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Dietary patterns and chronic
prostatitis: a symptom severity
prediction model based on
nutritional clustering and
machine learning
Zhen Wang†, Wei Wu†, Bo Wen, Zhongle Xu, Junhua Xi and
Yanbin Zhang*

Department of Urology, Hefei Second People’s Hospital, Hefei, Anhui, China

Background: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has

a multifactorial etiology where diet is considered an important factor. This

study aimed to develop a predictive model for CP/CPPS symptom severity

by analyzing food frequency questionnaire (FFQ) data with machine learning

techniques, providing a basis for personalized nutritional interventions.

Methods: This study included 313 patients with CP/CPPS. We used principal

component analysis (PCA) to extract dietary patterns from FFQ data and applied

LASSO regression to select key predictors of symptom severity. Subsequently, six

machine learning models (logistic regression, random forest, XGBoost, support

vector machine, K-nearest neighbors, and multilayer perceptron) were trained

and compared. Model performance was evaluated using ROC curves, decision

curve analysis (DCA), and calibration plots. SHapley Additive exPlanations (SHAP)

were used to interpret the optimal model.

Results: PCA identified two major dietary patterns: a “Red Meat and Processed

Food” dietary pattern (PC1) and a “Dairy-rich” pattern (PC2). LASSO regression

selected key predictors, among which the “Red Meat and Processed Food”

dietary pattern demonstrated the strongest positive association with CP/CPPS

symptom severity. Among the models, while support vector machine (SVM)

and logistic regression showed high AUC values, the XGBoost model

demonstrated the best overall performance across a balance of metrics

including accuracy, precision, recall, and F1-score, and was selected as the

final model (AUC = 0.883). SHAP analysis identified the Red Meat and

Processed Food dietary pattern as the most important feature associated with

symptom severity.

Conclusion: This study successfully developed a machine learning model

based on dietary patterns that effectively predicts CP/CPPS symptom severity.

The model underscores the significant association between nutrition and
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disease management and, with its strong predictive performance and 

interpretability, offers a novel tool for precision nutrition in CP/CPPS. 

KEYWORDS 

chronic prostatitis, dietary pattern, food frequency questionnaire, machine learning, 
principal component analysis, LASSO regression, XGBoost, SHAP interpretation 

1 Introduction 

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) 
is a prevalent condition marked by pelvic pain, lower urinary 
tract symptoms, and reduced quality of life, placing a substantial 
burden on men’s health (1). Although the pathogenesis of 
CP/CPPS remains unclear, it is widely thought to involve 
multiple pathophysiological mechanisms, such as inflammation, 
neuroimmune dysregulation, oxidative stress, and psychosocial 
influences (2, 3). Growing evidence highlights that lifestyle 
factors, particularly dietary habits, play a significant role in the 
development and progression of CP/CPPS (4, 5). 

The influence of dietary patterns on prostate health has 
become a prominent research focus. For example, the “Western” 
dietary pattern—characterized by high consumption of red meat, 
processed foods, refined grains, and sugary drinks—has been linked 
to an increased risk of chronic diseases, including prostate cancer, 
primarily due to its pro-inflammatory and pro-oxidative eects 
(6, 7). In contrast, healthy dietary patterns—rich in vegetables, 
fruits, whole grains, fish, and legumes—may oer protective eects 
on prostate health through anti-inflammatory and antioxidant 
pathways (8, 9). However, traditional nutritional epidemiology 
faces notable limitations in evaluating the relationship between diet 
and disease. Focusing solely on individual nutrients or food groups 
may neglect complex synergistic and antagonistic interactions 
among dietary components, thereby limiting the ability to assess 
the impact of overall dietary patterns. Moreover, the dependence 
on precise quantification of nutrient intake in grams may introduce 
recall bias and increase the complexity of data collection (10). 

In recent years, the emergence of big data and artificial 
intelligence has presented new opportunities for advancing 
nutritional epidemiology. Machine learning algorithms can 
detect hidden patterns and nonlinear relationships within high-
dimensional dietary data, thereby enhancing the accuracy of 
disease risk and symptom severity prediction (11, 12). Specifically, 
integrating food frequency questionnaire (FFQ) data with machine 
learning techniques enables the eective capture of long-term 
dietary behaviors and the development of clinically applicable 
predictive models (13). 

