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Inflammation, glucose
metabolism, and nutritional
markers in relation to all-cause
and cardiac mortality among
initial hemodialysis patients: a
multicenter cohort study
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Jing Zheng?, Yao Wang?, Jing-yuan Cao*, Xiao-xu Wang?,
Yan Yang?, Bin Wang**, Min Yang'* and Min Li'*

!Department of Nephrology, the Third Affiliated Hospital of Soochow University, Changzhou First
People’s Hospital, Changzhou, China, 2School of Medicine, Zhong Da Hospital, Institute of Geriatrics,
Southeast University, Nanjing, Jiangsu, China, *Institute of Nephrology, Yangzhou First People’s
Hospital, Yangzhou, Jiangsu, China, *School of Medicine, Zhong Da Hospital, Institute of Nephrology,
Southeast University, Nanjing, Jiangsu, China

Objective: To investigate the prognostic value of inflammatory biomarkers
including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio
(PLR), and lymphocyte-to-monocyte ratio (LMR), glucose metabolism (glucose-
to-lymphocyte ratio, GLR), and nutritional (albumin, ALB) biomarkers for predicting
all-cause and cardiac mortality in patients initiating hemodialysis (HD), and
evaluates their incremental value when integrated into traditional risk models.
Methods: A retrospective cohort of 795 initial HD patients (2014-2020) was
analyzed, with follow-up through 2022. Cox proportional hazards models
were used to assess associations between biomarkers and mortality. Predictive
performance was evaluated using time-dependent ROC curves, C-index, net
reclassification improvement (NRI), and integrated discrimination improvement
(IDI). Patients were randomly assigned to training (n = 557) and validation
(n = 238) sets, and a survival nomogram was developed based on a full-risk
model incorporating both traditional and biomarker variables.

Results: Elevated NLR, PLR, and GLR were independently associated with
increased all-cause and cardiac mortality, whereas lower LMR and ALB were
protective (all p < 0.05). NLR exhibited the highest predictive accuracy across
1-, 3-, and 5-year intervals, followed by GLR and PLR. The full-risk model
significantly outperformed the baseline model, with AUCs up to 0.980 and 0.966
for all-cause mortality and 0.947 and 0.978 for cardiac mortality in training and
validation sets, respectively (all p < 0.001). Improvements in C-index, NRI, and
IDI supported its enhanced predictive utility.

Conclusion: Incorporating inflammatory, glucose metabolism and nutritional
biomarkersinto traditional risk models substantially improves long-term mortality
risk stratification in initial HD patients, offering a robust, clinically applicable tool
to support individualized prognostic assessment and intervention planning.
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METHODS

YETT )] .
I we |}l [}

N_ =l
g Y
1108 initial HD patients (01/2014—12/2020)

Follow-up

= L
=i <

735 participants (12/2022)

W

Training Set (n=557) Validation Set (n=238)
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RESULTS
- Multivariate Cox regression analyse
HR (95% Cl ) P value

All-cause mortality Cardiac mortality

_NLR | 1.135 (1.109-1.162) <0.001 | 1.135 (1.096-1.175) <0.001
PLR | 1.002 (1.001-1.003) 0.001 | 1.002 (1.001-1.003) 0.017
GLR | 1.054 (1.040-1.068) <0.001 | 1.049 (1.029-1.070) <0.001
LMR | 0.826 (0.742-0.919) <0.001 | 0.857 (0.743-0.988) 0.033
ALB | 0.940 (0.918-0.963) <0.001 | 0.947 (0.914-0.982) 0.004
- the incremental value of the full risk model

All-cause mortality

Baseline risk model
ROC 0.688 (0.649-0.728)

Full risk model
0.980 (0.971-0.990)

C-index 0,648 (0.612-0.683) 0.887 (0.872-0.903)
Category-free

eﬁR? ref 0.793 (0.526-0.893)

DI ref 0.356 (0.300-0.411)

Cardiac mortality

Baseline risk model Full risk model

ROC 0689 (0.639-0.734) 0.880 (0.853-0.907)
C-index  0.680 (0.631-0.929) 0.875 (0.852-0.897)
Ca‘eﬁ‘é’rf'ee ref 0.793 (0.552-0.859)
DI ref 0.216 (0.153-0.298)

CONCLUSION
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Incorporating inflammatory, glucose metabolism and nutritional biomarkers
into traditional risk model improves mortality risk stratification in initial HD patients

GRAPHICAL ABSTRACT

1 Introduction

End-stage kidney disease (ESKD) is a critical global public health
challenge. By 2023, approximately 10.45 million patients worldwide
required renal replacement therapy (RRT) for ESKD (1), with most
undergoing hemodialysis (HD). HD patients face significantly
elevated mortality rates compared to the general population, primarily
due to cardiovascular complications (2), underscoring the need for
early risk factor identification.

Beyond traditional risk factors like age, diabetes, and coronary
heart disease (CHD), emerging biomarkers are associated with
survival in HD patients. Chronic kidney disease (CKD) patients
exhibit persistent low-grade inflammation driven by uremic toxins,
oxidative stress, gut dysbiosis, and adipose tissue changes (3). At the
molecular level, chronic inflammatory states in ESRD are regulated
by complex signaling pathways. The nuclear factor kB (NF-«B)
pathway is a key proinflammatory pathway that can be activated by
uremia toxins and oxidative stress, promote neutrophil production,
release and delay neutrophils’ apoptosis, leading to an increase in
neutrophil count (4). On the other hand, lymphopenia and
dysfunction are at the heart of ESRD immunodeficiency. Adenosine
monophosphate activated protein kinase (AMPK) plays an important
role in regulating T cell fate as a cellular energy sensor. Studies have
shown that AMPK activation can promote the differentiation and
function of regulatory T cells (Tregs) while inhibiting the
proinflammatory response of helper T cells 17 (5). In the pathological
environment of ESRD, AMPK signaling pathway may be impaired,
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thereby aggravating lymphocyte apoptosis and loss of anti-
inflammatory function, resulting in decreased lymphocyte count and
abnormal function (6). Therefore, the inflammatory ratios such as
NLR may reflect the inherent imbalance between NF-kB-driven
proinflammatory forces and AMPK-related anti-inflammatory forces
from a macroscopic perspective. This inflammation intensifies with
declining renal function and increases risks of cardiovascular events
and mortality in dialysis patients (7).

Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte
ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) are simple,
cost-effective inflammatory biomarkers (8) linked to prognosis in
conditions like malignancies and coronary artery disease (9-14). They
also show predictive value in non-dialysis CKD and peritoneal dialysis
(PD) populations (15-17). However, their role in predicting HD
mortality is inconsistent. Some studies link NLR and PLR to all-cause
mortality, with only PLR being an independent predictor (18). Others
found NLR superior to PLR (19), or suggest LMR—but not NLR—
predicts mortality in HD (20).

The glucose-to-lymphocyte ratio (GLR), reflecting systemic
glucose metabolism and inflammation, has prognostic significance in
conditions like COPD exacerbations and malignancies (21-23).
Zhong et al. (24) showed GLR outperformed NLR, PLR, and LMR in
predicting pancreatic cancer survival. Elevated GLR is also associated
with increased death risk in PD patients (25), but its relationship with
HD mortality remains unexplored.

Malnutrition, driven by metabolic acidosis, inadequate intake,
and nutrient loss during dialysis, further increases mortality risk in
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HD. Serum albumin (ALB), a key nutritional biomarker, consistently
predicts mortality.

This study comprehensively evaluates the relationships between
nutritional (ALB), inflammatory (NLR, PLR, LMR), and glucose
metabolism (GLR) biomarkers and the risks of all-cause and cardiac
mortality in an initial HD cohort. We also explore whether integrating
these biomarkers with traditional risk factors enhances mortality risk
stratification accuracy.

2 Methods
2.1 Patients

This multicenter retrospective cohort study enrolled initial HD
patients aged 18 to 75 years treated between January 2014 and
December 2020 at the nephrology departments of the Third
Affiliated Hospital of Soochow University, Zhongda Hospital
Affiliated to Southeast University, Taizhou First People’s Hospital,
and Yangzhou First People’s Hospital. Patients were excluded if they
met any of the following criteria: (1) missing data on neutrophils,
lymphocytes, monocytes, serum albumin, platelets, or fasting
glucose; (2) history of kidney transplantation (KT) with no further
need for HD; (3) presence of comorbid liver diseases (e.g., hepatitis,
cirrhosis), hematological disorders (e.g., leukemia, lymphoma), or
autoimmune diseases (e.g., systemic lupus erythematosus); (4)
malignancy; (5) major surgery or severe trauma (e.g., fractures,
burns) within the previous 3 months; (6); documented infections
(e.g., pneumonia, sepsis) within the past month. A total of 36
patients (11.5%) were excluded from this study due to missing
critical data. No significant differences were observed between the
excluded patients and the finally included cohort regarding gender,
age, BMI, smoking history, medical history (diabetes, hypertension,
CHD), medication history [angiotensin-converting enzyme
inhibitor (ACEI), angiotensin receptor blockers (ARB), f-blockers],
p>0.05;
Supplementary Table 1). Detailed information regarding missing

all-cause mortality, or cardiac mortality (all
data is provided in the Supplementary materials.

The study protocol was approved by the Ethics Committee of the
Third Affiliated Hospital of Soochow University (Approval ID:
2024CL085-01) and registered with the Chinese Clinical Trial Registry
(ChiCTR 2,300,068,453; registration date: The date of registration was
2023-02-20). All procedures complied with the Declaration of

Helsinki and relevant regulatory guidelines.

2.2 Clinical covariates

Patient data were extracted from electronic medical records
(EMRs), including age, sex, height, weight, smoking history,
comorbidities [diabetes, hypertension, coronary heart disease
(CHD)], and medication use (ACEI, ARB, p-blockers, and lipid-
lowering agents). Fasting venous blood samples were collected
before dialysis during the long interdialytic interval. Laboratory
parameters including hemoglobin (HDb), platelet count (PLT),
serum albumin (ALB), absolute neutrophil count (N), absolute
lymphocyte count (L), absolute monocyte count (M), fasting blood
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glucose (FBG), serum creatinine (SCr), and cystatin C (CysC) were
measured using a UniCelDxC 800 automated biochemical analyzer
(Beckman Coulter, United States). All baseline data were
independently reviewed and validated by two senior clinicians.
Refer to the Supplementary material for relevant index calculations.

2.3 Outcome events

Patients were prospectively followed according to a
standardized protocol using outpatient and inpatient medical
record systems, as well as telephone interviews, until the
occurrence of an endpoint event or the termination date of the
study (December 31, 2022). Endpoint events included all-cause
mortality and cardiac mortality, with the latter defined as death
directly attributable to cardiac conditions or where cardiac
disease was the primary contributing factor. Senior resident
physicians who documented the time and cause of death were
blinded to all other study outcomes.

