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Dietary patterns and chronic
prostatitis: a symptom severity
prediction model based on
nutritional clustering and
machine learning

Zhen Wangt, Wei Wut, Bo Wen, Zhongle Xu, Junhua Xi and
Yanbin Zhang*

Department of Urology, Hefei Second People’'s Hospital, Hefei, Anhui, China

Background: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has
a multifactorial etiology where diet is considered an important factor. This
study aimed to develop a predictive model for CP/CPPS symptom severity
by analyzing food frequency questionnaire (FFQ) data with machine learning
techniques, providing a basis for personalized nutritional interventions.

Methods: This study included 313 patients with CP/CPPS. We used principal
component analysis (PCA) to extract dietary patterns from FFQ data and applied
LASSO regression to select key predictors of symptom severity. Subsequently, six
machine learning models (logistic regression, random forest, XGBoost, support
vector machine, K-nearest neighbors, and multilayer perceptron) were trained
and compared. Model performance was evaluated using ROC curves, decision
curve analysis (DCA), and calibration plots. SHapley Additive exPlanations (SHAP)
were used to interpret the optimal model.

Results: PCA identified two major dietary patterns: a “Red Meat and Processed
Food" dietary pattern (PC1) and a "Dairy-rich” pattern (PC2). LASSO regression
selected key predictors, among which the “Red Meat and Processed Food”
dietary pattern demonstrated the strongest positive association with CP/CPPS
symptom severity. Among the models, while support vector machine (SVM)
and logistic regression showed high AUC values, the XGBoost model
demonstrated the best overall performance across a balance of metrics
including accuracy, precision, recall, and Fl-score, and was selected as the
final model (AUC = 0.883). SHAP analysis identified the Red Meat and
Processed Food dietary pattern as the most important feature associated with
symptom severity.

Conclusion: This study successfully developed a machine learning model
based on dietary patterns that effectively predicts CP/CPPS symptom severity.
The model underscores the significant association between nutrition and
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disease management and, with

10.3389/fnut.2025.1660430

its strong predictive performance and

interpretability, offers a novel tool for precision nutrition in CP/CPPS.
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1 Introduction

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)
is a prevalent condition marked by pelvic pain, lower urinary
tract symptoms, and reduced quality of life, placing a substantial
burden on men’s health (1). Although the pathogenesis of
CP/CPPS remains unclear, it is widely thought to involve
multiple pathophysiological mechanisms, such as inflammation,
neuroimmune dysregulation, oxidative stress, and psychosocial
influences (2, 3). Growing evidence highlights that lifestyle
factors, particularly dietary habits, play a significant role in the
development and progression of CP/CPPS (4, 5).

The influence of dietary patterns on prostate health has
become a prominent research focus. For example, the “Western”
dietary pattern—characterized by high consumption of red meat,
processed foods, refined grains, and sugary drinks—has been linked
to an increased risk of chronic diseases, including prostate cancer,
primarily due to its pro-inflammatory and pro-oxidative effects
(6, 7). In contrast, healthy dietary patterns—rich in vegetables,
fruits, whole grains, fish, and legumes—may offer protective effects
on prostate health through anti-inflammatory and antioxidant
pathways (8, 9). However, traditional nutritional epidemiology
faces notable limitations in evaluating the relationship between diet
and disease. Focusing solely on individual nutrients or food groups
may neglect complex synergistic and antagonistic interactions
among dietary components, thereby limiting the ability to assess
the impact of overall dietary patterns. Moreover, the dependence
on precise quantification of nutrient intake in grams may introduce
recall bias and increase the complexity of data collection (10).

In recent years, the emergence of big data and artificial
intelligence has presented new opportunities for advancing
nutritional epidemiology. Machine learning algorithms can
detect hidden patterns and nonlinear relationships within high-
dimensional dietary data, thereby enhancing the accuracy of
disease risk and symptom severity prediction (11, 12). Specifically,
integrating food frequency questionnaire (FFQ) data with machine
learning techniques enables the effective capture of long-term
dietary behaviors and the development of clinically applicable
predictive models (13).