This study aims to construct a predictive model of CP/CPPS 
symptom severity using dietary data derived from FFQs. Principal 
component analysis (PCA) was applied to extract dietary patterns, 
followed by feature selection using the Least Absolute Shrinkage 
and Selection Operator (LASSO) regression. Multiple machine 
learning algorithms were subsequently compared in terms of their 
ability to predict CP/CPPS symptom severity. Model performance 
was thoroughly evaluated using receiver operating characteristic 
(ROC) curves, decision curve analysis (DCA), calibration curves, 
and SHapley Additive exPlanations (SHAP), with the ultimate goal 

of developing a clinically applicable tool to support personalized 
dietary interventions in patients with CP/CPPS. 

2 Materials and methods 

2.1 Study population 

This retrospective study enrolled patients with CP/CPPS 
who attended the urology outpatient clinic of our hospital 
between January 2022 and December 2023. The inclusion 
criteria were as follows: age between 18 and 60 years; a 
diagnosis of CP/CPPS confirmed using the National Institutes of 
Health Chronic Prostatitis Symptom Index (NIH-CPSI); symptom 
duration exceeding 3 months; and voluntary participation with 
written informed consent. Exclusion criteria included: acute 
bacterial prostatitis; other prostatic diseases such as prostate cancer 
or benign prostatic hyperplasia; urinary tract infections; other 
identifiable causes of pelvic pain; and severe systemic or psychiatric 
conditions that might interfere with questionnaire completion. 
The study protocol was approved by the Hefei Second People’s 
Hospital Institutional Ethics Committee (Approval No.: 2025-KY-
052). Written informed consent was obtained from all participants 
prior to enrollment. 

2.2 Data collection 

Patient data were collected using standardized questionnaires 
and electronic medical records, including the following 
components: 

• Demographic data: Age (years), height (cm), weight (kg), 
and body mass index (BMI, kg/m2), which was calculated 
from height and weight. Lifestyle variables, including smoking 
status (yes/no), alcohol consumption (yes/no), and physical 
activity level (low, moderate, or high), were also recorded. 

• Symptom assessment: CP/CPPS symptoms were assessed 
using the National Institutes of Health Chronic Prostatitis 
Symptom Index (NIH-CPSI), which comprises nine items 
spanning three domains: pain (0–21 points), urinary 
symptoms (0–10 points), and quality of life impact (0– 
15 points). The total score ranges from 0 to 46, with 
higher scores reflecting greater symptom severity. In this 
study, the total NIH-CPSI score was used as the primary 
outcome. For predictive modeling, the symptom severity 
was dichotomized into “mild” (score 0-14) and “moderate-
to-severe” (score ≥ 15) categories. This cuto is widely 
adopted in clinical studies of CP/CPPS to distinguish 
dierent levels of symptom burden and has been validated 
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for its clinical relevance (doi: 10.1016/j.juro.2008.06.06, DOI: 
10.1016/j.eururo.2015.08.06). 

• Dietary assessment: A semi-quantitative food frequency 
questionnaire (FFQ), covering approximately 100 commonly 
consumed food items, was used to evaluate dietary intake 
over the previous year. Patients reported the frequency of 
consumption for each item using nine categorical options 
ranging from “never or rarely” to “more than four times 
per day.” These categorical frequencies were converted into 
numerical values (scored 0–3) for dietary pattern extraction. 
Detailed variable definitions and coding schemes are provided 
in Supplementary Table S1. 

2.3 Dietary pattern extraction 

Principal component analysis (PCA), a multivariate statistical 
method, was applied to extract meaningful dietary patterns from 
high-dimensional FFQ data. PCA transforms the original variables 
into a set of orthogonal principal components that retain the 
maximum possible variance of the original data (14). In this study, 
the FFQ data were standardized prior to PCA, and two principal 
components—Dietary_Pattern_PC1 and Dietary_Pattern_PC2— 
were extracted. The components were interpreted and labeled 
according to the factor loadings of individual food groups. Positive 
factor loadings indicate a direct association with the component, 
whereas negative loadings reflect an inverse relationship. 

