association of serum 25(OH)D levels with PHR. Specifically, 
for every 1-unit increase in 25(OH)D, PHR decreased by 0.23 to 0.41 units across 
models. This association remained significant when comparing the highest 
quartile (Q4) to the lowest quartile (Q1) of 25(OH)D, with PHR decreasing by 
14.84 to 27.65 units across models. RCS analysis further supported a linear 
negative association of 25(OH)D with PHR. Similar results were observed 
for 25-hydroxyvitamin D3 [25(OH)D3]. Furthermore, analyses in the Chinese 
population confirmed the inverse association between serum total 25(OH)D 
and PHR. Notably, the stronger association observed in females was consistent 
across both populations, with statistically significant interaction effects.
Conclusion: Our study found that serum 25(OH)D levels were significantly 
negatively correlated with PHR, particularly in females. These results suggest 
that 25(OH)D may help modulate PHR, with potential implications for disease 
prevention. Future research should confirm causality and explore underlying 
mechanisms.
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1 Introduction

The platelet to high-density lipoprotein cholesterol ratio (PHR), 
which combines platelet counts and HDL cholesterol (HDL-C) levels, 
has emerged as a novel biomarker of inflammation and metabolic 
health (1, 2). PHR was originally proposed by Jialal et al. (1) as a new 
biomarker to predict metabolic syndrome. Recently, the predictive 
value of the PHR has been recognized not only for metabolic 
syndrome, but also for its potential in diagnosing and predicting a 
range of other disorders, including cardiovascular disease, kidney 
stones, non-alcoholic fatty liver disease, and depression (3–6). Taken 
together, these findings suggest that PHR is a promising biomarker 
with potential clinical relevance across various health issues.

The concept of PHR has emerged in recent years, with most 
studies focusing on its relationship with disease (3–6), while relatively 
few have examined the factors that influence PHR. Investigating these 
influencing factors, particularly modifiable factors, is crucial, as they 
can modulate PHR levels and potentially help prevent or mitigate the 
onset and progression of certain diseases. We reviewed risk factors 
associated with platelet counts and HDL-C levels, including 
environmental and lifestyle (7–9). Nutrition has been recognized as a 
simple and effective modulator of various biomarkers in multiple 
studies (10–12), and perhaps a key factor influencing PHR levels.

Vitamin D is an essential micronutrient involved in numerous 
physiological processes, including calcium-phosphorus metabolism, 
immune modulation, and lipid metabolism (13–17). A review 
examined the effects of vitamin D on inflammatory signaling, 
coagulation mechanisms, and endothelial cell function, highlighting 
the important role of vitamin D in vascular health and immune 
regulation (18). A few epidemiological evidence also suggested a 
potential link between vitamin D insufficiency and increased platelet 
counts (19, 20). Several reviews have explored the impact of vitamin 
D on lipid metabolism, emphasizing its effects on cholesterol and 
triglyceride regulation, as well as its importance in cardiovascular 
health (21, 22). For instance, both Faridi et al. (23) and Lupton et al. 
(17) identified a strong relationship between vitamin D deficiency and 
reduced HDL-C levels. In conclusion, vitamin D is essential for the 
regulation of inflammation and lipid metabolism, and deficiency leads 
to elevated platelet counts and dyslipidemia.

To date, most research has focused on the associations between 
vitamin D and platelet count or HDL levels. Recently, a study using 
multivariate linear regression reported a negative association between 
vitamin D and PHR based on NHANES data (24). However, that study 
offered limited exploration of differences among specific population 
subgroups and lacked external validation in independent population, 
which may affect the robustness and generalizability of the findings. 
Therefore, to address these gaps, the present study builds upon 
previous work by conducting a more comprehensive investigation of 
the relationship between serum 25-hydroxyvitamin D [25(OH)D] 
concentrations and PHR, including extensive subgroup analyses and 
external validation across two independent populations. As a 
metabolite of vitamin D, 25(OH)D serves as the primary indicator of 
vitamin D status in the bloodstream (25).

2 Materials and methods

2.1 Study population

Given the availability of data and the influence of the COVID-19 
pandemic, the analysis was limited to the NHANES 2007–2018 cycles, 
as 25-hydroxyvitamin D3 [25(OH)D3] data became available starting 
in 2007. NHANES, a nationwide survey conducted every 2 years, 
assesses the health and nutrition of the U.S. population through 
questionnaires, physical exams, and biospecimen analysis. The 
U.S. Centers for Disease Control and Prevention provides a detailed 
overview of the study methodology.1 In this study, we  included 
participants with complete data on 25(OH)D concentrations, PHR, 
and selected covariates but excluded pregnant women and patients 
with cancer. We also excluded data for 25(OH)D and PHR values that 
deviated more than 6 standard deviations (SD) from the mean 
(n = 49). A flowchart summarizing the inclusion and exclusion criteria 
for study participants is presented in Figure 1. Ethical approval for the 
NHANES was granted by the National Center for Health Statistics. All 
participants provided written informed consent before taking part in 
the survey.