This study aims to construct a predictive model of CP/CPPS
symptom severity using dietary data derived from FFQs. Principal
component analysis (PCA) was applied to extract dietary patterns,
followed by feature selection using the Least Absolute Shrinkage
and Selection Operator (LASSO) regression. Multiple machine
learning algorithms were subsequently compared in terms of their
ability to predict CP/CPPS symptom severity. Model performance
was thoroughly evaluated using receiver operating characteristic
(ROC) curves, decision curve analysis (DCA), calibration curves,
and SHapley Additive exPlanations (SHAP), with the ultimate goal
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of developing a clinically applicable tool to support personalized
dietary interventions in patients with CP/CPPS.

2 Materials and methods

2.1 Study population

This retrospective study enrolled patients with CP/CPPS
who attended the urology outpatient clinic of our hospital
between January 2022 and December 2023. The inclusion
criteria were as follows: age between 18 and 60 years; a
diagnosis of CP/CPPS confirmed using the National Institutes of
Health Chronic Prostatitis Symptom Index (NIH-CPSI); symptom
duration exceeding 3 months; and voluntary participation with
written informed consent. Exclusion criteria included: acute
bacterial prostatitis; other prostatic diseases such as prostate cancer
or benign prostatic hyperplasia; urinary tract infections; other
identifiable causes of pelvic pain; and severe systemic or psychiatric
conditions that might interfere with questionnaire completion.
The study protocol was approved by the Hefei Second People’s
Hospital Institutional Ethics Committee (Approval No.: 2025-KY-
052). Written informed consent was obtained from all participants
prior to enrollment.

2.2 Data collection

Patient data were collected using standardized questionnaires

and electronic medical records, including the following

components:

e Demographic data: Age (years), height (cm), weight (kg),
and body mass index (BMI, kg/mz), which was calculated
from height and weight. Lifestyle variables, including smoking
status (yes/no), alcohol consumption (yes/no), and physical
activity level (low, moderate, or high), were also recorded.

e Symptom assessment: CP/CPPS symptoms were assessed
using the National Institutes of Health Chronic Prostatitis
Symptom Index (NIH-CPSI), which comprises nine items
spanning three domains: pain (0-21 points), urinary
symptoms (0-10 points), and quality of life impact (0-
15 points). The total score ranges from 0 to 46, with
higher scores reflecting greater symptom severity. In this
study, the total NIH-CPSI score was used as the primary
outcome. For predictive modeling, the symptom severity
was dichotomized into “mild” (score 0-14) and “moderate-
to-severe” (score > 15) categories. This cutoff is widely
adopted in clinical studies of CP/CPPS to distinguish
different levels of symptom burden and has been validated
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for its clinical relevance (doi: 10.1016/j.juro.2008.06.06, DOI:
10.1016/j.eururo.2015.08.06).

e Dietary assessment: A semi-quantitative food frequency
questionnaire (FFQ), covering approximately 100 commonly
consumed food items, was used to evaluate dietary intake
over the previous year. Patients reported the frequency of
consumption for each item using nine categorical options
ranging from “never or rarely” to “more than four times
per day.” These categorical frequencies were converted into
numerical values (scored 0-3) for dietary pattern extraction.
Detailed variable definitions and coding schemes are provided
in Supplementary Table S1.

2.3 Dietary pattern extraction

Principal component analysis (PCA), a multivariate statistical
method, was applied to extract meaningful dietary patterns from
high-dimensional FFQ data. PCA transforms the original variables
into a set of orthogonal principal components that retain the
maximum possible variance of the original data (14). In this study,
the FFQ data were standardized prior to PCA, and two principal
components—Dietary_Pattern_PC1 and Dietary_Pattern_PC2—
were extracted. The components were interpreted and labeled
according to the factor loadings of individual food groups. Positive
factor loadings indicate a direct association with the component,
whereas negative loadings reflect an inverse relationship.