2.4 Statistical analyses

Normality of continuous variables was assessed using the
Shapiro-Wilk test. Normally distributed data are presented as
mean * standard deviation (SD); non-normal data as median
(interquartile range, IQR). Categorical variables are reported as
counts (percentages). Group comparisons used Pearson y* or
Fisher’s exact test for categorical variables, and t-tests or Wilcoxon
rank-sum tests for continuous variables. Spearman correlation
analysis assessed associations among NLR, GLR, PLR, LMR, and
ALB. Univariate Cox regression analysis was employed to explore
the relationship between all-cause and cardiac mortality and the
following variables: sex, age, BMI, smoking history. Comorbidities
(diabetes, hypertension and CHD), medication use (f-blockers,
ACEI/ARB and lipid-lowering agents), and laboratory parameters
(Hb, NLR, PLR, GLR, LMR, ALB and SCr/CysC). Variables with
statistical significance (p <0.05) in univariate analyses were
included in multivariate Cox regression models to identify the
independent risk or protective factors. The variance expansion
factor (VIF) values for all variables range from 1 to 2, indicating
no significant multicollinearity in the multivariable models. Time-
dependent receiver operating characteristic (ROC) curves were
generated to compare the predictive performance of NLR, PLR,
GLR, LMR, and ALB for 1-, 3-, and 5-year mortality using the area
under the curve (AUC) and DeLong’s test. Two prognostic models
were developed: a baseline risk model based on traditional factors
(age and comorbidities), and a full model integrating traditional
risk factors with biomarkers of nutrition (ALB), inflammation
(NLR, PLR, LMR) and glucose metabolism (GLR). Model
performance was evaluated using AUC, concordance index
(C-index), category-free net reclassification improvement (NRI)
and integrated discrimination improvement (IDI).

The cohort was randomly divided into a training set (n = 557) and
an internal validation set (n = 238) at a 7:3 ratio. The construction and
validation of the survival nomogram are detailed in the
Supplementary material.
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1108 initial hemodialysis patients
(Jan.2014-Dec.2020)

Excluded

Age<18 years or>75 years(N=119)

Missing laboratory data before entering HD(N=36)
Renal transplantation(N=47)

Liver diseases(N=18)

Hematological diseases(N=10)

Autoimmune diseases(N=5)

Malignant tumors(N=21)

Thyroid dysfunction(N=12)

Recent infections(N=45)

A4

795 patients were enrolled in our study

FIGURE 1
Flow chart of the study.

Statistical significance was defined as a two-tailed p values < 0.05.
All analyses were performed using IBM SPSS Statistics for Windows,
version 26 (IBM Corp, Armonk, NY, United States), and R software.'

3 Results
3.1 Baseline characteristics

A total of 795 initial HD patients were included in this study
(Figure 1), with the majority aged 18-65 years (76.48%) and male
(64.15%). The median BMI was 23.4 kg/m* During the follow-up
period, 239 patients (30.06%) died, of whom 114 (47.70%) succumbed
to cardiac causes (Table 1).

Compared to the survival group, both the all-cause and cardiac
mortality groups had significantly higher proportions of elderly patients
(15.83% vs. 41.42 and 20.41% vs. 42.11%, respectively), users of lipid-
lowering agents (17.81% vs. 29.71 and 18.80% vs. 36.84%), and patients
with diabetes (38.31% vs. 58.16 and 41.12% vs. 63.16%) or CHD
(10.25% vs. 19.67 and 10.43% vs. 28.95%; all p < 0.001). Additionally,
the all-cause and cardiac mortality groups exhibited higher levels of Hb
(83 vs. 80 for both), NLR (13.40 vs. 4.30 and 13.40 vs. 5.00), PLR (196
vs. 133 and 187 vs. 140), and GLR (18 vs. 7 and 18 vs. 8) (all p < 0.05),
as well as significantly lower LMR (2.63 vs. 3.70 and 2.78 vs. 3.45) and
ALB (30.80 vs. 34.30 and 30.90 vs. 33.70) (all p < 0.001). No significant
differences were observed between the groups in terms of sex, BMI,
hypertension, use of ACEIL, or SCr/CysC levels (all p > 0.05).

3.2 Correlation analyses of inflammation,
glucose metabolism, and nutrition markers

See Supplementary Figure 1.

1 version 4.3.1; http://www.r-project.org
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3.3 Relationship between inflammation,
glucose metabolism, nutrition markers and
mortality outcomes

3.3.1 Univariate and multivariate cox regression
analyses

As shown in Table 2, univariate Cox regression analysis identified
age, comorbid diabetes and CHD, use of lipid-regulating agents,
higher levels of Hb, NLR, PLR, GLR, and SCr/CysC, along with lower
levels of LMR and ALB, as risk factors for all-cause mortality (all
P <0.05). The use of f-blockers was identified as a protective factor
(p < 0.05). Variables with statistical significance in the univariate
analyses were included in the multivariate Cox regression analyses.
The results demonstrated that age [HR (95% CI): 1.695 (1.294-2.221),
p <0.001], higher NLR [HR (95% CI): 1.135 (1.109-1.162), p < 0.001],
PLR [HR (95% CI): 1.002 (1.001-1.003), p = 0.001], GLR [HR (95%
CI): 1.054 (1.040-1.068), p < 0.001], as well as lower LMR [HR (95%
CI): 0.826 (0.742-0.919), p < 0.001] and ALB [HR (95% CI): 0.940
(0.918-0.963), p<0.001], were independent risk factors for
all-cause mortality.

As presented in Table 3, the risk factors for cardiac mortality were
largely consistent with those for all-cause mortality, with the exception
of SCr/CysC (all p <0.05). Multivariate Cox regression analyses
revealed that advanced age [HR (95% CI): 1.736 (1.176-2.564),
p=0.006], comorbid CHD [HR (95% CI): 1.555 (1.007-2.401),
p =0.046), higher NLR [HR (95% CI): 1.135 (1.096-1.175), p < 0.001],
PLR [HR (95% CI): 1.002 (1.001-1.003), p = 0.017], GLR [HR (95%
CI): 1.049 (1.029-1.070), p < 0.001], as well as lower LMR [HR (95%
CI): 0.857 (0.743-0.988), p = 0.033] and ALB [HR (95% CI): 0.947
(0.914-0.982), p=0.004], were independent risk factors for
cardiac mortality.

3.3.2 Time-dependent ROC curve analysis
Time-dependent ROC curves was employed to evaluate the
predictive performance of nutritional, inflammatory, and glucose
metabolism markers for all-cause and cardiac mortality. As shown in
Figure 2 and detailed in Tables 4, 5, the inflammatory marker NLR
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TABLE 1 Demographics and baseline characteristics of the study.