The Chinese data used in this study were derived from the 
baseline survey of a cohort study, which was initiated in Fuyang City, 
Anhui Province, China, between July and September 2018. All 
participants were required to complete a corresponding self-designed 
questionnaire. For the present analysis, those with complete serum 
25(OH)D and PHR data (n = 1,349) were selected. After excluding 
individuals with missing data on selected covariates (n = 221) and 
those exceeding ±6 SD from the mean for either 25(OH)D or PHR 
(n = 6), a total of 1,122 participants were included in the final analysis 
(Figure  1). Ethical approval for this study was obtained from the 
Ethics Committee of the Anhui Medical University (No. 20190288), 
and written informed consent was obtained from all participants prior 
to their enrollment.

2.2 Assessment of serum 25(OH)D

In the NHANES dataset, ultra-high performance liquid 
chromatography–tandem mass spectrometry (UHPLC–MS/MS) was 
utilized for the precise quantification of 25(OH)D3 and 
25-hydroxyvitamin D2 [25(OH)D2] in human serum. Concentrations 
of 25(OH)D below the limit of detection (LOD) were assigned a value 
of LOD divided by the square root of two. Total 25(OH)D is calculated 
by adding 25(OH)D2 and 25(OH)D3 concentrations. In this study, the 
detection rate for 25(OH)D2 was 17.62%, with relatively low 
concentrations, indicating that 25(OH)D3 predominantly determines 
the total 25(OH)D concentrations. Therefore, subsequent analyses 
focused primarily on Total 25(OH)D and 25(OH)D3.

1  https://www.cdc.gov/nchs/nhanes/about
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In our Chinese population, serum total 25(OH)D levels were 
measured using commercial chemiluminescence immunoassay kits 
(DiaSorin, Stillwater, MN, United States) by well-trained researchers. 
The coefficients of variation (CV) for both intra- and inter-assay 
precision were less than 10%.

2.3 Assessment of PHR

Blood count and lipid profile data were obtained from the 
laboratory records of NHANES and from the laboratory database of 
the Chinese population. PHR was calculated using the platelet (PLT) 
count and HDL-C. PLT count was expressed as 1,000 cells/μL, HDL-C 
was measured in mmol/L in both databases, and PHR was calculated 
using the same formula in both cohorts (26):

	 ( ) ( )= −PHR PLT count 1000 cells / uL /HDL C mmol / L

2.4 Covariates

Potential confounders were identified based on previous studies 
of lipid profiles and PLT (7, 8, 27). The covariates from NHANES were 
classified into four categories: cycles, demographic characteristics (age, 
sex, race, education level, poverty-to-income ratio (PIR), and marital 
status), lifestyle factors (serum cotinine, drinking status, physical 
activity, and the Healthy Eating Index 2015 (HEI-2015)), and health 
conditions and medication use (body mass index (BMI), diabetes, 
hypertension, and the use of anti-inflammatory or lipid-lowering 
medications). The PIR was calculated by dividing the midpoint of the 
reported family income category by the poverty threshold established 
by the U.S. Census Bureau for the corresponding calendar year (25). 

Based on this ratio, PIR was classified into three groups: low (0–1.3; 
reference), middle (1.31–3.50), and high (>3.50). Smoking status was 
determined based on serum cotinine levels, with concentrations 
exceeding 14 ng/mL classified as smokers, while those at or below this 
threshold were considered non-smokers (28). Physical activity levels 
were assessed using average metabolic equivalent task (MET) scores, 
with intensity categories defined as moderate for activities at ≥4 METs 
and vigorous for those at ≥8 METs. The total physical activity score 
was derived by aggregating the weekly MET-minutes across both 
moderate and vigorous activity levels. Physical activity levels were 
classified as “low” for <600 MET-minutes per week, “moderate” for 
600–1,200 MET-minutes per week, and “optimal” for ≥1,200 
MET-minutes per week (29). Dietary quality was assessed based on 
the 2015–2020 Dietary Guidelines for Americans. Scores were 
classified as “optimal” (≥70), “average” (50–70), and “inadequate” 
(<50). BMI was calculated by dividing body weight (kg) by the square 
of height (m2). It was categorized into three groups: “normal or 
underweight” (<25.0 kg/m2; reference), “overweight” (25.0–29.9 kg/
m2), and “obese” (≥30.0 kg/m2). Hypertension was defined as a self-
reported diagnosis, the use of antihypertensive medications, a systolic 
blood pressure >140 mmHg, or a diastolic blood pressure >90 mmHg. 
Diabetes was defined by a self-reported diagnosis, the use of insulin 
or oral hypoglycemic agents, a fasting plasma glucose level ≥126 mg/
dL, or a hemoglobin A1c level ≥6.5%. The use of anti-inflammatory 
or lipid-lowering medications was based on self-report.