Dietary_Pattern_PC1 was characterized by high intakes of
red meat, fried foods, sugary beverages, and processed meats,
along with low intakes of vegetables, fruits, and whole grains.
This pattern, while reflecting a similar nutritional structure
(high in unhealthy fats and sugars, low in fiber) to the
internationally recognized “Western diet,” is derived from and
reflects contemporary Chinese dietary habits. For accuracy and
to acknowledge its cultural context, we primarily refer to it
as the “Red Meat and Processed Food Dietary Pattern” in
subsequent text. The term “Red Meat and Processed Food”
dietary pattern is retained parenthetically for ease of comparison
with the international literature. Dietary_Pattern_PC2 (Principal
Component 2) explained 8.42% of the variance. It was characterized
by high positive loadings for dairy products and spicy foods,
alongside negative loadings for fruits and nuts (as detailed in
Table 2). Based on this structure, it was labeled as the “Dairy- and
Spicy-rich” dietary pattern to accurately reflect its dominant food
components. Together, the two principal components (PCI and
PC2) accounted for 51.36% of the total variance in dietary intake,
indicating that they effectively captured substantial heterogeneity
in dietary behaviors within the study population.

2.4 Statistical analysis and feature
selection

All statistical analyses were performed using Python (version
3.9) and associated libraries, including Pandas, NumPy, and Scikit-
learn. Continuous variables were expressed as mean =+ standard
deviation (SD) or median (interquartile range), while categorical
variables were summarized as counts and percentages. Differences
in NIH-CPSI scores across dietary pattern groups were assessed
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using independent t-tests or one-way analysis of variance
(ANOVA), as appropriate.

Least Absolute Shrinkage and Selection Operator (LASSO)
regression was employed to identify the most relevant dietary
and lifestyle features associated with CP/CPPS symptom severity.
LASSO applies L1 regularization to penalize regression coefficients,
shrinking some of them to zero, thereby enabling both feature
selection and model simplification (15). In this study, the outcome
variable was dichotomized NIH-CPSI symptom severity (mild vs.
moderate/severe), and the predictors included age, BMI, smoking
status, alcohol consumption, physical activity level, and the two
dietary pattern components (PCl and PC2). Five-fold cross-
validation was conducted to determine the optimal regularization
parameter (alpha), aiming to balance model fit and generalizability.
The selected features from LASSO regression were subsequently
used for the development of machine learning models.

2.5 Machine learning model
development

After feature selection, the dataset was randomly divided into
a training set (70%) and a test set (30%) using stratified sampling
to ensure balanced outcome distributions across both sets. Seven
machine learning algorithms were developed and compared to
predict the severity of CP/CPPS symptoms:

1. Logistic Regression (LR): A classic linear model for binary
classification (16).

2. Random Forest (RF): An ensemble method that builds
multiple decision trees (17).

3. Gradient Boosting Machine (GBM): An iterative ensemble
algorithm that trains sequential weak learners (18).

4. Extreme Gradient Boosting (XGBoost): An advanced and
efficient implementation of GBM (19).

5. Support Vector Machine (SVM): A supervised learning

algorithm that finds an optimal hyperplane for
classification (20).

K-Nearest

6. Neighbors (KNN): A non-parametric, instance-based

classification algorithm (21).
7. Multilayer Perceptron (MLP): A feedforward neural network
with at least one hidden layer (22).

All models were trained on the training set and internally
validated using five-fold stratified cross-validation to evaluate
performance stability and generalizability. Key hyperparameters
for each model were optimized using grid search or random
search techniques.