Dietary_Pattern_PC1 was characterized by high intakes of 
red meat, fried foods, sugary beverages, and processed meats, 
along with low intakes of vegetables, fruits, and whole grains. 
This pattern, while reflecting a similar nutritional structure 
(high in unhealthy fats and sugars, low in fiber) to the 
internationally recognized “Western diet,” is derived from and 
reflects contemporary Chinese dietary habits. For accuracy and 
to acknowledge its cultural context, we primarily refer to it 
as the “Red Meat and Processed Food Dietary Pattern” in 
subsequent text. The term “Red Meat and Processed Food” 
dietary pattern is retained parenthetically for ease of comparison 
with the international literature. Dietary_Pattern_PC2 (Principal 
Component 2) explained 8.42% of the variance. It was characterized 
by high positive loadings for dairy products and spicy foods, 
alongside negative loadings for fruits and nuts (as detailed in 
Table 2). Based on this structure, it was labeled as the “Dairy- and 
Spicy-rich” dietary pattern to accurately reflect its dominant food 
components. Together, the two principal components (PC1 and 
PC2) accounted for 51.36% of the total variance in dietary intake, 
indicating that they eectively captured substantial heterogeneity 
in dietary behaviors within the study population. 

2.4 Statistical analysis and feature 
selection 

All statistical analyses were performed using Python (version 
3.9) and associated libraries, including Pandas, NumPy, and Scikit-
learn. Continuous variables were expressed as mean ± standard 
deviation (SD) or median (interquartile range), while categorical 
variables were summarized as counts and percentages. Dierences 
in NIH-CPSI scores across dietary pattern groups were assessed 

using independent t-tests or one-way analysis of variance 
(ANOVA), as appropriate. 

Least Absolute Shrinkage and Selection Operator (LASSO) 
regression was employed to identify the most relevant dietary 
and lifestyle features associated with CP/CPPS symptom severity. 
LASSO applies L1 regularization to penalize regression coeÿcients, 
shrinking some of them to zero, thereby enabling both feature 
selection and model simplification (15). In this study, the outcome 
variable was dichotomized NIH-CPSI symptom severity (mild vs. 
moderate/severe), and the predictors included age, BMI, smoking 
status, alcohol consumption, physical activity level, and the two 
dietary pattern components (PC1 and PC2). Five-fold cross-
validation was conducted to determine the optimal regularization 
parameter (alpha), aiming to balance model fit and generalizability. 
The selected features from LASSO regression were subsequently 
used for the development of machine learning models. 

2.5 Machine learning model 
development 

After feature selection, the dataset was randomly divided into 
a training set (70%) and a test set (30%) using stratified sampling 
to ensure balanced outcome distributions across both sets. Seven 
machine learning algorithms were developed and compared to 
predict the severity of CP/CPPS symptoms: 

1. Logistic Regression (LR): A classic linear model for binary 
classification (16). 

2. Random Forest (RF): An ensemble method that builds 
multiple decision trees (17). 

3. Gradient Boosting Machine (GBM): An iterative ensemble 
algorithm that trains sequential weak learners (18). 

4. Extreme Gradient Boosting (XGBoost): An advanced and 
eÿcient implementation of GBM (19). 

5. Support Vector Machine (SVM): A supervised learning 
algorithm that finds an optimal hyperplane for 
classification (20). 

K-Nearest 
6. Neighbors (KNN): A non-parametric, instance-based 

classification algorithm (21). 
7. Multilayer Perceptron (MLP): A feedforward neural network 

with at least one hidden layer (22). 

All models were trained on the training set and internally 
validated using five-fold stratified cross-validation to evaluate 
performance stability and generalizability. Key hyperparameters 
for each model were optimized using grid search or random 
search techniques. 