Characteristics

All-cause mortality

Cardiac mortality

10.3389/fnut.2025.1660267

Alive Dead p -value Dead p -value
(n = 556) (n = 239) (n =114)
Sex, 1 (%) 0913 0.855
Female 285 (35.85%) 200 (35.97%) 85 (35.56%) 245 (35.98%) 40 (35.09%)
Male 510 (64.15%) 356 (64.03%) 154 (64.44%) 436 (64.02%) 74 (64.91%)
Age, year, n (%) <0.001 <0.001
18-65 years 608 (76.48%) 468 (84.17%) 140 (58.58%) 542 (79.59%) 66 (57.89%)
66-75 years 187 (23.52%) 88 (15.83%) 99 (41.42%) 139 (20.41%) 48 (42.11%)
Heigh, m, median (IQR) 1.68 (1.60, 1.72) 1.68 (1.60, 1.72) 1.66 (1.60, 1.72) 0.049 1.68 (1.60, 1.72) 1.67 (1.60, 1.72) 0.486
Weight, kg, median (IQR) 65 (57, 74) 65 (57, 75) 65 (57,72) 0.202 65 (57, 74) 65 (58, 73) 0.867
BMI, kg/m2, median (IQR) 23.40 (21.10, 23.40 (21.10, 23.40 (21.10, 0.747 23.40 (21.10, 23.90 (21.20, 0.378
26.20) 26.20) 26.30) 26.10) 26.60)
Smoking history, 7 (%) 172 (21.64%) 108 (19.42%) 64 (26.78%) 0.021 140 (20.56%) 32 (28.07%) 0.071
Comorbidities, 1 (%)
CHD 104 (13.08%) 57 (10.25%) 47 (19.67%) <0.001 71 (10.43%) 33 (28.95%) <0.001
Hypertension 727 (91.45%) 509 (91.55%) 218 (91.21%) 0.878 622 (91.34%) 105 (92.11%) 0.786
Diabetes 352 (44.28%) 213 (38.31%) 139 (58.16%) <0.001 280 (41.12%) 72 (63.16%) <0.001
Medication history, n (%)
ACEI/ARB 194 (24.40%) 129 (23.20%) 65 (27.20%) 0.229 162 (23.79%) 32 (28.07%) 0.325
B-blocker 478 (60.13%) 354 (63.67%) 124 (51.88%) 0.002 410 (60.21%) 68 (59.65%) 0911
Lipid lowing agent 170 (21.38%) 99 (17.81%) 71 (29.71%) <0.001 128 (18.80%) 42 (36.84%) <0.001
Laboratory data
Hb, g/L, median (IQR) 81 (71, 93) 80 (70, 92) 83 (74, 96) 0.018 80 (71, 93) 83 (75, 98) 0.012
NLR, median (IQR) 5.60 (3.70, 8.60) 4.3 (3.30, 5.90) 13.40 (8.80, 16.00) <0.001 5.00 (3.50, 7.20) 13.40 (8.70, <0.001
15.80)
PLR, median (IQR) 148 (109, 196) 133 (100, 168) 196 (150, 274) <0.001 140 (105, 185) 187 (149, 259) <0.001
GLR, median (IQR) 9(6,15) 7 (5, 10) 18 (13, 25) <0.001 8(5, 14) 18 (12, 25) <0.001
LMR, median (IQR) 3.33(2.38, 4.59) 3.70 (2.78, 5.00) 2.63 (1.96, 3.69) <0.001 3.45 (2.44, 4.76) 2.78(2.22,3.70) <0.001
ALB, median (IQR) 33.20 (30.10, 34.3 (31.30, 37.20) 30.80 (27.50, <0.001 33.70 (30.60, 30.90 (27.50, <0.001
36.60) 34.00) 36.80) 34.20)
SCr/CysC, median (IQR) 22 (15, 30) 22 (16, 30) 23 (14, 30) 0.741 23 (15, 30) 22 (14, 30) 0.896

BMI, body mass index; CHD, coronary heart disease; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; IQR, interquartile range; Hb, hemoglobin; NLR,
neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR, glucose to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin; SCr/CysC, ratio of serum creatinine

to cystatin C. Bold values indicates significant differences in characteristics between groups of initial hemodialysis patients who survived and died.

exhibited the highest predictive accuracy at 1, 3, and 5 years for
all-cause and cardiac mortality. The AUC and corresponding 95% CI
for all-cause mortality were 0.839 (0.802-0.874), 0.903 (0.880-0.927)
and 0.951 (0.932-0.971), respectively. For cardiac mortality, the AUC
values were 0.828 (0.766-0.872), 0.934 (0.867-0.925), and 0.996
(0.912-0.973) (all p < 0.001). The glucose metabolism marker GLR
ranked second in predictive value, with AUC (95% CI) values of 0.787
(0.745-0.837), 0.840 (0.806-0.873), 0.841 (0.803—0.880) for all-cause
mortality and 0.758 (0.677-0.828), 0.842 (0.773-0.868), 0.864 (0.792-
0.889) for cardiac mortality. In contrast, the inflammatory marker
LMR and the nutritional marker ALB showed comparatively lower
predictive ability for both outcomes. There was no statistically
significant difference in predictive value between these two markers
(all p > 0.05).
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3.3.3 Incremental effect of inflammation, glucose
metabolism, and nutrition markers in predicting
all-cause and cardiac mortality

In initial HD patients, ROC curves were generated to evaluate
the predictive performance of two models for all-cause and cardiac
mortality: a baseline risk model including traditional risk factors
(age, diabetes, hypertension, and CHD) and a comprehensive risk
model integrating traditional risk factors with inflammatory, glucose
metabolism, and nutritional markers (Figure 3). The AUC values
(95% CI) of the comprehensive model were 0.980 (0.971-0.990) for
all-cause mortality and 0.880 (0.853-0.907) for cardiac mortality,
both significantly higher than those of the baseline model [0.688
(0.649-0.728) and 0.689 (0.639-0.734), respectively] (all p < 0.001).
As shown in Table 6, the C-index values of the comprehensive risk
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TABLE 2 Univariate and multivariate Cox regression analyses for all-cause mortality.