Covariates in the Chinese dataset were selected to align with those 
used in NHANES and were obtained through a structured, self-
designed questionnaire and physical measurements. Economic status 
was self-reported and classified into three categories: poverty, average 
or wealthy, and missing; the latter included individuals with unclear 
or missing responses due to a high non-response rate. BMI was 
categorized according to Chinese guidelines: normal or underweight 
(<24.0 kg/m2), overweight (24.0–27.9 kg/m2), and obese (≥28.0 kg/

FIGURE 1

Participant selection flowchart from NHANES and Chinese adults.
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m2). Diabetes and hypertension were defined based on self-reported 
physician diagnoses, current medication use, or relevant clinical 
indicators, in accordance with the definitions used in NHANES.

2.5 Statistical analysis

2.5.1 Analysis of NHANES data
Since no unique weights were available for 25(OH)D concentrations 

and PHR, mobile examination center sample weights were applied in the 
estimation calculations, in accordance with NHANES guidelines. In the 
present study, variables with a normal or near-normal distribution were 
presented as weighted mean ± standard error (mean ± SE). Between-
group comparisons were performed using weighted t-tests and weighted 
analysis of variance (ANOVA). Categorical variables were presented as 
unweighted frequencies and weighted proportions (n, %) (30). Between-
group comparisons were conducted using weighted χ2 test.

Survey-weighted linear regression models were utilized to assess the 
relationship between 25(OH)D and PHR. In the regression models, 
25(OH)D was analyzed as both a continuous and categorical variable 
(quartiles), with the lowest quartile designated as the reference group. 
Additionally, we conducted trend analysis (p-trend) to evaluate dose-
response relationships. We  constructed four models, progressively 
adjusting for the following covariates: cycles, demographic 
characteristics, lifestyle factors, and health conditions (including 
medication use). We also used weighted restricted cubic splines (RCS) 
to explore the relationship between 25(OH)D and PHR. Two strategies 
were employed for handling missing covariate values: if the missing data 
rate was less than 5%, the corresponding records were omitted (Figure 1); 
otherwise, the missing values were classified as “missing” in the analysis.

To assess the robustness of the relationship between 25(OH)D and 
PHR and to identify potentially vulnerable subgroups, a subgroup 
analysis was conducted based on demographic characteristics, lifestyle 
factors, and health conditions (including medication use). We performed 
three sensitivity analyses to assess the reliability of our findings. First, 
we applied general linear regression to evaluate the relationship between 
25(OH)D and PHR. Second, we categorized PHR into a binary variable 
using the median as the cutoff point and performed both weighted 
logistic regression and weighted RCS to further explore the relationship. 
Finally, we categorized 25(OH)D2 as a binary variable using the LOD as 
the cutoff point and applied survey-weighted linear regression to assess 
the association. All statistical analyses were conducted using R (version 
4.1.3). A two-tailed p < 0.05 was considered statistically significant.

2.5.2 Analysis of data from the Chinese 
population

The statistical analysis followed the same procedures as those 
applied to the NHANES data, except that sampling weights were not 
used. All statistical analyses were conducted using R (version 4.1.3). 
A two-tailed p < 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics

This study included 36,238 participants, representing the 
approximately 217.9 million noninstitutionalized population residing 

in the United States (Table 1). This study included participants across 
a wide age range, with the distribution as follows: 7.52% were under 
12 years of age, 12.64% were between 12 and 19 years, 61.88% were 
between 20 and 59 years, and 17.96% were 60 years or older. The sex 
distribution was balanced, with 50.07% female and 49.93% male. The 
majority of the population (63.4%) identified as Non-Hispanic White. 
More detailed information on baseline characteristics is provided in 
Table 1. Additionally, the histogram revealed approximately normal 
distributions of PHR and serum 25(OH)D levels 
(Supplementary Figure S1). The demographics of this study 
population were similar to those of the original NHANES population, 
which included completed data on serum 25(OH)D levels and PHR 
(Supplementary Table S1).