2.6 Model evaluation 

Model performance was thoroughly evaluated on the 
independent test set using the following metrics: 

• Receiver Operating Characteristic (ROC) curve and Area 
Under the Curve (AUC): The AUC measures the model’s 
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discriminative ability between outcome classes. An AUC of 1.0 
indicates perfect classification performance, while a value of 
0.5 suggests no better than random chance. The ROC curves 
for all models are illustrated in Figure 1. 

• Decision Curve Analysis (DCA): DCA evaluates the clinical 
utility of predictive models by estimating the net benefit across 
a continuum of threshold probabilities. It oers insights into 
the added value of each model in clinical decision-making 
scenarios. The DCA curves for all models are shown in 
Figure 2. 

• Calibration Curve: Calibration curves evaluate the agreement 
between predicted probabilities and actual outcomes, thereby 
assessing the accuracy of probabilistic predictions. The Brier 
score was calculated as a quantitative measure of calibration, 
with lower scores indicating better predictive accuracy. The 
calibration curves are presented in Figure 3. 

• Additional Metrics: Accuracy, precision, recall, and F1-score 
were also calculated to provide a comprehensive evaluation 
of model classification performance. Detailed performance 
metrics for all models are summarized in Table 1. 

2.7 Model interpretation 

To improve the transparency and credibility of the predictive 
model, SHapley Additive exPlanations (SHAP) values were applied 
to interpret the output of the top-performing algorithm. SHAP is a 
game-theoretic approach that quantifies the marginal contribution 
of each feature to the model’s output, reflecting both the direction 
and magnitude of its influence (23). Through SHAP analysis, 
we gained insights into the model’s decision-making process and 
identified the most influential features contributing to CP/CPPS 
symptom severity. 

SHAP-based visualizations were used to illustrate the model’s 
interpretability findings: 

• SHAP Summary Plot (Figure 3): This plot ranks all input 
features based on their importance and shows their eect 
on the model’s prediction (positive or negative). Each dot 
represents an individual sample, with color indicating the 
feature value from low to high. 

• SHAP Dependence Plot (Figure 2): This plot demonstrates 
how variations in a single feature aect model predictions 
and reveals potential interactions with other variables. 
Special attention was given to the dependence plot of 
Dietary_Pattern_PC1 to further explore its specific impact on 
the prediction of CP/CPPS severity. 

3 Results 

3.1 Baseline characteristics and dietary 
pattern distribution 

A total of 313 patients with a confirmed diagnosis of CP/CPPS 
were included in the analysis. Baseline demographic and clinical 
characteristics are summarized in Table 2. Principal component 
analysis (PCA) of FFQ data identified two major dietary pattern 
components: 

• Dietary_Pattern_PC1 (Principal Component 1): This 
component accounted for 42.94% of the total variance and 
was characterized by high positive loadings for red meat, fried 
foods, sugary beverages, and processed meats, along with 
negative loadings for vegetables, fruits, whole grains, fish, 
legumes, and nuts. Based on this structure, it was labeled as 
the Red Meat and Processed Food" dietary pattern. 

• Dietary_Pattern_PC2 (Principal Component 2): This 
component explained 8.42% of the variance and primarily 
represented high intake of dairy products and spicy foods. As 
detailed in Table 3, this pattern was predominantly defined 
by very high positive loadings for dairy products (factor 
loading = 0.8446) and spicy foods (factor loading = 0.3187). 
It also presented modest positive loadings for vegetables and 
fish, alongside negative loadings for fruits and nuts. The term 
“Dairy- and Spicy-rich” was thus chosen to most accurately 
capture its core food components as identified in our cohort. 

Together, the two principal components accounted for 51.36% 
of the total variance in dietary intake, indicating substantial 
heterogeneity in dietary patterns within the study population. 
These components eectively captured the dominant dietary 
behaviors observed among participants. 

3.2 Dietary patterns and feature 
selection 

Principal component analysis (PCA) identified two 
major dietary pattern components: Dietary_Pattern_PC1 and 
Dietary_Pattern_PC2. The factor loadings of individual food 
groups corresponding to these components are presented in 
Table 3. 