Characteristics

HR (95% Cl)

Univariate Cox regression analyses

p-value

HR (95% Cl)

10.3389/fnut.2025.1660267

Multivariate Cox regression analyses

p-value

Sex (Male) 0.991 (0.760, 1.292) 0.947
Age (66-75 years) 2.869 (2.214, 3.718) <0.001 1.695 (1.294, 2.221) <0.001
BMI, kg/m? 0.984 (0.954, 1.016) 0.336
Smoking history 1.267 (0.951, 1.688) 0.106
Diabetes 1.918 (1.483, 2.481) <0.001
Hypertension 0.904 (0.577, 1.414) 0.658
CHD 1.823 (1.325, 2.509) <0.001
Hb, g/L 1.007 (1.000, 1.013) 0.046
NLR 1.216 (1.194, 1.239) <0.001 1.135(1.109, 1.162) <0.001
PLR 1.005 (1.004, 1.005) <0.001 1.002 (1.001, 1.003) 0.001
GLR 1.106 (1.093, 1.119) <0.001 1.054 (1.040, 1.068) <0.001
LMR 0.615 (0.551, 0.687) <0.001 0.826 (0.742, 0.919) <0.001
ALB, g/L 0.903 (0.883, 0.923) <0.001 0.940 (0.918, 0.963) <0.001
B-blocker 0.637 (0.494, 0.822) <0.001
ACEI/ARB 1.161 (0.873, 1.544) 0.305
Lipid lowing agents 1.688 (1.279, 2.230) <0.001
SCr/CysC 1.003 (1.001, 1.005) 0.002

HR, hazard ratio; CI, confidence Interval; BMI, body mass index; CHD, coronary heart disease; Hb, hemoglobin; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR,
glucose to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; SCr/CysC, ratio of

serum creatinine to cystatin C. Bold values corresponding feature is significantly associated with all-cause mortality.

TABLE 3 Univariate and multivariate Cox regression analyses for cardiac mortality.

Characteristics

HR (95% Cl)

Univariate Cox regression analyses

p-value

HR (95% Cl)

Multivariate Cox regression analyses

p-value

Sex (Male) 1.012 (0.689, 1,487) 0.950
Age (66-75 years) 2.967 (2.042, 4.313) <0.001 1.736 (1.176, 2.564) 0.006
BMI, kg/m? 1.005 (0.961, 1.051) 0.837
Smoking history 1.348 (0.896, 2.030) 0.152
Diabetes 2.376 (1.623, 3.477) <0.001
Hypertension 1.004 (0.508, 1.984) 0.990
CHD 3.074 (2.049, 4.61)1 <0.001 1.555 (1.007, 2.401) 0.046
Hb, g/L 1.011 (1.001, 1.020) 0.025
NLR 1.215(1.183, 1.247) <0.001 1.135 (1.096, 1.175) <0.001
PLR 1.004 (1.003, 1.005) <0.001 1.002 (1.001, 1.003) 0.017
GLR 1.103 (1.085, 1.122) <0.001 1.049 (1.029, 1.070) <0.001
LMR 0.704 (0.608, 0.815) <0.001 0.857 (0.743, 0.988) 0.033
ALB, g/L 0.910 (0.881, 0.940) <0.001 0.947 (0.914, 0.982) 0.004
B-blocker 0.873 (0.600, 1.269) 0.476
ACEI/ARB 1.220 (0.811, 1.836) 0.340
Lipid lowing agents 2.351 (1.605, 3.444) <0.001
SCr/CysC 1.003 (1.000, 1.006) 0.072

HR, hazard ratio; CI, confidence Interval; BMI, body mass index; CHD, coronary heart disease; Hb, hemoglobin; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR,
glucose to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; SCr/CysC, ratio of

serum creatinine to cystatin C. Bold values corresponding feature is significantly associated with all-cause mortality.
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FIGURE 2
Time-dependent ROC curves for predicting all-cause and cardiac mortality using nutritional, inflammatory, and glucose metabolism markers. (a—c)
ROC curves at 1-year (a), 3-year (b), and 5-year (c) for predicting all-cause mortality based on nutritional (ALB), inflammatory (NLR, PLR, LMR), and
glucose metabolism (GLR) markers; (d—f) ROC curves at 1-year (d), 3-year (e), and 5-year (f) for predicting cardiac mortality using nutritional (ALB),
inflammatory (NLR, PLR, LMR), and glucose metabolism (GLR) markers. ROC, receiver operating characteristic; AUC, area under the curve; Cl,
Confidence Interval; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR, glucose to lymphocyte ratio; LMR, lymphocyte to
monocyte ratio; ALB, albumin.

model for all-cause and cardiac mortality were 0.877 and 0.875,
respectively, markedly exceeding those of the baseline model (0.648
and 0.680, respectively) (all p < 0.001). Furthermore, the category-
free NRI values of the comprehensive risk model for predicting
all-cause and cardiac mortality in the overall, deceased, and survivor
cohorts were 0.793, 0.384 and 0.408, respectively. The IDI values
were 0.356 and 0.216 for all-cause and cardiac mortality, respectively
(all p<0.001). These results indicated that incorporating
inflammatory, glucose metabolism, and nutritional markers
provided a significant incremental effect in predicting all-cause and
cardiac mortality compared to the traditional risk model in patients
initiating HD.