2.6 Model evaluation

Model performance was thoroughly evaluated on the
independent test set using the following metrics:

e Receiver Operating Characteristic (ROC) curve and Area
Under the Curve (AUC): The AUC measures the model’s
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discriminative ability between outcome classes. An AUC of 1.0
indicates perfect classification performance, while a value of
0.5 suggests no better than random chance. The ROC curves
for all models are illustrated in Figure 1.

e Decision Curve Analysis (DCA): DCA evaluates the clinical
utility of predictive models by estimating the net benefit across
a continuum of threshold probabilities. It offers insights into
the added value of each model in clinical decision-making
scenarios. The DCA curves for all models are shown in
Figure 2.

e Calibration Curve: Calibration curves evaluate the agreement
between predicted probabilities and actual outcomes, thereby
assessing the accuracy of probabilistic predictions. The Brier
score was calculated as a quantitative measure of calibration,
with lower scores indicating better predictive accuracy. The
calibration curves are presented in Figure 3.

e Additional Metrics: Accuracy, precision, recall, and F1-score
were also calculated to provide a comprehensive evaluation
of model classification performance. Detailed performance
metrics for all models are summarized in Table 1.

2.7 Model interpretation

To improve the transparency and credibility of the predictive
model, SHapley Additive exPlanations (SHAP) values were applied
to interpret the output of the top-performing algorithm. SHAP is a
game-theoretic approach that quantifies the marginal contribution
of each feature to the model’s output, reflecting both the direction
and magnitude of its influence (23). Through SHAP analysis,
we gained insights into the model’s decision-making process and
identified the most influential features contributing to CP/CPPS
symptom severity.

SHAP-based visualizations were used to illustrate the model’s
interpretability findings:

e SHAP Summary Plot (Figure 3): This plot ranks all input
features based on their importance and shows their effect
on the model’s prediction (positive or negative). Each dot
represents an individual sample, with color indicating the
feature value from low to high.

e SHAP Dependence Plot (Figure 2): This plot demonstrates
how variations in a single feature affect model predictions
and reveals potential interactions with other variables.
Special attention was given to the dependence plot of
Dietary_Pattern_PC1 to further explore its specific impact on
the prediction of CP/CPPS severity.

3 Results

3.1 Baseline characteristics and dietary
pattern distribution

A total of 313 patients with a confirmed diagnosis of CP/CPPS
were included in the analysis. Baseline demographic and clinical
characteristics are summarized in Table 2. Principal component
analysis (PCA) of FFQ data identified two major dietary pattern
components:
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e Dietary_Pattern_PCl This
component accounted for 42.94% of the total variance and

(Principal Component 1):
was characterized by high positive loadings for red meat, fried
foods, sugary beverages, and processed meats, along with
negative loadings for vegetables, fruits, whole grains, fish,
legumes, and nuts. Based on this structure, it was labeled as
the Red Meat and Processed Food" dietary pattern.

e Dietary_Pattern_PC2 2): This
component explained 8.42% of the variance and primarily

(Principal Component
represented high intake of dairy products and spicy foods. As
detailed in Table 3, this pattern was predominantly defined
by very high positive loadings for dairy products (factor
loading = 0.8446) and spicy foods (factor loading = 0.3187).
It also presented modest positive loadings for vegetables and
fish, alongside negative loadings for fruits and nuts. The term
“Dairy- and Spicy-rich” was thus chosen to most accurately
capture its core food components as identified in our cohort.

Together, the two principal components accounted for 51.36%
of the total variance in dietary intake, indicating substantial
heterogeneity in dietary patterns within the study population.
These components effectively captured the dominant dietary
behaviors observed among participants.

3.2 Dietary patterns and feature
selection

Principal (PCA) identified two
major dietary pattern components: Dietary_Pattern_PC1 and
Dietary_Pattern_PC2. The factor loadings of individual food
groups corresponding to these components are presented in
Table 3.

As shown in Figure 4, the LASSO coefficient path plot illustrates
the feature selection process. After identifying the optimal

component  analysis

regularization parameter through five-fold cross-validation, the
final set of predictors retained by LASSO regression with
non-zero coefficients included: age, body mass index (BMI),
smoking status, alcohol consumption, physical activity level, and
Dietary_Pattern_PC1 (the “Red Meat and Processed Food” dietary
pattern). The coefficient for Dietary_Pattern_PC2 was shrunk to
zero, indicating it was not selected for the final model.