The differences in PHR across the various groups are also 
presented in Table 1. Higher PHR levels were observed in participants 
who were younger, male, of Mexican American or other Hispanic 
descent, more highly educated, had higher income, and were never 
married. These individuals were also more likely to be  smokers, 
non-drinkers, engage in moderate physical activity, have average 
HEI-2015 scores, be obese, have diabetes, be free of hypertension, and 
not use anti-inflammatory medications.

3.2 Associations between serum 25(OH)D 
levels and PHR

Table 2 presents the associations of serum 25(OH)D levels with 
PHR using survey-weighted linear regression. After adjusting for 
cycles, we observed a negative association between total 25(OH)D (as 
a continuous variable) and PHR. We  then performed stepwise 
adjustments for demographic characteristics, lifestyle factors, and 
health conditions (including medication use). After these adjustments, 
the negative association remained statistically significant. For each 
1-unit increase in 25(OH)D, PHR decreased by 0.23 to 0.41 units.

Given the potential non-linear associations between 25(OH)D 
and PHR, we divided total 25(OH)D into quartiles, using the lowest 
quartile as the reference group, as presented in Table 2. After adjusting 
for cycles, we found that an increase in 25(OH)D from Q1 to Q4 was 
associated with a significant decrease of 28.64 units (95% CI: −31.64 
to −25.64) in PHR. After stepwise adjustments for demographic 
characteristics, lifestyle factors, and health conditions (including 
medication use), we observed that with increasing 25(OH)D from Q1 
to Q4, PHR decreased by 27.65 (95% CI: −31.00 to −24.31), 23.56 
(95% CI: −26.99 to −20.12), and 14.84 (95% CI: −18.03 to −11.66) 
units, respectively. The P-trend results further supported the 
associations observed above. RCS analysis revealed a linear negative 
association between 25(OH)D levels and PHR (Figure 2). Given that 
25(OH)D concentrations are primarily determined by 25(OH)D3 
levels, we  performed similar analyses for 25(OH)D3 and found 
comparable results.

3.3 Subgroup and sensitivity analyses

To evaluate the stability of the associations of 25(OH)D with PHR, 
as well as to identify potentially sensitive subgroups, a subgroup 
analysis was conducted based on total 25(OH)D levels (Figure 3). 
Consistent effects with the main findings were observed across nearly 
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TABLE 1  The characteristics of all eligible participants from NHANES.

Variables Total PHR p value

n (%) Mean SE

Cycles <0.001

 � 2007–2008 5,559 (14.46) 219.18 2.28

 � 2009–2010 6,858 (16.89) 196.65 2.05

 � 2011–2012 5,944 (17.01) 190.87 2.10

 � 2013–2014 6,318 (17.15) 191.09 2.23

 � 2015–2016 6,069 (17.17) 189.04 2.57

 � 2017–2018 5,490 (17.32) 194.06 3.07

Age (year) <0.001

 � <12 4,958 (7.52) 215.96 1.72

 � 12–19 6,158 (12.64) 204.04 1.48

 � 20–59 17,632 (61.88) 198.59 1.16

 � ≥60 7,490 (17.96) 174.26 1.52

Sex <0.001

 � Female 18,133 (50.07) 190.70 1.19

 � Male 18,105 (49.93) 201.75 1.06

Race/ethnicity <0.001

 � Mexican American 6,685 (10.46) 212.05 1.84

 � Other Hispanic 4,027 (6.43) 208.19 1.70

 � Non-Hispanic Black 7,961 (11.60) 191.56 1.29

 � Non-Hispanic White 13,128 (63.44) 193.02 1.36

 � Other race/multiracial 4,437 (8.06) 198.02 2.17

Education level <0.001

 � Below high school 16,275 (30.70) 187.11 1.19

 � High school 6,317 (19.88) 201.28 1.61

 � Above high school 13,646 (49.42) 207.61 1.07

PIR <0.001

 � Low (0–1.3) 12,105 (22.78) 199.17 1.11

 � Middle (1.31–3.50) 12,263 (33.54) 186.99 1.50

 � High (>3.50) 8,859 (37.02) 207.64 1.47

 � Missing 3,011 (6.66) 193.58 2.04

Marital status <0.001

 � Never married 4,878 (15.54) 208.45 1.31

 � Married or cohabit 14,962 (50.61) 193.14 1.23

 � Widowed/divorced/separated 5,276 (13.67) 196.92 1.78

 � Missing 11,122 (20.18) 188.76 1.56

Serum cotinine <0.001

 � <14 ng/ml 29,530 (79.48) 193.67 1.04

 � ≥14 ng/mL 6,708 (20.52) 206.09 1.52

Drinking status <0.001

 � Never 3,621 (8.58) 208.90 2.13

 � Former 3,463 (8.97) 205.56 1.22

 � Now 16,825 (58.27) 197.03 2.17

 � Missing 12,329 (24.18) 190.27 1.16

(Continued)
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all subgroups. Additionally, stronger associations were identified 
among adults (aged 20–59 years), females, individuals with higher 
education, non-smokers, and those with a higher BMI. The interaction 
test further supported these findings, showing statistical significance.