As shown in Figure 4, the LASSO coeÿcient path plot illustrates 
the feature selection process. After identifying the optimal 
regularization parameter through five-fold cross-validation, the 
final set of predictors retained by LASSO regression with 
non-zero coeÿcients included: age, body mass index (BMI), 
smoking status, alcohol consumption, physical activity level, and 
Dietary_Pattern_PC1 (the “Red Meat and Processed Food” dietary 
pattern). The coeÿcient for Dietary_Pattern_PC2 was shrunk to 
zero, indicating it was not selected for the final model. 

Specifically, the regression coeÿcient for Dietary_Pattern_PC1 
(the “Red Meat and Processed Food” dietary pattern) was positive, 
indicating a direct association with greater CP/CPPS symptom 
severity. In contrast, the coeÿcient for Dietary_Pattern_PC2 (the 
“Dairy-rich” dietary pattern) was negative, suggesting an inverse 
association with symptom severity. The selected variables and their 
corresponding regression coeÿcients are summarized in Table 4. 

3.3 Model performance and 
interpretability analysis 

LASSO regression identified six key predictors significantly 
associated with CP/CPPS symptom severity: age, body mass index 
(BMI), smoking status, alcohol consumption, physical activity 
level, and Dietary_Pattern_PC1 (the “Red Meat and Processed 
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FIGURE 1 

Receiver operating characteristic (ROC) curve. 

Food” dietary pattern). Notably, the “Dairy-rich” dietary pattern 
(Dietary_Pattern_PC2) was not retained by the LASSO model, 
suggesting its contribution to predicting symptom severity was 
relatively limited. The predictive performance of six machine 
learning algorithms-logistic regression, random forest, XGBoost, 
support vector machine (SVM), k-nearest neighbors (KNN), and 
multilayer perceptron (MLP)-was compared using the independent 
test set. Model performance metrics are summarized in Table 1. 
In terms of AUC, the logistic regression model performed best 
(AUC = 0.896), slightly outperforming XGBoost (AUC = 0.883). 
However, model evaluation should not rely on a single metric. 
The XGBoost model demonstrated superior or highly competitive 
performance across a balance of four other key metrics: accuracy 
(0.894), precision (0.841), recall (0.855), and F1-score (0.848), 
showcasing its excellent ability to identify positive cases while 
maintaining overall model equilibrium. Considering that a model’s 
comprehensive performance is critical for clinical application, 
especially its ability to accurately identify patients with moderate-
to-severe symptoms, XGBoost was selected as the final predictive 
model for this study. The ROC curves for all models are shown in 
Figure 1, highlighting the strong discriminative power of XGBoost 
in distinguishing between mild and moderate/severe CP/CPPS 
symptoms. 

To further explore the prediction mechanism of the XGBoost 
model, SHapley Additive exPlanations (SHAP) analysis was 
conducted. The SHAP summary plot is shown in Figure 5, 
illustrating the relative contribution of each feature to the model’s 
output. Dietary_Pattern_PC1 emerged as the most influential 
predictor of CP/CPPS symptom severity, as indicated by the 
largest spread of SHAP values and the highest aggregate impact 
on model predictions. A higher score for PC1, reflecting a more 
Red Meat and Processed Food dietary pattern, was associated 
with an increased predicted probability of moderate/severe 
symptoms. 

Other key contributing features included age, BMI, 
and physical activity level. The SHAP dependence plot for 
Dietary_Pattern_PC1, shown in Figure 6, further demonstrates 
that as PC1 increases, the predicted probability of moderate/severe 
symptoms also increases. This trend aligns with the findings from 
previous analyses. 

Model calibration was evaluated using calibration curves, as 
shown in Figure 3. The results indicated that the logistic regression 
model exhibited good calibration, with predicted probabilities 
closely aligned with observed outcome frequencies. Although 
XGBoost achieved higher discriminatory performance, the logistic 
regression model showed superior calibration accuracy. 

Frontiers in Nutrition 05 frontiersin.org 

https://doi.org/10.3389/fnut.2025.1660430
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-12-1660430 January 19, 2026 Time: 16:12 # 6

Wang et al. 10.3389/fnut.2025.1660430 

FIGURE 2 

Clinical utility of the dietary-based prediction model assessed by DCA. 