3.3.4 Nomograms incorporating inflammatory,
glucose metabolism, and nutritional markers for
predicting all-cause and cardiac mortality
Significant associations of NLR, PLR, GLR, LMR, and ALB with
all-cause and cardiac mortality were observed in the training set
(n=557) (all p < 0.05) (Supplementary Tables 2, 3). Nomograms were
constructed to predict 1-, 3-, and 5-year risks of all-cause (Figure 4a)
and cardiac mortality (Figure 4b), incorporating traditional risk
factors along with inflammatory, glucose metabolism, and nutritional
markers. As an illustrative case, consider a 70-year-old patient with
diabetes, hypertension and CHD. The baseline values include an NLR
of 4, GLR of 25, PLR of 600, LMR of 6, and ALB of 25 g/L. According
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to the nomograms, the total scores for predicting all-cause and cardiac
mortality are 17.25 and 11.25, respectively, corresponding to predicted
survival probabilities at 1, 3, and 5 years of 92, 73, and 59% for
all-cause mortality, and 90, 78, and 50% for cardiac mortality.

Validation metrics (C-index, time-dependent AUC, calibration,
and DCA) confirming survival nomogram robustness are provided in
Supplementary Figures 2-3.

4 Discussion

To our knowledge, this is the first study evaluating NLR, GLR,
PLR, LMR, and ALB associations with all-cause and cardiac mortality
in initial HD patients. Our multicenter analysis identified elevated
NLR, GLR, PLR, and reduced LMR and ALB as independent risk
factors for both outcomes. Each 1-unit increase in NLR and GLR
raised all-cause mortality risk by 13 and 5%, and cardiac mortality by
13 and 5%, respectively. Every 10-unit PLR increase corresponded to
a 2% risk increase. Conversely, each 1-unit decrease in LMR and ALB
increased all-cause mortality by 18 and 6%, and cardiac mortality by
14 and 5%, respectively. NLR emerged as the strongest predictor for
1-, 3-, and 5-year mortality, outperforming the other markers.
Routine NLR monitoring may enhance prognostic assessment.
Incorporating these indices with traditional risk factors significantly
improved mortality risk stratification, particularly long-term,
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TABLE 4 Predictive value of nutritional, inflammatory, and glucose metabolic markers for all-cause mortality at 1, 3, and 5 years.

1-year time-dependent ROC

IndexAUC IndexAUC (95% Cl)
95% Cl
( ) NLR0.839 GLlR0.787 PLR0.750 MRO.686 ALB0.664
(0.802-0.874) (0.745-0.837) (0.705-0.828) (0.608-0.751) (0.588-0.720)

08 0.001 0.001 0.001 0.001
(0.802-0.874) - p<b p<t p<B P
GIRQ 787

ok - 0.660 p<0.001 p<0.001
(0.745-0.837)
0750 ok 0.660 0.001 0.001
(0.705-0.828) : B L L
IMR) 686

sk sk sk - 0.551
(0.608-0.751)
ALBO 664

skk skk stk 0.551 -
(0.588-0.720)

3-year time-dependent ROC

ndexAUC (95% Cl)

IndexAUC

(95% Cl) NLRO.903 GLlR0.840 PLlR0.746 tMRO.696 ALBD.702
(0.880-0.927) (0.806-0.873) (0.702-0.790) (0.649-0.742) (0.656-0.747)

NIR) 903

(0.880-0.927) - p<0001 p<0.001 p<0.001 p <0.001

GIR0.840

(0.806-0.873) o - p=0.002 p<0.001 p<0.001

IR0 746

(0.702-0.790) o p=0002 - p<0.001 P<0.001

LMR) 696 . N N o

(0.649-0.742) - .

A0, 702

(0.656-0.747) - e o 0.851 -

5-year time-dependent ROC

indexAUC (95% Cl)

IndexAUC
(95% CI) NLRQ.951 GLlRO.841 PLRO.760 tMRQ.695 ALB0.694
(0.932-0.971) (0.803-0.880) (0.716-0.804) (0.648-0.743) (0.646-0.743)

NIR( 951 - o . .
N p <0 p<0. p<0. p<0.

(0.932-0.971)

GLR0.841

(0.803-0.880) o - p=0.006 P <0.001 p<0.001

PIR(). 760

(0.716-0.804) o p=0006 - p<0.001 p<0.001

IMR() 695 . » n ) .

(0.648-0.743) X

ALB) 694 . i » o

(0.646-0.743) } _

ROG, receiver operating characteristic; AUC, area under the curve; CI, confidence Interval; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR, glucose to
lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin. *, p < 0.05; **, p < 0.01; **%, p <0.001.

highlighting their potential to optimize management for initial
HD patients.

Patients undergoing HD frequently exhibit dysregulated adaptive
immune responses, characterized by the release of pro-inflammatory
cytokines and/or relative or absolute alterations in peripheral blood
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inflammatory cell counts. A typical hematologic profile includes
elevated neutrophil, platelet, and monocyte counts, along with
reduced lymphocyte counts—a pattern proven to correlate with poor
clinical outcomes in dialysis populations (26-28). Chen et al. (17)
confirmed elevated platelet counts in peritoneal dialysis patients with
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TABLE 5 Predictive value of nutritional, inflammatory, and glucose metabolic markers for cardiac mortality at 1, 3, and 5 years.

1-year time-dependent ROC

10.3389/fnut.2025.1660267

IndexAUC IndexAUC (95% Cl)
95% ClI
( ) NLR0.828 GLRO.758 PLR0.748 tMRQ.643 ALB0.642
(0.766-0.872) (0.677-0.828) (0.705-0.856) (0.527-0.725) (0.522-0.718)

NIR) 828 oo o o .
(0.766-0.872) - p<d p<o. p <0, p <0
GIR0,758 s o o -
(0.677-0.828) - - p<0. p<o0.
PLR). 748 o vont o .
(0.705-0.856) : - p<0. p <.
LMR() 643

- o o - 0917
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ALB(), 642

o o s 0.917 _
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3-year time-dependent ROC

indexAUC (95% Cl)

IndexAUC

(95% Cl) NlRD.934 GLlRD.842 PLR0.749 tMRO.645 ALB0.665
(0.867-0.925) (0.773-0.868) (0.675-0.789) (0.587-0.715) (0.616-0.737)

NRO 934

(0.867-0.925) - p<0.001 p<0.001 p <0.001 p<0.001
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(0.773-0.868) o - 0.031 P <0.001 P <0.001
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M8 645 » » - .
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5-year time-dependent ROC

IndexAUC (95% Cl)

|nd€XAUC
(95% CI) NR0.996 GLR0. 864 PLRQ 737 LMRQ 645 780,665
(0.912-0.973) (0.792-0.889) (0.681-0.794) (0.583-0.714) (0.615-0.741)

NIR) 996 toot o . .
- p<0. p<0. p<0. p<O.