Specifically, the regression coefficient for Dietary_Pattern_PCl1
(the “Red Meat and Processed Food” dietary pattern) was positive,
indicating a direct association with greater CP/CPPS symptom
severity. In contrast, the coefficient for Dietary_Pattern_PC2 (the
“Dairy-rich” dietary pattern) was negative, suggesting an inverse
association with symptom severity. The selected variables and their
corresponding regression coeflicients are summarized in Table 4.

3.3 Model performance and
interpretability analysis

LASSO regression identified six key predictors significantly
associated with CP/CPPS symptom severity: age, body mass index
(BMI), smoking status, alcohol consumption, physical activity
level, and Dietary_Pattern_PC1 (the “Red Meat and Processed
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Receiver operating characteristic (ROC) curve.

Food” dietary pattern). Notably, the “Dairy-rich” dietary pattern
(Dietary_Pattern_PC2) was not retained by the LASSO model,
suggesting its contribution to predicting symptom severity was
relatively limited. The predictive performance of six machine
learning algorithms-logistic regression, random forest, XGBoost,
support vector machine (SVM), k-nearest neighbors (KNN), and
multilayer perceptron (MLP)-was compared using the independent
test set. Model performance metrics are summarized in Table 1.
In terms of AUC, the logistic regression model performed best
(AUC = 0.896), slightly outperforming XGBoost (AUC = 0.883).
However, model evaluation should not rely on a single metric.
The XGBoost model demonstrated superior or highly competitive
performance across a balance of four other key metrics: accuracy
(0.894), precision (0.841), recall (0.855), and Fl-score (0.848),
showcasing its excellent ability to identify positive cases while
maintaining overall model equilibrium. Considering that a model’s
comprehensive performance is critical for clinical application,
especially its ability to accurately identify patients with moderate-
to-severe symptoms, XGBoost was selected as the final predictive
model for this study. The ROC curves for all models are shown in
Figure 1, highlighting the strong discriminative power of XGBoost
in distinguishing between mild and moderate/severe CP/CPPS
symptoms.
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To further explore the prediction mechanism of the XGBoost
model, SHapley Additive exPlanations (SHAP) analysis was
conducted. The SHAP summary plot is shown in Figure 5,
illustrating the relative contribution of each feature to the model’s
output. Dietary_Pattern_PCl emerged as the most influential
predictor of CP/CPPS symptom severity, as indicated by the
largest spread of SHAP values and the highest aggregate impact
on model predictions. A higher score for PC1, reflecting a more
Red Meat and Processed Food dietary pattern, was associated
with an increased predicted probability of moderate/severe
symptoms.

Other BMI,
and physical activity level. The SHAP dependence plot for

key contributing features included age,
Dietary_Pattern_PC1, shown in Figure 6, further demonstrates
that as PCI increases, the predicted probability of moderate/severe
symptoms also increases. This trend aligns with the findings from
previous analyses.

Model calibration was evaluated using calibration curves, as
shown in Figure 3. The results indicated that the logistic regression
model exhibited good calibration, with predicted probabilities
closely aligned with observed outcome frequencies. Although
XGBoost achieved higher discriminatory performance, the logistic
regression model showed superior calibration accuracy.
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TABLE1 Machine learning model performance comparison.

Model name

10.3389/fnut.2025.1660430

hceuracy | precison | Recall | Fi-score | AUC_brerscore

Logistic regression 0.899 0.925 0.790 0.852 0.896 0.119
Random forest 0.890 0.891 0.790 0.838 0.874 0.131
XGBoost 0.894 0.841 0.855 0.848 0.883 0.154
Support vector machine 0.905 0.891 0.790 0.838 0.851 0.161
K-nearest neighbors 0.885 0.787 0.774 0.780 0.804 0.189
Multi-layer perceptron 0.895 0.873 0.774 0.821 0.855 0.165

TABLE 2 Baseline characteristics of the study population.