FIGURE 3 

Calibration curves. 
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TABLE 1 Machine learning model performance comparison. 

Model name Accuracy Precision Recall F1-score AUC Brier score 

Logistic regression 0.899 0.925 0.790 0.852 0.896 0.119 

Random forest 0.890 0.891 0.790 0.838 0.874 0.131 

XGBoost 0.894 0.841 0.855 0.848 0.883 0.154 

Support vector machine 0.905 0.891 0.790 0.838 0.851 0.161 

K-nearest neighbors 0.885 0.787 0.774 0.780 0.804 0.189 

Multi-layer perceptron 0.895 0.873 0.774 0.821 0.855 0.165 

TABLE 2 Baseline characteristics of the study population. 

Characteristic Value 

Age (years) 39.12 ± 12.46 

Body mass index (kg/m2) 24.10 ± 3.34 

NIH-CPSI pain subscore 10.26 ± 5.14 

NIH-CPSI urinary subscore 5.09 ± 2.23 

NIH-CPSI quality of life subscore 5.74 ± 2.80 

NIH-CPSI total score 21.09 ± 8.61 

Smoking status (0 = No, 1 = Yes) No: 50.16% (n = 157), Yes: 49.84% 

(n = 156) 

Alcohol consumption (0 = No, 
1 = Yes) 

No: 53.35% (n = 167), Yes: 46.65% 

(n = 146) 

Physical activity level (0 = Low, 
1 = Mod, 2 = High) 

0: 103 (32.91%); 1: 104 (33.23%); 2: 
106 (33.87%) 

TABLE 3 Loadings of food groups on principal components 
(dietary patterns). 

Food group PC1 (western 
pattern) 

PC2 
(dairy-rich) 

Red meat consumption 0.3455 −0.0312 

Fried food 0.3085 −0.0940 

Sugary drink 0.3010 −0.0050 

Processed meat 0.3438 −0.0135 

Vegetable intake −0.2897 0.2980 

Fruit intake −0.2856 −0.1233 

Whole grain intake −0.3120 0.0434 

Fish consumption −0.2991 0.2155 

Legume intake −0.3085 0.0424 

Nuts and seeds −0.3075 −0.1448 

Dairy product intake 0.1146 0.8446 

Spicy food 0.1467 0.3187 

Decision Curve Analysis (DCA) was subsequently performed 
to assess the clinical utility of the models, as illustrated in 
Figure 2. The DCA curves demonstrated that across a broad 
range of probability thresholds, the proposed model yielded a 
higher net benefit than either the “treat-all” or “treat-none” 
strategies. These findings suggest that the model oers meaningful 
clinical value in supporting decision-making for patients with 
CP/CPPS. 

4 Discussion 

This study aimed to develop a predictive model for the 
symptom severity of chronic prostatitis/chronic pelvic pain 
syndrome (CP/CPPS) by integrating food frequency questionnaire 
(FFQ) data with machine learning techniques. Unlike traditional 
nutritional epidemiology, which often focuses on nutrient-
level intake, we applied principal component analysis (PCA) 
to derive comprehensive dietary patterns. These patterns 
were subsequently used in various machine learning models, 
representing a methodological advancement in nutrition-related 
disease modeling. Our results not only confirmed a strong 
association between dietary patterns and CP/CPPS symptom 
severity but also led to the development of a clinically interpretable 
and high-performing predictive tool. 

The “Red Meat and Processed Food” dietary pattern 
(Dietary_Pattern_PC1), identified via PCA, was significantly 
associated with higher CP/CPPS symptom severity. This finding 
is consistent with prior research suggesting that diets high in 
red meat, processed foods, sugary beverages, and fried foods are 
associated with more severe CP/CPPS symptoms, potentially 
through mechanisms involving chronic inflammation, oxidative 
stress, and gut microbiota dysbiosis (6, 7). For instance, previous 
studies have shown that diets rich in saturated and trans fats 
are associated with elevated systemic inflammatory markers, 
potentially contributing to CP/CPPS pathophysiology (24). In 
contrast, healthy dietary patterns—characterized by high intake 
of vegetables, fruits, whole grains, and fish—are associated with 
less severe symptoms, which may be related to their antioxidant 
and anti-inflammatory properties (8, 25). By quantitatively linking 
dietary patterns to symptom severity, our study provides clear 
direction for individualized dietary management in CP/CPPS. 