In sensitivity analyses, we first applied general linear regression 
and observed similar results (Supplementary Table S2). Specifically, in 

various models, each 1-unit increase in total 25(OH)D was associated 
with a decrease in PHR ranging from 0.22 to 0.38 units. Additionally, 
we categorized PHR into a binary variable using the median as the 
cutoff point and conducted further analysis using weighted logistic 
regression (Supplementary Table S3). We observed a similar trend. For 
instance, after stepwise adjustments for demographic characteristics, 

TABLE 1  (Continued)

Variables Total PHR p value

n (%) Mean SE

Physical activity <0.001

 � Low 3,982 (11.40) 191.50 1.17

 � Moderate 16,362 (52.13) 195.18 1.81

 � Optimal 3,227 (9.50) 193.30 1.79

 � Missing 12,667 (26.97) 206.79 1.25

HEI-2015 <0.001

 � Inadequate 19,554 (53.45) 189.35 1.21

 � Average 13,977 (38.60) 205.15 1.08

 � Optimal 2,707 (7.95) 169.56 1.94

BMI <0.001

 � Normal or low weight 15,612 (38.94) 176.61 0.94

 � Overweight 9,805 (28.99) 193.84 1.21

 � Obese 10,821 (32.07) 222.18 1.35

Diabetes <0.001

 � No 32,745 (91.92) 194.86 1.01

 � Yes 3,493 (8.08) 211.62 2.34

Hypertension <0.001

 � No 24,491 (69.70) 222.27 2.33

 � Yes 10,039 (27.72) 194.38 1.11

 � Missing 1708 (2.58) 198.41 1.37

Anti-inflammatory drug 0.002

 � No 31,426 (86.42) 196.88 1.03

 � Yes 4,812 (13.58) 192.03 1.72

Lipid-lowering drug 0.410

 � No 34,757 (95.83) 196.12 1.00

 � Yes 1,481 (4.17) 198.40 2.97

Total 25(OH)D (nmol/L) <0.001

 � Q1 (6.15–45.0) 9,098 (18.47) 209.35 1.42

 � Q2 (45.1–60.3) 9,054 (21.69) 207.06 1.33

 � Q3 (60.4–76.4) 9,030 (26.41) 198.13 1.41

 � Q4 (76.5–215) 9,056 (33.42) 180.42 1.33

25(OH)D3 (nmol/L) <0.001

 � Q1 (3.72–41.7) 9,073 (18.59) 207.59 1.33

 � Q2 (41.8–57.4) 9,106 (21.72) 207.32 1.45

 � Q3 (57.5–73.4) 9,001 (25.97) 198.32 1.36

 � Q4 (73.5–214) 9,058 (33.72) 181.18 1.34

PHR, platelet to high-density lipoprotein cholesterol ratio; SE, standard error; PIR, poverty-to-income ratio; HEI, healthy eating index; BMI, body mass index. Continuous variables were 
expressed as weighted means ± SEs and categorical variables were described as n (%). n: numbers of subjects; %: weighted percentage. Total 25(OH)D: the combined concentrations of 25(OH)
D₂ and 25(OH)D₃.
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lifestyle factors, and health conditions (including medication use), 
each 10-unit increase in total 25(OH)D was correlated with an odds 
ratio ranging from 0.90 to 0.94. The dose-response analysis of total 
25(OH)D concentrations and PHR (as a binary variable) further 
illustrated the negative association, providing additional support for 
our primary findings (Supplementary Figure S2). Finally, 
we categorized 25(OH)D2 as a binary variable using the LOD as the 
cutoff point. The regression coefficients ranged from −3.75 to −12.25 
across different models, consistent with the primary findings 
(Supplementary Table S4).