Characteristic Value ‘
Age (years) 39.12 + 12.46

Body mass index (kg/m?) 24.10 £3.34

NIH-CPSI pain subscore 10.26 & 5.14

NIH-CPSI urinary subscore 5.09 +2.23

NIH-CPSI quality of life subscore 5.74 +2.80

NIH-CPSI total score 21.09 + 8.61

Smoking status (0 = No, 1 = Yes) No: 50.16% (n = 157), Yes: 49.84%

(n=156)

Alcohol consumption (0 = No,
1= Yes)

No: 53.35% (n = 167), Yes: 46.65%
(n=146)

0: 103 (32.91%); 1: 104 (33.23%); 2:
106 (33.87%)

Physical activity level (0 = Low,
1 =Mod, 2 = High)

TABLE 3 Loadings of food groups on principal components
(dietary patterns).

pattern)

Red meat consumption 0.3455

Fried food 0.3085

Sugary drink 0.3010 —0.0050
Processed meat 0.3438 —0.0135
Vegetable intake —0.2897 0.2980
Fruit intake —0.2856 —0.1233
Whole grain intake —0.3120 0.0434
Fish consumption —0.2991 0.2155
Legume intake —0.3085 0.0424
Nuts and seeds —0.3075 —0.1448
Dairy product intake 0.1146 0.8446
Spicy food 0.1467 0.3187

Decision Curve Analysis (DCA) was subsequently performed
to assess the clinical utility of the models, as illustrated in
Figure 2. The DCA curves demonstrated that across a broad
range of probability thresholds, the proposed model yielded a
higher net benefit than either the “treat-all” or “treat-none”
strategies. These findings suggest that the model offers meaningful
clinical value in supporting decision-making for patients with
CP/CPPS.

Frontiers in Nutrition

4 Discussion

This study aimed to develop a predictive model for the
symptom severity of chronic prostatitis/chronic pelvic pain
syndrome (CP/CPPS) by integrating food frequency questionnaire
(FFQ) data with machine learning techniques. Unlike traditional
nutritional epidemiology, which often focuses on nutrient-
level intake, we applied principal component analysis (PCA)
to derive comprehensive dietary patterns. These patterns
were subsequently used in various machine learning models,
representing a methodological advancement in nutrition-related
disease modeling. Our results not only confirmed a strong
association between dietary patterns and CP/CPPS symptom
severity but also led to the development of a clinically interpretable
and high-performing predictive tool.

The “Red Meat and Processed Food” dietary pattern
(Dietary_Pattern_PC1), identified via PCA, was significantly
associated with higher CP/CPPS symptom severity. This finding
is consistent with prior research suggesting that diets high in
red meat, processed foods, sugary beverages, and fried foods are
associated with more severe CP/CPPS symptoms, potentially
through mechanisms involving chronic inflammation, oxidative
stress, and gut microbiota dysbiosis (6, 7). For instance, previous
studies have shown that diets rich in saturated and trans fats
are associated with elevated systemic inflammatory markers,
potentially contributing to CP/CPPS pathophysiology (24). In
contrast, healthy dietary patterns—characterized by high intake
of vegetables, fruits, whole grains, and fish—are associated with
less severe symptoms, which may be related to their antioxidant
and anti-inflammatory properties (8, 25). By quantitatively linking
dietary patterns to symptom severity, our study provides clear
direction for individualized dietary management in CP/CPPS.