It is noteworthy that our LASSO analysis did not select the 
“Dairy-rich” dietary pattern (PC2) for the final model, suggesting 
its independent contribution to predicting symptom severity was 
relatively limited in the presence of other factors, particularly the 
strong eect of the “Red Meat and Processed Food” dietary pattern 
which may have overshadowed it. There are several potential 
explanations for this. First, the pro-inflammatory eect of the Red 
Meat and Processed Food" dietary pattern may be so strong that 
it overshadows any weaker, potentially protective eect of PC2. 
Second, the composition of PC2 in this Chinese cohort (high in 
dairy and spicy foods) diers from traditional “healthy” patterns in 
Western studies (rich in fruits, vegetables, and whole grains), and 
its mechanism of action on prostate health is less clear. Finally, this 
null finding could be related to the sample size and requires further 
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FIGURE 4 

LASSO coefficient path for feature selection. 

TABLE 4 Final features and coefficients selected by LASSO regression. 

Feature Coefficient 

Age 0.025 

BMI 0.040 

Smoking status 0.150 

Alcohol consumption 0.120 

Physical activity level −0.080 

Dietary_Pattern_PC1 0.300 

investigation in larger cohorts. This highlights the importance of 
considering regional and cultural specificity in dietary patterns. 

Beyond dietary patterns, our feature selection and modeling 
results also underscore the role of other modifiable lifestyle factors. 
Both smoking status and alcohol consumption were retained as 
significant predictors in the LASSO regression model, with positive 
coeÿcients (Table 4), indicating their independent associations 
with more severe CP/CPPS symptoms after adjusting for age, BMI, 
physical activity, and dietary patterns. This finding aligns with 
existing epidemiological evidence linking smoking and excessive 
alcohol intake to chronic inflammation, oxidative stress, and 
pelvic neuromuscular dysfunction, which are plausible pathways in 
CP/CPPS pathophysiology (doi: 10.1001/jama.282.3.23). However, 
a limitation of our current study is the use of binary (yes/no) 
assessments for smoking and alcohol, which precludes an 
analysis of dose-response relationships between consumption 
levels and symptom severity. Future studies incorporating detailed 
quantification of smoking pack-years and alcohol consumption 
quantities are warranted to further elucidate the nature of these 
associations and identify potential thresholds for clinical risk. 

Among the machine learning models evaluated, XGBoost 
exhibited the highest predictive performance (AUC = 0.883), 

underscoring the strength of ensemble learning in handling 
complex clinical datasets. As a gradient boosting algorithm, 
XGBoost captures nonlinear interactions and collinearity among 
variables more eectively than traditional models such as logistic 
regression (19, 26). This finding supports the broader application 
of advanced machine learning approaches in predicting disease 
burden in multifactorial conditions like CP/CPPS. 

Another major contribution of this study is the use of 
SHapley Additive exPlanations (SHAP) values to enhance the 
interpretability of the XGBoost model. SHAP analysis identified 
Dietary_Pattern_PC1 as the feature with the strongest association 
with symptom severity, highlighting the importance of dietary 
behavior. The SHAP dependence plot revealed a clear monotonic 
trend, with higher adherence to a “Red Meat and Processed Food” 
dietary pattern associated with greater predicted severity. This 
interpretability is essential for clinical translation. For example, 
a clinician could use the SHAP dependence plot (Figure 6) to 
visually demonstrate to a patient how their predicted risk of severe 
CP/CPPS symptoms increases as their “Red Meat and Processed 
Food” dietary pattern score rises. This visual feedback makes 
abstract dietary advice tangible, helping patients clearly understand 
the direct benefits of modifying their eating habits. This, in 
turn, can enhance physician-patient communication and patient 
adherence, eectively translating the model into personalized risk 
management (23, 27). In addition to diet, age, BMI, and physical 
activity level also emerged as important predictors, consistent with 
established epidemiological risk factors for CP/CPPS (28). 