3.4 Validation based on Chinese data

Supplementary Table S5 presents the baseline characteristics of 
the Chinese population and the differences in PHR across subgroups. 
We observed that individuals who were female, living in poverty, 
non-drinkers, and those with diabetes or hypertension tended to 
have higher PHR levels. Linear regression analyses showed 
associations consistent with those found in the NHANES population 
(Table  3). Furthermore, restricted cubic spline (RCS) analysis 
revealed a linear negative association between 25(OH)D levels and 
PHR (Figure  4). We  also performed stratified analyses 
(Supplementary Table S6). Notably, a significant association between 
25(OH)D and PHR was observed among females (β = −0.38, 95% CI: 
−0.62 to −0.14, p = 0.002), but not among males (β = −0.07, 95% CI: 
−0.23 to 0.08, p = 0.353), with a significant interaction by sex (P for 
interaction = 0.034). The findings were in line with the 
NHANES results.

4 Discussion

4.1 Main findings

After stepwise adjustment for cycles, demographic characteristics, 
lifestyle factors, and health conditions (including medication use), 
survey-weighted linear regression demonstrated a significant inverse 
relationship between serum 25(OH)D levels and PHR. Specifically, for 
every 1-unit increase in 25(OH)D, PHR decreased by 0.23 to 0.41 units 
across models. Similarly, the association remained significant, with 
PHR decreasing by 14.84 to 27.65 units in the Q4 of total 25(OH)D 
compared to the Q1. RCS analysis further supported a linear inverse 
association between total 25(OH)D and PHR. We also performed 
similar analyses for 25(OH)D3, and the results were generally 
consistent. Furthermore, analyses in the Chinese population further 
confirmed the consistent association between serum total 25(OH)D 
and PHR. Notably, the stronger association observed among females 
was evident in both populations, with the interaction effect reaching 
statistical significance.

4.2 Comparison with previous work and 
possible explanations

We included six survey cycles with a weighted PHR range of 
189.04 to 219.18, aligning with the ranges reported in previous studies 
(2, 3, 26). According to the Endocrine Society’s guidelines (31, 32), a 
serum 25(OH)D concentration of 75 nmol/L (30 ng/mL) or greater is 
considered sufficient. In this study, we found that 9,747 individuals 

TABLE 2  Associations of serum 25(OH)D concentrations with PHR using weighted linear regression from NHANES.

Characteristics Continuous Q1 Q2 Q3 Q4 P for trend

β (95% CI) Reference β (95% CI) β (95% CI) β (95% CI)

Total 25(OH)D

Model 1 −0.47 (−0.51, −0.43) 1.00
−1.75 (−4.71, 

1.21)

−11.23 (−14.43, 

−8.03)

−28.64 (−31.64, 

−25.64)
<0.001

Model 2 −0.41 (−0.46, −0.37) 1.00
−6.00 (−9.11, 

−2.89)

−14.92 (−18.17, 

−11.66)

−27.65 (−31.00, 

−24.31)
<0.001

Model 3 −0.35 (−0.40, −0.31) 1.00
−4.41 (−7.44, 

−1.37)

−12.54 (−15.81, 

−9.26)

−23.56 (−26.99, 

−20.12)
<0.001

Model 4 −0.23 (−0.27, −0.18) 1.00
−2.16 (−5.24, 

0.92)

−7.13 (−10.09, 

−4.17)

−14.84 (−18.03, 

−11.66)
<0.001

25(OH)D3

Model 1 −0.45 (−0.49, −0.41) 1.00
0.16 (−3.10, 

3.42)

−9.15 (−12.19, 

−6.10)

−26.08 (−29.14, 

−23.03)
<0.001

Model 2 −0.41 (−0.45, −0.37) 1.00
−5.05 (−8.23, 

−1.87)

−14.27 (−17.25, 

−11.29)

−26.62 (−29.72, 

−23.52)
<0.001

Model 3 −0.35 (−0.39, −0.31) 1.00
−3.44 (−6.64, 

−0.24)

−11.79 (−14.88, 

−8.70)

−22.46 (−25.68, 

−19.24)
<0.001

Model 4 −0.21 (−0.25, −0.17) 1.00
−1.18 (−4.21, 

1.84)

−6.37 (−9.19, 

−3.55)