It is noteworthy that our LASSO analysis did not select the
“Dairy-rich” dietary pattern (PC2) for the final model, suggesting
its independent contribution to predicting symptom severity was
relatively limited in the presence of other factors, particularly the
strong effect of the “Red Meat and Processed Food” dietary pattern
which may have overshadowed it. There are several potential
explanations for this. First, the pro-inflammatory effect of the Red
Meat and Processed Food" dietary pattern may be so strong that
it overshadows any weaker, potentially protective effect of PC2.
Second, the composition of PC2 in this Chinese cohort (high in
dairy and spicy foods) differs from traditional “healthy” patterns in
Western studies (rich in fruits, vegetables, and whole grains), and
its mechanism of action on prostate health is less clear. Finally, this
null finding could be related to the sample size and requires further
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TABLE 4 Final features and coefficients selected by LASSO regression.

Age 0.025
BMI 0.040
Smoking status 0.150
Alcohol consumption 0.120
Physical activity level —0.080
Dietary_Pattern_PC1 0.300

investigation in larger cohorts. This highlights the importance of
considering regional and cultural specificity in dietary patterns.
Beyond dietary patterns, our feature selection and modeling
results also underscore the role of other modifiable lifestyle factors.
Both smoking status and alcohol consumption were retained as
significant predictors in the LASSO regression model, with positive
coefficients (Table 4), indicating their independent associations
with more severe CP/CPPS symptoms after adjusting for age, BMI,
physical activity, and dietary patterns. This finding aligns with
existing epidemiological evidence linking smoking and excessive
alcohol intake to chronic inflammation, oxidative stress, and
pelvic neuromuscular dysfunction, which are plausible pathways in
CP/CPPS pathophysiology (doi: 10.1001/jama.282.3.23). However,
a limitation of our current study is the use of binary (yes/no)
assessments for smoking and alcohol, which precludes an
analysis of dose-response relationships between consumption
levels and symptom severity. Future studies incorporating detailed
quantification of smoking pack-years and alcohol consumption
quantities are warranted to further elucidate the nature of these
associations and identify potential thresholds for clinical risk.
Among the machine learning models evaluated, XGBoost
exhibited the highest predictive performance (AUC = 0.883),
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underscoring the strength of ensemble learning in handling
complex clinical datasets. As a gradient boosting algorithm,
XGBoost captures nonlinear interactions and collinearity among
variables more effectively than traditional models such as logistic
regression (19, 26). This finding supports the broader application
of advanced machine learning approaches in predicting disease
burden in multifactorial conditions like CP/CPPS.

Another major contribution of this study is the use of
SHapley Additive exPlanations (SHAP) values to enhance the
interpretability of the XGBoost model. SHAP analysis identified
Dietary_Pattern_PC1 as the feature with the strongest association
with symptom severity, highlighting the importance of dietary
behavior. The SHAP dependence plot revealed a clear monotonic
trend, with higher adherence to a “Red Meat and Processed Food”
dietary pattern associated with greater predicted severity. This
interpretability is essential for clinical translation. For example,
a clinician could use the SHAP dependence plot (Figure 6) to
visually demonstrate to a patient how their predicted risk of severe
CP/CPPS symptoms increases as their “Red Meat and Processed
Food” dietary pattern score rises. This visual feedback makes
abstract dietary advice tangible, helping patients clearly understand
the direct benefits of modifying their eating habits. This, in
turn, can enhance physician-patient communication and patient
adherence, effectively translating the model into personalized risk
management (23, 27). In addition to diet, age, BMI, and physical
activity level also emerged as important predictors, consistent with
established epidemiological risk factors for CP/CPPS (28).