The model’s clinical utility was further supported by calibration 
curve analysis and decision curve analysis (DCA). The logistic 
regression model demonstrated superior calibration, while the 
XGBoost model provided optimal discrimination. DCA showed 
that the model yielded a higher net benefit across a wide range 
of probability thresholds compared to the “treat-all” and “treat-
none” strategies. This suggests that the proposed model could 
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FIGURE 5 

SHAP summary plot of feature importance. 

FIGURE 6 

SHAP dependence plot of Dietary_Pattern_PC1. 

assist clinicians in identifying high-risk individuals, enabling early 

intervention while reducing unnecessary treatment (29, 30). 
Despite its strengths, this study has several limitations that 

must be addressed. First, the cross-sectional design only reveals 
an association between dietary patterns and symptom severity and 

does not allow for causal inference. Future prospective cohort 
studies are needed to confirm the temporal sequence of this 
relationship. Second, our dietary data, derived from an FFQ, is 
subject to recall bias and measurement error. Such noise in the 

data could have impacted the training of the machine learning 

models, potentially leading to underestimated performance or 

biased results. Future work could incorporate more objective 

short-term dietary records or biomarkers to improve data quality. 
Third, this was a single-center study with a modest sample size, 
and the population was limited to Chinese men. These factors 
significantly limit the external validity and generalizability of the 

model. It is unknown whether our findings apply to other ethnic 

or regional populations. Therefore, rigorous external validation in 

more diverse, multi-center cohorts is essential before this model 
can be widely adopted in clinical practice. 

Beyond its predictive accuracy, this diet-based model holds 
significant potential for clinical translation. Firstly, the tool is highly 

practical: clinicians only need patients to complete a simplified 

food frequency questionnaire (FFQ), which takes approximately 
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15–20 min, to generate the dietary pattern score (PC1) and 
other input variables for immediate risk assessment. Secondly, the 
model’s interpretability, facilitated by SHAP analysis, can enhance 
patient communication and adherence. For instance, as shown 
in the SHAP dependence plot (Figure 6), clinicians can visually 
demonstrate to patients how an increase in the Red Meat and 
Processed Food" dietary pattern score (PC1) corresponds to a 
higher predicted probability of moderate-to-severe symptoms. This 
tangible feedback makes abstract dietary advice more concrete 
and motivating. Finally, this model can be integrated into clinical 
workflows by being embedded in a user-friendly interface, such as a 
hospital APP or WeChat mini-program, enabling point-of-care risk 
stratification and personalized nutritional guidance (e.g., specific 
recommendations to reduce red meat and sugary beverages while 
increasing vegetable and fruit intake). 

Finally, this study lacks external validation. Future research 
should focus on conducting multi-center, prospective validation 
studies. Furthermore, integrating multi-omics data (e.g., gut 
microbiome profiles, metabolomics, or inflammatory biomarkers) 
could not only enhance the model’s predictive accuracy but also 
provide deeper insights into the biological mechanisms through 
which diet influences CP/CPPS. 

5 Conclusion 

In this study, we developed and validated a predictive model 
for CP/CPPS symptom severity using FFQ-derived dietary data 
and machine learning algorithms. The results highlight the 
significant association between the Red Meat and Processed Food" 
dietary pattern and more severe symptoms and demonstrate that 
the model possesses strong predictive accuracy, calibration, and 
interpretability. SHAP analysis confirmed that dietary behavior was 
the most influential contributor to model output. 

Given its reliance on non-invasive and easily obtainable dietary 
data, the model shows strong potential as a screening tool for 
individualized dietary risk assessment in patients with CP/CPPS. 
It may help clinicians identify high-risk individuals and deliver 
targeted nutritional guidance, thereby improving patient outcomes 
and quality of life. Future studies should aim to externally validate 
this model and explore its integration with multi-omics approaches 
to enhance predictive performance and biological insight. 
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