(0.912-0.973)
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(0.792-0.889) o - 0.006 P <0.001 P <0.001
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ROG, receiver operating characteristic; AUC, area under the curve; CI, confidence Interval; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR, glucose to
lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin. *, p < 0.05; **, p < 0.01; **%, p <0.001.

cardiovascular comorbidities, potentially indicating an “inflammatory-  prognostic value in the general population (32) and cancer patients
immune-thrombotic vicious cycle” (29, 30). Isolated white blood cell ~ (33). Among CKD/HD patients, Zhang et al. (34) linked elevated PLR
counts exhibit limited reliability due to inherent variability (31). Novel  to increased all-cause and cardiac mortality in Chinese HD patients,
inflammatory indices (NLR, PLR, LMR) correlate strongly with ~ while NLR only associated with all-cause mortality. Conversely,
traditional biomarkers (e.g., CRP, WBC, IL-6) and demonstrate ~ Mayne et al. (19) found NLR—not PLR—predicted all-cause mortality
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FIGURE 3

ROC curves of baseline and full risk models for predicting mortality. (a) ROC curves for predicting all-cause mortality; (b) ROC curves for predicting
cardiac mortality. The blue line represents the baseline risk model including traditional risk factors (age, diabetes, hypertension, CHD). The red line
represents the full risk model incorporating traditional risk factors and additional markers of nutrition (ALB), inflammation (NLR, PLR, LMR), and glucose
metabolism (GLR). ROC, receiver operating characteristic; AUC, area under the curve; Cl, Confidence Interval; NLR, neutrophil to lymphocyte ratio;
CHD, coronary heart disease; PLR, platelet to lymphocyte ratio; GLR, glucose to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin.

TABLE 6 Incremental effect of nutritional, inflammatory, and glucose metabolism markers in predicting all-cause and cardiac mortality.

Indicators

Baseline risk model

All-cause mortality

Cardiac mortality

Full risk model  Baseline risk model = Full risk model

Estimate (95% CI) 0.648 (0.612-0.683) 0.887 (0.872-0.903) 0.680 (0.631-0.929) 0.875 (0.852-0.897)
Difference —0.239 —0.195
C-index
z-score —14.495 —7.9548
p-value ref <0.001 ref <0.001
Total Estimate (95% CI) 0.793 (0.526-0.893) 0.793 (0.552-0.859)
p-value ref <0.001 ref <0.001
Dead Estimate (95% CI) 0.384 (0.226-0.435) 0.384 (0.230-0.420)
Category-free NRI
p-value ref <0.001 ref <0.001
Alive Estimate (95% CI) 0.408 (0.200-0.491) 0.408 (0.220-0.511)
p-value ref <0.001 ref <0.001
Estimate (95% CI) 0.356 (0.309-0.411) 0.216 (0.153-0.298)
IDI
p-value ref <0.001 ref <0.001

NRI, net reclassification index; IDI, integrated discrimination improvement; CI, confidence Interval; ref, reference.

in UK HD patients. Similarly, Chen et al. (35) identified NLR and
LMR (not PLR) as predictors in US HD patients. Our multicenter
cohort study demonstrated that NLR, PLR, and LMR were all
independently associated with all-cause and cardiac mortality in
initial HD patients. These findings suggest that NLR remains a robust
predictor of all-cause mortality in HD patients, regardless of ethnic
heterogeneity, while the prognostic value of PLR may differ by racial
or regional factors. Notably, even when adjusting for NLR, PLR, and
LMR simultaneously in multivariable models, NLR consistently
demonstrated the strongest predictive performance for 1-, 3-, and
5-year mortality, followed by PLR and then LMR. This ranking is
consistent with observations by Li et al. (14), who identified NLR as
the most accurate predictor of 28-day all-cause mortality in sepsis
patients with CHD, outperforming PLR and LMR. Given the
consistent and reliable prognostic value of NLR across diverse
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populations and disease contexts, its translational utility for risk
stratification in HD care warrants further attention.

Furthermore, in ESKD patients, relative or absolute insulin
deficiency, resulting from reduced peripheral tissue insulin sensitivity,
uremic toxin-mediated suppression of pancreatic f-cell receptor
function, and impaired glucose utilization due to metabolic acidosis,
contributes to elevated FBG and poor clinical outcomes (36, 37). The
GLR, a novel biomarker, reflects systemic glucose dysregulation and
chronic inflammation. Recent studies suggest that GLR offers superior
prognostic value compared to its individual components (38).
Moreover, Chen et al. (25) identified elevated serum GLR as an
independent predictor of all-cause and cardiac mortality in PD
patients. Yan et al. (39) reported that lowering GLR significantly
reduced the risk of initial peritonitis episodes in PD populations. Our
study is the first to confirm the robust predictive value of GLR for
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FIGURE 4
Nomogram for survival prediction based on the full risk model including age, comorbidities, NLR, GLR, PLR, LMR and ALB. (a) Nomogram for predicting
all-cause mortality; (b) Nomogram for predicting cardiac mortality. NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; GLR,
glucose to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALB, albumin.