−13.29 (−16.20, 

−10.38)
<0.001

PHR, platelet to high-density lipoprotein cholesterol ratio; CI, confidence interval; Q1, the first quartile; Q2, the second quartile; Q3, the third quartile; Q4, the fourth quartile. Total 25(OH)D: 
the combined concentrations of 25(OH)D₂ and 25(OH)D₃. Model 1: was adjusted for cycles. Model 2: cycles and demographic characteristics (age, sex, race, education level, PIR, and marital 
status). Model 3: further adjusted for lifestyle factors (serum cotinine, drinking status, physical activity, and HEI-2015) in addition to the adjustments in Model 2. Model 4: further adjusted for 
health conditions and medication use (BMI, diabetes, hypertension, anti-inflammatory drugs, and lipid-lowering drugs) in addition to the adjustments in Model 3.
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(26.90%) had 25(OH)D levels of 75 nmol/L or higher. Quartile 
analysis revealed that Q4 ranged from 76.5 to 215 nmol/L, 
representing individuals with sufficient 25(OH)D levels to some 
extent. These findings suggest that the proportion of individuals with 
sufficient 25(OH)D remains relatively low in the U.S. population. 
Although the Chinese population demonstrated somewhat better 

levels, nearly half of the participants still did not reach the 75 nmol/L 
threshold (Supplementary Table S5).

To our knowledge, only one study using NHANES data has 
quantified the relationship between 25(OH)D and PHR, and the 
findings were consistent with ours (24). The previous NHANES study, 
which included 5,308 participants from 2007 to 2018, reported that 

FIGURE 2

Dose-response relationship of serum 25(OH)D concentrations and PHR. PHR: platelet to high-density lipoprotein cholesterol ratio; CI, confidence 
interval. Total 25(OH)D: the combined concentrations of 25(OH)D₂ and 25(OH)D₃. The covariates adjusted for are as shown in model 4.
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FIGURE 3

Subgroup analysis for the association between serum total 25(OH)D concentrations and PHR. PHR, platelet to high-density lipoprotein cholesterol 
ratio; CI, confidence interval. Total 25(OH)D: the combined concentrations of 25(OH)D₂ and 25(OH)D₃. The covariates adjusted for are as shown in 
model 4. *: p < 0.05.
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each 1-unit increase in 25(OH)D was associated with a 0.17-unit 
decrease in PHR (95% CI: −0.25 to −0.09) after adjustments (24). In 
comparison, our analyses in the larger NHANES sample (n = 36,238) 
yielded a similar estimate of −0.23 (95% CI: −0.27 to −0.18), while 
the Chinese cohort (n = 1,122) showed a comparable decrease of 
−0.15 (95% CI: −0.28 to −0.01). Unlike the previous study, which 
conducted subgroup analyses only by hypertension and diabetes, 
we performed stratified analyses across 15 variables. By leveraging two 
population-based datasets and multiple stratifications, our study 
further examined the robustness of the association and identified 
potentially sensitive subpopulations. Additionally, several 

observational and experimental studies have investigated the 
relationship between vitamin D and platelet count as well as HDL 
cholesterol, and their results were consistent with our findings 
(23, 33–35).

In the study conducted by Park et al. (33), which included 3,190 
adults aged over 20 years, they found a significant negative correlation 
between vitamin D levels and platelet count. In another study, which 
included 341 overweight and obese individuals aged 18–71 years, they 
observed that sufficient vitamin D levels were independently associated 
with lower platelet counts (34). Other studies also have indicated a 
possible association between vitamin D insufficiency and elevated 

TABLE 3  Associations of serum total 25(OH)D concentrations with PHR using weighted linear regression from Chinese adults.

Characteristics Continuous Q1 Q2 Q3 Q4 P for trend

β (95% CI) Reference β (95% CI) β (95% CI) β (95% CI)

Model 1 −0.23 (−0.35, −0.11) 1
−12.45 (−23.52, 

−1.37)

−20.26 (−31.26, 

−9.25)

−21.45 (−32.60, 

−10.30)
<0.001

Model 2 −0.18 (−0.31, −0.04) 1
−11.18 (−22.42, 

0.06)

−18.01 (−29.40, 

−6.62)

−16.65 (−29.35, 

−3.96)
<0.001

Model 3 −0.17 (−0.31, −0.04) 1
−10.35 (−21.59, 

0.90)

−17.28 (−28.68, 

−5.88)

−16.49 (−29.22, 

−3.77)
<0.001

Model 4 −0.15 (−0.28, −0.01) 1
−10.36 (−21.57, 

0.84)

−16.18 (−27.55, 

−4.81)

−14.83 (−27.54, 

−2.12)
<0.001

PHR, platelet to high-density lipoprotein cholesterol ratio; CI, confidence interval; Q1, the first quartile; Q2, the second quartile; Q3, the third quartile; Q4, the fourth quartile. Model 1: was 
unadjusted. Model 2: demographic characteristics (age, sex, education level, economy, and marital status). Model 3: further adjusted for lifestyle factors (smoking status, drinking status, 
physical activity, pork intake frequency, and fruit intake frequency) in addition to the adjustments in Model 2. Model 4: further adjusted for health conditions and medication use (BMI, 
diabetes, and hypertension) in addition to the adjustments in Model 3.