The model’s clinical utility was further supported by calibration
curve analysis and decision curve analysis (DCA). The logistic
regression model demonstrated superior calibration, while the
XGBoost model provided optimal discrimination. DCA showed
that the model yielded a higher net benefit across a wide range
of probability thresholds compared to the “treat-all” and “treat-
none” strategies. This suggests that the proposed model could

frontiersin.org


https://doi.org/10.3389/fnut.2025.1660430
https://doi.org/10.1001/jama.282.3.23
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Wang et al. 10.3389/fnut.2025.1660430
High
Dietary Pattern PC1 Wb oh#e bt i
Body Mass Index (kg/m?)
3
Age (years) g
[/
Smoking Status (0=No, 1=Yes) 2
]
L
Physical Activity Level (0=Low, 1=Moderate, 2=High)
Alcohol Consumption (0=No, 1=Yes)
T T T Low
5 0 5
SHAP value (impact on model output)
FIGURE 5

SHAP summary plot of feature importance.

o ] ES
1 1 1

SHAP value for
Dietary Pattern_PC1

o
L
L ]

o
* od
L] ..::
.
L]
5 & 8 B
AgE (yea rs)

|
W
w

FIGURE 6
SHAP dependence plot of Dietary_Pattern_PC1.

Dietary_Pattern_PC1

assist clinicians in identifying high-risk individuals, enabling early
intervention while reducing unnecessary treatment (29, 30).
Despite its strengths, this study has several limitations that
must be addressed. First, the cross-sectional design only reveals
an association between dietary patterns and symptom severity and
does not allow for causal inference. Future prospective cohort
studies are needed to confirm the temporal sequence of this
relationship. Second, our dietary data, derived from an FFQ, is
subject to recall bias and measurement error. Such noise in the
data could have impacted the training of the machine learning
models, potentially leading to underestimated performance or
biased results. Future work could incorporate more objective
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short-term dietary records or biomarkers to improve data quality.
Third, this was a single-center study with a modest sample size,
and the population was limited to Chinese men. These factors
significantly limit the external validity and generalizability of the
model. It is unknown whether our findings apply to other ethnic
or regional populations. Therefore, rigorous external validation in
more diverse, multi-center cohorts is essential before this model
can be widely adopted in clinical practice.

Beyond its predictive accuracy, this diet-based model holds
significant potential for clinical translation. Firstly, the tool is highly
practical: clinicians only need patients to complete a simplified
food frequency questionnaire (FFQ), which takes approximately
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15-20 min, to generate the dietary pattern score (PCl) and
other input variables for immediate risk assessment. Secondly, the
model’s interpretability, facilitated by SHAP analysis, can enhance
patient communication and adherence. For instance, as shown
in the SHAP dependence plot (Figure 6), clinicians can visually
demonstrate to patients how an increase in the Red Meat and
Processed Food" dietary pattern score (PC1) corresponds to a
higher predicted probability of moderate-to-severe symptoms. This
tangible feedback makes abstract dietary advice more concrete
and motivating. Finally, this model can be integrated into clinical
workflows by being embedded in a user-friendly interface, such as a
hospital APP or WeChat mini-program, enabling point-of-care risk
stratification and personalized nutritional guidance (e.g., specific
recommendations to reduce red meat and sugary beverages while
increasing vegetable and fruit intake).

Finally, this study lacks external validation. Future research
should focus on conducting multi-center, prospective validation
studies. Furthermore, integrating multi-omics data (e.g., gut
microbiome profiles, metabolomics, or inflammatory biomarkers)
could not only enhance the model’s predictive accuracy but also
provide deeper insights into the biological mechanisms through
which diet influences CP/CPPS.

5 Conclusion

In this study, we developed and validated a predictive model
for CP/CPPS symptom severity using FFQ-derived dietary data
and machine learning algorithms. The results highlight the
significant association between the Red Meat and Processed Food"
dietary pattern and more severe symptoms and demonstrate that
the model possesses strong predictive accuracy, calibration, and
interpretability. SHAP analysis confirmed that dietary behavior was
the most influential contributor to model output.

Given its reliance on non-invasive and easily obtainable dietary
data, the model shows strong potential as a screening tool for
individualized dietary risk assessment in patients with CP/CPPS.
It may help clinicians identify high-risk individuals and deliver
targeted nutritional guidance, thereby improving patient outcomes
and quality of life. Future studies should aim to externally validate
this model and explore its integration with multi-omics approaches
to enhance predictive performance and biological insight.
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