all-cause and cardiac mortality in HD patients, emphasizing its
clinical significance. While GLR, NLR, PLR, and LMR each reflect
disturbances in the metabolic-inflammatory axis, their biological
interrelationships and disease-specific implications remain
insufficiently characterized. We demonstrated that GLR, which
positively correlated with NLR and PLR but inversely with LMR,
maintained independent prognostic value for mortality outcomes in
HD patients. The interplay between glucose metabolism and
inflammation is mediated by complex, multi-organ regulatory
networks. For instance, hyperglycemia may amplify inflammatory
responses via oxidative stress, advanced glycation end products
(AGESs) and endothelial injury, while inflammatory cytokines impair
insulin receptor substrate (IRS) phosphorylation and suppress glucose
transporter 4 (GLUT4) activity, exacerbating hyperglycemia (40) and
insulin resistance (41). This bidirectional cycle likely contributes to
poor outcomes, suggesting that effective HD management must target
both sustained hyperglycemia and chronic inflammation.
Protein-Energy Wasting (PEW), a metabolic disorder characterized
by the progressive loss of protein and energy reserves, is prevalent in HD
patients (42). Hypoalbuminemia, a key diagnostic indicator of PEW; is
strongly associated with increased mortality risk in dialysis populations
(43), consistent with our findings in initial HD cohorts. Furthermore,
we observed that ALB was inversely correlated with NLR, PLR, and
GLR, but positively correlated with LMR. These associations may reflect
the impact of inflammation on hepatic ALB synthesis, potentially
mediated by the downregulation of ALB mRNA through pathways such
as NF-kB activation (44). Although hypoalbuminemia remains
independently associated with elevated mortality risk after mutual
adjustment, its predictive power for all-cause and cardiac mortality is
comparable to LMR but substantially lower than that of NLR, PLR, and
GLR. These findings underscore the superior prognostic value of
inflammatory and glucose-metabolic biomarkers over nutritional
indicators alone in mortality risk stratification for HD patients.
Current evidence suggests that integrating multidimensional
biomarkers offers a more comprehensive approach to risk stratification.
Li et al. (44) demonstrated that while individual biomarkers such as
NLR, LMR, PLR and the mSOFA score had limited predictive power
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for 28-day mortality in patients with septic coronary heart disease,
combining these indicators with mSOFA significantly enhanced
predictive accuracy. In our study, we were the first to incorporate
nutritional (ALB), inflammatory (NLR, PLR, LMR), and glucose
metabolism (GLR) biomarkers into traditional risk models that include
age, diabetes, hypertension, and CHD. This integrative approach
significantly improved the prediction of all-cause and cardiac mortality
and demonstrated sustained effectiveness for long-term risk
assessment. The death risk nomogram developed from the
comprehensive model incorporates multi-dimensional parameters.
This tool may assist clinicians in several key decision-making areas:
First, the nomogram provides an intuitive and quantitative method to
estimate individual patient risk, which can facilitate shared decision-
making. For example, patients identified as high-risk may gain a clearer
understanding of their prognosis, potentially motivating them to
adhere to dietary recommendations, medication plans, and dialysis
schedules. Conversely, those classified as low-risk can be reassured.
Second, high-risk patients screened using the nomogram should
receive intensified clinical monitoring, specifically through dietitian-led
personalized interventions (to improve albumin and glucose levels)
and tighter management of comorbidities such as diabetes and
cardiovascular diseases. Third, this model helps identify a high-risk
phenotype characterized by hyperglycemia—low serum albumin-
inflammation. This population is ideal for future clinical trials targeting
interventions designed to modify these risk factors, such as novel anti-
inflammatory agents, specific nutritional supplements, or glycemic
control strategies in non-diabetic HD patients.

However, this study still has several limitations. First, the
retrospective design limits causal inference (as it is susceptible to
unmeasured confounding); additionally, despite being multicenter,
all centers are in China, limiting generalizability to diverse
populations. To further validate our findings and establish
causality, large-scale, prospective, multi-center studies involving
diverse ethnic populations are warranted. This would help to
enhance the generalizability of our results and account for potential
genetic and socio-economic confounding factors. Second, although
we adjusted for multiple confounding factors, the possibility of
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residual confounding remains. For instance, certain inflammatory
markers—such as C-reactive protein and procalcitonin—were not
included in the analysis due to severe data gaps resulting from
inconsistent testing or documentation in clinical practice, and this
may have influenced the results. Third, this study only analyzed
baseline measurements of GLR and other laboratory parameters.
Dynamic changes in these parameters during hemodialysis—such
as fluctuations in albumin and glycemic variability—may hold
greater prognostic significance, but were not explored in the
current study. Future research should incorporate longitudinal
data to evaluate the association between these time-dependent
changes and patient outcomes. Fourth, unfortunately, this study
did not include indicators for assessing dialysis adequacy, such as
Kt/V urea (Kt/V). Considering that the study participants were
patients initiating hemodialysis, who were in a phase of treatment
adaptation and parameter adjustment, their dialysis regimens and
metabolic status were not yet stable. During this stage, Kt/V values
can be easily influenced by factors such as blood flow rate, dialysis
duration, body weight estimation inaccuracies, and sampling
timing, which may compromise the reliability and consistency of
the results. Therefore, we believe that the absence of Kt/V has
limited impact on the interpretation and reliability of the core
findings of this study in the initial dialysis population. Despite
these limitations, this is the most comprehensive study to date
evaluating the relationship among nutritional status, inflammation,
glucose metabolism, and mortality in patients undergoing initial
HD. Future large-scale, multicenter, prospective cohort studies are
warranted to validate these findings.

5 Conclusion

In conclusion, elevated NLR, GLR, and PLR, along with reduced
LMR and ALB, were independent predictors for the all-cause and
cardiac mortality in initial HD patients. Among these markers, NLR
demonstrated the strongest predictive value, while GLR outperformed
PLR in predicting long-term mortality. In addition, LMR and ALB
showed comparatively weaker and similar predictive capacities.
Importantly, a comprehensive risk model integrating these biomarkers
with traditional risk factors significantly improved mortality risk
stratification. Accordingly, we recommend the routine clinical use of
a nomogram based on this integrated model to improve prognostic
assessment and guide personalized management in patients
initiating HD.
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