FIGURE 4

Dose-response relationship of serum total 25(OH)D concentrations and PHR from Chinese adults. PHR, platelet to high-density lipoprotein cholesterol 
ratio; CI, confidence interval. The covariates adjusted for are as shown in model 4.
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platelet counts (19, 20). The inverse relationship between vitamin D 
levels and platelet count is biologically plausible, as vitamin D exerts 
anti-inflammatory and antithrombotic effects (36). Specifically, vitamin 
D has been shown to modulate inflammatory and coagulation 
pathways, including its impact on endothelial cell activation (18).

A longitudinal community-based study of 13,039 participants 
showed that adequate 25(OH)D concentrations were prospectively 
associated with higher HDL-C levels (23). In addition, Faridi et al. 
(23) and Lupton et al. (17) both reported a significant correlation 
between adequate vitamin D levels and higher HDL-C levels. In 
contrast, a cross-sectional study at the polycystic ovary syndrome and 
infertility clinic of Arash Women’s Hospital in Tehran found no effect 
of vitamin D deficiency on the lipid profile (35). These differences may 
largely be attributed to variations in geographic factors, demographic 
characteristics, and study design. In general, however, vitamin D 
appears to be positively associated with HDL-C levels. The relationship 
between vitamin D and elevated HDL-C levels is biologically plausible. 
Vitamin D may influence cholesterol synthesis and transport by 
regulating key enzymes involved in lipid metabolism in the liver (21, 
22). These mechanisms could contribute to increased HDL synthesis 
(21, 22).

4.3 Subgroup analysis

Subgroup analyses revealed consistent results with the main findings 
across nearly all subgroups. This consistency suggests that the observed 
effects are not substantially influenced by the potential confounders 
measured in this study, such as the use of anti-inflammatory or lipid-
lowering medications, further reinforcing the stability and reliability of 
our results. NHANES data revealed that the inverse association between 
serum 25(OH)D and PHR was more pronounced among adults aged 
20–59 years, females, individuals with higher educational attainment, 
non-smokers, and those with elevated BMI, with a statistically significant 
interaction (p < 0.05). Importantly, we replicated the stronger female-
specific association in the Chinese cohort, with a statistically significant 
interaction (p = 0.034). This sex-difference may reflect underlying 
biological mechanisms, such as hormonal regulation of vitamin D 
metabolism and platelet activity, as well as gender-specific lifestyle factors 
(37, 38). Estrogen has been shown to increase the expression of vitamin 
D receptors, thereby enhancing the biological activity of vitamin D in 
females (39). Moreover, a review suggested that estrogen can further 
enhance vitamin D function, promote its accumulation, and increase 
receptor expression, leading to more effective anti-inflammatory 
responses in females than in males (37). Together, these mechanisms 
may explain the observed gender differences in vitamin D metabolism 
and its impact on health outcomes. Although definitive conclusions are 
premature, this sex-specific disparity merits further investigation and 
could inform the design of tailored public health strategies for 
at-risk populations.

4.4 Strengths and limitations

This study has two major strengths. First, this study represents the 
first combined analysis of data from the U.S. and China examining the 
relationship between vitamin D levels and PHR, and is also the first to 
reveal a possible heightened sensitivity to this association in females. 

Second, the study employed a range of statistical methods and adjusted 
for as many potential confounders as possible, thereby improving the 
robustness and reliability of the results. Admittedly, this study has 
several limitations. First, since both datasets are cross-sectional, this 
study cannot establish the temporal relationship between serum 
25(OH)D levels and blood PHR, and therefore cannot confirm 
causality. However, the findings provide preliminary evidence, paving 
the way for future longitudinal and experimental studies to further 
explore these associations. Second, serum 25(OH)D levels were 
measured using different methods in the two studies, which may 
introduce measurement bias. Additionally, although we attempted to 
harmonize covariates across the two datasets as much as possible, some 
differences in definitions and limitations in data availability remained. 
Finally, although we adjusted for many potential confounders in the 
analyses, unmeasured confounders, such as environmental exposures 
like air pollution, cannot be entirely ruled out.

5 Conclusion

Our study found a significant inverse association between total 
serum 25(OH)D levels and PHR. The association was particularly 
stronger in females, suggesting they may be  more sensitive to this 
association. These findings imply that 25(OH)D may play a role in 
modulating PHR levels, potentially helping to prevent or mitigate the 
progression of related diseases. Future research should adopt longitudinal 
and experimental designs to confirm causality and investigate the 
underlying mechanisms, paving the way for potential clinical applications.
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